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ABSTRACT
In recent years, the field of Music Emotion Recognition
has become established. Less attention has been directed
towards the counterpart domain of Audio Emotion Recog-
nition, which focuses upon detection of emotional stimuli
resulting from non-musical sound. By better understanding
how sounds provoke emotional responses in an audience it
may be possible to enhance the work of sound designers.
The work in this paper uses the International Affective

Digital Sounds set. Audio features are extracted and used as
the input to two machine-learning approaches: regression
modelling and artificial neural networks, in order to predict
the emotional dimensions of arousal and valence.
It is found that shallow neural networks perform better

than a range of regression models. Consistent with existing
research in emotion recognition, prediction of arousal is
more reliable than that of valence. Several extensions of this
research are discussed, including work related to improving
data sets as well as the modelling processes.

CCS CONCEPTS
• Applied computing → Sound and music computing;
Media arts; •Human-centered computing→ Interaction
design theory, concepts and paradigms; Empirical studies in
interaction design.
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1 INTRODUCTION
In this section, the underpinning concepts of affect recog-
nition in sound are introduced. The section begins by ex-
plaining emotion recognition tasks, models and approaches
before describing the data set employed in our work. The im-
portance of emotional sound is highlighted with a particular
emphasis on its application in film and other visual media.

Affective Computing and Audio
Affective computing is a growing and interdisciplinary re-
search field concerned with the emotional interaction be-
tween technology and humans [30]. The field of Music Emo-
tion Recognition (MER) is one such subset of this broad field
and has received considerable attention from the research
community in recent years [8, 18, 28, 33, 35]. In this article,
however, we turn our focus to the area of Audio Emotion
Recognition (AER), which deals with affect in non-musical
sound. This field has received less attention in the litera-
ture, although we make the case that it is equally as relevant.
This is particularly true, for example, in the task of sound
design for media such as television, computer games and
film, where sound effects are typically coupled with music
to direct the perception of the audience [7]. For the purposes
of this article, we define sound effects as including the many
layers of audio, other than music, that are found in media,
such as ambience, Foley, dialogue, and human utterances.
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Traditionally, affective computingmakes use of theoretical
models of emotion. The most common models encountered
are either categorical or dimensional. Categorical models use
qualitative descriptions, commonly text-based, to identify
discrete emotions, whilst dimensional models use quanti-
tative values on one or more dimensions. An example of a
categorical model can be seen in the work of Ekman [13] or
Panksepp [29], whilst dimensional models may be seen in
those of Thayer [42] or Russell [34].

The research documented in this article adopts the use of
the latter of these: Russell’s circumplexmodel of affect, which
is a two-dimensional Cartesian emotion space consisting of
axes relating to arousal (vertical) and valence (horizontal)
[34]. This approach is typical in the field of emotion recogni-
tion. Whilst our work focuses upon the affective analysis of
audio it is worth making the observation that, in the field of
Music Emotion Recognition (MER), it is typically reported
that models for the prediction of the arousal dimension tend
to outperform those of valence [18, 33, 35].

Models for the prediction of emotion in media make use of
the coefficient of determination R2 as a performance metric.
In the field of MER, the upper range of R2 values for arousal
are approximately 80% to 85% and approximately 60% to 70%
for valence [12, 18, 24]. An aim of our work is to determine
if similar levels of performance can be achieved in AER.

The IADS Data Set
The International Affective Digitized Sound (IADS) system
[4] is a corpus of validated, emotionally annotated sounds.
This data set provides 167 varied sounds and their associated
emotional ratings, obtained through the Self-Assessment
Manikin (SAM) approach on the dimensions of arousal, va-
lence and dominance [2]. Ratings are presented for each
dimension using a 9-point scale and each sound is rated by a
minimum of 100 participants. The mean duration of the 167
sound samples in the IADS set is 6.014 seconds (σ= 0.017 sec-
onds). The overall distribution of the IADS ratings in arousal
and valence space is illustrated in Figure 1. By extracting data
relating to the arousal and valence dimensions therein, we
make use of the IADS in our attempt to create computational
models of emotional response to sound.

