Impacts of Block-based Programming on Young
Learners’ Programming Skills and Attitudes in the
Context of Smart Environments

Ph.D. thesis
by

Mazyar Seraj

Supervisor

Prof. Dr. Rolf Drechsler

@ Universitat Bremen

Impacts of Block-based Programming on Young
Learners’ Programming Skills and Attitudes in the
Context of Smart Environments

Ph.D. thesis

by

Mazyar Seraj

A dissertation submitted for the degree of Dr.-Ing.

Supervisory Committee
Prof. Dr. Rolf Drechsler (University of Bremen, Germany)
Prof. Dr. Ira Diethelm (University of Oldenburg, Germany)

April 2020

Acknowledgments

I would like to start by thanking my advisor Rolf Drechsler for his continuous
support and guidance. I deeply appreciate the opportunity he gave me to be part
of his research group, which enabled me to learn, research, and present my ideas
about various interesting topics.

I take this opportunity to express gratitude to my co-authors, Serge Autexier,
Eva-Sophie Katterfeldt, and Cornelia S. Grofle, who helped me with their valuable
scientific knowledge, as well as insightful discussions and suggestions. This work
would not have been possible without their help. I would also like to thank my
committee members and my external examiner Ira Diethelm for their time and
their constructive comments and suggestions. I greatly appreciate the help and
support of my friends and colleagues in DFKI, AGRA, and SMILE project team
members.

Finally, words can not express how grateful I am to all members of my beloved
family for their continuous support. Special thanks to my parents Belgheys and
Mansour for their constant encouragement during stressful times and endless pa-
tience with their busy son. Without them, this work would have no meaning.

Mazyar Seraj
April 2020

Disclaimer

I hereby declare that
e this dissertation has been composed by myself,

e no portion of this dissertation has been submitted for any other degree or
professional qualification except as specified,

e it has been completed without claiming any illegitimate assistance, and

e I have acknowledged all sources used (both, verbatim and regarding their
content).

Mazyar Seraj
April 2020

Contents

Acknowledgments

Disclaimer

1

2

Introduction

Background
2.1 End-User Programming
2.2 Visual Programming oo
2.2.1 Block-based Programming Environments
2.3 Related Works oo
2.3.1 Tangible Artifact Programming
2.3.2 Mobile Robot Programming
2.3.3 Smart Home Programming
2.4 Attitudes Towards programming
2.5 Programming Performance
2.6 SUMMATY . . .« vt e e e e e e

Design and Development of the Block-based Programming Tool
3.1 Introduction and Motivation.
3.2 Overview of BEESM
3.2.1 Primitives and Blocks 0oL
3.2.2 Three Examples of the Designed Blocks
3.2.3 User Interface Design
3.3 BEESM Architecture
3.4 Integration and Discussion L.
3.5 Limitations Lo
3.6 Conclusion

11
11
12
13
14
14
16
17
18
19
20

CONTENTS

4

5

Measuring Instruments: Questionnaires and Programming Questions
4.0.1 Attitudinal and Perceptional Questionnaires
4.0.2 Programming Questions
4.0.3 Summery

Instructional Supports for Block-based Programming
5.1 Introduction and Motivation. Lo
5.2 Related Work oo
5.2.1 Summary
5.3 Training SesSionso
5.3.1 Questionnaires Lo
5.3.2 Overview of the Smart Home
5.3.3 Introduction to Programming Structures and Principles . . .
5.3.4 Programming Tasks
54 User Studies
5.4.1 Experiment 1o
5.4.2 Experiment 2 L
5.5 Integration and Discussion oL oL
55.1 Findings Lo
5.5.2 Implications
5.5.3 Limitations Lo oo
56 Conclusion

Students’ Attitudes and Skills: Impacts of Block-based Programming
Environments
6.1 Introduction and Motivation.
6.2 Related Work
6.2.1 Summary
6.3 Overview of Block-based Programming Environments (BBPEs) . . .
6.3.1 MBlock
6.3.2 The Micro-Controller Part of BEESM
6.3.3 Main Differences of the Two BBPEs
6.4 Methodology
6.4.1 Study Design and Data Collection Strategy
6.4.2 Participants o Lo
6.4.3 Procedureo
6.5 Experimental Evaluation 0.
6.5.1 Acquisition of Programming Skills
6.5.2 Attitudes and Perceptions of Programming
6.5.3 Programming Experience

ii

CONTENTS

6.6 Integration and Discussion L. 90
6.6.1 Findings 90
6.6.2 Limitations Lo 92

6.7 Conclusion 93

7 Students’ Attitudes and Skills: Impacts of Smart Objects’ Construction 95

7.1 Introduction and Motivation. oL 96
7.2 Related Worko 97
721 SUMMATY oo e e 99

7.3 Methodology 99
7.3.1 Study Design and Data Collection Strategy 99

7.3.2 Participants oL 102

7.3.3 Procedure 103

7.4 Experimental Evaluationo 104
7.4.1 Acquisition of Programming Skills 105

7.4.2 Attitudes and Perceptions of Programming 105

7.5 Integration and Discussion oL 109
7.5.1 Limitations Lo 111

7.6 Conclusion 112

8 From Block-based Programming to Construction of Smart Objects 113
8.1 Introduction and Motivation. L. 114
8.2 Related Work o 116
8.2.1 Summary 117

8.3 Methodology 118
8.3.1 Study Design and Data Collection Strategy 119

8.3.2 Participants Lo 121

8.3.3 Procedure 122

8.4 Experimental Evaluation 124
8.4.1 Acquisition of Programming Skills 124

8.4.2 Attitudes and Perceptions of Programming 125

8.4.3 Programming Experience 128

8.5 Integration and Discussion oL 131
8.5.1 Limitations L 133

8.6 Conclusion 133

9 Conclusion 135
Bibliography 140

iii

CONTENTS

A Questionnaires and Instructional Materials

Al
A2
A3
A4
A5
A.6

Pre-questionnaire o
Post-questionnaireo Lo
Worked Example for Programming Task 1
Instructional Procedure for Programming Task 1
Worked Example for Programming Task 2
Instructional Procedure for Programming Task 2

B Questionnaires and Programming Questions

B.1
B.2
B.3
B.4
B.5
B.6
B.7
B.8

Pre-questionnaire in the beesm-group
Post-questionnaire in the beesm-group
Pre-questionnaire in the mBlock-group
Post-questionnaire in the mBlock-group
Pre-programming Question in the beesm-group
Post-programming Question in the beesm-group
Pre-programming Question in the mBlock-group
Post-programming Question in the mBlock-group

C Questionnaires and Programming Questions

C1
C.2
C.3
C4
C.5
C.6
C.7

Pre Questionnaire (PreQ)
Intermediate Questionnaire (IntermediateQ)
Post Questionnaire (PostQ) L.
Pre Programming Question (PrePQ)
Intermediate Programming Question (IntermediatePQ)
Post Programming Question (PostPQ)
Learners’ Responses to the Open-ended Questions

D Questionnaires and Programming Questions

D.1
D.2
D.3
D4
D.5
D.6

Pre Questionnaire (PreQ) L.
Intermediate Questionnaire (IntermediateQ)
Post Questionnaire (PostQ) o L.
Pre Programming Question (PrePQ)
Post Programming Question (PostPQ)
Learners’ Responses to the Open-ended Questions

iv

157
158
159
160
161
162
163

165
166
167
169
170
172
173
174
175

177
178
179
180
181
182
183
184

List of Tables

Table 4.1

Table 5.1
Table 5.2
Table 5.3
Table 5.4
Table 5.5
Table 5.6

Table 6.1
Table 6.2

Table 7.1

Table 8.1
Table 8.2
Table 8.3

10-point Grading Rubric Scale 45
Subjective Data on the Ease of Use 59
Subjective Data on Students’ Interest 60
Students’ Performance 61
Subjective Data on the Ease of Use 63
Subjective Data on Students’ Interest 64
Students’ Performance 65
Students’ Attitudes and Perceptions of Programming 87
Students’ Experiences of Using Block-based Programming En-

vironments Lo Lo 89
Students’ Programming Performance 105

Overview of Smart-lighting Objects Constructed by Each Group124

Students’ Attitude Towards Programming 126
Students’ Experience of Using the Block-based Programming
Application oL 129

List of Figures

Figure 1.1

Figure 2.1

Figure 3.1
Figure 3.2
Figure 3.3

Figure 3.4
Figure 3.5
Figure 3.6

Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4

Figure 6.1

Figure 6.2

Figure 6.3

Figure 6.4
Figure 6.5

An overview of main contributions of this thesis. 6

An overview of introductory programming courses and envi-

ronments. L. L L L 15
Design process of BEESM. 24
Three examples of execution blocks for BEESM. 28
An overview of (a) BEESM user interface together with (b)

GAZEBO robot simulation, and (¢) RViz for ROS.. 30
BEESM graphical user interface. 31
Architecture of BEESM. 33
Detailed description BEESM architecture. 34
A view of the smart home (BAALL). 53
A sample execution of the programming environment. 54
Procedure of the first experiment. 57
Procedure of the second experiment. 61

A view of the user interface for the (a) mBlock and (b) micro-

controller part of BEESM (MpB). 73
A sample of execution blocks for the (a) mBlock, and (b)
MpB. . . o 7

Block-shaped elements in (a) pre-programming question in
the beesm-group; (b) post-programming question in the mBlock-

group; both translated from German to English. 82
Procedure of the programming training sessions. 84
Students’ performance on the pre- and post-programming

questions. L L 86

vii

LIST OF FIGURES

Figure 7.1
Figure 7.2
Figure 7.3

Figure 7.4
Figure 7.5

Figure 7.6

Figure 7.7
Figure 7.8
Figure 7.9

Figure 8.1
Figure 8.2
Figure 8.3
Figure 8.4

An example of one houseplant, at the beginning, and at the

end of the workshop. 97
Screenshot of the programming environment interface, in-
cluding the final program for a group. 100

Block-shaped elements in the intermediate programming ques-
tion (IntermediatePQ); translated from German to English. . 102

Procedure of the programming workshop. 103
(a) Students rate their programming skills (Q1); (b) Students’

thoughts on their success in the workshop (Q2). 106
(a) How students found programming (Q3); (b) Why students

like to learn programming (Q5). 107
How students like to program with blocks (Q7). 108
How students like to program a tangible object (@8). 108
What students like about the workshop (Q4). 109
A sample of a "smart-lighting object", using the smart mirror. 116
Screenshot of the programming environment interface. 119
Procedure of the programming workshop. 123
Students’ performance on the PrePQ and PostPQ. 125

viii

Chapter 1

Introduction

Inexperienced and young learners typically have difficulties with respect to the pro-
gramming experiences and activities. These difficulties are mainly due to these facts
that first, learning and recalling code syntax is hard because it requires a high level of
concentration for the targeted learners (syntactic knowledge). Second, assembling
and manipulating code structures is error prone because it requires the learners
to have high level of conceptual knowledge. Third, due to having lack of strate-
gic knowledge among the learners, understanding the requirements of designing,
executing and debugging computer programs is hard for them [BGKT17, QL17].
Considering the complexity of introductory programming for the learners, visual
programming has become more and more popular [Weil9]. In particular, block-
based educational programming systems have emerged as an area of active research.
Block-based programming is introduced as a form of visual programming that re-
duces the syntactical errors by encapsulating the code into smaller code chunks
and relying on recognition of blocks instead of remembering the code syntax. In
block-based programming environments, blocks assist learners to assemble the code
without basic errors for manipulation of code structure [BGK™17, KMA0O4]. In
this respect, visual block-based programming environments have been widely used
with a graphical interface to introduce young learners to general features of pro-
gramming languages such as variables, data types, loops, conditional statements,
functions, and operators. Moreover, these environments aim to enable the learn-
ers to author programs without having a high level of syntactic, conceptual and
strategic knowledge.

As the visual block-based programming environments have become the standard
medium of instruction in the design of introductory programming courses [WW17b,
KLST14,MGB15], they are employed by researchers and educators to enable young

learners to learn programming and author computer programs. However, in addi-
tion to these programming environments, an interesting and motivating context is
needed to encourage the learners to start with programming activities. Scientific
works emphasize that tangible and interactive objects benefit learning, especially
for young learners [MCK17, MGB15,QBBD13, KL.ST14, KDS09]. Tangible objects
have been used to introduce computer programming to learners and the benefits
of learning to code for tangible computers (e.g., robots and computational arti-
facts) has been explored. Moreover, countless block-based programming environ-
ments have been employed together with tangible objects in order to improve young
learners’ emotional engagement, attitudes, and their computer programming perfor-
mance [Zim17, QBBD13,KDS09, MCK17]. Nevertheless, researchers and educators
still face three issues while working with educational block-based programming en-
vironments:

(1) lack of block-based programming tools as hassle-free programming environ-
ments to be compatible with different tangible and smart devices and envi-
ronments,

(2) lack of block-based programming environments to enable young learners to
learn and author programs for real-world environments (e.g., real life-size
smart homes and living labs), and

(3) lack of block-based programming environments to allow the learners to have
a short time span between the development of ideas and their implementation
in real life-size smart environments.

Inexperienced and young learners on the one hand want an easy way to customize
ideas into the real world; on the other hand, they need support in order to imple-
ment their ideas. Thus, in this thesis, an educational block-based programming tool
is proposed (which is built with the Blockly library [Fral4]), considering both as-
pects. This approach helps the learners to learn and author programs which are also
applied into real life-size smart environments, mobile robots and micro-controllers.
Furthermore, it helps to prevent syntax errors and errors when assembling and ma-
nipulating code structure. This environment is considered as a settlement between
a pure programming Integrated Development Environment (IDE) and a simple in-
terface designed for inexperienced and young learners, allowing them to learn and
to achieve results quickly. Different features of Hypertext Preprocessor (PHP) and
Arduino programming languages are included in this environment.

Irrespective of the concrete approach, the question arises how to support the
targeted learners in interacting with educational block-based programming envi-
ronments in the context of smart tangible objects and environments. From a psy-
chological perspective, as introductory programming is difficult for the learners,

1. Introduction 3

block-based programming environments is still not fully intuitive for them. Thus,
two instructional approaches (in the form of supplementary documents) are promis-
ing to help them to work with blocks and solve programming problems, namely
worked examples and instructional procedures. Worked examples have been in-
troduced as a common support to teach learners how to solve programming and
mathematical issues by presenting a solution [ZLP18, MGGT14]. A large num-
ber of empirical studies demonstrate beneficial effects of worked examples, for an
overview see for example [ADRW00,SVMP98,SKR*10]. Another instructional ap-
proach is to present instructional procedures to the learners. However, although
instructional procedures are widespread used, they often do not support learning
optimally [WR08, MGG™14]. Zhi et al. [ZLP18] used text-based instructional pro-
cedures in a puzzle-based educational programming game called BOTS [HCB14]
to solve programming problems. In this learning context, they found that pre-
senting instructional procedures of the solution was less effective for learning than
worked examples. Still, it remains an open question whether worked examples
or instructional procedures are more beneficial for young learners as supplementary
documents in the context of educational block-based programming, as well as smart
tangible objects and environments.

Therefore, in this thesis, in addition to the development and evaluation of the
block-based programming environment (which aim to facilitate programming for the
learners), results of empirical evaluations are presented. These results are beneficial
for educators and researchers to understand the benefits of supplementary docu-
ments for acquisition of programming skills and attitudes towards programming
among young learners.

The main emphasis of introductory programming courses is to show the appli-
cation of programming to young learners in reality, using block-based programming
environments together with tangible and interactive objects [MCK17, PHEC17,
MGBI15]. Learning by constructing artifacts with physical computing material
has roots in constructionist learning theory [Pap80]. Constructionism refers to
educational practices that are learner-focused. Young learners learn about un-
derlying abstract concepts by acting as designers of personal-meaningful artifacts.
The artifacts become objects-to-think-with and constitute micro-worlds as a self-
contained, constraint world inviting to explore its underlying assumptions. Con-
structionism has been applied in the design of introductory programming concepts
to engage the learners with a focus on programming and computer science, in gen-
eral [KDS09, KLST14, MSS*13, Ben12]. In the 1990s, programmable bricks for
education came up, which are linked to constructionist learning [RMBT98 BT 15].
These micro-controller boards can be equipped with sensors and actuators, and be
programmed. They enable young learners to design and build ubiquitous comput-
ing objects and explore concepts of programming and computer technology. Fur-

thermore, block-based programming environments for early access to coding (e.g.,
Scratch) have also emerged from constructionist learning approaches [RMMHT09].

Nowadays, physical computing technologies and programming environments with
low barriers have been established. These technologies and environments have been
used to explore computational concepts by building smart tangible objects in edu-
cational contexts. However, the application area of designing smart objects can be
extended to the state-of-the-art area of smart environments. From a technical point
of view, smart environments comprise networking, intelligent control and home au-
tomation of key electrical appliances and services [JLY04]. From a user perspective,
a smart environment is a space equipped with smart technologies to enhance the
quality of its inhabitants’ life by providing services that control, monitor and sup-
port their well-being [MPA19]. Social relevance of computing has been identified as
attracting, especially for women, to participate in computer science education and
society [KLR16]. Therefore, the theme of smart environments offers high potential
for a purposeful application in computer science education that is meaningful for
diverse target groups of learners.

The application of constructionist approaches in computer science education has
resulted in a growing use of tangible objects and block-based programming to enable
young learners to start with programming activities [MCK17, MGB15, QBBD13].
In an effort to address this intervention, block-based programming environments
are employed in previous research to teach the basic programming skills to young
learners in the context of robotics [MCK17, PHEC17, MGB15], computational ar-
tifacts [QBBD13, KLST14, KDS09], and doll houses [KD18, Str09]. Moreover, it
is addressed that introducing young learners to modern technologies fosters their
attitudes and perceptions towards programming and computer science, in gen-
eral [MGB15, MCK17]. According to [MCK17], attitudes and perceptions of a
person determine how s/he is likely to act in different situations such as learn-
ing computer programming. Therefore, providing a positive view towards com-
puter programming is beneficial to increase the understanding of programming
skills [MGB15,MCK17], and interest in computer science [CLKL14, MCK17] among
inexperienced and young learners.

There is much to show on teaching programming via tangible objects and on the
effectiveness of using these platforms in order to acquire new computer program-
ming skills. However, less is known about how inexperienced and young learners’
performance and attitude towards programming are influenced over time in the
context of real life-size smart environments. Unfortunately, these environments are
not accessible for young learners due to relying on modern and powerful technolo-
gies. Therefore, relatively little attention has been given to show potential for using
educational block-based programming environments to make state-of-the-art smart

1. Introduction 5

technologies accessible for the learners. In particular, there is lack of investigation
on how:

e introducing young learners to real life-size smart environments as an interest-
ing context for them to begin with programming activities,

e teaching basic programming concepts to them via block-based programming
in the context of smart environments, and

o letting them apply their new gained programming skills in a personal-meaning-
ful tangible object and make it smart in order to improve their programming
performance and attitudes towards programming.

According to the discussion above, there is a need to fill the gap between the
regular usage of block-based programming and improvement of young learners’ pro-
gramming performance and attitudes towards programming and computer science.
In this context, this thesis shows that by using block-based programming along with
real life-size smart homes (as an example for real life-size smart environments), we
are able to not only introduce programming to young learners, but also to show com-
puting applications in a meaningful way that considers aspects of everyday modern
living. Young learners’ trajectories of acquisition of programming skills and their
attitudes towards programming in the context of smart objects and real life-size
smart homes are also explored (see Figure 1.1). Thus, this thesis addresses this gap
by answering the following two-part research question:

How do young learners’ programming performance and attitude change over time
in non-formal programming training sessions with respect to using block-based pro-
gramming and smart homes as a medium of teaching programming?

Overview. This thesis explores educational block-based programming environ-
ments in the context of smart objects and environments to achieve two main ob-
jectives. First, exposing young learners to programming activities in order to help
them to realize that computer programming can be presented in a way which is
not necessarily difficult to understand. Second, utilizing the results of these pro-
gramming activities to effectively develop the learners’ basic programming skills
and engage them in future learning computer programming. In this respect, a total
of 108 German secondary school students (60 girls and 48 boys; ages 10-15) par-
ticipated in six non-formal programming training sessions (from 2-hour to 4-day).
The training sessions were conducted in 17 months, from April 2018 until August
2019. All the training sessions which are less than four hours have been held in one
day. Those training sessions that are more than four hours are divided into two to
four days and they were conducted in one week.

Inexperienced and Young Learners

(M)
{ 7 1
[Programming] [Topics]
ﬁdifficultiesQ ginterestingﬁ
7777777777777777777777777 A Sttt ittt
[- " i i
i | Lackof Strategic || Lack of Conceptual|| Lack of Syntactic | ; ‘ Smart Mobile Robots Tangible Artifacts | |
i Knowledge Knowledge Knowledge [i

Design and Development of
Block-based Programming Tool

\

! Encourage them to begin with Fostering their programming performance Improving their attitudes towards I
programming activities (acquisition of basic programming skills) programming and computer science |

]

Figure 1.1: An overview of main contributions of this thesis.

The exposure of young learners to programming activities focuses on presenting
an educational block-based programming tool that brings together the hot topic of
smart environments and the visual programming paradigm. In order to illustrate
the effectiveness of our approach, it is employed to design two one-day non-formal
programming training sessions in context of smart homes, thereby comparing two
supplementary documents to support learners, namely worked examples versus in-
structional procedures. The collected data and extracted information from them
encourage us to focus more on young female students. Additionally, fewer than 1
in 5 computer science graduates are women across 35 European countries [Corl7].
Ertl et al. [ELP17] mentioned that approximately 25% of females are pursuing a
career in STEM (Science, Technology, Engineering, Mathematics) in the EU, and
this number is even lower in Germany with approximately 18% (where this thesis
took place). In this respect, the proposed block-based programming environment
is employed and compared to a similar and most used programming environment
(namely mBlock [Mak19]) in other two one-day non-formal programming training
sessions. This describes how girls’ programming skills and attitudes influenced by
different programming environments.

In the second phase of this thesis, to offer insights into the impacts of embedding
the construction of smart objects in context of smart environments, we conducted
longer period of training sessions (2- and 4-day). This helped us to explore young
learners’ programming performance and their attitudes towards programming over

1. Introduction 7

time. Each training session was divided into two parts: (i) introduction to basic pro-
gramming concepts, and (ii) implementation of these concepts on tangible objects
and construction of a smart object in the context of smart homes. In this respect,
programming tasks become more diverse and complicated for both groups of stu-
dents (with and without prior programming experience), and both genders (boys
and girls). In this phase, we focus more to find out the learners’ trajectories of (i)
attitudes towards programming and computer science (in terms of confidence, inter-
est, and enjoyment), (ii) acquisition of programming skills, and (iii) programming
experience (in terms of ease-of-use, ease-of-learning, usefulness and satisfaction),
using the block-based programming environment and tangible interactive objects.

Outline. This thesis consists of nine chapters, including the current introductory
chapter. Chapter 2 presents the state of the art and necessary background in the
thesis. This chapter consists of an introduction to visual and block-based program-
ming, as well as the related works in the programming of tangible artifacts, mobile
robots, and smart homes. Chapter 3, 4, 5, 6, 7 and 8 present the main contributions
on this thesis. Chapter 3 presents the proposed educational block-based program-
ming tool as a novel approach to enable inexperienced and young learners to learn
basic programming concepts. In this chapter, we illustrate how this approach pro-
vides a hassle-free environment for educators and researchers that aims to enable
young learners to start with programming activities. It is also indicated that how
the programming tool can support learners to rapidly prototype and program smart
environments, mobile robots, and micro-controllers one at a time and in combination
with each other. Chapter 4 provides a detailed discussion of designing the survey
and programming questions. The information about survey instruments (question-
naires) and programming questions (tests) is summarized in this chapter. We also
explain why the questionnaires and tests contained a set of specific questions, how
they relate to the literature, and why they changed during our studies. The other
chapters indicate the usage of the block-based programming environments together
with smart objects and environments in order to show the learners’ trajectories of
attitudes towards programming and programming performance. These chapters are
briefly described in the following.

e Chapter 5 presents an application of using block-based programming in the
context of smart homes in order to boost up young learners’ programming
skills and increase their interest in this topic. Two instructional interventions
to support learners, namely worked examples and instructional procedures,
are compared. The results do not strongly support one of these instructional
interventions. Thus, both seem to be appropriate in order to help learners
to work with the programming environment and acquire basic programming

skills. Moreover, this chapter offers first insights about the tight connection of
non-formal programming training sessions to a concrete real-world scenario.

Chapter 6 presents the comparison of the designed block-based programming
tool (which is based on Google Blockly) with an industrial, widely used block-
based programming environment, namely mBlock (which is based on Scratch).
Scratch and Google Blockly have been chosen as they are the most popular
block-based programming editors in current education use of block-based pro-
gramming. These editors are mainly used in order to foster young learners’
programming skills and improve their attitudes towards programming.

Chapter 7 presents an application for creating smart everyday objects to-
gether with block-based programming. This shows how to leverage young
female students’ interest in programming, and, at the same time, supports
the acquisition of programming skills. We designed and implemented a 4-
day non-formal programming workshop to introduce the students to basic
programming concepts based on block-based programming. They are also en-
abled to implement these concepts in a real object to make it smart in the
context of smart homes. Learners’ trajectories of performance and attitudes
towards programming was evaluated based on repeated programming ques-
tions and qualitative open-ended questionnaires throughout the workshop.

Chapter 8 presents an important aspect of introducing programming to
young learners via block-based programming, which is the application of pro-
gramming in reality. The impacts of a real life-size smart home along with
block-based programming on young learners’ programming performance and
attitudes has been investigated during a 2-day non-formal programming work-
shop.