Affective Audio
While Picard (1997) [30] argues that human-computer inter-
actions can be improved through the design of systems that
represent, recognise, respond to, or have emotions, these
concerns are also significant for a variety of media such
as games, audio-visual art and film, which increasingly are
embedded within computer systems. For instance, Weinel’s
work [43] on altered states of consciousness argues that the
design of various electronic music and audio-visual media
allows the transmission of affective properties to audiences.

Figure 1: IADS Mean Values in Arousal and Valence Space

He argues that these affective properties are combined with
representational properties, which frame the emotive aspects
of the media with different forms of conceptual meaning.
According to this argument, non-diegetic music is a central
feature of media that elicits states of positive or negative
valence and arousal (following Russell’s circumplex model of
affect [34]). For instance, Gabrielsson and Lindstrom’s [14]
meta-study of music and emotion reveals musical features
such as rhythm, melody, pitch and tonality may often be as-
sociated with specific affective responses. Weinel argues that
these features are primarily involved in the production of
affect, while non-diegetic sounds or images may frame these
with representational meaning. Yet he also notes that there
is inevitably some overlap between these broad categories.
Considering this overlap, affective properties are elicited

in conjunction with other representational aspects of these
media, such as diegetic audio, or visual representations, which
may suggest places, spaces and narratives. Sound effects for
instance, may reference real or imaginary locations (such as
through soundscapes), and suggest sequences of events. The
primary role of these is often to reveal the diegesis, conjuring
these spaces for the audience. Yet diegetic sound may also
have emotional resonances for the listener. For instance, fol-
lowing R. Murray Schafer’s [37] discussion, we may consider
how sounds such as alarms or dogs barking have representa-
tional or symbolic meaning, but also give rise to emotional
responses. These emotional responses may include aspects
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that are culturally shared, and those that are highly indi-
vidualised and subjective. For example, sound such as an
alarm ringing is widely understood to indicate forms of alert,
corresponding with high arousal, calling those who can hear
it to action in some form — whether to take action to prevent
the breakout of a fire, or, in a musical context where this
sound effect is often used by DJs at raves, to trigger ecstatic
dance. Such sounds can be understood as cross-cultural, re-
lating to shared cultural knowledge and semantic memory (in
terms of Schacter and Tulving’s [36] theory of semantic and
episodic memory). Yet alarms can also trigger highly individ-
ualised responses, such as for persons with Post-Traumatic
Stress Syndrome (PTSD), for whom the sound may trigger
traumatic autobiographical episodic memories.

Affective Sound Design for Film and Other Media
It has been suggested [1] that sound design can "actively
shape how we perceive the image". This shaping of how an au-
dience’s experience through sound can be performed through
the elicitation of emotions, among other techniques. This
section shall discuss some methods of purposefully shap-
ing an audience’s response as well as look at examples of
previous research into the matter.
The use of the "affective qualities" of sound may commu-

nicate "dramatic tone, atmosphere and mood" [9], whilst also
describing the fictional world, giving it a "particular toning"
[20]. The use of sound in this way, to create a more detailed
and believable world is useful for filmmakers to envelop
their audience within the fictional world, to experience it
alongside the characters that inhabit it [1, 5].

It is hypothesised that by using affective audio in cinema,
a filmmaker may be able to ensure their audience feels a
particular emotion at specific points throughout the film.
Some research into how this can be implemented has already
been undertaken. Most notable is the work of Hillman and
Pauletto [16, 17], which concluded that a "Four Sound Areas
framework" in which sound design is broken down into four
areas (logical, abstract, temporal, and spatial) would afford a
more flexible approach to "emotive sound design".
Sound in the real-world is known to cause affect. The

everyday soundscapes that we experience may change our
mood. For example, for someone from the countryside, the
soundscape when visiting a busy city may cause distress
or unease as they aren’t accustomed to the sounds [19, 37].
Further, the notion of "Acoustic Violence" coined by Miyara
[27] and described as sound that is invasive, exudes power or
prominence, or is not wanted, may also cause affect. Consider
the sound of a newly built airport, and the affect it has on
the local community. The airport exerts its acoustic power
over the local community and comes to define it. Over time
the local people may consider the sound to become a part of
the local soundscape. At this point it is no longer a violent