The content of this thesis can be found in the following five publications, which
have been published in international conferences in the field of Computer Science
Education (CSE) and Human-Computer Interaction (HCI):

[1]

Impacts of Creating Smart Everyday Objects on Young Female Stu-
dents’ Programming Skills and Attitudes

Mazyar Seraj, Eva-Sophie Katterfeldt, Serge Autexier, Rolf Drechsler
Proceedings of the 51st ACM Technical Symposium on Computer Science
Education (SIGCSE), pp. 1234-1240, 2020.

Look What I Can Do: Acquisition of Programming Skills in the
Context of Living Labs
Magzyar Seraj, Cornelia S. Grofle, Serge Autexier, Rolf Drechsler

1. Introduction 9

Proceedings of the 41st International Conference on Software Engineering:
Software Engineering Education and Training (ICSE-SEET), pp. 197-207,
2019.

[3] BEESM, a Block-based Educational Programming Tool for End
Users
Mazyar Seraj, Serge Autexier, Jan Janssen
Proceedings of the 10th Nordic Conference on Human-Computer Interaction
(NordiCHI), pp. 886-891, 2018.

[4] Scratch and Google Blockly: How Girls’ Programming Skills and
Attitudes are Influenced
Mazyar Seraj, Eva-Sophie Katterfeldt, Kerstin Bub, Serge Autexier, Rolf
Drechsler
Proceedings of the 19th Koli Calling International Conference on Computing
Education Research (Koli Calling), pp. 1-10, 2019.

[5] Smart Homes Programming: Development and Evaluation of an
Educational Programming Application for Young Learners
Mazyar Seraj, Cornelia S. Grofle, Serge Autexier, Rolf Drechsler
Proceedings of the 18th ACM International Conference on Interaction Design
and Children (IDC), pp. 146-152, 2019.

[6

Impacts of Block-based Programming on Young Learners’ Program-
ming Skills and Attitudes in the Context of Smart Environments
Mazyar Seraj, Rolf Drechsler

Proceedings of the 25th ACM annual conference on Innovation and Technol-
ogy in Computer Science Education (ITiCSE), to appear, 2020.

This thesis is concluded in Chapter 9, which includes the general limitations of
it and a brief discussion on potential research avenues for future work in the area
of visual programming and smart objects and environments.

Chapter 2

Background

In this chapter, first, research in the area of end-user programming is reviewed.
Then, approaches using visual programming in educational tools and environments
are introduced. In addition, an overview of block-based programming environments
is provided as a form of visual programming. The main emphasis of this thesis is to
reveal possibilities how the use of state-of-the-art smart technologies can improve
young learners’ programming performance, as well as develop a positive attitude
towards programming and computer science among them. Thus, the next part of
reviewing the literature is dedicated to the use of tangible and smart objects and en-
vironments in computing education. Finally, as the two areas of student assessment
are their programming performance and attitudes towards programming, the defi-
nition of both learning outcomes and attitudinal aspects of learning programming
is described.

2.1 End-User Programming

A large number of studies in the area of end-user programming (EUP) aim to enable
inexperienced users [LPKW06,HC15, WAST 18] and young learners [ML18, PHEC17,
Kit18] without practical experience and programming knowledge to write pro-
grams. In this respect, many techniques and design principles [RI06, KM A04,KMO06,
MKP*08] for EUP have been applied to develop end-user applications. One such
technique is behavioral programming where all individual events are programmed as
independent behavior threads which are interwoven at runtime MWW12, HMW12].
In MWW12,AMWW15], behavioral programming was implemented using JavaScri-
pt in Google Blockly [Fral4] for the user side web-based applications, and decen-
tralized scenario oriented programming techniques were used. However, behavioral

12 2.2. Visual Programming

programming does not provide a full expression of a programming language. For
example, it would be difficult to change smart objects’ behaviors dependent on
specific events.

Other forms of end-user programming include Trigger-action programming which
trades off expressivity for ease of use [UMPYHL14,HC15]. Trigger-action program-
ming is used in do-it-yourself (DIY)-style smart home products [HH12, WL15], en-
abling inexperienced users to create smart home features by connecting various
sensors (e.g., lighting sensors), actuators (e.g., door controllers), social network ser-
vices, SMS, and email. Trigger-action programming is used to enable the users who
are not familiar with professional programming to program a smart home, including
"if this then that" (IFTTT) service [UMPYHL14]. This service specifies the behav-
ior of smart objects as an event (trigger) and corresponding action to be executed
when the event occurs (action). IFTTT service was used in LittleBits’ electronics
smart home kit to enable young learners to link their own devices or create their
own linked scenarios in the context of smart homes [Kit18].

Programming by demonstration (PBD) is another form of end-user program-
ing, in which inexperienced users are able to control home devices using a set of
examples [DLY 06, DHBT04]. In the context of a smart home, using PBD enables
users to create a situation and a desired behavior for home devices (associated
action) without any programming knowledge [DHBT04]. These approaches allow
inexperienced users to rapidly prototype and apply changes to different objects in
smart homes, though, without learning general purposes and basic knowledge of
programming.

2.2 Visual Programming

Visual (graphical) programming has been used to make programming problems eas-
ier to understand and solve. Young learners can create complex programs with little
training in visual programming environments [Mye86, Mye90]. Visual program-
ming is used in block-based programming editors such as Scratch [RMMHT09],
Snap! [HM10], Alice [CDP00] and mBlock [Mak19]. Scratch and Alice are gen-
erally used to make animations, games and interactive applications. Snap! is
an extended reimplementation of Scratch, letting young students build their own
blocks. Using mBlock allows young students to program robots and microcon-
trollers. Furthermore, Pencil Code is a block-based coding tool developed based on
Droplet [Baul5] to help young students work with JavaScript, CoffeeScript and
HTML [BBDP15, WW17a]. Students are enabled to toggle between text code
and blocks freely. This approach enhances familiarity with syntax while trans-
ferring from blocks to text code [BBDP15, WW17a, WH17]. Visual programming,

2. Background 13

in particular Google Blockly, has been used as a client side of web-based program-
ming environments in a number of educational and commercial applications and
tools. MIT App Inventor [Inv18], ArduBlockly [PA19], Codelt [PHEC17], Cus-
tomPrograms [HLC16], CoBlox [WAS*18], and MakeCode [Mak18] take advantage
of Google Blockly in order to enable young learners and inexperienced users learning
and making programs.

In contrast to a large part of this previous work, we seek to explore impacts of
visual block-based programming environments with educational focus on inexperi-
enced and young learners. We intend to support them in order to learn the general
purpose of programming, as well as rapidly prototype and customize ideas in the
context of smart devices and environments. Furthermore, we would like to introduce
learners to new technologies which provide possibilities to tightly connect computer
science to reality. In other words, we aim to introduce the future to young learners.
In this respect, we took advantage of visual block-based programming to enable the
learners to learn programming, and implement their ideas into the construction and
control of real smart devices and environments in order to motivate them to take
part in that future.

2.2.1 Block-based Programming Environments

Visual block-based programming has been used to enable inexperienced users and
young learners to learn and author programs with little training [BLV*17, HLC16,
KMAO04, RI06]. In recent years, numerous block-based programming environments
have been introduced for the learners to program on-screen animations [RMMHT09,
MCK17], micro-controllers [Mak19,PA19,Snal9], and other programmable tangible
objects [MCK17, MB11]. As such, these environments reduce the complexity of
programming for the learners because they help them via using visual blocks to
generate code syntax instead of memorizing it. This approach reduces syntax errors
and eases the manipulation of code structures, and therefore, they are widely-used
to teach programming, in particular, to young learners [BGK*17, KMA04, KP05,
WW17a,QL17]. The blocks are shaped to assist users and learners to assemble the
code without basic errors regarding manipulation of code structure [BGK*17]. For
example, a string block can be plugged into a length block, but not into a logical
operator block. In the background, the system translates block-code into code
syntax, which is visible and editable in some of the environments (e.g., [Baul5,
BBDP15]).

Nevertheless, there is a lack of block-based programming environments in edu-
cational contexts to support the programming of real-world state-of-the-art appli-
cations. Inexperienced and young learners who intend to customize programming
ideas into tangible objects and life-size environments face two issues while working

14 2.3. Related Works

with block-based educational programming tools. First, at least to the best of our
knowledge, these tools have never been applied to real life-size smart environments
such as smart home environments. Second, although the tool can in principle be
applied to tangible and smart objects, programming, for instance, mobile robots
or micro-controllers requires to work and become familiar with different tools, e.g.,
CustomPrograms, and ArduBlockly. In this thesis, we propose and employ an ed-
ucational block-based programming environment which is built with the Blockly
library to enable young learners to learn and author programs in the context of real
life-size smart environments, micro-controllers and mobile robots.

2.3 Related Works

One important feature in learning programming, especially for young learners, is
to enable them to understand how relevant programming and computer science
are to their daily life [MCK17, BECCO08]. Being rooted in constructionist learn-
ing theory [Pap80], programming tangible objects has a long history in educa-
tion [RMBT98,B*15]. Meanwhile, countless programmable kits and computational
textiles are on the market and have entered into educational institutions [Zim17,
SWYM17,MCK17,BECC08]. With respect to constructionist learning theory, young
learners can learn better when they design and construct interactive and tangible
objects that are personally meaningful to them, such as computational textiles,
robots, and interactive objects [MCK17, RMSS96]. Thus, researchers and educators
designed introductory programming environments to support acquisition of pro-
gramming skills through designing and creating visible and tangible objects. In
both the Computer Science Education (CSE) and Computer-Human Interaction
(CHI) research communities, several scientific studies tried to investigate various
forms of smart devices (e.g., tangible artifacts [BEE06, GCNB18,QBBD13,KDS09],
robots [MM19, PHEC17, MGB15, MSST13], and smart homes [KD18]) in order to
motivate young learners and show them how modern technologies relate to their
daily life (see Figure 2.1). However, relatively little attention has been devoted to
the potential of smart homes to support the claim, which they have a direct impact
on young learners’ performance and attitude towards programming and computer
science.

2.3.1 Tangible Artifact Programming

The number of formal and non-formal programming courses and workshops that aim
to introduce programming and computer science to young learners is growing. In-
creasingly, young learners start with programming activities via visual block-based

2. Background 15

Introductory Programming
Courses and Workshops

{—Jﬁ
[Formal J [Non—formal}

e —
Visual block-based
programming environments
e

¥ L)
[Robots J [Tangible artifacts] [Smart environments]

',_)

{e.g., mobile robots] [e.g., e—textiles] [e.g., wearable devices] [e.g., doll houses]

Figure 2.1: An overview of introductory programming courses and environments.

programming environments. These environments are widely used in the design
of introductory programming courses and workshops [WW17b, WHHF18, MGB15].
Furthermore, in computer programming education, the application of computing in
reality, tends to be shown to the learners via providing possibilities to experience
programming for tangible interactive artifacts [MCK17, PHEC17, MGB15]. In ad-
dition to allowing them to learn the general purpose of programming and author
programs via block-based programming environments, previous work provides possi-
bilities to experience and implement new ideas into computational textiles [MCK17,
KLST14,QBBD13]. Computational textiles (e-textiles) such as wearable devices
manage to merge the physical and virtual worlds and offer a tactual experience that
complies with constructionist ideas [MCK17, QBBD13,KDS09, BECC08]. Findings
show that young learners are able to learn better when they construct knowledge
for a purpose that they found relevant for their lives. Additionally, the literature
reports that teaching programming is more beneficial for young learners when they
are engaged in designing and creating visible objects, such as wearable devices and
computational textiles MCK17,B*15,RMB198]. With this regard, researchers and
educators have developed introductory programming environments and pedagogical
strategies. These environments and strategies have been employed in order to im-
prove the learners’ technological confidence and programming skills through playing
with real-world environments or tangible objects. Tangible artifacts has been pro-
posed as a framework for getting young learners involved within computer program-
ming. Also, the benefits of learning to author programs for computational textiles
has been explored in several recent scientific works [MCK17, KDS09, QBBD13]. E-
textiles toolkits (e.g., LilyPad Arduino) presented in [BECCO08] seem to be highly
effective in motivating young learners to learn programming and shaping their at-
titudes towards programming and computer science positively.

16 2.3. Related Works

Tangible Artifacts, in particular computational textile educational activities
make use of soft material, and thus, introduce other forms of expression [MCK17,
BECCO08]. This form of expression historically has a more feminine orientation that
attracts girls in computer programming. According to Katterfeldt et al. [KDS09],
during computational textile activities, students gain more confidence in dealing
with technology and they were able to link technology that they found relevant for
their environment to their own created tangible object. According to [QBBD13,
BEEOQ7], using LilyPad and working with e-textiles can both increase program-
ming knowledge and interest in working with electronics and computer program-
ming among high school students. More specifically, research carried out with
young learners indicated that in comparison to desktop and robot programming,
learning computer programming with wearable devices would provoke more posi-
tive emotions to female students, and inspire them to acquire more programming
skills [MCK17]. In addition, although prior technological experiences affect atti-
tudes towards computing [Bei05], findings show that girls do not have as much
confidence as boys with regard to technology and underestimate their ability to
program [GC02]. With respect to technological confidence, results show that girls’
comfort level increases with experience and they have benefited by visual program-
ming environments [Sny14, MCK17,Bei05]. Nevertheless, research has not yet been
conducted on the effectiveness of constructing smart objects together with block-
based programming environments on young learners’ programming skills and atti-
tudes towards programming. This requires middle renege construction techniques
as the male and female students can make use of both hard materials (e.g., sensors
and actuators) and soft materials for designing and crafting techniques (e.g., colored
papers and LED lights). Thus, it is important to evaluate computer programming
in terms of student attitudes towards programming and their intention of learning
programming in the context of smart tangible artifacts.

2.3.2 Mobile Robot Programming

Robots are one of the most common tangible and smart devices which are used for
learning and educational purposes. According to [Mat04], robotics has the potential
to influence engineering and science education at all levels, from K-12 (Kindergarten
(K) and 1%¢ through 12t" grade) up to graduate school. The literature reports that
robotic computing platforms can be used to engage young students to write code
and author programs [MCK17, PHEC17,MGBI15]. In particular, robotics platforms
(e.g.,LEGO Mindstorms) has been widely used at schools for teaching basic pro-
gramming concepts. Findings reported positive effects on high school students’
interest besides the achieved educational goals [DSK05]. Merkouris et al. [MCK17]
indicated that in comparison to desktop computing, male students who learn pro-

2. Background 17

gramming with robotics would be more engaged, report more positive attitudes,
and be able to develop their programming skills more effectively. Nevertheless, the
variety of activities were limited to robotics platforms, but not a combination of
robots with computational artifices or smart environments. Thus, the findings can
not be generalized to a larger scale when the students are enabled to experience
robotic programming in the context of real life-size smart environments.

Previous studies showed that through educational robotics young learners de-
veloped skills such as thinking skills, problem-solving skills, social interaction, and
teamwork skills [Ben12, MCK17]. In addition, block-based programming environ-
ments have been effectively used to enable young students to learn programming.
The findings show that they are able to write code, using these environments and
the robots [KLST14,QBBD13,MCK17, MGB15|. Paramasivam et al. [PHEC17] ex-
plored the use of block-based programming together with mobile robots as a frame-
work for suited reflection in elementary school programming courses. In this respect,
block-based programming is used to support K-12 students with disabilities to pro-
gram Clearpath Turtlebot, capable of delivering items, interacting with people and
autonomously navigating in its environment. Similarly, Martinez et al. [MGB15] en-
abled preschool and elementary school learners to program and control the behavior
of Arduino boards in the context of N6 robots, using block-based programming envi-
ronments. Furthermore, Przybylla and Romeike [PR14] presented creative learning
environments for young students. They employed programmable kits (e.g., LEGO
Mindstorms as a robotic toolkit) to offer a hands-on experience that can be used to
develop a constructionist computer science curriculum with physical computing. It
was indicated that the learners engaged more and showed higher intention of learn-
ing programming when they program the robots. Also, their findings showed that
young learners’ performance in learning basic programming concepts is improved
when they are enabled to program the robots. Nourbakhsh et al. NHCW04] found
that by the end of a robotic course, girls’ confidence increased more than the boys.
However, they assumed that girls entered the course with less confidence and they
struggled with programming more than boys. Sullivan and Bers [SB16] suggested
that using robots to introduce programming to girls in their early childhood can
foster interest and abilities in programming. Therefore, it is very important to eval-
uate computer programming in terms of students’ perception and attitudes towards
programming, as well as their intentions of learning programming in the future.

2.3.3 Smart Home Programming

Smart homes and living labs are another inspiring approach to motivate young
learners to begin with programming activities and develop a greater interest in pro-
gramming and computer science. Moreover, block-based programming as a tech-

18 2.4. Attitudes Towards programming

nique to support young learners to learn programming is an active field of research.
Bringing together the hot topic of smart homes and the block-based programming
paradigm, researchers and educators introduced a research domain to engage the
learners to get interested in programming and computer science, more broadly. The
main goal of using the smart homes is to provide exposure to hands-on program-
ming experiences in the programming training sessions [PR12,Str09]. For instance,
Przybylla and Romeike [PR12] introduced physical computing via creative design-
based approaches to learn about programming. Interactive objects such as magic
flowers (which are related to smart homes) were designed and developed by young
learners in the context of "my interactive garden', using Arduino technology and
Scratch programming environment. Thus, young learners can both participate and
experience new technologies which are adapted to technical equipments, as well as
learn basic programming concepts in the context of smart homes using block-based
programming environments. As many researchers and educators do not have access
to real life-size smart homes, they mostly designed programming workshops that
young learners can actively participate and create ideas related to smart homes.
Then, the learners asked to construct a doll house and implement their ideas on it.
In this respect, Strecker [Str09] tried to make programming accessible to a wider
population of young learners via doll houses which are suitable for modeling a real
smart home. Thus, the concept of "interactive doll house" was developed and imple-
mented as an interactive learning environment for programming. The interactive
garden and doll house scenarios aimed to use constructionist learning theory to
support creative learning and provide an attractive experience- and practice-based
learning environments for young learners. The major drawback of this approach is
that the learners do not have the opportunity to author programs in a real life-size
environment, and to become familiar with modern and powerful technologies. These
technologies which are used by researchers enable young learners to see the connec-
tion of computer science with real life and learn about the future. In this respect, an
important limitation of using real life-size smart homes is that young learners can
only perform limited actions on them and they are not build for educational pur-
poses. Thus, a combination of smart homes and mobile robots or micro-controllers
could be helpful to enable the learners to perform variety of creative activities in
the context of and within the real life-size smart homes.

2.4 Attitudes Towards programming
When introducing young learners to programming via block-based programming

and smart environments, one of the main areas to assess is attitudinal and percep-
tual effects from using such environments. In order to understand how block-based

2. Background 19

programming affects the learners’ perceptions and attitudes towards programming
in formal and non-formal learning environments, researchers employed attitudinal
assessment [BBET09, WW17b, MCK17]. As it is addressed by [BBET09, WW17b],
three dimensions of learners’ attitudes should be taken into account (which are
implemented in this thesis):

e Confidence: The first attitudinal dimension is whether young learners’ con-
fidence in programming can change via block-based programming and smart
environments. In order to calculate a reliable measure of confidence, learners’
responses to three categories are important: (i) their thoughts of being good
at programming, (ii) their thoughts of doing well in the programming training
sessions, and (iii) how much they find programming difficult to understand
and the perceived difficulty of author programs.

e Interest: The second attitudinal dimension is whether young learners’ inter-
est in programming and computing differs based on the programming environ-
ment and the context that they applied their programming skills into it. In
order to have a composite interest measure among the learners, two categories
are important: (i) how much they are willing to enroll in future computer pro-
gramming training sessions, and (ii) their interest in programming learning
opportunities.

e Enjoyment: The third attitudinal dimension is to calculate a reliable mea-
sure of enjoyment in working with electronics and programming. The com-
posite level of enjoyment can be calculated by the learners’ responses to three
main categories: (i) their thoughts of seeing programming as a fun subject to
learn and perform, (ii) how much they like programming, (iii) how much they
are excited about the programming training sessions.

2.5 Programming Performance

In computing education, several studies tended to introduce computer program-
ming to young learners via block-based programming and measure learning out-
comes [WW17b, MCK17,Lew10]. In this respect, students performance in learning
programming is evaluated, focusing on three basic computational concepts, which
are variables, loops, and conditional statements (conditionals and logical opera-
tors) [Lew10,PHO7]. Development and evaluation of these concepts in introductory
programming environments enable researchers to focus on the learning of:

e Variables: It is used to demonstrate how naming variables and different
types of variables are important in programming. For instance, learners need

20 2.6. Summary

to know that naming variables is mandatory, so it is clear which one is being
used at any time in the program, and thus, it is important to use meaningful
names for variables. Also, learners should be able to differentiate between
different type of variables as they come in all shapes and sizes. For example,
some variables are used to store numbers (numerical variables), some are used
to store text (string variables). Thus, variable concept is taught to young
learners to show them how to store data and how to transfer data between
different variables.

e Loops and iterative logics: It is used to demonstrate how to assemble and
manipulate program structure by executing particular blocks of code. Loops
and iterative logics, however, enable learners to make long programs short
(e.g., for loop) and to iterate through a list of data (e.g., foreach loop).

e Conditional statements: It is used to demonstrate how to control the
flow of execution by employing conditions such as if statements or switch.
Moreover, differences between operators can be shown to the learners (e.g.,
greater vs. smaller, plus vs. minus, equal vs. not equal, etc.) in order to
enable them to author a program that makes a decision based on multiple
conditions.

2.6 Summary

In this chapter, first, an introduction to end-user programming and one of its frame-
works which is visual block-based programming was presented. Second, the existing
applications of block-based programming in the context of smart devices and en-
vironments were presented in detail. The results show that existing approaches
have two major limitations in terms of having a precise extension of block-based
programming environments, and evaluation of the young learners’ programming
performance and attitudes over time. The first limitation is that most of the en-
vironments can only be applicable for a restricted range of tangible objects and
components (e.g., robots, micro-controllers and smart homes). This does not al-
low the learners to program different kinds of objects, using a single programming
environment. The second limitation is that most of previous scientific works are
limited to mobile and toy robots, doll houses, and e-textiles, but not to real-world
environments. These approaches that work with tangible devices mostly evaluate
the learners’ performance and attitudes at the beginning and at the end of training
(i.e., learners’ trajectories of attitudes towards programming and performance are
not indicated).

2. Background 21

Therefore, we conclude that for tangible interactive objects together with real
life-size smart environments currently no educational block-based programming en-
vironment is available. Thus, there is no visual programming environment that can
help young learners to begin with programming activities (achieve results quickly),
and support them to acquire basic programming skills (learn and author programs)
in the context of smart environments. In order to tackle the aforementioned draw-
backs in the following chapter of this thesis (Chapter 3), we present a new educa-
tional block-based programming tool. This tool is designed to help young learners to
learn programming and to easily implement their programming ideas into the smart
objects and environments. Moreover, concerning the learners’ programming perfor-
mance and attitudes, we present an experience-based approach to learning pro-
gramming based on physical computing and constructionist learning theory. This
includes both learning outcomes and attitudinal effects from using block-based pro-
gramming in the context of smart environments. Hence, in addition to presenting a
new educational block-based programming tool, this thesis contributes by showing
the:

e usage of block-based programming is beneficial for young learners to be intro-
duced to computer programming,

e applications of computing to young learners in a meaningful way that considers
aspects of everyday modern living,

e improvement of young learners’ programming performance (acquisition of pro-
gramming skills) over time, and

e young learners’ trajectories of attitudes towards programming in the context
of smart tangible object and real life-size smart homes (as an example for real
life-size smart environments).

Chapter 3

Design and Development of the
Block-based Programming Tool

In the light of the complexity of introductory programming for inexperienced and
young learners, visual programming has become more and more popular as a tech-
nique to support them to learn programming. In particular, educational block-based
programming environments have emerged as an active field of research. Consider-
ing block-based programming in the context of smart environments, an educational
block-based programming tool is required, enabling learners to learn and author
programs in the context of smart objects and environments.

This chapter contributes the design and development of BEESM, a Block-based
End-user programming tool for SMart Environments. The dedicated application do-
main engages learners to get interested in programming. Moreover, BEESM allows
to learn the general purpose of programming and rapidly prototype and customize
applications in the context of smart objects and environments. This approach en-
ables learners to program smart environments, micro-controllers and mobile robots
one at a time and in combination with each other. It also provides an educational
block-based programming tool as a hassle-free environment for educators and re-
searchers. Thus, they can make it compatible with different smart objects and
environments for their formal and non-formal programming courses and workshops.

3.1 Introduction and Motivation

Inexperienced and young learners, the targeted users of BEESM, often have diffi-
culties with respect to designing, integrating, compiling, executing, and debugging

24 3.1. Introduction and Motivation

Inexperienced and
Young Learners
X

‘ Programming ’

I
difficulties
. S [Need Computational] [Need an easy way to]

i Supports customize their ideas
Lack of Syntactic
|
Knowledge i
Lack of Conceptual| |
Knowledge
|
Lack of Strategic | |
Knowledge |

|
Pure IDE
Settlement

between

Smart
Environments

Figure 3.1: Design process of BEESM.

in introductory programming [GSHT18, QL17]. These difficulties experienced by
the learners are related to (i) their syntactical knowledge (e.g., syntax errors), and
(ii) their conceptual and strategic knowledge (e.g., errors when assembling and ma-
nipulating code structure) [QL17]. Educational programming tools generally either
support learners to achieve results quickly, or introduce them to real program-
ming development environments used by professionals [BBDP15]. However, we face
the lack of a settlement between a pure programming development environment
(e.g., IDEs), and a simple interface designed for the learners, allowing them to
learn programming and to achieve results quickly (see Figure 3.1). In this respect,
visual block-based programming environments are designed to allow the learners
to learn programming, and overcome the obstacles of syntax and manipulation of
code structure [BBDP15, Baul5, Com17]. Compared to the complexity of source
code programming, visual programming has a great potential to facilitate program-
ming for these learners [KABT 11, MKP108]. Besides the block-based programming
environments, the existence of a motivating context is necessary. In the present
contribution, the context is given by smart objects (e.g., mobile robots and tangi-
ble artifacts) and environments (e.g., smart homes) that reflect the programming
activities of the learners. This context perfectly matches the educational program-
ming purpose and maintains the motivation of the learners as (i) they can easily
see the consequences of their programming activities, and (ii) they can experience
the latest technologies and learn about the future. Nevertheless, the targeted users

3. Design and Development of the Block-based Programming Tool 25

who are interested in having an easy way to customize their programming ideas
into tangible objects and real-world environments face two issues while working
with educational block-based programming tools. First, these tools are not applied
to tangible objects and real-world environments. Second, although the tool can in
principle be applied to the objects and environments, actually adapting it to, for
instance, mobile robots, micro-controllers or smart environments requires to work
and become familiar with many other tools [HC15, HLC16, KMA04, MGB15].

We designed and developed an educational block-based programming tool to
program tangible objects and real-world environments, having both aforementioned
issues in mind (see Figure 3.1) '. Having a tool like BEESM helps learners to
have a short time span between the development of ideas and the transformation
and integration into tangible objects and real-world environments. This should
leverage their interest for programming and help them to acquire basic programming
skills. Furthermore, learners have access to the standard programming language
and can make modifications in BEESM. They are able to control the logic and
flow of their programs. In this respect, this approach provides several opportunities
for them: (i) creating, editing and running programs in tangible objects and real-
world environments, and (ii) programming smart objects and environments which
are also used by researchers, i.e., learners can actively participate and experience
latest research efforts on a mobile robot or a smart home and learn about computer
programming.

3.2 Overview of BEESM

BEESM is designed as a rapid educational block-based programming tool for educa-
tional purposes to help inexperienced and young learners to learn programming. It
provides block-based programming in a web-based environment to program mobile
robots, micro-controllers and smart environments. In this tool, in order to simplify
programming for the learners, behaviors of smart objects are encapsulated in dif-
ferent functions and presented as basic programming primitives. BEESM can thus
be used to program:

e Smart Environments: BEESM can be adapted and applied to smart environ-
ments if they support the web socket communication protocol [Fetl8], and
Remote Procedure Call (RPC) technology [BN84] (Smart-environment Con-
troller).

IWe make our tool BEESM and all source files available at https://github.com/projekt-
smile/BEESM

26 3.2. Overview of BEESM

e Mobile Robots: BEESM can be applied to any mobile robot with autonomous
navigation running on Robot Operating System (ROS) [QCG109).

e Microcontrollers: BEESM can be applied to any micro-controller running on
Arduino Software by generating Arduino code for them.

In addition to learn programming, inexperienced and young learners are enabled
to author programs in BEESM. It includes different programming language features
like variables, conditionals, loops, predefined functions and operators based on the
Blockly library. BEESM provides visual programming for the PHP programming
language and Arduino code. It allows to program smart environments and mobile
robots using PHP.

With respect to smart environments, BEESM is the first—to the best of our
knowledge—educational block-based programming tool, which enables inexperi-
enced and young learners to author programs in the context of real life-size smart
environments.

Concerning the robot programming, it takes advantage of "Codelt!" [Labl8],
which is also used in [HLC16]. Codelt! is a web-based programming tool based
on JavaScript which is integrated with ROS for programming mobile and service
robots (such as TurtleBot2, PR2, Fetch, and Savioke Relay robot). Codelt! back-
end provides a ROS action-library server that runs JavaScript programs to call ROS
services. In doing so, they provide a sandboxed interpreter that the programs run
through it. Other developers must define the robot primitives that the interpreter
will run to call a ROS service for a robot. However, in BEESM we used PHP pro-
gramming language to program robots and run functions that are understandable
for ROS. This approach minimizes the code syntax (i.e., number of lines of code)
and helps our target users to find programming errors and debug their programs
when they encounter errors. In order to call ROS services on a mobile robot, a mini
web-server that uses ROS functions is designed to upload the generated code to a
connected mobile robot.

Concerning the Arduino programming, BEESM takes advantage of "blockly-
Duino" [Lin19], which is also used in [MGB15]. BlocklyDuino is a web-based tool for
Arduino programming. It provides a fully compatible Arduino source code, which
enables users to program Arduino boards without manually pasting code to the
Arduino IDE. To this end, a mini web-server that uses the Arduino IDE is running
to upload the code to a connected Arduino board. Nevertheless, in addition to
Grove sensors (light, sound, humidity, etc.), BEESM supports program DHT sen-
sors (temperature, humidity, etc.) and AdafruitIO (which is a system that makes,
for example, whether data are available to use). Users are also enabled to see the
compiling and uploading process in BEESM. Errors and the output of the Arduino
IDE Serial Monitor are shown to the users for error handling and debugging pur-

3. Design and Development of the Block-based Programming Tool 27

poses. Furthermore, in all Smart Environment, Mobile Robot and Micro-controller
parts of BEESM, our target users are enabled to program not only the correspond-
ing part but also program this part in a way to communicate with other parts. For
instance, users are enabled to use Arduino code to program WeMos boards (with
an on-chip Wi-fi Transceiver) to connect to either smart environment and mobile
robot and send/receive data.

3.2.1 Primitives and Blocks

In previous research, capabilities of smart devices were organized into Primitives.
CustomPrograms [HLC16] and CARMEN [MRT03] use this method to implement
robots’ behavior and capabilities into primitives. Each primitive robot behavior
can be called through a function such as navigating the robot to a location. These
primitives are used in order to design a visual block-based application which en-
ables students with disabilities (e.g., deafness, muscular dystrophy, and attention
deficit disorder) to program Clearpath Turtlebot, capable of delivering items and au-
tonomously navigating in its environment [PHEC17]. BlocklyDuino which is used
in [MGBI15] takes advantage of this method to enable preschool and elementary
school children to program and control the behavior of Arduino boards. Further-
more, smart environments are composed of a set of smart and controllable household
appliances. Web socket communication protocol and RPC technology are fairly used
as a Web-based interaction to control them. In this way, HT'TP GET and POST
requests that return JavaScript Object Notation (JSON) [Bral7] responses are used
to communicate between user and Web server.

BEESM takes advantage of using primitives in order to enable inexperienced and
young learners to program smart environments (e.g., smart homes), as well as mobile
robots (e.g., TurtleBot) and micro-controllers (e.g., Arduino or WeMos boards) one
at a time and in combination with each other. These primitives are defined as a set of
custom blocks implemented in BEESM to allow learners to work with them and see
the reactions of smart objects in real-time. In this way, apart from predefined blocks,
a set of custom blocks (customized blocks) are provided for all primitives with
inputs, outputs and types of connections. In a smart environment, the smart objects
have a set of primitive behaviors, such as changeable status or being creatable
by learners. Robot’s behavior and capabilities were implemented into primitives.
Each primitive can be called through a function such as navigating the robot to
a location. These primitives generate PHP code syntax and enable learners to
work with them in order to see the reaction of robots and smart devices. PHP
programming language was chosen as it is a powerful server side scripting language
to interact with web servers. It is also a widely-used, free and efficient programming
language. Furthermore, primitive Arduino’s behavior is wrapped in a set of blocks

28 3.2. Overview of BEESM

setup neopixel pin# [(EEED
number of pixel | I
set pixel color from pin#
pixel number (-8}

set OLED display
OLED display cursor position
column (e}

green |

OLED display
A Hello World! 24

connect server
- light - 1 BRERIEEI Sensors - .MM luxOutsideW EJ
S CITE " get face emotions show from pin# (XKD

(a) Smart Home (b) LED Lights (c) OLED Displays

clear OLED dispiay

Figure 3.2: Three examples of execution blocks for BEESM.

which generate Arduino code. Learners can then integrate these primitives into
general purpose of programming languages to author Arduino programs.

3.2.2 Three Examples of the Designed Blocks

To enable the learners to work with (i) smart homes generated data, (ii) LED
(Light Emitting Diode) lights and OLED (Organic Light-Emitting Diode) displays
in micro-controllers, and (iii) mobile robots, we designed new blocks in addition to
blocks for general programming features, which are discussed in the following.

With respect to the smart home, three blocks were designed for connecting with
the smart home server, getting sensors and other items status, and the status of
a smart mirror. The server connection block enables learners to connect to the
smart home server, and has access to the name and status of all items; it is labeled
as connect server. The get status block allows learners to use the name of
each item in the smart home in order to access to its current status; it is labeled
as get status <type> item <name>. The <type> filled in with the type of items
(e.g., switches, dimmers, RGB lights, sensors, etc.). The <name> always refers to
the name of the corresponding item. Furthermore, get mirror status is a simple
block to return the facial expression which is recognized by the smart mirror; it is
labeled by get face emotions (see Figure 3.2a).

With respect to the LED lights, the first block needed to define how many LED
lights are connected to a pin is called setup neopixel. The color of LED lights
can change through the set pixel color block. Furthermore, in order to colorize
the LED lights, the command is encapsulated into another block called show color
(see Figure 3.2b).

With respect to the OLED displays, the first block needed to define the display
is called setup display. The cursor position can change through the display
cursor position block. Furthermore, in order to show the data on OLED displays,

3. Design and Development of the Block-based Programming Tool 29

the command is encapsulated into another block called display show. Finally,
OLED displays can be cleared via the block called clear display (see Figure 3.2¢).

With respect to the mobile robots, we designed two sets of blocks. First, de-
signed blocks are based on "Free Navigation" style, which enables learners to move
around and navigate the robot forward and backward with different speed based on
number of seconds or meters. In this style, learners are also enabled to rotate the
robot with different speed based on number of seconds or degrees. Furthermore,
learners access "Laser Scanner" data in order to recognize the obstacles around
the robot—In an unknown environment, it helps the learners to avoid hitting the
obstacles, or recognizing different obstacles (e.g., round shape obstacles) and go
towards them. Second, blocks are designed based on "Map Navigation" style, which
enables learners to navigate the robot based on the SLAM (Simultaneous Localiza-
tion and Mapping) map of known environments. In this style, learners are enabled
to navigate the robot based on different coordinates (X,Y,6 coordinate system) in
the SLAM map. In both "Free Navigation" and "Map Navigation" styles, we used
Gazebo robot simulation [PP03] to show a 3D model of the smart environment
(virtual environment) and the robot’s actual position (see Figure 3.3b). As stated
in [KHO04], Gazebo is "a free 3D dynamic multi-robot environment capable of recre-
ating the complex worlds that will be encountered by the next generation of mobile
robots." In addition to Gazebo, a 3D visualization tool for ROS (RViz) [KLPK15]
is employed to present the robot’s percepts, e.g., laser scanner data, to the learn-
ers based on a SLAM map (see Figure 3.3c). Additionally, BEESM shows a 2D
view of the robot’s current position (see Figure 3.3a). In Figure 3.3, we illustrate
a full picture of what is shown to the learners while working with BEESM in "Map
Navigation" style.

3.2.3 User Interface Design

BEESM is divided into three parts which are Smart Environment, Mobile Robot
and Micro-controller. We used visual programming, in particular Google Blockly
to facilitate programming. Blockly is not a programming language, but it is a frame-
work to help developers build visual programming environments [HLC16]. Blockly
includes programming elements; each element is represented as a block shaped el-
ement that it can be snapped together like puzzle pieces. Blockly allows custom
blocks by defining a block’s appearance, inputs, outputs, and type of connections.
The type of a block’s connection is defined to show how blocks can snap together.
The code generator for each block, which is written by the developer, enables Blockly
to generate the code syntax of the programming language of our choice.

A useful feature of BEESM is the ability to run the code either from Block
Panel and/or from the Code Panel. This feature allows learners to switch between

30 3.2. Overview of BEESM

I Logic Code Modifier § AutoCode Generator
I Loops ROS Code

I :;“" Sposition;

I st chango iital positon to. X target () | Y target | @) Ztarvet | @

1 control . . Ll .

== o oo change _initial position(l,1,0);

i e (s movebot_to_location ("bookshelf");

sleepbot _map(5);

$position = (current_location ("x"));
(%) if “v =d8 if (Sposition ==2) 1
movebot_to_position(2,0,0);

Bv Robot set | get X3 position
I Map Navigation
[y smart Environment 40 move robot to position X target | €3 | Y target | @ | Ztarget ('@

I Comesion sleepbot_map (3);
Bl }
Status. it for | nd
: Ex=iB== movebot to start(); Code Panel
v Arduino S o
Communication 90 to starting position — e To Remove the
S - Previous Robot
Smart Environment
0123456780 1011121314 1516 17181920 21222324 252627 26 2930 31 32 3334 35 3637 3839 4041 4243 44 4545
ToolBox Blockly Ul
L — Setct [Graus i o e croen (EREETR)
Output

Robot got a new plan to go to the Bookshelf!

Goal reached!

End Point
[Ve

Output Panel j

Il RealTime Factor

Figure 3.3: An overview of (a) BEESM user interface together with (b) GAZEBO
robot simulation, and (¢) RViz for ROS.

text codes and blocks freely. This enables them to program smart environments,
micro-controllers, and mobile robots using both blocks or directly with code syntax.
Following the argumentation in [Baul5, BBDP15, WW17a, WH17], this approach
can also help inexperienced and young learners to get first insights in code syntax.

3. Design and Development of the Block-based Programming Tool

40 st (EITEBto b getName

G M e =T coramo 1)

do (repeat £ times.
do setRGB name
red

green

blue

random integer from |) to | €ED)

random integer from | '@ to || €53
random integer from | '@ to | €&

during the noxt tries

To Save and Load the Blocks (a)

File Name:

Save Bbcks

‘SelectFle:

Choose File Nofie crosen (RIS

Output
Name: floorlamp
Value Red: §
Value Green: 174
value Blue: 27
Name: floorlamp
Value Red: 120
Value Green: 199
Value Blue: 205
Name: floorlamp
value Red: 91
value Green: 207
Value Blue: 182

()

3 Parts of BEESM ‘ Sman Enonmen oot
Code Syntax) == Remove Blocks /L
function math_random_int($a, $b) { = in Block Panel /
if ($a > $b) {) To send a Null
. ul
, Zeturnirand($b; Fa) To Modify the Cods Syntax and Run it Command

return rand(sa, $b); thioughiCode/panel

)
Sobjects = connect_server () ;
foreach (Sobjects as $item) {
$name = get_name ($item);
if ($name == 'floorlamp') {
for (Scount = 0; $count < 3; Scount++) {
set_RGB (3name, (math_random_int (0, 255)),

(math_random_int (0, 255)), (math_random_int (0, 255))); b
sleep(5)
)
FloName: W 7o Save the Generated Code

‘Smart Environment

0120345678 .010111213141516 17 181920212223 24 25262712829 3031 3233 34 35 36 37 3839 4041 424344 45 46

Figure 3.4: BEESM graphical user interface.

When learners click on the "Code Modifier" button, they can change the code and
run it from the Code Panel instead of the Block Panel. The panel changes to the
code which is generated by blocks as soon as the "Generate Code" button is clicked
again. The "AutoCode Generator" button enables learners to see the code which is
generated by blocks in real-time as soon as a block is added, removed or modified
in the Block Panel. Additionally, the application presents a 2D view of the smart
home (2D Graphical Panel) and an Output Panel. Thus, learners can see changes
which are happened to different items in real-time in the 2D Graphical Panel as
well as in the Output Panel (see Figure 3.4):

(a) Block Panel consists of a simple block workspace (Blockly UI) where learners
can assemble blocks, and access block categories (Toolbox) that contain pre-
defined and customized blocks for all primitives. Blocks in the same category
share the same color to enable learners to find them easily.

(b) Code Panel demonstrates the generated code syntax by blocks to learners.
They are also enabled to edit the code syntax which helps them to get first

insights in code syntax .

To this end, a simple version of programming lan-

guages used to help learners identify mistakes.

32 3.2. Overview of BEESM

(¢) Output Panel shows program output and errors for debugging purposes. The
compile and upload process of the code into the micro-controller, as well as
all return values are also shown in this panel.

(d) 2D Graphical Panel includes a view of the smart environment and mobile
robot’s position, which provides learners a picture of the status of different
items in real-time.

BEESM is designed and developed as an educational block-based programming
tool to enable inexperienced and young learners to learn programming and author
programs. Thus, two panels, Block and Code Panels, are mandatory to be part
of the BEESM user interface. Block Panel is necessary because it allows users to
see available blocks and to drag and drop blocks into this area in order to create
a program. Code panel is also essential because it shows the code syntax which is
generated by blocks. Additionally, using this panel, users can make direct changes
in the code and see the output. This approach helps the user to become familiar
with the code syntax and to get first insights into it, and thus, this feature remained
the same throughout the workshops from the beginning until the end. Output and
2D Graphical panels are in the initial BEESM user interface. Error handling is part
of programming, and thus, it plays an important role in introductory programming
environments. BEESM includes an Output Panel to show errors to the users and
help them to debug their program. It also helps educators and teachers to see
the outcome of the program and help learners to solve the issues and errors. As
BEESM is initially designed in the context of the smart environment, a 2D view of
the environment is necessary in order to show the changes which have been made
to the users in real-time—mobile robots and micro-controllers are added to it later
to provide more options for the programming.

During our workshops, initial BEESM user interface has changed and we decided
to have a larger section for blocks (addressed in Chapter 6 of this thesis). For
learners, this is suitable to improve the visibility of finding and reading blocks in the
program. In this respect, for those workshops which we only used Micro-controller
part of BEESM, 2D graphical view of the smart environment was removed from the
interface. This helps us to move the output panel to the right side of the interface
and extend the Block Panel to cover the right side of the interface (more information
can be found in Section 7.3.1). Furthermore, for those workshops which we need
the 2D graphical Panel, BEESM user interface has changed in a way that Output
Panel hides behind the Code Panel. This helps learners to toggle between the Code
and Output Panels, using "OQutput" button. Also, "AutoCode Generator" button
has been removed and it is replaced by the "Qutput" button. This also helps us to
extend the Block Panel to cover the right side of the interface (more information
can be found in Section 8.3.1).

3. Design and Development of the Block-based Programming Tool 33

_ Environment Smart Robot Operating Micro-controll
Environment || System (ROS) icro-controller
t

L3

[
‘| [Smart-environment
| }{ Controller ey - -

r—— l

Exchangeable
Functions for
ROS

Exchangeable
Functions for Smart
Environments

Wrapper Functions for Smart Environment

Wrapper Functions for ROS
| Middleware
Wrapper Functions for Micro-controller
L
]

BEESM Frontend, MHP Code | [Arduino Codal

Figure 3.5: Architecture of BEESM.

3.3 BEESM Architecture

As shown in Figure 3.5, BEESM is divided into the three layers which are Frontend,
Middleware and Backend:

e The Frontend includes BEESM user interface. Learners can generate either
PHP code or Arduino code, using a set of blocks or directly using code syntax.
In the Smart Environment and Mobile Robot parts, each block generates PHP
code based on their inputs and outputs. Arduino code is generated in the
Micro-controller part in order to upload the code directly towards micro-
controllers.

e The Middleware consists of three files, containing a set of wrapper functions for
the primitive behavior of smart objects, mobile robots and micro-controllers.
These wrapper functions help to execute corresponding functions, which are
understandable for smart environments using Smart-environment Controller,
as well as Robot Operating System (ROS) [QCG109] and micro-controllers
using CherryPy (an open-source web-framework) [Chel8].

e The Backend consists of Smart-environment Controller and CherryPy, which
includes exchangeable functions for the respective environment. CherryPy
contains the functions for mobile robots based on ROS, and Smart-environment
Controller contains the functions for smart environments. For micro-controllers,
CherryPy is used as a helper for Google Blockly to receive the generated code
via an HTTP request and upload it on micro-controllers.

34 3.3. BEESM Architecture

RPC technology
&

web socket communication
Used

Sends HTTP Request & il
g s ;111

Interactsl
— & CherryPy
Sends HTTP Request _ |
l Used, Interface @ - | —
Blockly L@
A—)
& CherryPy
. I
Sends HTTP Request_ | Implements,
ARDUINO = '
‘ == Receive

oid
) Response

Figure 3.6: Detailed description BEESM architecture.

In order to have a clear discussion on BEESM architecture, Figure 3.6 shows the
whole life cycle of it, starting form the user interaction with the web interface and
ending commands send to the Smart Home, TurtleBot and Arduino board. The
architecture of BEESM is divided into three levels:

(1) First level which is introduced as the Frontend: users interact with the web
interface which is implemented using Blockly library to generate PhP and
Arduino code.

(2) Second level which is introduced as the Middleware: a set of wrapper func-
tions handle the transmission from the Frontend to the smart-environment
controller and cherryPy web-server. These functions are called code syntaxes
which are created by blcoks.

(3) Third level which is introduced as the Backend: smart-environment controller
and cherryPy web-servers are implemented and send commands to the target
objects and environments. This level is the actual part of BEESM struc-
ture that contains a set of functions in order to enable the target objects to
communicate with each other. Thus, this approach enables users to program
smart environments, microcontrollers and mobile robots one at a time and in
combination with each other.

Overall BEESM is a customizable tool to assist inexperienced and young learners
to learn and build PHP code in order to program smart environments and mobile

3. Design and Development of the Block-based Programming Tool 35

robots. Furthermore, Arduino code is used to program micro-controllers. The code
to program is generally done by generating it for blocks which are at the top level
of the program. When the learner runs the program, the generated code is sent
to our Backend through Middleware. In this approach, smart environments can
be controlled through mobile robots and micro-controllers. They can communicate
with each other either directly or via Middleware. In an educational tool, this helps
educators to give different accessibility to learners based on their needs and prior
knowledge. BEESM backend consists of exchangeable functions for correspond-
ing environments. Educators and researchers can change these functions to adapt
and customize BEESM to other smart environments and mobile robots. In the
Micro-controller part, the generated code is directly uploaded into the board using
our backend as a helper for Google Blockly. Thus, BEESM architecture and its
primitives provide a hassle-free environment for educators and researchers. They
are able to use BEESM for educational purposes for different smart objects and
environments. Moreover, BEESM can help learners via using graphical blocks to
generate code syntax instead of memorizing it. This approach reduces syntax errors
and eases the manipulation of code structures.

3.4 Integration and Discussion

BEESM is designed for inexperienced and young learners to enable them to learn the
general purpose of programming in the context of smart objects and environments.
It is a block-based programming tool for educational purposes that helps learn-
ers to experience and customize applications for mobile robots, micro-controllers
and smart environments. It includes different programming language features and
predefined functions based on the Blockly Library. Furthermore, in BEESM, differ-
ent behaviors of tangible and smart objects are encapsulated in different functions
which are presented as basic programming primitives. Each primitive can be called
through a function, such as getting sensor input (e.g., light and temperature senors),
the status of switchable devices (e.g., doors and lights), or the status of a mobile
robot (e.g., current position). These primitives are defined as a set of custom blocks
which are implemented to allow the learners to work with them and see the reactions
of tangible and smart objects in real-time.

In the micro-controller part of the BEESM, Arduino’s behavior and capabilities
were implemented into primitives and wrapped in a set of blocks which generate
Arduino code. Learners can then integrate these primitives into general program-
ming features to author programs. Furthermore, the behavior and capabilities of
the smart homes (programming primitives) can be applied to other smart environ-
ments using web socket communication protocol and RPC technology as a web-

36 3.4. Integration and Discussion

based interaction to control household appliances. In this respect, OpenHab2 can
be considered as a similar approach with a graphical user interface to control house-
hold appliances [HHKM17]. Similar to our approach, OpenHab2 which is a unified
open-source home automation tool uses HT'TP GET and POST requests that return
JavaScript Object Notation (JSON) responses to communicate between user and
Web server. Primitives were implemented in BEESM to work with all devices such
as dimmable and switchable devices as well as sensors. In BEESM, the robots have
a set of primitive capabilities, such as navigating to a location or reading the laser
scanner data. Similarly, learners can then compose these primitives with general
futures of programming languages to author programs. The programming language
is wrapped in a graphical interface to enable inexperienced and young learners to
benefit from it and learn basic concepts of programming.

Inexperienced and young learners are enabled to work with the primitives to
program and observe the impacts of their programs on tangible smart objects and
real life-size smart environments. Furthermore, BEESM has the advantage of help-
ing learners to learn general features of programming, allowing them to implement
new ideas while using blocks, and observing the impacts of their programs in reality.
Using the proposed approach, learners are motivated to begin with programming
activities and to learn and author programs to control different smart objects and
environments.

Google Blockly offers a framework for developers to make programming easier
for inexperienced and young learners. However, keeping in mind that introductory
programming is difficult for them to solve programming problems [BBDP15,QL17],
the visual block-based programming tool may still not be fully intuitive for them.
In this respect, an oral introduction to general features of programming and the
programming tool should be presented to the learners. Furthermore, supplemen-
tary documents (e.g., instructional procedures) can be implemented in order to
help the learners to work with the tool and solve programming problems. As the
learners might not listen carefully to the oral explanation or might not remain fully
concentrated, these documents should be given to them in paper form while using
the programming environment. Thus, in the Chapter 5 of this thesis, we look at
the young learners’ acquisition of programming skills and their interests in learning
programming, using BEESM and supplementary documents in the context of smart
homes. Prior to this chapter, we present detailed information about the design and
development of our questionnaires and programming questions in the Chapter 4.
With this regard, we begin by detailing the design of the questionnaires and con-
tinue with information about the programming questions in the next chapter of this
thesis.