invasion but a keynote [37] — a background sound that is
part of life. One could now argue that to take this sound
away is in itself acoustic violence, changing the soundscape
that local residents live with. The unwanted sound is the
acoustic violence in either case. This scenario looks at both
sides of interpretation, and techniques such as this may be
used as plot devices.
Successful sound design does not only access the repre-

sentational aspects of sound, but taps into this capability
to elicit culturally shared affective properties. In films and
video games, the diegetic soundscape extends the spatial rep-
resentations of these media beyond the limited space of the
screen, allowing the construction of believable environments.
Yet the affective properties of sound furnish these narrative
spaces with cues and triggers for mood and emotion. For
example, inWall Street [40], one scene cuts from Bud Fox’s
budget New York apartment to Gordon Gekko strolling a
beach at dawn. As Gekko tempts Fox with a business propo-
sition that could fulfil his wildest capitalist fantasies, the
contrast between the mundane and the affluent sublime are
underscored by the contrasting sounds of street noise and
ocean waves lapping on the beach; the full frequency sound
of Gekko’s voice speaking into his expensive mobile phone,
and the low-fidelity simulacrum which comes through Fox’s
landline. In Michael Mann’s films such as Miami Vice [25],
we similarly find sublime tropical environments contrasted
with dense industrial landscapes or seedy urban sprawl. Here,
sounds of waves or palm trees rustling in the wind similarly
create a tangible, affective, aural sense of the sublime, which
contrasts with the noise of the action sequences. Considering
the latter, in the main shootout sequence of Heat, after the
main crew exit from a bank robbery, for approximately five
minutes we hear no music — only machine gun fire, shat-
tering glass, squealing tires, and occasionally screams and
shouts. Here it is not music that gives a sense of adrenaline
and excitement, but rather the sound effects that delivers a
high-arousal affective experience for the audience.
Further, the building of soundscapes for film has been

documented as a method for creating a mood, atmosphere, or
otherwise eliciting audience emotion. A noticeable example
of positive use of such technique can be heard in American
Graffiti [23]. In street scenes where teenagers are driving
their cars, the background sound is filled with happy crowd
noises, laughs and giggles, radios playing and so on [22]. All
of this adds to the party atmosphere of the film, and may
subtlety elicit euphoric and sometimes nostalgic feelings in
the audience, as it never over emphasises anything.

In video games, sound design serves similar purposes in an
interactive context. The diegetic soundscape serves to make
spatial environments convincing navigable spaces, leading
to presence and immersion through what Cajella [6] refers
to as spatial player involvement. Yet the affective properties
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of diegetic sound can also be understood as creating an af-
fective sensorium, facilitating Cajella’s concept of affective
player involvement. Through the combination of the two, we
can think of games as providing interactive affective spaces,
which may denote zones of safety and danger and reinforce
rewarding and un-rewarding actions. Thereby, affect also
contributes to ludic involvement, since it gives sensory cues
regarding the relative success or behaviour of the player’s
actions in the virtual world. With video games as with other
audio-visual media, it is not only non-diegetic music, but
also diegetic sound that contributes towards the audience
experience of affect, which in turn plays a pivotal role in the
overall experience of the media.

A core intention of the work that follows in this paper is to
be able to empower and enhance sound designers and their
work, particularly for application in film. We envisage that
computational models for AER will enable sound designers
to create more emotionally impactful work and to evaluate
their designs prior to audience trials.

2 RELATEDWORK
This section begins by depicting existing research studies
into the manifestation of human emotional responses to non-
musical sounds. Following this, recent research specifically
into AER is chronicled, highlighting the techniques employed
and performance of the models created.

Audio Affect Identification
In noting that the presence of film when studying affective
responses makes it difficult to isolate the sonic aspects, work
by Bradley and Lang [3] gathered affective reaction data
from acoustic stimuli. The study involved the playback of
60 sounds to test subjects, who were asked to rate how they
felt whilst listening to the sounds based on arousal, valence
and dominance on a scale of 1 to 9. The study found that
the results followed a similar pattern to studies using the
International Affective Picture System (IAPS) data set, with
extreme ratings of pleasure having extreme ratings of arousal,
and neutral levels of pleasure having low arousal ratings.
A study by Redondo et al. [32] replicated the original