3. Design and Development of the Block-based Programming Tool 37

3.5 Limitations

The presented approach was tested on a real life-size smart home, a TurtleBot3,
as well as on Arduino Uno and WEMOS D1 Mini boards. A necessary feature
that needs to be added to BEESM is to enable inexperienced and young learners
to program and control mobile robots using Python or C++ programming lan-
guages instead of PHP. This will help them to upload the code directly towards
robots without having PHP functions in between. One of the most important fu-
ture contributions is the evaluation of usability of BEESM amid the learners with
and without prior programming knowledge with different genders. Furthermore,
BEESM does not yet provide parallel programming and real-time hints for debug-
ging purposes to help learners, but developing such an implementation is future
work.

3.6 Conclusion

We presented the design and development of BEESM, a Block-based End-user pro-
gramming tool for SMart Environments. BEESM allows inexperienced and young
learners to rapidly prototype and experiment with new applications for smart de-
vices and environments. BEESM broadens the application domain of existing block-
based programming environments for the learners as they are not only enabled to
program micro-controllers or mobile robots but also can connect to and program
smart environments.

In conclusion, BEESM can be considered as a visual approach, offering fast
configuration and programming through basic composition of blocks that represent
predefined functions. Considering educators and researchers who are working in the
area of computer programming education, BESSM is designed to be a block-based
rapid programming tool which provides a hassle-free environment for them. In this
regard, they can make it compatible with different smart environments and devices
for educational purposes.

Chapter 4

Measuring Instruments:
Questionnaires and
Programming Questions

The main goal of this thesis is to enable inexperienced and young learners to begin
with programming activities, and to experimentally evaluate the benefits of block-
based programming environments as target platforms for learning to program. In
addition to block-based programming, we employed computing platforms such as
smart and tangible objects and environments as motivational contexts. In this re-
spect, we designed and implemented six non-formal programming training sessions
and workshops (from 2-hour to 4-day) in 17 months, from April 2018 until August
2019. In this chapter, we refer to these programming training sessions and work-
shops as Experiment 1 to Experiment 6. A total of 108 German secondary school
students (60 girls and 48 boys) participated in these experiments, who were between
10 to 15 years old. In the first four experiments, learners’ attitudes towards pro-
gramming and computer science were measured with questionnaires before and after
using the programming environment and the computing platform. Furthermore, in
the first two experiments (Chapter 5), two programming tasks were designed in or-
der to assess the learning outcomes. In the next two experiments (Chpater 6), two
programming questions were applied for the assessment of students’ programming
skills at the beginning and at the end of each experiment. Moreover, we provided
three attitudinal questionnaires and programming questions in the fifth experiment
(Chapter 7) at the beginning, in the middle and at the end of the experiment. This
helps us to measure both learners’ attitudes towards programming and assess their

40

programming skills in solving programming problems throughout this experiment.
The sixth experiment (Chapter 8) consists of three attitudinal questionnaires to
measure the learners’ attitudes towards programming. In addition, students were
required to answer two programming questions at the beginning and end of this
experiment. This helps us to assess their programming performance in answering
programming questions.

In this chapter, we present details on the design and development process of
the questionnaires and programming questions in each experiment. Thus, we begin
by detailing the questions which are included in each questionnaire and how they
changed throughout the six experiments. Then, we present the information about
the designed programming tasks and questions in each experiment, as well as how
they changed to meet our needs in each experiment. This chapter is concluded with
information about the preparation of these measuring instruments in a different
phase of our research.

4.0.1 Attitudinal and Perceptional Questionnaires

The attitudinal questionnaires were generally based on the questions from [BBE109,
WW17b] with specific questions being added and being employed for each exper-
iment; all translated from German to English and available in appendix A to ap-
pendix D. In order to understand how the learners’ attitudes were affected in the
respective experiment, we turn to responses to the attitudinal assessment. Addi-
tionally, our questionnaires consist of several questions to find out our students’
perceptions of the block-based programming environment and the computing plat-
form which are employed in each experiment. In all questionnaires, we asked each
student to provide a unique code to be assigned to his/her particular questionnaires.
We informed them that this code is necessary so that the data can be collected and
analyzed anonymously.

Demographic questions were placed at the end of the post questionnaires in all
experiments. It is mainly because of the findings from [TPO12,Lav08], which show
the best place for demographic questions is at the end of questionnaires. In this
respect, we refer to four advantages to place demographic questions at the end of
the questionnaires, which are addressed by [Lav08]:

(1) It enables respondents to answer the questions before boring demographic
questions.

(2) It is helpful to prevent primacy effects (e.g., due to gender differences).

(3) It helps respondents to answer the questions without any personal questions
being asked at the beginning of the questionnaire.

4. Measuring Instruments: Questionnaires and Programming Questions 41

(4) It engages and builds connections between the respondent and the question-
naire.

Experiment 1 & Experiment 2. The first phase of our experimental evaluation
started with the first and second experiments. In these two experiments, we looked
at two dimensions of students’ attitudes towards programming and computer science
in both pre and post questionnaires (see appendix A.1 and appendix A.2):

e confidence in finding computer science difficult to understand, and
e interest in learning programming.

Students were also required to rate their programming skills in the pre questionnaire.
This question was designed to record the learners’ prior programming experience at
the beginning of each experiment. Furthermore, in the post questionnaire and after
performing the computer programming tasks, four questions were asked. These
questions were designed to understand how learners find programming with blocks
and seeing the impacts of their programs in a real life-size smart environment. In
both pre and post questionnaires, all questions asked on a 5-point Likert scale.

Please note that these two experiments were the first two programming training
sessions that we conducted in our research. In these experiments, we designed and
asked a limited number of questions. This helped us to get the first insights into
how young learners react to the use of block-based programming together with real
life-size smart environments in order to begin with programming activities and learn
to program.

Experiment 3 & Experiment 4. In the second part of the first phase of our experi-
mental evaluation (third and fourth experiments), we started to expand the scope of
attitudinal questions via four different 5-point Likert scale questions. Furthermore,
in this phase, we designed our question to focus more on the learners’ attitudes
towards computer programming. Thus, in this part of our research, we look at four
dimensions of learners’ attitudes (see for example, appendix B.1 and appendix B.2):

e confidence in finding themselves good at programming,
e enjoyment of programming,
e perceived difficulty of understanding programming, and

e interest in future programming learning opportunities.

42

Similar to the first two experiments, students were required to rate their program-
ming skills in the pre questionnaire. Additionally, we used one "yes" or "no" ques-
tions to know whether all participants have ever worked with a block-based pro-
gramming environment or not. These questions were designed to record the learners’
prior programming experience with block-based programming at the beginning of
each experiment. Furthermore, in the post questionnaire and after performing the
computer programming activities, two questions were designed and asked to find
out learners’ attitudes towards programming a real object, using block-based pro-
gramming. Five experimental questions were added to the post questionnaires in
order to record the learners’ experience in using block-based programming environ-
ments. In both pre and post questionnaires, all questions asked on a 5-point Likert
scale. In this part of our research, we added an extra column, which is called "I
don’t know" to help students to use this option for those questions that they do not
know how to answer. However, we found out that some of the students tended to
pick this answer and did not read the questions. Thus, we removed this column in
the questionnaires that we provided in the upcoming experiments.

Experiment 5. In the second phase of our research, we started to dig into the learn-
ers’ trajectories of attitudes towards programming, using block-based programming
and smart tangible objects. Thus, in the first part of this phase, we asked a set of
open-ended questions to enable students to answer them using short responses. In
contrast to the first phase of our research, the programming workshop was designed
in a longer period of time. Our workshop is divided into two half: (i) learning ba-
sic programming concepts, using block-based programming, and (ii) applying these
programming concepts on a tangible object and make it smart. Thus, in addition
to the pre and post questionnaires at the beginning and the end of the workshop
(see appendix C.1 and appendix C.3), we added another evaluation point, using an
intermediate questionnaire in the middle of the workshop (see appendix C.2). In
this experiment, we look closely into three dimensions of students’ attitudes towards
programming and the programming workshop, using five open-ended questions in
the pre questionnaire:

e confidence in finding themselves good at programming and programming work-
shop,

e cnjoyment of programming, and
e interest in future programming learning opportunities.

Please note that one question which is related to students’ enjoyment in the work-
shop was changed to two questions in the intermediate and post questionnaires. All

4. Measuring Instruments: Questionnaires and Programming Questions 43

other questions remained the same and asked gain in the intermediate and post
questionnaires. Furthermore, two questions were added to the intermediate and
post questionnaires to find out students’ experience, using block-based program-
ming and programming smart systems and objects. Using an extra question in
both intermediate and post questionnaires, students were enabled to tell us if there
was anything left and did not ask in the questionnaires. Similar to the two previ-
ous experiments, we used one "yes" or "no" question in the pre questionnaire and
students were required to demonstrate if they have ever worked with a block-based
programming environment. Some of the participants mentioned that in addition to
block-based programming, they worked with micro-controllers in the past. For the
next experiment, this led us to design another question in our pre questionnaire to
ask students if they previously worked with a micro-controller.

Experiment 6. In the second part of the second phase of our experimental evalua-
tion, we started to collect both quantitative data (5-point Likert scale questions), as
well as qualitative data (short-response questions) to support the quantitative data.
Similar to the previous experiment, the programming workshop was designed in a
longer period of time and another evaluation point was added, using an intermedi-
ate questionnaire in the middle of the workshop (see appendix D.1, appendix D.2
and appendix D.3). This workshop is also divided into two half: (i) learning ba-
sic programming concepts, using block-based programming, and (ii) applying these
programming concepts on a tangible object and make it smart. The quantitative
questions were designed to find out how the learners’ attitudes towards program-
ming are affected by block-based programming and smart tangible objects over
time. In this experiment, eight 5-point Likert scale questions were asked based on
the three dimensions of students’ attitudes towards programming:

e confidence in finding themselves good at programming and how they found
programming difficult,

e enjoyment of programming and the workshop, and
e interest in future programming learning opportunities.

As it is mentioned in the previous experiment, in the pre questionnaire, we asked
them two "yes" or "no" questions, which are:

e first question to record the students’ prior programming experience with block-
based programming, and

e second question to record their prior experience with using a micro-controller
in the past.

44

In the intermediate and post questionnaires, one question was added to find out
students’ experience when they able to program smart tangible objects. Further-
more, eight 5-point Likert scale questions are designed based on the Weintrop et
al. [WAST18] study to measure the learners’ experience using the programming en-
vironment in terms of its ease-of-use, ease-of-learning, usefulness, and satisfaction.

With respect to the short-response questions, we started to find out how students
think about programming and the programming workshop, using two open-ended
questions in the pre questionnaire. In the intermediate and post questionnaires,
these two questions divided into four in order to understand how they like and
dislike the workshop and the programming environment.

4.0.2 Programming Questions

The programming questions was generally based on the questions from [Lewl0,
MCK17]; all translated from German to English and available in the appendix A to
appendix D. In order to understand how the learning outcome were affected in the
respective experiment, we turn to students’ performance in programming tasks and
their responses to the programming questions. We focused on three basic program-
ming concepts as follows: (i) variables, (ii) loops, and (iii) conditional statements
and logical operators. In all programming questions, we asked each student to use
the unique code which was provided in his/her particular questionnaire.

Experiment 1 & Experiment 2. We designed and implemented two programming
tasks in the first two experiments (see 5.3.4). In the first task, we focus on learning
variables and iterative logics. In this task, differences between variables were demon-
strated, and the students were introduced to use an iterative loop (e.g., foreach
loop) in order to iterate through a list of objects. In the second task, differences
between operators were demonstrated, and the students worked with loops (e.g.,
for loop) and conditional statements (e.g., if-else statement). They continued to
use loops and they were introduced to several if-else statements based on random
numerical values.

Experiment 3 & Experiment 4. 1In the second part of the first phase of our exper-
imental evaluation, we provided two novel programming questions at the beginning
and the end of each experiment (see for example, appendix B.5, appendix B.6). In
both pre and post programming questions, block-shaped elements were designed
independent of the shape and color of blocks which are used in each experiment
(see 6.4.1). Using these type of programming questions helped us to assess stu-
dents’ performance in solving programming problems based on their understanding
of basic programming concepts but not the color and shape of blocks. For each

4. Measuring Instruments: Questionnaires and Programming Questions 45

Table 4.1: 10-point Grading Rubric Scale

10-points (Connection) 8-points (Analysis) 6-points (Summary) 4-points (Incomplete) 2-points (Attempted)

Answer shows mastery Answer shows some Answer does not show

Answer shows mastery . p N . . . Answer does not address
and understanding of ~ understanding of essential understanding of basic content, . .

of content and a deeper . . . the programming question

. . content, but it has content, but it has or it shows that mastery of . .
understanding of it. R . . L or is off-topic.
a minor issue. a lack of greater evidence. the general content is missing.

programming question, we collected the solution made by the students. A 10-point
grading rubric [RA10] was created to evaluate the students’ performance (see Ta-
ble 4.1). Please note that we informed students, which they need to put blocks in
correct logical order to answer each programming question. We also noted that there
is no unique correct answer, and some of the blocks may appear more than once
while some others may not be needed in the answer to the programming question.

Experiment 5. In the second phase of our research, and due to having another
evaluation point at the middle of the programming workshop, we designed three
programming questions at the begging (see appendix C.4), in the middle (see ap-
pendix C.5) and at the end of the workshop (see appendix C.6). In pre programming
question, students’ prior programming experience was validated via answering to
the question. Furthermore, students’ performance in basic programming concepts
which were taught was assessed, using the two other programming questions at the
middle and the end of the workshop. Similar to the previous experiments (experi-
ment 3 and 4), block-shaped elements were designed independent of the block-based
programming environment in all programming questions (see 7.3.1). We asked the
students to answer the question via selecting the blocks and putting them in order
in a correct logical way. Students’ performance were assessed and scored, using the
10-point grading rubric. All programming questions were designed to be slightly
different from each other, and their level of difficulty were increased from the pre to
the post programming question. This is to ensure that students read the questions
carefully and do not answer the intermediate and post programming questions same
as each other or the pre programming question.

Experiment 6. In the final part of our research, we followed not only the con-
cepts which are covered in [MCK17,WW15] but also we designed our programming
questions based on their questions. In this respect, we designed two programming
questions to assess the students’ understanding of variables, loops and conditional
statements at the beginning and the end of the workshop. These programming
questions consist of gap-filling and open-answer questions as it is designed and
implemented by Merkouris et al. [MCK17]. Similar to the previous programming
question, we designed our programming questions slightly different from each other

46

to ensure that students read the questions carefully and do not answer the post
programming question same as the pre programming question.

4.0.3 Summery

The preparation of measuring instruments was guided by six programming training
sessions and workshops which were held in 17 months. These training sessions and
workshops helped us to explore attitudinal and programming questions to measure
our learners’ attitudes towards programming and assess their programming perfor-
mance. Moreover, these training sessions and workshops led us to explore feasible
programming activities for learning computer programming with block-based pro-
gramming, using tangible and smart computing platforms as motivational contexts.

In the first phase of our research, 67 students (26 boys and 42 girls) participated
in four short programming training sessions (between 2 to 4 hours). In this stage,
which is conducted in the first nine months of our experimental evaluation period,
the initial attitudinal questions to be answered were explored and selected (Chap-
ter 5 and Chapter 6). Additionally, the main programming activities and questions
to be performed were designed and implemented in this stage. Students’ feedbacks
and responses helped us to refine the attitudinal and performance measuring in-
struments, as well as to add an extra evaluation point at the middle of upcoming
programming training workshops (Chapter 7 and Chapter 8).

In the second phase of our research, 40 students (22 boys and 18 girls) partici-
pated in two longer programming training workshops (2 to 4 days). In the first part
of this stage, the attitudinal questionnaires and programming questions were tested
in a 4-day programming workshop (Chapter 7). In this workshop, students had a
greater chance to show their creativity in design and development of a smart tan-
gible object, which can be integrated into real life-size smart homes. We designed
and implemented open-ended attitudinal question to record short responses to our
questions. Furthermore, similar to the second part of the first phase (Chapter 6),
we used block-shaped elements to assess students’ programming skills in solving
programming problems. Final rectification of the measuring instruments was per-
formed during this part. In the second part of this stage (Chapter 8), attitudinal
questionnaires consists of both close-ended and open-ended questions. Moreover,
programming questions were designed and developed based on the block-based pro-
gramming environment to assess students’ programming performance in answering
programming questions.

Chapter 5

Instructional Supports for
Block-based Programming

There is scientific knowledge about how to teach programming, and the necessity
to foster young learners’ interest in computer science is broadly addressed. How-
ever, there is a lack of research on how to teach programming skills in a way that
increases the learners’ interest in the topic. In the Chapter 3, a novel block-based
programming approach was introduced, allowing inexperienced and young learn-
ers to learn the basic concepts of programming and author programs. Apart from
learning programming and rapidly prototyping applications in the context of smart
environments, this approach provides a programming environment for educators to
make it compatible with different tangible and smart objects and environments.
In this chapter, we present a one-day non-formal training session for young
students, in order to support the acquisition of programming skills and, at the same
time, a positive view towards programming and computer science in general. The
programming environment is based on one application of BEESM within a smart
home. Thus, the abstract concept of programming is presented within a real context
and tightly connected to real experiences. In this training session, the learners were
introduced to a real life-size smart home and to programming concepts in order
to acquire basics of programming. Two user studies with 44 7" and 8" grade
students were conducted, specifically, the students’ interest in computer science
and programming, as well as their acquisition of programming skills were assessed.
Furthermore, two instructional interventions to support learners, namely worked
examples and instructional procedures, were compared. This chapter contributes
by showing the potential of using visual block-based programming in the context of
smart homes in order to enable students to begin with programming activities.

48 5.1. Introduction and Motivation

5.1 Introduction and Motivation

Computer science and programming are becoming more and more important in K-
12 education [GSHT18,Kall5]. Several studies aimed to introduce programming to
young students in order to integrate computer science in K-12 education [GSHT18,
LK14,KM16, BS11]. These studies investigated how different programming en-
vironments affect K-12 students’ computational thinking towards problem solv-
ing [GSH'18,LK14, FSKT13]. According to the K-12 Computer Science Frame-
work [Com17], programming is one of the computer science core concepts [Com17]
and core practices [BS11]. Thereby, programming is more than just coding [LK14,
GSHT18], but involves computer science concepts such as abstraction and debug-
ging to solve problems [LK14, Com17]. During programming, students are exposed
to computational thinking aspects such as creativity, critical thinking and problem
solving [LK14,Com17, KB13].

Acknowledging that the main goal of programming training for K-12 students is
to minimize the distractions of "thinking at multiple abstractions" [LK14, Com17],
motivating students through programming activities helps them to understand how
computer science influences their daily life [PHEC17]. Thinking at multiple abstrac-
tions (e.g., students are enabled to find a piece of code that could be more efficiently
implemented as a loop) and programming activities can be considered to be funda-
mental for K-12 students in order to reduce complexity and increase efficiency of
training [Cof17, GSHT18, LK14]. In this way, one of the challenges that computer
science research still faces is the lack of studies investigating empirical evidence in
computer science education and training among young learners [Com17, LK14].

Young learners typically have difficulties to understand the requirements of de-
signing, executing and debugging programs [GSHT18, QL17]. Likewise, they do
not have experience in procedural and modular programming to solve program-
ming issues. Thus, in the first place, training them to acquire programming skills
seems to be difficult for school teachers and educators [GSHT18, PHEC17, HA17].
Furthermore, learning and recalling code syntax as well as assembling and manip-
ulating code structures are error prone as they require a high level of concentra-
tion [Bauls,BBDP15]. Kalelioglu [Kall5] tried a new way of teaching programming
skills to K-12 students in order to investigate the effect of teaching programming
on reflective thinking skills towards problem solving. It was shown clearly that stu-
dents learned computer science and programming concepts in the code.org platform
which is based on Scratch while playing in an enjoyable way. In this respect, many
block-based programming editors such as Scratch [RMMHT09], Alice [CDP00],
Snap! [HM10] and Google Blockly [Fral4] have been evolved in today’s advanc-
ing technology and applications [Com17,LK14] in order to reduce the complexity of
programming. These editors use a visual programming language, where they rep-

5. Instructional Supports for Block-based Programming 49

resent a vision in which K-12 students engage in the concept of computer science
and programming [Com17, MRR10]. Visual block-based programming is designed
to allow the students to program without the obstacles of syntax and manipula-
tion of code structure errors [Coml17, Baul5, BBDP15]. Young learners can learn
programming through drag and snap blocks together in order to generate code
syntax [Com17, LK14]. They can take advantage of visual block-based program-
ming in order to facilitate the design, the execution and the debugging process of
programming, and thus, they are able to solve programming problems more easily.

We conducted two user studies in order to examine the acceptance of computa-
tional thinking through problem solving among 7" and 8" grade students (12 to 15
years old). We claim that it is possible to introduce new technologies which provide
possibilities to connect computer science to reality and cover basic programming
skills in one-day non-formal programming training sessions in order to enable stu-
dents making programs and seeing their impacts in real-world environment. To this
end, a visual block-based programming environment (BEESM) is used in order to
reduce the complexity of programming and facilitate it for the students in the con-
text of a real life-size smart home. The main goal of the smart home is to provide
exposure to programming activities in the programming training sessions. An em-
pirical evaluation of the training sessions with respect to the interest in computer
science and the acquisition of programing skills was conducted. Furthermore, as
introductory programming is difficult for young students [BBDP15, QL17], visual
block-based programming environments may still not be fully intuitive for them.
Thus, they need help in order to solve programming problems using these environ-
ments. Based on instructional supports presented in [SKR*10, MGGT14,ZLP18],
it was addressed that young learners can be supported by worked examples and
instructional procedures in order to solve programming problems. Therefore, by
using these supplementary documents, we helped our young students to work with
the programming environment and solve programming problems.

Our training sessions were conducted in Germany, where the number of female
graduates in the field of computer science is considerably lower than the number
of male graduates [ELP17,Corl7]. Thus, introducing programming to our target
users has two aspects. On the one hand, the acquisition of programming skills
among inexperienced and young students was measured in the context of a real
life-size smart home using a visual programming paradigm. On the other hand, the
acceptance of computer science and programming among young learners, especially
girls, was assessed. It was a special feature of our training sessions that students
were able to program a real-world environment. Collecting and analyzing data in
this environment extended and refined prior results [ELP17, GSHT 18] taken from
different non-formal education environments where students were able to produce
and deploy pieces of code that can be applied to smart homes.

50 5.2. Related Work

This study seeks to contribute to computer science education through the devel-
opment, implementation, and evaluation of a programming training session, with
the goal to teach basic programming skills and principles to young learners, and
with the goal to arouse their interest in computer science and programming.

The rest of this chapter is structured as follows. In Section 5.2, background
and related work are described. Our training sessions are described in Section 5.3.
Section 5.4 presents two user studies, the first one with 8" grade students without
prior programming experiences, the second one with 7" grade students with little
prior programming experience. The results are discussed in Section 5.5; the chapter
closes with conclusions in Section 5.6.

5.2 Related Work

Over the past few years, several block-based programming tools have emerged to
provide visual environments [LK14,HLC16,SDP*15]. The environments aim to help
K-12 students getting started with programming activities [Mak18, Baul5]. These
initiatives focus on promoting computational thinking among K-12 students [Kaf16,
KB13]. However, there have been very few studies with a special focus on promoting
real-world environment programming activities among K-12 learners—both female
and male— with different levels of prior programming experience [PHEC17].

Visual programming environments were designed in a variety of approaches
(e.g., [Kall5,FSKT13, HA17,HLC16]) for introducing K-12 students to general pro-
gramming features and principles. The literature reports that programming is more
accessible to young learners and novices using these environments [LK14], and re-
sults show that young learners are able to learn programming in visual block-based
programming scenarios. In addition, according to [PHEC17, KM16], researchers
are interested in the "robot programming" approach in end-user programming tools.
Huang et al. [HLC16] took advantage of Google Blockly to develop a rapid block-
based programming tool called "CustomPrograms" for end users. Paramasivam et
al. [PHEC17] used this tool to design an end-user application which enables K-12
students to program a mobile robot. With this regard, twelfth-grade high-school
students with disabilities (e.g., deafness, low vision or blindness, Asperger’s Syn-
drome) attended a robot programming workshop. The results obtained from this
experience are encouraging, as the authors were successful to establish the con-
fidence that robot programming is both accessible and interesting. However, no
information was provided whether this procedure also inspired interest in program-
ming and computer science in general.

The literature also reports block-based programming tools used for stimulat-
ing interest in computer science among K-12 learners [LK14,SDP*15, PHEC17,

5. Instructional Supports for Block-based Programming 51

KM16, HA17]. In terms of teaching programming, two of the preferred visual
block-based programming editors are Scratch and Google Blockly. For instance,
Scratch—one of the most successful visual programming editors—is used to present
MOOC (Massive Open Online Courses) [SDPT15] programming courses in which
researchers teach elementary programming concepts to inexperienced high [KM16]
and elementary [HA17] school students. The results showed that the majority of
the participants had a positive attitude towards programming and stated that they
plan to continue programming in the future. Nevertheless, teaching elementary
programming features to inexperienced and young learners in the context of smart
environments using visual programming tools is still an active area of research.

5.2.1 Summary

The use of visual block-based programming editors (e.g., Scratch or Google Blockly)
alone may not be sufficient for K-12 learners to gain a deep understanding of com-
puter science concepts and programming skills. Although these editors are able to
reduce the complexity of programming for young learners, they may not enable the
learners to develop a well-grounded connection between computer science and its
impacts in their daily life. Granting access to a real life-size smart home may be
particularly useful in order to show the learners how a real-world environment can
react to their program when it is following the programming principles and struc-
tures. To this end, we designed and implemented one-day non-formal programming
training sessions to provide learning opportunities for young learners in order to
program a real life-size smart home in the German Research Center for Artificial
intelligence (DFKI). Thus, learners can participate and experience new technolo-
gies which are adapted to technical equipments in order to help elderlies and people
with disabilities. In other words, by using the smart home and letting learners
to program it, we aim to motivate them to learn programming and to understand
influences of computer science in their daily life.