IADS experiments with the intention of finding differences
in ratings based on cultural differences between American
(original study) participants and Spanish participants. The
study found that while Spaniards rated sounds in a very
similar way to Americans, there was some — if only minor
— differences. It found that Americans tend to rate sounds
with more positive valance than Spaniards, whilst less ac-
tivating in the arousal scale, but with a wider range. The
study also noted that some specific sounds in the data set
may be affected by cultural differences, giving the examples
of American Football, which is seldom played in Spain, and
the sounds of bombs. At the time of writing of their study,

the authors noted that explosive devices had been recently
used in terror attacks in Spain.
In a similar manner to previously mentioned studies, re-

search by Stevenson and James [39] aimed to predict the
arousal, valence, and dominance for a set of sounds after cat-
egorising them into one of five emotions: happiness, anger,
sadness, fear and disgust. Participants rated each of the IADS
sounds on a scale of 1-9 for each emotion. The data from this
experiment was used to label each sound in the IADS data
set with one or more emotions. The conclusion was that va-
lence and arousal were only effectively predicted in the fear
emotion, for both positive and negative stimuli. The study
acknowledged that whilst the results obtained were not en-
tirely useful for predicting responses, the categorisation of
sounds it produced may be beneficial to future research.

Audio Emotion Recognition
Sundaram and Schleicher [41] conducted experiments mod-
elling the affective response of listeners to a range of sound
recordings. What makes their work novel is their use of
recordings that might be considered complex, in that they
did not represent a single attributable source. Instead, they
were recordings of outdoor spaces and real environments,
meaning each sound contained multiple, often overlapping,
acoustic sources. The authors advocated a move away from
the use of categorical models of emotion. Primarily, this is
based upon the difficulties associated with using categorical
approaches for sounds with multiple acoustic sources, but
is also supported by the assertion that alternate approaches
are already robustly employed in the field of experimen-
tal psychology. Therefore, their work makes use of a di-
mensional model, with ratings being produced on arousal,
valence and dominance axes by using the Self-Assessment
Manikin [2]. The work makes use of Latent Perceptual In-
dexing (LPI) to produce affective values for sounds using
twelve Mel-Frequency Cepstral Coefficient (MFCCs) audio
features. Sounds rated as similar in terms of their affect were
also comparable in terms of their latent similarity index.

Drossos et al. [10] utilised the arousal and valence ratings
for samples in the IADS set, which they described as being
representative of sound events based upon a set of criteria
defined from the literature. First, they performed an initial
classification upon all sounds in the IADS set, determined
by the quadrant location of each sound, as shown in Figure
1. This meant that the process became a classification task,
rather than the prediction of continuous variables represent-
ing arousal and valence. A range of typical audio features
were then extracted and used in a series of training and vali-
dation exercises using Support Vector Machines (SVM) and
Artificial Neural Networks (ANNs). Classification accuracy
using these methods was reported at 43.7% for arousal and
36.5% for valence. This finding must be considered in the
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context of a theoretical 25% allocation by chance, further
skewed by the distribution of the sounds, as evidenced in
Figure 1. The authors submit that traditional approaches
used in MER may not be equally applicable to AER tasks.
The IADS set was used in another work by Drossos et al.

[11] that examined rhythmic attributes of sound and their
relationship to arousal. The authors elected to follow the
approach of using a dimensional approach to dealing with
arousal values, thereby avoiding the complexities associated
with detaching dimensional components from categorical
descriptors of affect. The approach employed seven different
window lengths during the audio analysis. Prior to features
being extracted, the data set was split into two groups, allo-
cating the samples into a low or high arousal class. Six audio
features were extracted along with statistics describing the
shape of their distribution. Three approaches to classification
were adopted: Artificial Neural Systems, logistic regression
and K-Nearest-Neighbour. The overall approach is shown
to yield strong outcomes in performance, with the lowest
outcome being 71.26% accuracy with ANS and 88.37% using
logistic regression. However, these results must be contextu-
alised against being a classification task of two categories,
where chance would result in a theoretical outcome of 50%
accuracy, which would then be further skewed by the distri-
bution of the sounds between the two classes. This reflects
sounds being attributed to either a low or high arousal class,
not one where dimensional output is sought.