5.3 Training Sessions

Training sessions were held in premises of the University of Bremen. All used
equipments and the smart environment—computers and the smart home—which
were used were provided by the DFKI. The core idea of such one-day non-formal
programming training session is to enable inexperienced and young students to learn
basic programming concepts and improve their attitudes towards programming in-
dependent of their regular curricular and outside of their school environment. Three
instructors were involved in each session. The participants were introduced to the

52 5.3. Training Sessions

smart home by one instructor. The other two instructors were in charge of the
teaching sessions. One instructor was female and all of them had a computer sci-
ence background with experience in working with K-12 students. The goal of the
training was to enable inexperienced and young students to acquire primary pro-
gramming skills and to use these skills in the context of a real life-size smart home.

At the beginning of each session, the students received a pre-questionnaire. Like-
wise, at the end of each session a post-questionnaire was given to them in order to
assess the learners’ view on computer science and programming. Apart from this,
each session was divided into three parts: (i) introduction to the smart home,
(ii) introduction to programming structures and principles with the block-based
programming environment, and (iii) performing two programming tasks. The ques-
tionnaires and the three parts of the training sessions are described in the following.

5.3.1 Questionnaires

The questionnaires were designed in order to evaluate the learners’ view on com-
puter science and programming. The learners were asked to indicate their prior
programming experience in a pre-questionnaire at the beginning of each session.
In addition to demographical questions (e.g., age, gender), students were asked to
indicate their view on computer science and on programming, specifically with re-
spect to the block-based programming environment, in a post-questionnaire at the
end of the sessions. Pre- and Post-questionnaires can be found in the appendix A.1
and appendix A.2, respectively; all translated from German to English.

5.3.2 Overview of the Smart Home

Our smart home is an approximately 60 m? automated smart ambient assisted
living lab apartment (BAALL) including different smart items such as a sink ad-
justing automatically to a person’s height, height-adaptable kitchen, an intelligent
wardrobe suggesting outfits, voice recognition system, and smart mirror and fridge
(see Figure 5.1) [FSRT10]. Tt comprises all necessary conditions for trial living,
intended for the elderly and people with physical or cognitive impairments. The
smart home also contains various actuators (e.g., doors, toggleable, dimmable and
RGB lights), and sensors (e.g., lighting, temperature, and thermal cameras). Fur-
thermore, the smart home aims to compensate physical impairments of the users
through mobility assistance, such as wheelchairs and walkers. With this regard, the
smart home has been equipped with five automated sliding doors that open to let
the wheelchairs pass through. All lights and doors are remote controllable via a
restful HT'TP interface, or proactively by the intelligent environment. The smart
home’s main educational use here is letting young students program different ob-

5. Instructional Supports for Block-based Programming 53

Figure 5.1: A view of the smart home (BAALL).

jects for different purposes in a real life-size smart environment which is also used by
researchers. Additionally, it provides a unique opportunity for them to experience
latest innovation and to learn about the future. In this respect, students are en-
abled to program different real objects in the smart home and to observe reactions
of these objects to the program in real-time.

During each session, the students were divided into two groups in order to enable
an introduction to the smart home in smaller groups. All objects and their function-
alities in the smart home were explained to each group in order to (i) enable students
to understand how computer science can influence real-world environments, and (ii)
identify different smart items which are used in the smart home.

5.3.3 Introduction to Programming Structures and Principles

In this study, a block-based programming environment was used to enable inex-
perienced and young students to make programs in the context of a real life-size
smart home (see Figure 5.2). This environment is based on BEESM which is pri-
marily designed as a visual block-based tool, being applicable for smart objects and
environments. We followed the BEESM user interface (see Figure 5.2) to enable
learners using four different panels to have a full vision of the blocks (Block Panel),
code syntax (Code Panel), output of the code (Output Panel), and a 2D view of
the smart home (2D Graphical Panel).

All students were introduced to programming and how to use the programming
environment. They learned general aspects of using the environment, (i) how to
identify the blocks relevant to solve the programming tasks, and (ii) how to recognize
the main elements and panels of the programming environment.

The main computational concept which was taught is "Programming Struc-
tures and Principles", exemplified through visual block-based programming samples.
With this regard, programming features such as variables, data types, conditional
statements, loops, and logical operators, as well as pre-defined functions (consist of

54 5.3. Training Sessions

Run Gode Y GenerateCod J Gode oder Discard

——— PHP Code Modifer
e ' broaNara) $objects = gonnectﬁse#ver();
o foreach ($objects as $item) {
2 $name = get_name ($item) ;
do [repeat E} times if (S = if1 1 v
@ setRGB name if ($name == oorlamp') {
for (Scount = 0; $count < 3; Scount++) {
set_RGB ($name, random_number (0, 255),
random_number (0,255),
random integer from (@) | to random_number (0, 255)) ;
sleep(5);

red || random integer from (@ | to

green | random integer from (@) | to

blue

i e PSPPPRRRSPIY . cioccs

output

Name: floorlamp
Value Red: 252
Value Green: 93
Value Blue: 96
Name: floorlamp
Value Red: 84
Value Green: 161
Value Blue: 93

Figure 5.2: A sample execution of the programming environment.

different kinds of behaviors of smart objects) were taught. Programming concepts
were also introduced using simple block-based programs that include variables, iter-
ative logics and conditional statements, and later through more complex examples
that add loops, logical operators and pre-defined functions in order to make different
applications in the smart home. Students are encouraged to load pre-defined exam-
ples and execute them in order to recognize which block corresponds to a particular
action.

5.3.4 Programming Tasks

During each session and before each task, the students were introduced to the
protocols of the programming tasks, specifically (i) that they have only 20 min-
utes to finish each task, and (ii) that they need to use their own supplementary
document which comes along with each computer. In this study, in addition to an
oral introduction to programming and the programming environment, we used sup-
plementary documents—namely worked examples and instructional procedures—in
order to help our students working with it. As introductory programming is diffi-
cult for young learners [BBDP15,QL17], and they might not listen carefully to the
oral explanations or might not remain fully concentrated, supplementary documents
were provided in paper form. These documents supported the students while solv-
ing the programming tasks with the programming environment. A worked example
for each task was attached to half of the computers in paper form. The document
contained a visual block-based representation (blocks are snapped together) of the

5. Instructional Supports for Block-based Programming 55

task, along with an explanation of each block and of the code which is generated by
the blocks. Worked example documents for both programming tasks can be found
in the appendix A.3 and appendix A.5, respectively; all translated from German
to English. To the other half of the computers, an instructional procedure for each
task was attached in paper form. This document contained a visual block-based
representation (blocks are not snapped together) of the task, along with an expla-
nation of each block. The output of the task was also included in both documents.
Instructional procedure documents for both programming tasks can be found in
the appendix A.4 and appendix A.6, respectively; all translated from German to
English. In the first programming task, one of the blocks was used incorrectly in
the documents which was highlighted by a different color. The students needed to
identify the incorrect block and to replace it by the correct one in order to correctly
perform the task. In the second programming task, one whole loop was used in
an incorrect format which was also highlighted by a different color. The students
needed to identify the incorrect set of blocks and replace them by the correct blocks
in order to correctly perform the task. Furthermore, they were encouraged to per-
form the task using a simple example as an introduction to the particular task. The
two programming tasks were:

(1) Showing the name and status of each object in the smart home. The task
helps students to learn variables and iterative logics. Students are required
to connect to the smart home’s server, iterate through the list of objects
(foreach loop), and fetch the name and status of each object. Then, they
assign object name and status to two variables and show them in the Output
Panel.

(2) Changing the status of an RGB light. The task helps students to learn dif-
ferences between operators as well as working with loops (for loops) and
conditional statements (if statements). Students are required to connect to
the server, iterate through the list of objects and find the corresponding RGB
light. Then, they change the status of the light using random integers for 3
times, with 5 seconds delay between the changes.

In this respect, the computational concepts are extended by introducing these
tasks to the students. We require students to use the supplementary documents
in order to identify the issue and where the change should be made, remove extra
blocks and add new blocks, integrate them with the rest of the program, and finally
test the program.

56 5.4. User Studies

5.4 User Studies

Two user studies were conducted in order to understand the impact of visual block-
based programming on young learners’ programming skills and their attitudes to-
wards programming and computer science in the context of smart homes. The
training sessions were conducted with inexrperienced students without prior pro-
gramming experience (Experiment 1) and with novices who already had minor
experiences in visual and text-based programming (Experiment 2). Specifically, we
wanted to understand whether the students could assimilate and use supplementary
documents—mnamely worked examples and instructional procedures—including an
issue in order to perform programming tasks. In that respect, the students were
divided into two groups which were supported either with worked examples (Exam-
ple Group) or with instructional procedures (Instruction Group). Concretely, the
user studies addressed the following two research questions:

(1) When learning how to program with a visual block-based programming envi-
ronment embedded in a real life-size smart home, is it more effective to present
learners worked examples compared to instructional procedures? Does this ef-
fect depend on gender?

(2) When learning how to program with a visual block-based programming en-
vironment embedded in a real life-size smart home, is interest in computer
science and programming fostered more when learners are presented worked
examples compared to instructional procedures? Does this effect depend on
gender?

In both studies, data with respect to the acquisition of programming skills and
with respect to interest in computer science and programming were collected.

In the following, we describe the sample, the training session, the collected data,
and the results for both studies.

5.4.1 Experiment 1

Sample and Design. A total of 22 8 grade students of a German secondary
school (12 girls, 10 boys, age: M = 13.80, SD = 0.56) participated in the study.
The students were randomly assigned to two experimental groups, 6 girls and 4
boys to the Example Group (they revived a worked example for each task), and 6
girls and 6 boys to the Instruction Group (they received an instructional procedure
for each task), respectively.

Procedure of the Training Session. The duration of training for each student
was 3 hours, with a 15 minutes break. Students were randomly assigned to the

5. Instructional Supports for Block-based Programming 57

Example Introduction to Post
G f Pre- i P i ith
roup J, _{Introductlon to J‘ rogramming wi FQuestionnaire

(10 students)|| ||Questionnaire Smart Home the Environment
Instruction _{ntroduction to

Pre- | i
Group Smart Home "' Questionnaire LWorklng on 2 Programming

(12 students) Tasks in Pairs
(2 Experimental Conditions)

Figure 5.3: Procedure of the first experiment.

two experimental groups at the beginning of the session. The Example Group
students were asked to answer the questions of a pre-questionnaire, while the In-
struction Group was introduced to the smart home; afterwards, the Example Group
was introduced to the smart home, while the Instruction Group answered the pre-
questionnaire (see Figure 5.3). All objects and their functionalities in the smart
home were explained for 20 minutes per group. Then, as gender effects were consid-
ered, pairs of two students (2 boys or 2 girls) were assigned to one computer. Each
computer showed a real-time full vision of the smart home during the session using
three TP cameras. All students were introduced together to programming features,
structures and principles as well as how to use the programming environment for one
hour. Before working on each task, students were presented a program introducing
the corresponding task. The two programs respectively were (i) demonstrating the
name of all available objects in the smart home, and (ii) changing the status of a
dimmable light for one time. At the end of the second task, each group of students
went to the smart home to see the changes in reality. All students were asked to
complete a post-questionnaire at the end of the session.

Acquisition of Programming Skills. It was assessed whether the students were
able to perform the tasks or not. Each task consisted of several steps. The perfor-
mance was operationalized by the rate of steps completed without errors. In this
respect, at the end of each training session, the generated blocks were checked in
each computer. We labeled each block with a value and gave a final rate to the whole
program based on the blocks which were correctly used and placed. Furthermore,
the number of errors were counted and the type of errors was categorized as “ma-
jor” or “minor” errors based on students’ difficulties in introductory programming
which are discussed in [QL17]. Minor errors are related to the students’ syntactic
knowledge; for example, missing variable names or typing errors while using blocks.
In contrast, major errors are mostly happened during assembling and manipulating
code structure using blocks; for example, using an if statement block to check a
condition without using a foreach loop block to get all the objects names; thus,
demonstrating flaws in the students’ conceptual and strategic knowledge [QL17].

58 5.4. User Studies

Confidence and Interest in Computer Science and Programming. The subjec-
tive data regarding confidence and interest in computer science and programming
was collected using a questionnaire. The students were asked to rate the items (1)
"is it easy to program with blocks?", (2) "do blocks help you to understand program
better?", and (3) "do you think that it is helpful to be able to see directly in reality
whether the program works as desired?" using a 5 point Likert scale (with 1 being
“no”, and 5 being “yes”). Furthermore, the students were asked about their prefer-
ence of programming with blocks or directly with code using a 5 point Likert scale
(with 1 being “definitely with code”, and 5 being “definitely with blocks”).

Finally, students were asked before each session started in the pre-questionnaire
and at the end of each session in the post-questionnaire to rate (1) "do you think
computer science is difficult to understand?", and (2) "would you like to learn how
to program?" on a 5 point Likert scale (with 1 "no", and 5 "yes").

Results. At the beginning of the training session, the students were asked to indi-
cate whether they had programming experience. Only four students answered that
they had programmed before: two boys and one girl in the Example Group, and
one boy in the Instruction Group. Nevertheless, all four students indicated "low"
or "no" prior experience, thus, the level of prior knowledge was not included in the
further analyses.

The following analyses were computed as two-factorial analyses of variance, with
the factors ezample vs. instruction and gender, respectively (see Table 5.1). For the
questionnaire items, "no" was coded with 1, and "yes" was coded with 5, respectively.
With respect to finding programming easy with blocks, on average, the students
indicated a medium level; no significant main or interaction effects occurred, all F' <
1. The students indicated that blocks are helpful in order to understand programs;
no significant main or interaction effects occurred, all F' < 1.

With respect to the helpfulness of seeing the impacts of their program in a
real-world environment, neither the main effect gender nor the interaction effect
reached the level of significance, both F' < 1. The students in the Instruction Group
rated the question higher in comparison to the students in the Example Group (see
Table 5.1); however, the main effect example vs. instruction was not significant,
F(1,18) =1.16, p=0.30.

Concerning the preference for programming with blocks or with code, "code" was
coded with 1 and "blocks" were coded with 5. The students in both groups indicated
an indecisive stance (see Table 5.1). However, the Instruction Group indicated a
slightly higher preference towards blocks compared to the Example Group, and the
girls indicated a higher tendency towards blocks compared to the boys. However,
both main effects just barely missed the level of significance, both F'(1,17) = 3.15,
p=10.09. The interaction effect was also not significant, F'(1,17) = 1.14, p = 0.30.

5. Instructional Supports for Block-based Programming 59

Table 5.1: Subjective Data on the Ease of Use

Example Group Instruction Group

All Students Female Male All Students Female Male
Questions M (SD) M (SD) M (SD) M (SD) M (SD) M (SD)
Is it easy to program with blocks? 3.10 (1.52) 3.00 (1.67) 3.25 (1.50) 3.42 (1.24) 3.33 (1.03) 3.50 (1.52)

Do blocks help you to easily underst-
and programs?

Do you think that it is helpful to be
able to see directly in reality whether 3.70 (1.06) 3.50 (1.05) 4.00 (1.15) 4.33 (1.30) 4.33 (1.63) 4.33 (1.03)
the program works as desired?

Do you prefer to program with block
or directly with code syntax?

M: Mean SD: Standard Deviation

3.90 (0.99) 3.83 (0.98) 4.00 (1.15) 4.27 (0.90) 4.20 (1.10) 4.33 (0.82)

2.90 (0.74) 3.00 (0.89) 275 (0.50) 3.45 (0.93) 4.00 (1.00) 3.00 (0.63)

With respect to the question whether they would like to learn how to program
(see Table 5.2), before the training session the boys showed broad approval, while
the girls were undecided. Accordingly, the main effect gender yielded a significant
result, F'(1,18) = 8.89, p = 0.008. However, neither the main effect example vs. in-
struction nor the interaction effect reached the level of significance, F(1,18) = 1.38,
p=0.26, and F < 1, respectively. After the training session, the boys still indicated
that they would like to learn how to program significantly more than the girls,
F(1,18) = 7.46, p = 0.01. Concerning the main effect ezample vs. instruction and
the interaction effect, no significant results occurred, both F' < 1. Descriptively, the
boys and the girls indicated a higher level for liking to learn how to program before
the training session compared to after the training session. In order to determine
whether this decrease was significant, a regression analysis was performed. For the
girls, the regression slope from the after-session score to the pre-session score was
not significant, B =0.26, p = 0.59 (constant: B =1.67, p=0.30). For the boys, the
regression slope from the after-session score to the pre-session score was also not
significant, B = —0.28, p = 0.43 (constant: B =5.24, p =0.01). Thus, the decrease
with respect to liking to learn how to program was not significant, neither for the
girls, nor for the boys.

With respect to computer science being difficult to understand, on average,
the students indicated a medium level before the training session (see Table 5.2);
no significant main or interaction effects occurred, all F' < 1. After the training
session, the boys indicated a medium level of difficulty for computer science, while
the girls opted more in the direction of "difficult". However, the effect gender was
not significant, F/(1,18) =2.97, p = 0.10. Neither the effect example vs. instruction
nor the interaction effect were significant, both F' < 1.

After the introduction to programming with the programming environment, the
students were asked to perform two programming tasks. Due to technical problems,
the results of one group (two girls) in the Example Group were not saved, and thus,
cannot be included in the following analyses. On account of the small sample size

60 5.4. User Studies

Table 5.2: Subjective Data on Students’ Interest

Example Group Instruction Group
All Students Female Male All Students Female Male
Pre-Questionnaire M (SD) M (SD) M (SD) M (SD) M (SD) M (SD)

Do you think computer science
is difficult to understand?

Would you like to learn how

to program?
Post-Questionnaire

Do you think computer science
is difficult to understand?

Would you like to learn how

to program?

M: Mean SD: Standard Deviation

3.30 (0.67) 3.33 (0.52) 3.25 (0.95) 3.58 (0.90) 3.67 (0.82) 3.50 (1.04)

4.00 (0.94) 3.50 (0.84) 4.75 (0.50) 3.58 (1.44) 2.83 (0.75) 4.33 (1.63)

3.50 (0.97) 3.83 (0.98) 3.00 (0.82) 3.33 (1.07) 3.67 (1.03) 3.00 (1.09)

3.20 (1.32) 2.50 (1.05) 4.25 (0.96) 3.17 (1.59) 2.50 (1.52) 3.83 (1.47)

(n =10 dyads), we decided not to perform analyses of variance with respect to these
two tasks. Overall, the students performed 56% of task 1 and 49% of task 2 without
errors (see Table 5.3). Concerning both tasks, the students in the Instruction Group
performed better than the students in the Example Group. As the students worked
in dyads either girls with girls or boys with boys (not in mixed-gender groups), we
were able to analyze the percentages of tasks solved correctly dependent on gender.
In both tasks, the girls performed considerably better compared to the boys.

For both tasks, errors were categorized into "major" and "minor" errors. In
order to take into account the different number of students in the two experimental
groups, the number of errors was divided by the number of dyads: 2 girl dyads and
2 boy dyads in Example Group; 3 girl dyads and 3 boy dyads in Instruction Group
(see Table 5.3). Overall, in the first task, the number of major errors was higher
than the number of minor errors. The students in the Example Group made more
major errors than the students in the Instruction Group. Likewise, the students in
the Example Group made more minor errors compared to the Instruction Group. In
the second task, the number of major errors was higher than the number of minor
errors. The students in the Instruction Group made more major errors and less
minor errors than the students in the Example Group. Major errors occurred more
often than minor errors, and both types of major and minor errors occurred more
often among boys than among girls.

Across both tasks, the most common mistakes were setting different values to
the same variable (minor error), using loops in an incorrect place (major error); for
example, using a for loop to iterate through a list while the list is not defined yet,
and placing blocks outside of loops and conditional statements where they should
be placed within (major error).

5. Instructional Supports for Block-based Programming 61

Table 5.3: Students’ Performance

Example Group Instruction Group
All Students Female Male All Students Female Male
Tasks (per dyad) (per dyad) (per dyad) (per dyad) (per dyad) (per dyad)
Task 1 Major error numbers 8 (2.00) 4 (2.00) 4 (2.00) 11 (1.83) 4 (1.33) 7(2.33)
Minor error numbers 7 (1.75) 5 (2.50) 2 (1.00) 2 (0.33) 0 (0.00) 2 (0.67)
Rate of task completed 50, 50% 50% 60% 5% 14%
without errors
Task 2 Major error numbers 9 (2.25) 4 (2.00) 5 (2.50) 16 (2.67) 5 (1.67) 11 (3.67)
Minor error numbers 5 (1.25) 1 (0.50) 4 (2.00) 6 (1.00) 3 (1.00) 3 (1.00)
Rate of task completed 15% 59% 31% 51% 67% 36%

without errors

uestionnaire| the Environment

Introduction to| Pre- . .
Group 2 b
(11 stud ts)- Smart Home Questionnaire LWorkmg on 2 I_Dr_ogrammlng
studen Tasks Individually

(2 Experimental Conditions)

Introduction to
Groupl | Pre- I ducti Programming with Post
(11 students), 'Q ntroduction to 8 8 Questionnaire|
Smart Home

Figure 5.4: Procedure of the second experiment.

5.4.2 Experiment 2

Sample and Design. A total of 22 7t grade students of a German advanced
secondary school (6 girls, 16 boys, age: M =12.45, SD = 0.60) participated in the
study. The students were randomly assigned to two experimental groups, 3 girls
and 8 boys to each the Example Group and the Instruction Group, respectively.

Procedure of the Training Session. The duration of the training session for each
student was 3 hours, with a 15 minutes break. At the beginning of the session,
students were randomly assigned to one of two groups (11 students per group)
which were trained separately one after another. In the first training group, 6
students (3 girls and 3 boys) received a worked example for each task (Example
Group), and 5 students (3 girls and 2 boys) received an instructional procedure
for each task (Instruction Group). In the second training group, 6 students (all
boys) received an instructional procedure for each task (Instruction Group), and
5 students (all boys) received a worked example for each task (Example Group).
The first training group was asked to answer the questions of a pre-questionnaire,
while the other group was introduced to the smart home; afterwards, students in
the second training group were introduced to the smart home, while the first group
answered the pre-questionnaire (see Figure 5.4). All objects and their functionalities
in the smart home were explained for 20 minutes per group. Then, each student
was assigned to one computer. Each computer showed a real-time full vision of

62 5.4. User Studies

the smart home during each session using three IP cameras. All students were
introduced together to programming features, structures and principles as well as
how to use the programming environment for one hour. Before working on each
task, students were presented a program introducing the corresponding task. The
two programs respectively were (i) demonstrating the name of all available objects
in the smart home, and (ii) changing the status of a dimmable light for one time.
At the end of the second task, students went to the smart home to see the changes
in reality. All students were asked to complete a post-questionnaire at the end of
the session.

Acquisition of Programming Skills. It was assessed whether the students were
able to perform the tasks or not. The students’ performance on the programming
tasks were evaluated in the same way as in Experiment 1.

Confidence and Interest in Computer Science and Programming. The subjective
data regarding confidence and interest in computer science and programming was
collected and analyzed in the same way as in Experiment 1.

Results. At the beginning of the training session, the students were asked to indi-
cate whether they had programming experience. All but one (in the Example Group
in the first training group) had already programmed before, and on a scale from
1 to 5 they indicated a medium level of prior programming experience (M = 2.64
| SD =0.79). With respect to this score, the students in the Instruction Group
indicated a higher level of prior knowledge compared to the Example Group (In-
struction Group: M =2.82 | SD = 0.87, Example Group: M =2.45 | SD = 0.69).
A two-factorial analysis of variance with the factors example vs. instruction and
gender revealed no significant main effect for gender, F < 1; however, the main
effect example vs. instruction and the interaction effect just barely missed the level
of significance, for both effects F(1,18) = 3.35, p = 0.08, respectively. Thus, for the
following analyses, this score was included as a covariate.

With respect to finding programming easy with blocks, neither the main ef-
fect example vs. instruction nor the interaction effect reached the level of signifi-
cance, both F' <1 (see Table 5.4). However, the main effect gender was significant,
F(1,17) =4.75, p = 0.04. Boys indicated a higher level towards easiness of pro-
gramming with blocks compared to the girls. The effect of prior programming skills
was not significant, F' < 1. Likewise, students indicated that blocks are helpful in
order to understand programs; no significant main or interaction effect occurred,
main effect ezample vs. instruction: F < 1, main effect gender: F(1,17) = 2.46,
p = 0.14, interaction effect: F' < 1. The effect of prior programming skills was also
not significant, F' < 1.

5. Instructional Supports for Block-based Programming 63

Table 5.4: Subjective Data on the Ease of Use

Example Group Instruction Group

All Students Female Male All Students Female Male
Questions M (SD) M (SD) M (SD) M (SD) M (SD) M (SD)
Is it easy to program with blocks? 4.18 (1.08) 3.67 (1.15) 4.38 (1.06) 3.82 (0.75) 3.00 (0.00) 4.13 (0.64)
Do blocks help you to easily underst- 5 55 4.67 (0.58) 5.00 (0.00) 4.82 (0.40) 1.67 (0.58) 4.88 (0.35)

and programs?

Do you think that it is helpful to be
able to see directly in reality whether 4.73 (0.47) 4.33 (0.58) 4.88 (0.35) 4.73 (0.65) 5.00 (0.00) 4.63 (0.74)
the program works as desired?

Do you prefer to program with block
or directly with code syntax?

M: Mean SD: Standard Deviation

4.27 (1.10) 5.00 (0.00) 4.63 (0.74) 4.73 (0.47) 467 (0.58) 4.75 (0.46)

With respect to the helpfulness of seeing the impacts of their program in real-
world environment (see Table 5.4), neither the main effect gender nor the main
effect ezample vs. instruction reached the level of significance, both F' < 1. The
interaction effect and the effect of prior programming skills were also not significant,
F(1,17) =1.16, p=0.30 and F(1,17) =2.12, p = 0.16, respectively.

Concerning the preference for programming with blocks or with code, ”code”
was coded with 1 and ”blocks” were coded with 5. On average, the students in-
dicated an opinion strongly towards blocks (see Table 5.4). The students in the
Instruction Group indicated a higher preference for programming with blocks com-
pared to the Example Group. Girls opted more for blocks compared to the boys.
However, no significant main or interaction effects were obtained, main effect ezam-
ple vs. instruction: F <1, main effect gender: F(1,17) =1.33, p = 0.26, interaction
effect: F'(1,17) =1.06, p = 0.32. The effect of prior programming skills was also not
significant, F' < 1.

With respect to the question whether they would like to learn how to program
(see Table 5.5), no significant main or interaction effects occurred before the train-
ing session, all F' < 1. However, the effect of prior programming skills yielded a
significant result, F'(1,17) = 6.30, p = 0.02. After the training session, no signifi-
cant main or interaction effects were obtained, main effect example vs. instruction:
F < 1, main effect gender: F(1,17) =1.38, p = 0.26, interaction effect: F < 1. The
effect of prior programming skills was also not significant, F'(1,17) = 2.65, p = 0.12.
Descriptively, the boys indicated a slightly higher level for liking to learn how to
program before training session compared to after the training session. The girls
showed a strong opinion for liking to learn how to program before the training
session which remained the same after the training session.

With respect to computer science being difficult to understand, on average,
the students indicated a medium level before the training session (see Table 5.5);
no significant main or interaction effects occurred, all F' < 1. The effect of prior
programming skills was also not significant, F' < 1. After the training session, the

64 5.4. User Studies

Table 5.5: Subjective Data on Students’ Interest

Example Group Instruction Group
All Students Female Male All Students Female Male
Pre-Questionnaire M (SD) M (SD) M (SD) M (SD) M (SD) M (SD)

Do you think computer science
is difficult to understand?
Would you like to learn how

3.10 (0.94) 3.00 (1.00) 3.13 (0.99) 3.10 (0.94) 3.00 (1.00) 3.13 (0.99)

to program? 4.73 (0.47) 4.67 (0.58) 4.75 (0.46) 4.73 (0.65) 5.00 (0.00) 4.63 (0.74)
Post-Questionnaire
Do you think computer science gy 1) 3.00 (1.00) 2.88 (1.25) 3.00 (0.63) 2.67 (0.58) 3.13 (0.64)

is difficult to understand?

Would you like to learn how

to program?

M: Mean SD: Standard Deviation

4.45 (0.52) 4.67 (0.58) 4.37 (0.52) 4.73 (0.65) 5.00 (0.00) 4.63 (0.74)

students indicated a lower level of difficulty for computer science. Neither significant
main nor interaction effects occurred, all F' < 1. The effect of prior programming
skills was also not significant, F' < 1.

After the introduction to programming with the programming environment, the
students were asked to perform two programming tasks. Due to technical issues,
the results of two students (one girl in the Example Group and one boy in the
Instruction Group) were not saved, and thus, cannot be included in the following
analyses. Overall, the students performed 76% of task 1 and 58% of task 2 without
errors (see Table 5.6). Concerning both tasks, the students in the Example Group
performed better than the students in the Instruction Group. In task 1, the girls
performed slightly better compared to the boys. In contrast, the boys performed
slightly better in task 2 compared to the girls. Overall, in the first task, no significant
main or interaction effects occurred, all F' < 1. The effect of prior programming skills
was also not significant, F'(1,15) = 1.11, p=0.31. In the second task, no significant
main or interaction effects were obtained, main effect example vs. instruction:
F < 1, main effect gender: F(1,15) =1.10, p = 0.31, interaction effect: F < 1. The
effect of prior programming skills was also not significant, F(1,15) =3.11, p =0.10.

For both tasks, errors were categorized into "major" and "minor" errors. In order
to take into account the different number of boys and girls in the two experimental
groups, the number of errors was divided by the number of them in each group: 2
girls and 8 boys in Example Group; 3 girls and 7 boys in Instruction Group (see
Table 5.6). Overall, major errors occurred more often than minor errors. There were
no large differences between girls and boys, neither with respect to the number of
major errors, nor with respect to the number of minor errors. In the first task, the
students in the Instruction Group made more major errors than the students in the
Example Group. Neither the main effects gender and example vs. instruction nor
the interaction effect were significant, all ' < 1. The influence of prior programming
experience was also not significant, F(1,15) = 1.44, p = 0.25. No minor errors
occurred in task 1.

5. Instructional Supports for Block-based Programming 65

Table 5.6: Students’ Performance

Example Group Instruction Group
All Students Female Male All Students Female Male
Tasks (per student) (per student) (per student) (per student) (per student) (per student)
Task 1 Major error numbers 12 (1.20) 1 (0.50) 11 (1.38) 15 (1.50) 5 (1.67) 10 (1.43)
Minor error numbers 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
Rate of task completed 7o, 94% 74% 73% 1% 74%
without errors
Task 2 major error numbers 20 (2.00) 5 (2.50) 15 (1.87) 21 (2.10) 7(2.33) 14 (2.00)
Minor error numbers 15 (1.50) 3 (1.50) 12 (1.50) 19 (1.90) 5 (1.67) 14 (2.00)
Rate of task completed 60% 53% 61% 56% 54% 56%

without errors

In the second task, the number of major errors was slightly higher than the
number of minor errors (see Table 5.6). The students in the Instruction Group
made more major errors and more minor errors compared to the students in the
Example Group. With respect to major errors, no significant group differences were
obtained, main effect example vs. instruction and interaction effect: F' < 1, main
effect gender: F(1,15) = 1.70, p = 0.21. The influence of prior programming ex-
perience was also not significant, F(1,15) =2.55, p=0.13. With respect to minor
errors, no significant group differences were obtained, main effect example vs. in-
struction, main effect gender and interaction effect: all ' < 1. The influence of
prior programming experience was also not significant, F(1,15) = 1.97, p=0.18.

Across both tasks, the most common mistakes were typing errors (minor error)
and placing blocks outside of loops and conditional statements where they should
be placed within (major error).

5.5 Integration and Discussion

The results presented in the previous section are now discussed. In this respect,
we begin with our findings based on the research questions presented in Section 5.4
of this chapter; followed by implications and limitations.

5.56.1 Findings

Our findings are discussed in order to answer the research questions stated in Sec-
tion 5.4:

(1) When learning how to program with a visual block-based programming envi-
ronment embedded in a smart home, is it more effective to present learners worked
examples compared to instructional procedures? Does this effect depend on gender?

In general, both boys and girls showed a high tendency towards using visual
block-based programming environments. The results in both experiments showed
that girls preferred (descriptively) to program with blocks—compared to traditional

66 5.5. Integration and Discussion

code syntax—more than boys. In the second experiment, novice boys rated the
easiness of programming with blocks significantly higher than novice girls.

With respect to the two programming tasks for the inexperienced learners in
Experiment 1, the learners in the Instruction Group performed better than those in
the Example Group in both programming tasks. Matching this result, the learners
in the Instruction Group indicated that they found computer science slightly less
difficult at the end of the session compared to the students in the Example Group. In
Experiment 1, concerning both programming tasks, the girls performed better, but
still the boys indicated that they would like to learn how to program significantly
more than the girls, and the girls indicated (descriptively) higher values with respect
to finding computer science difficult. Thus, the self-perception of the girls does not
seem to match the objective achievement.

With respect to the number of errors in the two programming tasks for the
inexperienced students (first experiment), major errors occurred considerably more
often than minor errors, and boys made more major and minor errors than girls.
Thus, the better learning outcomes for girls are also reflected in the lower number of
errors. Furthermore, more major and less minor errors occurred in the Instruction
Group compared to Example Group.

Concerning the type of errors, on the one hand, the students in the Instruction
Group had more issues with the structure of the program, and it seemed that
they did not follow the instructions strictly. On the other hand, at least some
students in the Instruction Group were able to follow the instruction and solved the
programming issue with a minimum number of errors and a maximum performance.

With respect to the two programming tasks for the learners with some prior
programming experience (second experiment), the girls performed better in the first
task, and they indicated significantly higher willingness to learn how to program
compared to the boys. In the second task the boys performed slightly better than
the girls, and the learners in the Example Group performed slightly better than the
learners in the Instruction Group. Thus, the novice girls with some prior experience
in computer science and programming had a better self-perception which matches
their objective achievements. Furthermore, the learners in the Example Group
performed slightly better than the learners in the Instruction Group across the two
programming tasks.

With respect to the number of errors across the two programming tasks, in
Experiment 2, major errors occurred considerably more often than minor errors. In
the first task, boys made more major errors than girls, and in the second task, girls
made more major errors than boys. Thus, the learning outcome for girls in the first
and second task is reflected by the number of errors. Furthermore, more major and
minor errors occurred in the Instruction Group compared to the Example Group.
Concerning the type of errors, on the one hand, the learners in the Instruction

5. Instructional Supports for Block-based Programming 67

Group had more issues with the placing of blocks in their corresponding loops,
and it seems that they did not strictly follow the instruction which was given to
them. On the other hand, the performance and the number of errors fluctuated
among the students in the Instruction Group. One might argue that the students
who participated in Experiment 2 already attended a computer science course, and
thus, it is not clear why they still made errors related to the program structure.
However, they tried different ways to solve the programming issue. Thus, it seems
that they made more errors while trying to solve the issue.

(2) When learning how to program with a visual block-based programming en-
vironment embedded in a smart home, is interest in computer science and pro-
gramming fostered more when learners are presented worked examples compared to
instructional procedures? Does this effect depend on gender?

According to the analysis of our pre-questionnaire data, overall there is a sig-
nificant difference in learners’ willingness to learn programming by gender. This
result is important as it is observed only among learners without programming
experience and repeated in the post-questionnaire where the boys indicated that
they would like to learn programming significantly more than the girls. With re-
spect to the students’ programming experience, an interesting result shows that the
students’ willingness to learn programming dropped (descriptively) among inexpe-
rienced learners towards the end of the training session. In contrast, the level of
perceived difficulty for computer science decreased (descriptively) among inexperi-
enced learners towards the end of the training session. Thus, it can be concluded
that programming experience has an important influence on students’ view on learn-
ing programming and on the perceived difficulty of computer science. The type of
supplementary documents did not have a significant influence in this respect in both
experiments.

Even if the learners in Experiment 2 showed a positive attitude towards work-
ing with a visual programming environment, a one-day non-formal programming
training session may have a negative influence on both inexperienced boys and
girls. The influence of supplementary documents is not clear as they did not dif-
fer significantly in terms of the interest in computer science, student’s willingness
to learn programming, and the perceived difficulty for computer science. Further-
more, novices indicated an opinion strongly towards using blocks and smart homes
for programming purposes. The students found computer science easier to under-
stand after the training session. However, this short training session had also a
negative influence on their willingness to learn programming; thus, further studies
should assess effects in a long-term perspective with a focus on girls’ programming
skills and attitudes towards programming and computer science, more broadly.

68 5.5. Integration and Discussion

5.5.2 Implications

The future needs computer scientists and programmers from different gender. How-
ever, we are aware that getting young students interested in computer science and
programming, especially female learners, is difficult. The results of our training
sessions show that students are able to start building their own programs which
can be applied to the smart home. In this respect, visual programming environ-
ments can be helpful to simplify programming for young learners and to provide
computational support for them. Our main take-home message from these user
studies is that visual block-based programming within a smart environment is suit-
able in order to improve self-perception among novices to begin with programming
activities. Furthermore, another advantage of beginning to expose young learners
to programming activities is that learners can realize that computer science can
be presented in a way which is not necessarily difficult to understand. The results
obtained from our experience are promising, as inexperienced girls were able to
perform successfully two programming tasks with the provided programming envi-
ronment. This is supporting the results presented in [GSHT 18] that no significant
difference was observed in software-based project scores by gender. However, our
studies showed that inexperienced students’ interest in learning programming can
be decreased, especially among inexperienced female students. This result is in con-
trast to results from other programs targeting young female learners in Germany
like [ELP17] which showed that by providing opportunities for K-6 female students
to have positive experiences in STEM fields, we may have them in the future in
STEM professions. While it is not possible to trace our result back to specific fea-
tures of the training session, it might be possible that the short duration of only
one day of training had a negative influence. Thus, it remains an open point for
future iteration of this work to assess effects of the duration of training on learn-
ing outcome and attitudes towards computer science and programming, which we
studied in the following chapters of this thesis.

5.5.3 Limitations

We would like to emphasize that our results might be affected by the nature and
number of programming tasks as well as by the length of the training sessions.
Follow-up studies are required in order to understand how young learners, espe-
cially girls, react to non-formal programming training sessions running for several
days in different contexts within smart homes such as programming robots and
micro-controllers. There, we can find out the sustainability of attitudes and basic
programming skills that they learned in order to transfer them to other contexts.
Another question for future work is to ascertain when K-12 learners can move from

5. Instructional Supports for Block-based Programming 69

visual block-based programming environments to pure programming IDEs, using
traditional text-based code syntax. Although our sample included 44 7" and 8
grade students, this sample size is still too small to generalize the findings on a
large scale. Furthermore, studies in different countries and with learners of differ-
ent socio-economic status might as well shed light on effects of visual block-based
programming environments and real life-size smart homes on young learners’ knowl-
edge acquisition and interest in computer science and programming.

5.6 Conclusion

This chapter presents a training session developed for inexperienced and young
students, in order to support the acquisition of programming skills and in order to
support a positive view towards computer science and programming. The program-
ming environment is based on BEESM, which is a visual block-based programming
application within a real life-size smart home. Thus, the more abstract concept
of programming is presented within a real context and tightly connected to real
experiences for the learners.

The results show that students are able to build their own programs which can
be applied to the smart home. Furthermore, the results indicate the importance
of supporting and strengthening the learners’ motivation in learning programming
and their interest in computer science over a longer period.

Two prominent instructional interventions to support learners, namely worked
examples and instructional procedures, were compared. As the results did not
strongly support one of them, it can be concluded that both are appropriate in
order to help learners to acquire basic programming skills. Thus, we will not focus
on these instructional interventions in the following chapters of this thesis.

Future work should investigate how long-term training sessions, including more
diverse programming tasks affect the learners’ interest in computer science and
programming as well as acquisition of programming skills, especially among girls.
In addition, it should be investigated how to adapt non-formal training sessions to
individual prior knowledge and learning processes in order to support motivation
and knowledge acquisition in an optimal way. This study shows the potential of
using visual block-based programming environments in the context of smart homes
in order to foster young students’ programming skills, and to enable them to begin
with programming activities.

Chapter 6

Students’ Attitudes and Skills:
Impacts of Block-based
Programming Environments

In the previous chapter, a non-formal programming training session was presented
for young students in order to support learning of basic programming concepts and
to provide a positive view towards programming. One application of the designed
tool (BEESM which is introduced in Chapter 3) was evaluated in the context of
smart homes, using two supporting features, namely worked examples and instruc-
tional procedures. The primary goal of this thesis is enabling the students to begin
with programming activities, assessing their interest in computer science and their
acquisition of programming skills. Nevertheless, the results of previous chapter
show a greater focus on girls is needed in order to understand how their attitudes
and programming skills are influenced by different block-based programming envi-
ronments.

This chapter presents the results of two user studies with 24 female German
secondary school students in two non-formal programming training sessions. We
use and compare two block-based programming environments based on Scratch
and Google Blockly in fostering the students’ programming skills and changing
their attitudes towards programming. The two block-based programming editors
have been chosen as they are popular in the current educational use of block-based
programming. The contribution of this study is showing the different impacts of
Scratch and Google Blockly on young female students’ interest in programming and
the acquisition of programming skills in non-formal programming training sessions.

72 6.1. Introduction and Motivation

6.1 Introduction and Motivation

In recent years, the ability to program is increasingly becoming an important skill in
our high-tech world [WW17a, WH17]. Therefore, many introductory programming
environments are designed and developed in order to enable a wider range of au-
diences to start programming. Block-based programming is known as an approach
that is widely used in the design of introductory programming environments. Us-
ing block-based programming allows inexperienced and young learners to program
through visual block-shaped programming elements such as variables, loops, condi-
tional statements, logical operators, and functions. These elements can be dragged,
dropped, and snapped together like puzzle pieces [HH18, WH17]. Acknowledging
that young students can be motivated through programming activities, the visual
block-based approach is becoming significantly important for introducing basic pro-
gramming concepts and eventually lead to develop an interest in computer science
in general [JKGM18, MFM16, WH17].

The low number of women compared to the high number of men in higher com-
puter science education is a well-known problem in most western countries [Corl7,
Lag08,ELP17]. It was addressed that approximately 25% of females pursuing a ca-
reer in STEM in the EU [ELP17], and fewer than 1 in 5 computer science graduates
are female across 35 European countries [Corl7]. The lack of computer science in-
terest among girls or women has been shown to emerge partly from technological as-
pects of computer science [Lag05,Coh02]. In this regard, block-based programming
is introduced as an alternative to conventional text-based programming languages
that appears less technical and brings new dimensions such as creativity to the
understanding of programming among young students [WW15, WW17b, Rom07].

Since programming was taught to young students via block-based program-
ming, many block-based programming editors such as Scratch [RMMH™'09], Al-
ice [CDP00], Snap! [HM10], and Google Blockly [Fral4] have been used for intro-
duction to programming in the context of computer science education [MGB15,
WW17b, MCK17]. Much work has been done investigating what type of editor
is more beneficial for young students to have a better understanding of program-
ming [WW17b, WH17,AH16]. Despite the fact that these editors are widely adapted
in the design of introductory programming environments [WW17a, HH18], an open
question remains about how well such programming editors can enable young female
students to acquire basic programming skills and, at the same time, to improve their
attitudes towards programming. More specifically, one challenge that computer sci-
ence educators and researchers still face is the lack of studies investigating empirical
evidence in using block-based programming editors among young female students.
The empirical evidence is subject to describe under what circumstances a given
block-based programming editor is the better choice to foster interest and program-

6. Students’ Attitudes and Skills: ITmpacts of Block-based Programming

Environments 73
Scripts & %+ XX
%3 £ it Ackino 0
; ; blocks code
; e oA B> 1eds, 1)
Program fa pe
:—J;J Light object on Pin: @ with number of: €9 LEDs [l
po—) % :
2 6 23 Fast ED. 8
a; LED @ R: O G: @ B: €D g .,
R S R
= [eading |
— _,I_J evzdude: veritys
(o =] B e ol . verieioa
) hvrdude done. Thask you. output -
(wait i]
= E
S] —— :
I
tOOIbOX Bhm®ci |||erst @
a0
(a)
T
[o
- Tty
Vet
Functons Adafruit NeoPixel st - Adafruit_NeoPixel(l , D3 ,
Neopixel NEO_GRB + NEO_KHZ800
oD bt
void setup ()
strip_D3.begin():
3 ; d
(@) strip D3.show(); CO e
o)
o
(@) void loop ()
= for (int count = 0; count < 3; count++) {
— [T——— .. o.cc..]| ot PixelColoz (€, 255,0,0) ;
capilin

Sketch uses 240247 bytes (23%) of program storage space.
Maximum is 1044464 bytes.

Global variables use 32716 bytes (39%) of dynamic memory, 9
Jeaving 49204 bytes for local variables. Maximum is 81920 Heleviiz000s
bytes. }

Uploading. . .

ixelColor ((,0,0,0);
07

Figure 6.1: A view of the user interface for the (a) mBlock and (b) micro-controller
part of BEESM (MpB).

ming skills among the students in order to motivate them to join future computer
science education.

In this chapter, we compare two block-based programming environments (BBPEs)
that are based on two popular block-based programming editors, dominating the
current educational use of block-based programming [HH18]: MBlock [Mak19]
which is based on Scratch [RMMH™'09] (see Figure 6.1a) and micro-controller part
of BEESM (MpB) which is based on Google Blockly [Fral4] (see Figure 6.1b). We
claim that these two BBPEs have different influences with respect to the students’
attitudes towards programming and the acquisition of basic programming skills.
Thus, this chapter seeks to answer the following research question:

74 6.2. Related Work

How do two widely used block-based programming editors—Scratch and Google
Blockly—perform in order to foster young female students’ programming skills and
positive attitudes towards programming?

In order to examine the acceptance of introductory programming and the experi-
ence with the BBPEs among young female students, two user studies were conducted
with 24 beginners (10 to 14 years old) in total. The students used the BBPEs to
program a micro-controller (Arduino or WeMos boards) to control LED lights. An
empirical quantitative evaluation of the two BBPEs with respect to the young fe-
male students’ attitudes and perceptions of programming as well as their acquisition
of basic programming skills, was conducted. Collecting and analyzing data in this
study refined prior results that have shown the acceptance of programming among
young students [WW15, MCK17] where they were able to learn programming via
block-based programming.

The rest of this chapter is structured as follows. In Section 6.2, background
and related work are described. An overview of the block-based programming en-
vironments is presented in Section 6.3. Section 6.4 presents the method of study
design and strategy for collecting data. The evaluation and experimental results
are presented in Section 6.5, and they are discussed in Section 6.6. The chapter
closes with limitations and conclusions in Section 6.7.

6.2 Related Work

Over the past years, block-based programming has become a popular approach for
the design of introductory programming environments for young learners. Block-
based programming editors are designed to help young learners getting started
with programming with a low threshold [HH18, WW17b, ML18]. Using block-based
programming allows developers and educators to reduce the difficulty of initializing
basic programming concepts (e.g., programming structure and principles) among
young learners [MFM16, AH16]. Block-based programming was used in a variety
of studies (e.g., [MFM16,AH16,ML18, WH17, MGB15,PB15, RMH14]) to facilitate
the accessibility of learning programming, especially for inexperienced and young
students. Literature reports that block-based programming makes programming
pleasant, engaging, and motivating for young students, and thus, it can leverage
their interest in programming and computer science in general [WW17b, WW17a].
However, relatively little work has been done with a special focus on using block-
based programming to promote basic programming activities among young female
students in non-formal programming training sessions.

The literature also reports that in most western countries the women’s lack
of interest in programming and experience with computers are two of the reasons

6. Students’ Attitudes and Skills: ITmpacts of Block-based Programming
Environments 75

to have a low number of women in computer science [Lag08, Lag05]. In that re-
spect, using block-based programming is reasonable to introduce young female stu-
dents to programming and basic computational skills [MFM16, AH16]. In contrast
to the studies which are questioning the suitability of block-based programming
(e.g., [MSABA11,PEHO7]) in order to motivate young students and prepare them
for future learning programming opportunities, block-based programming is rec-
ommended as the first choice in introductory programming and computer science
courses [ML18, WH17]. Several studies show that the use of block-based program-
ming in formal [WW15, WW17b] and non-formal [GSHT18] educational context
has a positive influence on young students’ programming skills and interest. Stud-
ies also report successes of teaching programming concepts to young students and
foster their interest and motivation in learning programming using block-based pro-
gramming compared to text-based programming [WW17b, WW15 RMH14]. How-
ever, understanding the impacts of block-based programming in non-formal learning
environments remains an active area of research, with a focus on how best to uti-
lize BBPEs to foster young female students’ programming skills and leverage their
interest in programming and computer science.

With respect to teaching programming, two popular block-based programming
editors—namely Scratch and Google Blockly—have made significant contributions
to the current educational use of block-based programming [HH18, AH16,JKGM18].
Scratch which is known as one of the most successful editors has been used to
investigate the affordances of block-based programming in comparison with text-
based programming environments in order to teach basic programming concepts
to inexperienced high school students [WW17b, WW15]. As a result, using block-
based programming, the majority of students gained more programming knowl-
edge, had a better perception of programming, and they were more interested
in continuing programming in the future. Furthermore, according to [PHEC17,
MGBI15], researchers are using Google Blockly to encourage young students to
start programming robots [PHEC17] and micro-controllers [MGB15]. Paramasi-
vam et al. [PHEC17] took advantage of " CustomPrograms" which is based on Google
Blockly to design a BBPE in order to enable young students with disabilities (e.g.,
Attention Deficit Disorder, Asperger’s Syndrome, and other autism spectrum disor-
ders or learning disabilities) to program Clearpath Turtlebot. Likewise, Martinez et
al. [MGBL15] took advantage of " BlocklyDuino" to design a BBPE in order to enable
preschool and elementary school children to program and control the behavior of
Arduino boards. The results reported by these studies are encouraging, as they
were successful in establishing confidence among young students that programming
is interesting. Nevertheless, how to best support young female students by BBPEs
to develop basic programming skills and encourage them for being interested in
programming is still a growing research area, where the open question remains.

76 6.3. Overview of Block-based Programming Environments (BBPEs)

6.2.1 Summary

In contrast to a large number of previous studies, we seek to investigate the dif-
ferences between two widely used block-based programming editors: Scratch and
Google Blockly in terms of acquisition of basic programming skills and improving
young female students’ attitudes towards programming. Similarly, we aim to fos-
ter programming skills and interest among the students in order to increase their
understanding of the programming side of computer science and motivate them to
take part in future computer science education and digital society. To this end, we
set up two non-formal programming training sessions independent of the students’
regular curriculum and outside their schools. We aim to provide opportunities for
young female students in order to begin with basic programming activities and pro-
gram micro-controllers to control LED lights using two BBPEs which are designed
based on Scratch and Google Blockly.