Schuller et al. [38] also recognised the value of researching
AER in work that explored "realistic acoustic environment
conditions", which they classified into eight different subsets,
such as: animals; musical instruments; people; and vehicles,
among others. Acknowledging the general lack of existing
work and resources in the field of AER the authors elected
to construct their own data set, known as the Emotional
Sound Database, sourced from an online sound repository.
The sounds were then annotated by a small group of four
participants, which is arguably a limitation of the corpus as
a valid ground truth. A large number of audio features were
extracted from the sounds and modelled with a regression
approach, yielding results that equated to a R2 of 37.21% in
the prediction of arousal and 24.01% for valence.

3 AUDIO EMOTION RECOGNITION IN IADS
This section explains our empirical work towards the recog-
nition of emotion in the IADS set. It describes the methods
of analysis, creation of models using regression and neural
networks, and the performance of each model.

Analysis Method
All 167 sounds from IADSwere employed within the analysis.
The sounds were peak-normalised to control loudness. This
replicates the conditions reported by the originators of IADS

in their participant study [4]. Audio features were extracted
using the Matlab 2018a software and the Matlab Audio Anal-
ysis Library [15], using the settings of a 50 ms window with a
50% overlap. These values have been shown effective in other
works relating to emotion analysis [8]. The set of 35 features
from the Audio Analysis Library were extracted, which com-
prise of: zero-crossing rate; energy; energy entropy; spectral
centroid (mean); spectral centroid (spread); spectral entropy;
spectral flux; spectral roll-off; the first 13 MFCCs; harmonic
ratio; fundamental frequency; and 12 chroma vectors. For
each feature, mean and standard deviation were calculated.

In addition to these features, it was decided to incorporate
other higher-level data relating to the mode, harmonicity,
distribution of energy, and rhythmic elements, the latter be-
ing recognised as of value in prediction of emotional arousal
in audio samples [11]. These following features were ob-
tained by making use of the MIRToolbox [21] and included
for analysis: inharmonicity; low energy; mode; tempo; and
pulse clarity. Finally, the location of the peak amplitude level,
expressed in seconds, was added to give an indication of the
attack envelope of each sound. Consequently, a total of 76
features were obtained for subsequent analysis.
Regression analysis was performed on the response vari-

ables from the IADS mean arousal and mean valence using
a range of models, in order to find the one that performed
the best in terms of minimising the Root-Mean-Square Er-
ror (RMSE) and producing the strongest R2 value. Variations
were performed using five and ten fold Cross-Validation (CV)
with, and without, dimension reduction via Principal Com-
ponent Analysis (PCA), which explained 95% of the variance.
A shallow, two-layer feed-forward ANN was configured,

with one hidden layer. Some brief trial and error gave in-
dication that a network with eight neurons provided fair
outcomes in terms of computational performance and RMSE
and R2 metrics. One network was created for the output of
emotional arousal and another for valence. Whilst it is pos-
sible to produce a single network with two distinct outputs,
at this stage it was decided to deal with each dimension sep-
arately, as has become common practice in MER. This also
allows the performance of the ANN to be examined easily
in terms of each of the aforementioned dimensions. Exten-
sive training and tuning of parameters was not undertaken
at this time since the intention was to investigate the gen-
eral feasibility of the ANN approach and not to find optimal
values, which can be a time-consuming process. Instead, a
brief period of trial-and-error training took place manually,
consisting of no more than ten or fifteen training iterations.
The IADS data were divided for the purposes of train-

ing (70%), validation (15%) and testing (15%) of the ANNs.
The results reported in the next section relate specifically to
the performance on the test data subsets. Training used the
Levenberg-Marquardt algorithm [26].
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Results: Regression Fitting
The results for prediction of arousal are provided in Table
1. By inspecting the returned RMSE and R2 values, it can be
seen that the 5 fold CV Squared Exponential Gaussian Pro-
cess Regression [31] method performs best (RMSE = 0.989,
R2 = 0.28), closely followed by the 10 fold CV Squared Expo-
nential GPR (RMSE = 0.998, R2 = 0.27). The best fit regression
model for arousal is shown in Figure 2.

Table 1: Regression Performance - Arousal

CV PCA Model RMSE R2

5 fold Yes Linear 1.157 0.01
5 fold No Squared Exp. GPR 0.989 0.28
10 fold Yes Exp. GPR 1.179 -0.02
10 fold No Squared Exp. GPR 0.998 0.27

Figure 2: 5 Fold Squared Exponential GPR - Arousal

The results for prediction of valence are provided in Table
2. The best performing model was the 5 fold CV Rational
Quadratic GPR (RMSE = 1.645, R2 = 0.12), followed by the 10
fold CV Matérn 5/2 GPR (RMSE = 1.656, R2 = 0.12). The best
fit regression model for valence is shown in Figure 3.

The best performing models were variations on GPR, sug-
gesting that the modelling of arousal and valence using this
set of features does not follow a clearly predictable trend.
Both arousal and valence regression models tended to pre-
dict in the middle of the output range, a trend exemplified

Table 2: Regression Performance - Valence

CV PCA Model RMSE R2

5 fold Yes Stepwise Linear 1.756 0.00
5 fold No Rational Quadratic GPR 1.645 0.12
10 fold Yes Squared Exp. GPR 1.746 0.02
10 fold No Matérn 5/2 GPR 1.656 0.12

Figure 3: 5 Fold Rational Quadratic GPR - Valence

in the case of valence (Figure 3), where it can be seen that
the bulk of predictions sit between a value of 4 and 6. The
effect is less pronounced for arousal, commensurate with its
better performance in terms of the RMSE and R2 metrics.

Results: Neural Network Fitting
Due to the use of a small number of neurons in the hidden
layer, the training, validation and test processes were fast,
completing within seconds. The best obtained values for the
metrics of RMSE and R2 for the test data set are reported in
Table 3 with respect to the dimensions of arousal and valence.
Graphs representing the performance of the ANN are shown
in Figure 4 for arousal and in Figure 5 for valence.
Consistent with the literature on AER and MER, predic-

tion of arousal is better than that of valence using the ANN.
Although the number of samples used in the test data set
represents 15% (25 sounds) from the IADS ratings, there is
less clustering of predictions in the middle of the range of
output variables, as observed when using regression.
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Table 3: Neural Network Performance - Test Data

Dimension RMSE R2

Arousal 0.987 0.345
Valence 0.514 0.269

Figure 4: ANN - Arousal - Regression Plot for Test Data

4 CONCLUSIONS AND FUTUREWORK
Our results provide an interesting contrast to the values
reported in the findings of MER research, suggesting that
the recognition of affect in non-musical sounds may require
different approaches and alternate or new audio features.

ANN approaches to emotion prediction performed better
than regression. The ANN models accounted for 34.5% of
the variance in the prediction of arousal and for 26.9% in va-
lence. Only a short amount of time was spent experimenting
with the parameters of the ANN, which is a limitation of its
performance. The better performance of the ANN, coupled
with the best-fit regression models using GPR, indicates that
emotion prediction, using these features, is non-linear.
There is only one other work in AER to which these re-

sults can be directly compared, where prediction of arousal
accounted for 37.2% of the variance and prediction of valence
achieved 24.0% [38]. These values support the generalisation
that arousal is easier to model than valence. Given the larger
number of annotators and sounds samples in IADS it may be
reasonable to postulate that differences between our results
and those of Schuller et al. represent statistical noise. These

Figure 5: ANN - Valence - Regression Plot for Test Data

findings show that AER does not yet match the levels of
performance found in MER. However, the results presented
are limited by a lack of data sets in AER.

As shown in Figure 1, the IADS ratings distribution is not
uniform. The majority of arousal ratings, 121 of them, lie
in the top two quadrants. As such, modelling and training
processes will be biased. The situation is less extreme in the
case of valence, with 81 sounds located in quadrants 1 and
4. Nevertheless, at 167 samples the IADS is small compared
to MER data sets, which can range from 30 to over 100,000
songs [28, 35]. Recognition of these limitations of the IADS
might be dealt with by creation of a larger set of validated
samples with a more uniform distribution. An avenue for
future work would be to take a rigorous and extensive ap-
proach in finding optimal parameters that can be used to
enhance the predictions made by the neural network. The
audio features used are also an area to explore. It may be
the case that the best set of features has not yet been consid-
ered by any research in the field. Typical audio features are
oriented towards signal processing or musical domains and
thus may not account for the salient aspects in AER. As an
extension to this, another way to train an ANN would be to
use the time-series audio sample data as the input.
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