6.3 Overview of Block-based Programming Environ-
ments (BBPEs)

In this section, two BBPEs were utilized to enable young female students to learn
and create programs for micro-controllers (Arduino or WeMos board) to control
LED lights. In that respect, mBlock (see Figure 6.1a) and the MpB (see Fig-
ure 6.1b) were used in two non-formal programming training sessions. MBlock was
used together with Arduino boards, while the MpB was used together with WeMos
boards. Different programming language features like variables, data types, control-
flow statements, functions, and operators are included as block-shaped elements in
both programming environments. Students author programs in these environments
by dragging-and-dropping blocks. In addition to the blocks representing program-
ming features, primitive Arduino behavior is wrapped in a set of predefined blocks.
Students create programs simply by snapping blocks together. The Arduino code
is generated from the blocks in the background (visible in another panel), ready for
execution. The possibility of zooming in and out on blocks is given, meaning that
the scale of blocks can change by the mouse scroll wheel or the zoom gesture on
a track-pad. This enables students to see the whole sequence of blocks if needed.
Here, an overview of the design of both programming environments is provided.

6.3.1 MBlock

MBlock is based on Scratch [RMMHT09], and it is primarily designed for inexperi-
enced learners and children to learn and write programs for micro-controllers and

6. Students’ Attitudes and Skills: ITmpacts of Block-based Programming
Environments 7

Program

Light object on Pin: (@ with number of: €) LEDs

(b)
Figure 6.2: A sample of execution blocks for the (a) mBlock, and (b) MpB.

robots. In micro-controller mode (Arduino mode), mBlock allows young students to
use a visual block-based interface that comprises a full vision of the blocks (Block
Panel), block categories (Toolbox), code syntax (Code Panel), and output of the
code (Output Panel). Students can track the compile and upload process of the
code into the micro-controller as well as the errors and Serial Monitor output in
the Output Panel. In addition to blocks representing the programming features,
other blocks are designed and developed to enable the students to work with LED
lights, which we discuss in the following. The starting block is labeled as program
that always needs to be the first block. The code syntax which is nested in other
blocks only appears in the Code Panel when they are connected to the program
block. Furthermore, the students can define how many LED lights are connected
to a pin via the 1light object block. It is labeled as 1ight object on Pin <X>
with number of <X> LEDs. The two <X> are input field numbers, and they are
filled in with default arguments to support the understanding of the block for the
students. The color of LED lights can change through the LED block that is labeled
as LED <X> R <X> G <X> B <X>. Similarly, the four <X> are input field numbers,
and they are filled in with default arguments. The LED number filled in with 0,
which always refers to the first LED, and the color is set to be white as default.
This block also includes the show LED command in order to colorize the LED light
(see Figure 6.2a).

6.3.2 The Micro-Controller Part of BEESM

The MpB is based on BEESM, which is built with the Blockly library [Fral4],
and it enables inexperienced and young learners to learn and create programs for
smart environments, micro-controllers, and mobile robots. The design and addi-
tional features of BEESM can be found in greater detail in Chapter 3 on this

78 6.3. Overview of Block-based Programming Environments (BBPEs)

thesis. For this study, we used the micro-controller part of BEESM and manip-
ulated its user interface to enable our target students to have a full vision of the
blocks (Block Panel), block categories (Toolbox), code syntax (Code Panel), and
output of the code (Output Panel). Similar to mBlock, the Output Panel shows
the compile and upload process of the code into the micro-controller as well as all
return values and errors for debugging purposes. To enable the students to work
with LED lights, we designed and developed other blocks in addition to blocks that
represent the programming features which are discussed as follows. The first block
which is needed in order to define how many LED lights are connected to a pin
is called setup neopixel. It is labeled as setup neopixel pin# <X> number of
pixel <X>. The color of LED lights can change through the set pixel color
block which is labeled as set pixel color from pin# <X> pixel number <X>
red <X> green <X> blue <X>. Similar to the mBlock, all <X> values are input
field numbers which are filled in with default arguments to support the understand-
ing of the block for the students. The pixel number filled in with 0, which always
refers to the first LED, and the color is set to be white as default. Furthermore,
in order to colorize the LED light, the show LED command is encapsulated into
another block, which is called show color, and it is labeled as show from pin#
<X>. The pin number is always filled in with 1, which refers to the first pin in
micro-controllers (see Figure 6.2b).

6.3.3 Main Differences of the Two BBPEs

For a usability analysis, see Holwerda and Hermans [HH18] for a discussion on
the differences between the two popular block-based programming editors: Scratch
and Blockly. This usability analysis aimed to identify generic aspects of their user
interface, and if they effectively fulfill their purpose to facilitate programming for
inexperienced young learners. In this respect, the authors mentioned that a larger
section for blocks could improve the visibility of finding and reading blocks in the
program. However, the Blockly-based tool which is used (ArduBlockly [PA19])
does not support zooming via mouse scroll wheel or the zoom gesture on a track-
pad, and it is only possible through the zooming buttons in Block Panel. It is also
addressed that dragging a block out of a sequence of blocks will move all other blocks
below with it in both editors. This will make manipulating of code structure more
difficult for the users. Furthermore, it is suggested to have a search option to enable
users looking and finding the right block in both Blockly and Scratch. However,
the authors discuss that additional editor features may clutter the interface (both
visually and cognitively) for adult novices and more specifically, for young learners
in school. The main remaining differences between our two BBPEs are (see also
Figure 6.1 and Figure 6.2) as follows:

6. Students’ Attitudes and Skills: ITmpacts of Block-based Programming
Environments 79

e The Block Panel: the MpB contains a smaller Block Panel and larger Code
Panel than mBlock.

e The Code Panel: the MpB enables students to modify the code that generates
from the blocks directly in the Code Panel while in mBlock they need to open
the code in Arduino IDE in order to modify it.

o The Toolbox: the Block Panel in the MpB contains the Toolbox, like a menu,
that displays different categories for blocks. A set of blocks within a category
is displayed temporary when students click on the category, while in mBlock,
blocks within a category are displayed lasting when they click on the category.

e How the blocks are shaped: the structure of blocks can change using a pop-up
panel (e.g., adding an else-if to an if block) in the MpB while we do not
have this feature in mBlock.

e How text codes are encapsulated in different blocks: for instance, students
need to use a program block that includes all libraries to start the program in
mBlock, while in the MpB, necessary libraries are included in the correspond-
ing blocks. Furthermore, in the MpB, a display block is needed in order to
colorize the LED light, while in mBlock, it is nested in an LED block.

6.4 Methodology

In order to understand the impact of the two block-based programming editors—
namely Scratch and Google Blockly—on young female students’ programming skills
and their attitudes and perceptions of programming, we conducted two user stud-
ies comparing mBlock to the MpB. In this respect, the students are welcomed to
different research centers to learn programming in non-formal programming train-
ing sessions that are outside their school environments and not part of the regular
school curriculum. This section begins with the study design and strategy for col-
lecting and analyzing data, then information about the participants is presented;
this section concludes with the procedure of the study.

6.4.1 Study Design and Data Collection Strategy

In this study, we use and compare two BBPEs in two non-formal programming
training sessions with two groups of young female students (i.e., aged between 10
and 14 years old). The training sessions were held in the premises of the University of
Bremen. All used equipment—computers, micro-controllers, and LED lights—were
provided by the German Research Center for Artificial Intelligence (DFKI), and the

80 6.4. Methodology

group of Cognitive Neuroinformatics (CNI) 1. The BBPEs enable students to focus
on programming structures and principles, the main computational concept which
was taught and exemplified through the BBPEs. In general, 24 students attended
the two programming training sessions (12 students each). In one training session,
12 students used mBlock (mBlock-group), and the MpB was used in the second
training session (beesm-group) by the other 12 students.

In both programming training sessions, a pre- and post-questionnaire was used
in order to collect data with respect to the young female students’ attitudes and
perceptions of programming, their prior programming experience, and their age
group. The acquisition of basic programming skills among the students was assessed,
using a pre- and a post-programming question. Pre- and Post-questionnaires, as
well as pre- and post-programming questions can be found in the appendix B; all
translated from German to English.

In the following, we describe the pre- and post-questionnaire as well as the pre-
and post-programming questions in both programming training sessions.

Pre-questionnaire. In each training session, students received a pre-questionnaire.
Four attitudinal questions were asked in order to find out the students’ attitudes
and perceptions of programming. These questions are based on the attitudinal
questions which were used in Weintrop and Wilensky [WW17b] and were adapted
for the needs of this study. Students’ confidence, enjoyment, perceived difficulty,
and interest in future programming learning opportunities were evaluated using
these questions. In that respect, students were asked to rate the questions "do you
think you are good at programming?", "do you think programming is fun?", "do you
think programming is difficult to understand?", and "would you like to learn how to
program?", using a 5-point Likert scale (with 1 "no, not at all', 5 "yes, very much",
and 0 "I do not know"). Furthermore, they were asked to determine their prior
programming experience with BBPEs using the "yes" or "no" question "have you
ever worked with a block-based programming environment?". Then, we asked them
to indicate whether they can program on a scale of 1 to 5, with 1 "no, not at all",
and 5 "yes, very good", using the question "can you program?".

Post-questionnaire. At the end of each training session, students took the post-
questionnaire. It was composed of the same attitudinal questions as the pre-
questionnaire, just with different words for two questions; "do you think program-
ming is difficult to understand?" changed to "do you think programming is difficult?",

'We make our training sessions materials available at https://github.com /projekt-
smile/Smartes-Stimmungslicht, and at https://github.com/projekt-smile/Smarter-Bilderrahmen

6. Students’ Attitudes and Skills: ITmpacts of Block-based Programming
Environments 81

and "would you like to learn how to program?" changed to "would you like to learn
better how to program?".

In addition to the attitudinal questions, five questions were asked in order to
measure the students’ experiences with the two BBPEs in terms of their ease-
of-use. The Students were required to rate the question "I think the programming
environment is easy to use.", using a 5-point Likert scale (with 1 "strongly disagree",
5 "strongly agree", and 0 "I do not know"). The question "do you find it easy to
program with blocks?" was also asked, using a 5-point Likert scale (with 1 "no, not
at all", 5 "yes, very much", and 0 "I do not know"). They were then asked to rate
(i) if they paid attention to the code that is generated matching the blocks, (ii) if
they think the function "edit code" is helpful to better understand their program,
and (iii) if they find the Output Panel helpful to understand their program. The
scores for these three questions were calculated, using a 5-point Likert scale (with
1"no", 5 "yes", and 0 "I do not know").

Two additional questions were added to the post-questionnaire for this study.
The students were asked, "do you think it’s helpful if you program a real object?
E.g. the LED light and the micro-controller', to be answered on a 5-point Likert
scale (with 1 "no, not at all", 5 "yes, very much", and 0 "I do not know"), and they
were asked about their preference of programming with blocks or direct with code
syntax, using a 5-point Likert scale (with 1 "direct with code", 5 "with blocks", and
0 "I do not know").

Programming questions. To validate the students’ answers with respect to their
prior programming experience and to analyze the acquisition of basic programming
skills, in both training sessions, students were asked to complete two program-
ming questions. In this respect, a pre-programming question right after the pre-
questionnaire, and a post-programming question right after the post-questionnaire
were completed. The programming concepts are extended by introducing these pro-
gramming questions to the students. In each pre- and post-programming question,
block-shaped elements were designed independent of the two BBPEs in order to
test how well the students acquire the basic programming skills which were taught
during the programming training sessions. For instance, see Figure 6.3a, and Fig-
ure 6.3b for the block-shaped elements in pre- and post-programming questions in
the beesm- and mBlock-group, respectively. However, in each training session, one
block (block number 13) was designed similar to what the students saw and used
in the corresponding programming environment. In this regard, students needed to
use a Program block in order to start the program in mBlock, and a display block
in order to colorize the LED light in the MpB (see Figure 6.3).

The pre-programming question in the beesm-group was to program the micro-
controller to make one LED light blink in red for 3 times with 2 seconds delay in

82

6.4. Methodology

connected to Pin with@ light(s)

7 setlight@ to RIE G@ B@

13

Display Pin

connected to Pin with light(s)

8 | set IightlIl to RIE' G@ BIE'

connected to Pin with@ light(s)

set Iight to R G@ B@

9 set Iight to R G B

10 @ delay seconds

set Iighx@ to R G@ B@

11 delay second

set light[1] to R[0] G[0] B[255]

12 delay second

connected to Pin with@ light(s)

(a)

7 setlight@ to R@ GIE' B@

13

Repeat the following

commands times
e

Repeat the following

commands|6|times
A

Repeat the following

commands |3 [times
—

Program

connected to Pin@ with light(s)

8 setlight[1] to R[0] G[o] B[0]

Repeat the following
14 ’
commands| 5 |times

9 | set Iight to R G B

10 delayseconds 15 Repeat the following
commands| 6 |times

3 | connected to Pin[6] with 0] light(s)
4 | setlight[1] to R[259 G[o] B[0]

5 setlight[0] to R[0] G[0] B [255] 11 | delay[1] second
6 setlight[1] to R[0] G[0] B[25S)

16 Repeat the following
commands| 3 [times

12 delay second

(b)

Figure 6.3: Block-shaped elements in (a) pre-programming question in the beesm-
group; (b) post-programming question in the mBlock-group; both translated from
German to English.

between when the light is connected to the micro-controller on Pin D3. The post-
programming question in the beesm-group was to program the micro-controller to
make one LED light blink in blue for 6 times with 1 second delay in between when
the light is connected to the micro-controller on Pin D3. In the mBlock-group, apart
from the pin number, which is Pin 6, similar pre- and post- programming questions
were asked from the students. In each programming question, students were asked
to select a set of blocks and identify the order of them in a correct logical way based
on the question. Students were also notified that some blocks might appear more
than once and some may not even be needed in their program.

The pre- and post-programming questions are slightly different from each other
in both training sessions. This counterbalance design of questions ensures that
students read the questions carefully and identify the order of blocks based on the
question. Furthermore, these questions represent realistic programming problems
for a micro-controller and an LED light, as colorizing the light is core to the function
and use of micro-controller together with one LED light.

6. Students’ Attitudes and Skills: ITmpacts of Block-based Programming
Environments 83

For each programming question, we collected the solution made by the student
using the blocks and evaluated them by the 10-point grading rubric (see Table 4.1).
Each solution was scored by two researchers in order to ensure consistent grading.

6.4.2 Participants

Two user studies were conducted with 24 young female students without any prior
programming experience (10 to 14 years old) from several German secondary schools.
The schools’ headmasters and teachers were contacted and informed about our pro-
gramming training sessions. Students and their parents were then announced by
their school to register for one training session, meaning the students who partic-
ipated in this study were self-selected and were interested in having programming
activities and learning programming.

A total of 12 female students participated in each programming training session.
In the mBlock-group, the average age of the participants was 12.67 years (SD =
0.78). In the beesm-group, the average age of the participants was 12.58 years (SD =
1.24). Although participants in the beesm-group are younger than participants in
the mBlock-group, an analysis of variance (ANOVA) showed no significant difference
between the groups, F' < 1.

With respect to the students’ prior programming experience, all students in-
dicated that they have no experience in working with any BBPEs. Furthermore,
when the students were required to rate whether they can program or not, only two
of them in the beesm-group answered, "no" and the rest of the students answered,
"no, not at all". Nevertheless, no significant difference was observed (F(1,22) = 2.20,
p=0.15). Thus, the level of prior experience was not included in our analyses.

6.4.3 Procedure

In both programming training sessions, we followed the same procedure (see Fig-
ure 6.4). The duration of each training session was 130 minutes. At the beginning
of both training sessions, each participant was assigned to one computer, one micro-
controller (Arduino or WeMos board) and one LED light in order to minimize the
distraction of participants. Each computer had an installed version of the corre-
sponding programming environment. In the mBlock-group, Arduino boards were
used together with mBlock, and in the beesm-group, WeMos boards were used
together with the MpB.

All participants were introduced to micro-controllers, LED lights, and they were
shown how to connect them for 10 minutes. Afterward, the participants received the
pre-questionnaire; they were asked to determine their prior programming experi-
ence and rate their perception of programming using the four attitudinal questions.

84 6.5. Experimental Evaluation

Introduction to micro-

controllers, LED lights Introduction to programming,
Assigning to one Pre-programming necessary blocks, and RGB Post-programming
computer, one question coloring model question

micro—contro!ler Pre- Explanation of Post-

and one LED light questionnaire the BBPE questionnaire *‘

| + —
15 1 10min g 5y 5 15min. 75 min. | 10min. | 5 |
min.. min..min.]] min.

Figure 6.4: Procedure of the programming training sessions.

Each participant was then asked to complete the pre-programming question, which
required them to select a set of blocks and write their numbers in a correct log-
ical way based on the question. The participants were then trained according to
the interface of each BBPE, different panels, buttons, and their functionalities for
15 minutes. Then, during the allocated time of 75 minutes, all participants were
introduced to general features of programming (e.g., variables and loops), neces-
sary blocks to control an LED light, and the RGB coloring model. One female
instructor led each training session. In this regard, in each training session, an oral
explanation was given, using prepared slides based on each BBPE. Additionally, we
used supplementary documents—including an explanation of necessary blocks and
RGB coloring model—in order to help our students to work with the corresponding
BBPE. This also allows us to minimize and control the instructor effects. Both
female instructors have a computer science background and experience in work-
ing with young students. During the allocated time, participants were enabled to
program their micro-controller, using the corresponding BBPE in three learning
steps. These steps respectively were (i) colorizing one LED light with either red,
green or blue color, (ii) colorizing one LED light with two arbitrary colors and write
down the correct value of red, green and blue colors, and (iii) letting one LED light
blink for a random number of times and seconds delay in between. The instructor
helped participants at their desk during the 75 minutes to ensure that the par-
ticipants had faced no major problems. At the end of each training session, the
post-questionnaire was given to the participants in order to ask them to rate their
perception of programming and to rate their experience with the corresponding
BBPEs. Each training session ended with the post-programming question.

6.5 Experimental Evaluation

The results section is divided into three parts. First, results from an analysis of the
programming part of the study are presented, reporting the students’ performance

6. Students’ Attitudes and Skills: ITmpacts of Block-based Programming
Environments 85

on each pre- and post-programming question. Second, results from an analysis
of the pre- and post-questionnaires are presented, looking at young female stu-
dents’ confidence, enjoyment, perceived difficulty, and interest in future program-
ming learning opportunities. Finally, we report on results from an analysis of the
post-questionnaire, focusing on students’ experience with respect to ease-of-use of
corresponding BBEPs. Additionally, in this part, students’ preferences of program-
ming with blocks or direct code, as well as their thought of being able to see the
impacts of their programs on a real object is reported.

The following analyses were computed as one-factor analysis of variance, with
the factor mBlock vs. MpB (ANOVA). Paired-samples t-test was also used to show
the differences within each group of students from the beginning towards the end of
each training session. T-test can be used to determine the differences among Means
of two independent groups, while ANOVA can be used to show the differences
between the variation of the Means and within each Mean (ANOVA is robust to
the assumption of normality). With this regard, ANOVA is valuable because it
examines the variation between and within the Means, while t-test just compares
the Means. Firstly, we used ANOVA between each group of students and test our
data for the normality and transformation. Then, within each group of students and
between each test time, we used paired-samples t-test in order to show the Mean
differences between their answers at the beginning and at the end of the training
sessions.

6.5.1 Acquisition of Programming Skills

To understand how students’ programming skills are influenced by the two BBPEs
(mBlock and the MpB) in our non-formal programming training sessions, students’
performance on the pre- and post-programming questions were analyzed.

With respect to the programming questions (see Figure 6.5), in the pre-program-
ming question the students in mBlock-group performed better than the students
in beesm-group, M =2.00 | SD = 0.00, and M = 1.33 | SD = 1.30, respectively.
However, no significant difference occurred, F'(1,22) =3.14, p =0.09. In the post-
programming question, an ANOVA showed that the students in mBlock-group
(M =6.83 | SD = 1.80) performed significantly better than the students in beesm-
group (M =3.17 | SD =1.59), F(1,22) =28.02, p < 0.001. Descriptively, although
the students in the mBlock-group indicated a higher level of performance before
working with the programming environment, they performed significantly better
after working with the programming environment compared to the students who
were in the beesm-group.

Focusing on the average performance in pre- and post-programming questions
shows that their performance increased in both mBlock-group and beesm-group.

86 6.5. Experimental Evaluation

=&—mBlock-group

*
6.83
/0

=l-beesm-group

z/ 317
—

1.33

Mean Students’ Performance

O B N W ~ U1 O N 0

Pre Post

Figure 6.5: Students’ performance on the pre- and post-programming questions.

A paired-samples t-test showed that in mBlock-group, students performed signifi-
cantly better in the post-programming question than in the pre-programming ques-
tion, #(12) =9.30, p < 0.001 | MD = 4.83. Similarly, in beesm-group, students’
performance significantly increased in the post-programming question compared to
pre-programming question, ¢(12) =4.75, p =0.001 | M D = 1.83.

6.5.2 Attitudes and Perceptions of Programming

To understand how students’ attitudes and perceptions of programming are affected
by the two BBPEs (mBlock and the MpB) in our non-formal training sessions, we
analyzed scores from the pre- and post-questionnaires. All answers were coded
with 1 "no, not at all", 5 "yes, very much", and 0 "I do not know". Please note that
students who responded "I do not know", are not included in our analysis.

Confidence. Concerning the students’ confidence (see Table 6.1), we assessed
their responses to the following question in the pre- and post-questionnaires: "do
you think you are good at programming?". Seven students in each beesm- and
mBlock-group responded, "I do not know" in the pre-questionnaire. In the post-
questionnaire, this number decreased to one in the beesm-group and four in the
mBlock-group. In the pre-questionnaire, students in the beesm-group indicated a
slightly higher level of confidence compared to the students in the mBlock-group.
However, in the post-questionnaire, students in the mBlock-group indicated (de-
scriptively) a higher level of confidence compared to students in the beesm-group.

In both mBlock- and beesm-group, the level of confidence in programming is
higher for students in the pre-questionnaire compared to the post-questionnaire.

6. Students’ Attitudes and Skills: ITmpacts of Block-based Programming
Environments 87

Table 6.1: Students’ Attitudes and Perceptions of Programming

Pre- Post-

questionnaire questionnaire
Questions M (SD) ANOVA Results M (SD) ANOVA Results
Confidence in mBlock-group 2.40 (0.55) 3.63 (0.74) _ _
Confidence in beesm-group 2.60 (1.52) F<l 2.73 (1.27) F(1,17) = 3.16,p = 0.09
Enjoyment in mBlock-group 4.64 (0.50) B B 4.58 (0.51) . B
Enjoyment in beesm-group ~ 4.18 (0.98) F(1,20) = 1.87, p = 0.19 4.17 (1.11) F(1,22) =1.38,p = 025
Difficulty in mBlock-group ~ 3.30 (0.67) - _ _ 2.33 (1.15) - B _
Difficulty in beesm-group 3.91 (0.83) F(1,19) = 3.54, p = 0.08 3.08 (1.08) F(1,22) = 2.70, p = 0.12
Interest in mBlock-group 4.75 (0.44) e 4.33 (0.49) o Es Ao
Interest in beesm-group 4.92 (0.29) F(1,22) =116, p = 029 4.64 (0.67) F(1,21) =154, p = 023

M: Mean SD: Standard Deviation F: F-distribution p: p-value

With respect to the students who responded, "I do not know", we focus on the
changes in their level of confidence between the pre- and post-questionnaire. In the
beesm-group, six out of seven students had an idea in the post-questionnaire, and
in general, they indicated a medium level of confidence, M =3.33 | SD =1.21. In
the mBlock-group, four out of seven students had an idea in the post questionnaire,
and in general, they indicated a higher level of confidence, M =4.00 | SD = 0.82.
However, no significant difference was observed, using an ANOVA (F < 1).

Enjoyment. With respect to the enjoyment of programming (see Table 6.1), the
responses to the following question in the pre- and post-questionnaires were assessed:
"do you think programming is fun?". Only one student in each of the beesm- and
mBlock-group responded "I do not know" in the pre-questionnaire. In both pre-
and post-questionnaire, the level of enjoyment of programming is slightly higher for
the students in the mBlock-group compared to the students in the beesm-group.

Perceived difficulty of programming. The third attitudinal question is whether
the students think programming is difficult or not (see Table 6.1). To calculate
a measure of the difficulty of programming, students responded to the following
question: "do you think programming is difficult to understand?" (or "do you think
programming is difficult?" in the post-questionnaire). Only one student in the
beesm-group and two students in the mBlock-group responded "I do not know"
in the pre-questionnaire. Descriptively, in the pre-questionnaire, the programming
difficulty level is higher for students in both mBlock-group and beesm-group. Fur-
thermore, in both pre- and post-questionnaire, the programming difficulty level is
higher among students in the beesm-group. We focus on the score of difficulty of
programming within the beesm- and mBlock-group, among the students who an-
swered the question in both pre- and post-questionnaires. A paired-samples t-test
showed that in the mBlock-group, students found programming significantly less

88 6.5. Experimental Evaluation

difficult in post-questionnaire in comparison with pre-questionnaire, ¢(9) = —2.70,
p=0.024, MD = —1.10. However, no significant results occurred in beesm-group,
t(10) = —1.70, p=10.12, M D = —0.82.

Interest. The last attitudinal question is whether the students’ interest in learning
programming in the future is affected or not (see Table 6.1). In order to calculate a
measure of it, students responded to the following question: "would you like to learn
how to program?" (or "would you like to learn better how to program?" in the post-
questionnaire). Only one student in the beesm-group responded, "I do not know" in
the post-questionnaire. Descriptively, in both pre- and post-questionnaire, students
in the beesm-group indicated a higher level of interest compared to students in
the mBlock-group. Furthermore, in both mBlock-group and beesm-group, students
showed a higher level of interest in the pre-questionnaire compared to the post-
questionnaire. Focusing on students’ interest within the beesm- and mBlock-group,
a paired-samples t-test showed that the students’ willingness to learn programming
dropped in mBlock-group towards the end of the training session; accordingly, it was
just barely missed the level of significance, ¢(10) = —2.16, p =0.054, M D = —0.42.
However, the test showed that the decrease in students’ interest in the beesm-group
was not significant towards the end of the training session.

6.5.3 Programming Experience

The post-questionnaire included five questions, asking students to reflect on how
they perceive the ease-of-use of corresponding BBPEs (see Table 6.2). Furthermore,
students were required to answer another question, concerning their preference for
programming with blocks or with code. Finally, they were asked to indicate whether
being able to see the impacts of their program on a real object is helpful or not.
Please note that students who responded "I do not know", are not included in our
analysis.

With respect to the ease-of-use of the two BBPEs, on average, the students
showed broad approval to mBlock, while the students were undecided about the
MpB. Accordingly, an ANOVA yielded a significant result (see Table 6.2). Only
one student in the beesm-group responded, "I do not know" to this question. With
respect to finding programming easy with blocks, on average, the students found
programming with blocks significantly easier in mBlock compared to the students
in the MpB (see Table 6.2). Similarly, one student in the beesm-group responded,
"I do not know" to this question. Furthermore, the students were undecided and
indicated a low level (especially in mBlock-group) of paying attention to the code
which was generated matching the blocks. Six students in the mBlock-group and
nine students in the beesm-group responded to this question. The students found

6. Students’ Attitudes and Skills: ITmpacts of Block-based Programming
Environments 89

Table 6.2: Students’ Experiences of Using Block-based Programming Environments

mBlock-group beesm-group

Questions M (SD) M (SD) ANOVA Results
I think the programming environment is easy o

to use. 458 (0.67) 3.82 (0.98) 5*02_1)0*03‘;85’
(1 = "strongly disagree", 5 = "strongly agree") p=7

Do you find it easy to program with blocks? - F(1,21) = 6.93,
(1 = "no, not at all", 5 = "yes, very much") 4.00 (0.74) 3.18 (0.75) **p = 0.016
Did you pay attention to the code that is

generated matching the blocks? 2.83 (2.04) 3.22 (1.56) F <1

(1 ="no",5="yes")

Do you think that the function "edit code"

is helpful to better understand your 3.43 (0.79) 3.75 (1.26) F <1
program? (1 = "no", 5 = "yes")

Do you find the error messages in the Output
Panel helpful? (1 = "no", 5 = "yes")

M: Mean SD: Standard Deviation F: F-distribution p: p-value **p < 0.05: Significant Difference

3.33 (0.52) 3.40 (0.89) F <1

that being able to use the "edit code" function and to see error messages in the
Output Panel is helpful to understand their own program (see Table 6.2). However,
only 11 students answered to each of these two questions. Seven students in the
mBlock-group and four students in the beesm-group responded to the question with
respect to the helpfulness of being able to use the "edit code" function. Six students
in the mBlock-group and five students in the beesm-group responded to the question
regarding the helpfulness of being able to see error messages in the Output Panel.
Although the students in the beesm-group rated all the three questions higher than
the students in the mBlock-group, no significant results occurred, all F' < 1.

Concerning the preference for programming with blocks or directly with code,
on average, the majority of students indicated an opinion strongly towards pro-
gramming with blocks. The students in mBlock-group indicated a slightly higher
preference toward blocks (M =4.92 | SD = 0.29) compared to the students in beesm-
group (M =4.44 | SD = 0.88). No significant difference were obtained, using an
ANOVA (F(1,19) = 3.05, p = 0.10). Only three students in the beesm-group re-
sponded, "I do not know" to this question and they are excluded from our analysis.

With respect to the question of whether or not students think it is helpful to
program a real object (e.g., LED light and micro-controller), they found that being
able to see the impacts of their program on a real object is helpful. In this regard,
students in the beesm-group indicated the higher level (M = 4.55 | SD = 0.52)
compared to students in the mBlock-group (M =3.73 | SD =1.27). However, an
ANOVA shows that it just barely missed the level of significance, F'(1,20) = 3,89,
p=0.062. Only two students (one student in each group) responded "I do not know"
to this question, and thus, they are excluded from our analysis.

90 6.6. Integration and Discussion

6.6 Integration and Discussion

We now discuss the results which were presented in the previous section. In this
respect, we begin with our findings based on the research question presented in
Section 6.1. Then, we review the limitations and discuss future work of the study
that should be taken into account.

6.6.1 Findings

One of the main contributions of this study is showing the potential of using two
popular block-based programming editors (Scratch and Google Blockly) in non-
formal programming training sessions in order to support the acquisition of basic
programming skills among young female students. In this respect, one hypothesis
we had in this study was that different BBPEs (mBlock and the MpB) have different
influence on young female students’ performance who have no prior programming
experience. Results show that in both mBlock-group and beesm-group, the per-
formance of students was significantly higher in the post-programming question
compared with the pre-programming question. This supports the results from prior
research that showed by designing introductory programming environments based
on block-based programming, we could help young students to have better perfor-
mance [WW15,MCK17]. Results also show that in both pre- and post-programming
questions, the performance of students who worked with mBlock (which is based
on Scratch) was higher than those who used the MpB (which is based on Google
Blockly). Having a closer look into the performance on post-programming question
reveals that in mBlock-group, students highly tended to solve the programming
question and their performance highly improved in comparison to the students in
beesm-group. This finding supports the idea that designing introductory program-
ming environments based on Scratch could help young female students to gain basic
programming skills, in particular, when they are indeed new to programming. How-
ever, this result could also be caused by the differences in students’ socio-economic
status and their background in each training session.

This study also reports on young female students’ attitudes and perceptions of
programming, where the findings were less clear. The results show that before and
after the training session, students who used mBlock indicated (descriptively) a
higher score for the enjoyment of programming. Likewise, students in the mBlock-
group showed (descriptively) a higher level of confidence in programming after the
training session, while it was slightly lower before the training session compared
with the students in the beesm-group. Furthermore, students in the beesm-group
indicated (descriptively) a higher level of interest in taking part in the future pro-
gramming opportunities before and after the training session compared with the

6. Students’ Attitudes and Skills: ITmpacts of Block-based Programming
Environments 91

students in mBlock-group. In the mBlock-group, the students’ level of interest was
decreased after the training session compared with before the training session. With
respect to the difficulty of programming, our findings show that the difficulty level of
programming was higher (descriptively) before the training session compared with
after the training session in beesm-group. In mBlock-group, the difficulty level of
programming was significantly dropped after the training sessions compared with
before the training session. Our findings also show that in the beesm-group, stu-
dents found (descriptively) programming harder both before and after the training
session.

With respect to the ease-of-use of the two BBPESs, the results showed that the
students in mBlock-group found blocks significantly easier to program compared
with the students in beesm-group. Furthermore, when asked to indicate how easy
was the use of corresponding BBPEs, the students in mBlock-group found mBlock
significantly easier to use in comparison to the students in beesm-group who used
the MpB. This result is in line with results from [HH18] that students found pro-
gramming easier with Scratch-based environments, as the visibility of finding and
reading blocks is higher than Blockly-based environments. In contrast, when the
students asked specific questions about the demonstration of error messages in the
Output Panel, usage of "edit code" function, and paying attention to the generated
code syntax matching the blocks, students in beesm-group rated them (descrip-
tively) higher than the students in mBlock-group. This result led us to change
the BEESM initial user interface in the next two programming workshops (Chap-
ter 7 and Chapter 8). Thus, the Block Panel was extended in order to improve the
visibility of finding and reading blocks in the program for the students.

Concerning the subjective questionnaire data, in line with findings from [WW17b],
the students in both beesm- and mBlock-group largely prefer working with blocks
compared to programming code syntax. Additionally, they found it helpful to code
and see the impacts of their program in a real object. This is in line with findings
from [Bei05, MCK17] that showed real objects could stimulate students’ interest,
and motivate them to begin with programming activities.

All in all, the findings show that young female students who used a BBPE based
on Scratch (in this case, mBlock) performed better on programming questions and
showed a higher level of ease-of-use in programming with blocks in mBlock. This
suggests a Scratch-based design for a productive environment for supporting female
students who have no prior programming experience to gain basic programming
and computational skills. At the same time, the findings that the students using
a BBPE based on Google Blockly (in this case, the MpB) show a higher level of
interest in taking future programming opportunities. This indicates a gap between
what the students view themselves in programming with different types of BBPEs
and the future programming experience with these environments.

92 6.6. Integration and Discussion

6.6.2 Limitations

While we tried to make the conditions across the two non-formal programming
training sessions as similar as possible, there were some differences which can be
introduced as limitations of this study. For instance, we used mBlock together
with Arduino boards, but due to technical reasons, the MpB is used together with
WeMos boards. Thus, it introduces a difference that may influence the findings
of this study. However, there was no evidence that this difference has contributed
to significantly differing our target students’ experiences and change their level of
acceptance for programming.

Another limitation of this study is related to the number of programming tasks
and period of each training session. For example, findings are limited to the diver-
sity of the programming tasks that young female students were required to perform
to a larger scale of programming activities and computational skills. Using the
micro-controllers and LED lights that are used in this study, students can perform
larger and more complicated tasks. For example, they can use more LED lights
and sensors to create colorful and animated LED picture frames. While we intend
on introducing young female students who have no prior programming experience
to begin with programming activities in a non-formal learning environment, this
is relatively narrow functionality for a micro-controller, and thus, for the program-
ming tasks. In this regard, there is still work to be done to verify the outcome of
this study when the programming workshop is longer (including more number of
training sessions) and when programming tasks become more diverse and compli-
cated among the students with and without prior programming experience. Thus,
in the following chapters of this thesis (Chapter 7 and Chapter 8), we present the
results of longer non-formal programming workshops including more diverse pro-
gramming tasks. To this end, the trajectories of attitudes towards programming
and performance is investigated during these workshops among both experienced
and inexperienced young learners, especially female students. Furthermore, we ex-
plored how Scratch and Google Blockly perform to foster young female students’
programming skills and leverage their interest in programming. However, there is
still an open question we would like to explore in the future: what are the rea-
sons behind the students’ preferences for using Scratch-based environments, and
for using Blockly-based environments.

The final limitation of this study relates to the students’ prior programming
experience, socio-economic status, age, and the number of participants. We would
like to emphasize that our results might be affected by a lack of geographic and
socio-economic diversity of students. Furthermore, our sample includes 24 female
students without any prior programming experience (age between 10 to 14), which
is a relatively small sample size to generalize our findings to a larger scale. Thus, we

6. Students’ Attitudes and Skills: ITmpacts of Block-based Programming
Environments 93

look at these as a major concern, and we seek to address them in future iterations
of this work. A second similar limitation is related to the control group. This is
another avenue of future work to find out the impacts of visual block-based pro-
gramming environments on students’ attitudes and programming skills when young
male students are targeted for such non-formal programming training sessions.

6.7 Conclusion

As the number of women in higher computer science education and society is lower
than the number of men in most western countries, using block-based programming
is an active area of research to make the programming side of computer science
more interesting and engaging for girls. In this chapter, we presented two non-
formal programming training sessions and a comparative study of how different
types of BBPEs impact young female students’ attitudes towards programming and
their programming performance. In that respect, we explored how young female
students use mBlock and a MpB which are based on Scratch and Google Blockly,
respectively. Our findings indicate how young female students’ performance, atti-
tudes, and perceptions of programming can be affected by different types of BBPEs.
This finding supports the idea of using Scratch in introductory programming envi-
ronments in order to motivate young female students, in particular, those without
prior programming experience to solve programming problems and gain basic pro-
gramming skills. Furthermore, it shows that those students who used the MpB,
which is based on Google Blockly indicated greater interest in future programming
learning opportunities. Thus, it supports the claim that different BBPEs have a
direct impact on young female students’ performance and their attitudes towards
programming. By studying under what condition, what type of BBPE has a bet-
ter influence on young female students, we enhance our understanding to design
introductory programming environments for them.

Given the decreasing presence of women in computer science society in most
western countries, findings from this study are essential to ensure we are providing
exposure to programming activities, preparing female students for future learning
programming opportunities and motivating them to join the computer science so-
ciety in the future. While many questions still remain on how to best introduce
programming to female students, the findings of this study can help to inform other
researchers and educators about the relationship between BBPEs, programming ac-
tivities in non-formal learning environments, and young female students’ experience
and acceptance of programming.

Chapter 7

Students’ Attitudes and Skills:
Impacts of Smart Objects’
Construction

In computer programming education, learning to program tangible objects has be-
come a common way to introduce programming to young students. In an effort to
address this intervention, scientific research has been done on the effectiveness of
using tangible hardware platforms such as robots and wearable products to teach
basic programming concepts to the students. However, there is a lack of research
on how young students’ attitudes and programming skills are influenced over time,
when they learn to program tangible objects and make them smart.

In this chapter, we investigate the impacts of using a tangible everyday object
and making it smart on young female students’ attitudes towards programming
and the acquisition of basic programming skills. During a 4-day non-formal pro-
gramming workshop with 12 6t* grade female students, they were introduced to
basic programming concepts, and learned how to apply them to turn a houseplant
into a smart object. In a pilot study, we took advantage of the introduced block-
based programming environment in Chapter 3 (BEESM) and analyzed the students’
trajectories of attitudes towards programming and performance. In this respect, re-
peated open-ended qualitative questionnaires and programming questions were used
throughout the workshop. The findings of this study contribute to our understand-
ing of how making tangible everyday objects smart can support the development
of a positive attitude and keep up of interest throughout a programming workshop
among girls.

96 7.1. Introduction and Motivation

7.1 Introduction and Motivation

The number of formal and non-formal computer programming courses and work-
shops that aim to introduce programming and computer science to young students
is growing. In computer programming education, the application of computing
in reality, tends to be shown to students. In particular, allowing the students to
learn the general purpose of programming and write code for tangible hardware
platforms such as robots [MCK17, PHEC17, MGB15], smart homes [KD18], and
wearable products [QBBD13, KDS09, KLS*14] were considered in previous work.
Furthermore, visual block-based programming environments are widely used in the
design of introductory programming courses [WW17b, KLST14, MGB15]. These
environments are beneficial for learning to code and starting with programming
activities, especially for young students [Weil9].

Despite the growing use of tangible objects and block-based programming, rel-
atively little empirical study has been done to understand the impacts of smart
objects together with block-based programming on young students’ interest in pro-
gramming and computer science in general. More specifically, it is not clear how
teaching basic programming concepts to young students, and letting them imple-
ment these concepts in a tangible object and make it smart can improve their
attitudes towards programming over time. Previous research addressed that in-
troducing young students to new technologies supports learning programming and
stimulates interest in computer science [MGB15, PHEC17, MCK17]. Although re-
search on teaching programming to young students is vast (e.g., [MCK17, Kafl6,
Cof17,Kall5,KM16]), less is known about the students’ trajectories of performance
and attitudes towards programming in the context of tangible smart objects. In
addition, as it is mentioned in previous chapter, most western countries, such as
European countries have significant problems with the number of female graduates
in the field of computer science. Thus, research is needed to offer insights into the
impacts of embedding the construction of smart objects in programming courses,
and into female attitudes towards programming and computer science more broadly.
This chapter seeks to answer the following question in order to address the gap in
previous research:

How do young female students’ programming skills and attitudes towards pro-
gramming change over time in the context of constructing smart everyday objects?

To answer this question, we present the result of a 4-day non-formal program-
ming workshop with 12 6! grade German female students (between 11 and 12 years
old). We investigate the influence of using tangible everyday objects and making
them smart on the development of a positive attitude towards programming among
the students and on the improvement of their programming performance in a pi-

7. Students’ Attitudes and Skills: Impacts of Smart Objects’ Construction 97

Figure 7.1: An example of one houseplant, at the beginning, and at the end of the
workshop.

lot study. A block-based programming environment (BEESM) was employed to
reduce the complexity of programming and facilitate it for the students to learn
basic programming concepts and author programs. A houseplant was provided as
an appropriate stimulus that enables the students to connect a micro-controller,
different sensors (e.g., light, temperature, humidity, sound) and actuators (e.g.,
LED light, water-pump, mp3-player, RGB LCD) to it. The students can program
the sensors and actuators in a way that they react to each other, and construct a
smart houseplant. For instance, students can use a micro-controller (in this case,
Arduino) and connect a humidity sensor, a relay, and a water-pump to it. Then, the
students can program the micro-controller using block-based programming in order
to enable the water-pump to pump water into the houseplant as soon as the sensor
measures the humidity of the flower soil is below a certain degree (see Figure 7.1).
It is a special feature of this study that we examine the path of students’ attitudes
towards programming and their performance based on repeated open-ended qual-
itative questionnaires and programming questions at the beginning, in the middle
and at the end of the workshop.

The chapter begins with a review of previous work and how they employ tangible
objects and hardware platforms to teach basic programming concepts together with
block-based programming environments (Section 7.2). Then, we describe the study
design in Section 7.3. We continue with our findings in Section 7.4, followed by a
discussion of the implications of these findings in Section 7.5. The chapter closes
with limitations and conclusions 7.6.

7.2 Related Work

The importance of learning computer programming has been shown, and it has
been established as an area of research in computer science discipline [WW17b,

98 7.2. Related Work

WH17, MCK17]. Young students become familiar with the use of technologies
(e.g., smartphones, tablets, computers, etc.), while they do not have programming
skills [MCK17,Kaf16]. In the CSE community, a large number of studies in the field
of computing education highlighted the need to engage young students to learn ba-
sic programming concepts [MGB15, WW17b, WW15, MCK17]. In particular, they
alm to motivate young female students learning the basics of computer program-
ming and to enable them writing computer code [SB16,MCK17]. However, there is
limited consideration of how to improve young female students’ attitudes and com-
puter programming performance when it is channeled through appropriate stimuli,
such as construction of a smart object.

Tangible objects and block-based programming have been used [B* 15, RMB 98],
and their benefits in learning programming have been shown, especially for young
students [MCK17, SKL16, MI18]. Findings show that their technological confi-
dence benefited from block-based programming environments and tangibles, such as
robotic computing platforms [MCK17,MGB15] and computational textiles [KLSt14,
QBBD13]. Merkouris et al. [MCK17] explored the benefits of learning to author
programs for tangible hardware platforms such as robots and wearable computers in
comparison to programming for desktop computers among young students. For this
purpose, the authors used similar block-based programming environments (all based
on Scratch [MRR'10]) in order to measure attitudes and programming performance
in formal classrooms. It was shown that students’ performance in learning basic
programming concepts were not affected by the tangibles, although they showed
a higher intention of learning programming when they program the robots com-
pared with the desktop computers. Concerning gender, the girls performed better
in the programming tests than the boys, although they felt less confident than boys.
Nevertheless, no information was provided on how the students’ performance and
attitudes changed over time from the beginning of the course towards the end of it.

The literature also reports that young learners learn better when they are en-
gaged in designing and constructing visible objects such as interactive applications,
animations, robots, and computational textiles [MCK17]. With respect to gender,
according to [MCK17, BECC08,KDS09] computational textiles activities make use
of soft everyday materials (e.g., design bag with colors and LED lights), which are
meaningful and give forms of expression to young students who are not primar-
ily interested in technology. In addition, finding shows that girls underestimate
their computer abilities and they struggle with assembling and programming mate-
rials (e.g., motors and gears) in robotic courses. Therefore, they enter programming
courses with less confidence than boys [NHCW04,GC02, GBBB19]. However, Nour-
bakhsh et al. [NHCWO04] found that girls’ confidence increased more than boys by
the end of the robotic courses. Furthermore, Kelleher and Pausch [KP05] show that
performance and interest in programming highly depend on time spent in program-

7. Students’ Attitudes and Skills: Impacts of Smart Objects’ Construction 99

ming activities and prior programming experiences but not on gender. Nevertheless,
research has not yet been conducted on the effectiveness of constructing smart ev-
eryday objects together with block-based programming on young female students’
programming skills and attitudes towards programming.

7.2.1 Summary

Most interventions to teach computer programming with block-based programming
environments and tangible objects achieved high success to establish confidence
and engagement among young students. However, it is still required to understand
more how the use of these objects during a programming course together with
block-based programming fosters programming skills, as well as promotes positive
attitudes towards programming and computer science in general. In this study,
we investigate the impacts of programming a houseplant as a tangible object and
making it smart on female students’ attitudes, performance, and level of interest in
programming over time.

7.3 Methodology

The goal of this study was to experimentally investigate the impacts of tangible
objects and block-based programming environments on young female students’ pro-
gramming skills and attitudes towards programming. We conducted a pilot study
with 12 6" grade female students (11-12 years old) in a 4-day non-formal pro-
gramming workshop. BEESM as a visual block-based programming environment,
and a houseplant as the tangible everyday object were used. Three dimensions of
students’ attitudes were considered: confidence, enjoyment, and interest in future
programming learning opportunities [WW17b]. The students’ perception of us-
ing block-based programming and constructing a smart object was measured with
three questionnaires. Furthermore, the performance of the students was assessed
with three programming questions. The questionnaires and programming questions
were given to students: (i) at the beginning of the workshop (pre questions), (ii)
at the end of the second day when the students had learned programming concepts
(intermediate questions), and (iii) at the end of the workshop, when the students
had implemented their newly learned programming skills in the houseplant and
made it smart (post questions).

7.3.1 Study Design and Data Collection Strategy

In a pilot study, we used the micro-controller part of BEESM in order to enable
students to program a tangible everyday object (see Figure 7.2). We changed the

100 7.3. Methodology

Code Modifier J AutoCode Generator

Arduino Code
void loop ()
it
led();
led.print ("Familie:Aronstabgewédchse") ;
lcd.setCursor (0, 1);
led.print ("gewaechse") ;
delay (3000) ;
led.clear();
lcd.print ("hell-halbschattig");
e T delay (3000) ;

RGBLCD

il Name:
ouput
Compiling. ..
Sketch uses 240247 bytes (23%) of program storage space.
Maximum is 1044464 bytes.

Global variables use 32716 bytes (39%) of dynamic memory,
leaving 49204 bytes for local variables. Maximum is 81920
bytes.

Uploading. ..

RGBLCI
Display anzeigen

[100%]

Serial Monitor Output:

File Name:

LIS T Load Biocks

Figure 7.2: Screenshot of the programming environment interface, including the
final program for a group.

initial BEESM user interface to allow our students to use three different panels
and have a full vision of blocks (Block Panel), code syntax (Code Panel), and
output of the code (Output Panel). Thus, we removed the 2D Graphical Panel,
moved the Output Panel to the right side of the screen and extend the Block Panel
in order to improve the visibility of finding and reading blocks in the program.
Furthermore, the tangible object in this workshop was a houseplant. This was used
as an appropriate stimulus to enable the students to connect a micro-controller,
as well as different sensors and actuators, program them, and construct a smart
object 1.

Pre, intermediate, and post questionnaires were employed to collect data con-
cerning the students’ attitudes and perceptions of programming, prior program-
ming experience, and age group. The acquisition of basic programming skills was
assessed, using a pre, an intermediate, and a post programming question. All Pre,
Intermediate, and Post questionnaires and programming questions can be found
in the appendix C; all translated from German to English. In the following, we
describe the questionnaires and programming questions.

Pre questionnaire (PreQ). PreQ, which was distributed before the programming
activities, consists of five open-ended questions to find out the students’ attitudes
towards programming and the programming workshop. With this regard, students’

'We make our workshop materials available at https://github.com/projekt-smile/Smarte-
Pflanze-mit-Charakter

7. Students’ Attitudes and Skills: Impacts of Smart Objects’ Construction 101

confidence, enjoyment, and interest in future programming learning opportunities
were recorded. The students’ confidence was asked through, "how do you rate your
programming skills?" (Q1), and "do you think you will be successful in this work-
shop?" (Q2). The enjoyment was recorded using two questions "I find programming...
(Q3)", and "what are you looking forward to in this workshop?" (Q4). The interest
of students in learning programming was asked via the question "how would you
like to learn programming? why?" (Q5). Furthermore, the students were required to
determine their prior programming experience with block-based programming envi-
ronments using the "yes" or "no" question "have you ever worked with a block-based
programming environment?" (Q6).

Intermediate and post questionnaires (IntermediateQ and PostQ). Intermedi-
ateQ was distributed after learning basic programming concepts and activities in
order to measure the students’ attitudes towards programming. The students’ per-
ception of using block-based programming and constructing a computer system
consists of micro-controller, sensors, and actuators were also considered. This ques-
tionnaire was composed of the same questions as the pre questionnaire, just with
different words for two questions; Q2 changed to "do you think you were successful in
this workshop?", and Q4 changed to "what did you like/dislike about the workshop?".
Furthermore, the students were required to answer two additional questions. These
questions were about the block-based programming, "how do you like programming
with blocks?" (Q7); and programming the sensors and actuators, "what do you think
about programming a computer system? (e.g., sensors and actuators)" (Q8). In
PostQ, Q8 changed to "what do you think about programming a real smart object?
(e.g., smart houseplant)'. All other questions remained the same as they were in
IntermediateQ.

Programming questions (PrePQ, IntermediatePQ, and PostPQ). In order to
evaluate the students’ prior programming experience and measure the acquisition
of programming skills, they were asked to perform a pre programming question
(PrePQ), an intermediate programming question at the end of the second day of
the workshop (IntermediatePQ), and a post programming question at the end of
the workshop (PostPQ). In each pre, intermediate and post programming question,
block-shaped elements were designed independent of the block-based programming
environment in order to test how well the students acquire the basic programming
concepts which were taught during the workshop (e.g., see Figure 7.3 for the block-
shaped elements in IntermediatePQ).

PrePQ asked to program the micro-controller to get the data from a connected
sensor, write the sensor’s value into a variable and show it in an RGB LCD for 2
seconds. We added control-flow statements in IntermediatePQ; therefore, we asked

102 7.3. Methodology

set display position to row column[2] 1Q F Variable do:

clear display 6 Variable 1 1 set display position to row column

read sensor at pin read sensor at pin 12 delay seconds

a b O N =

7
delay seconds 8 set Variable to: 13 IF Variable do:
9

increase Variable by: show on the display :

Figure 7.3: Block-shaped elements in the intermediate programming question (In-
termediatePQ); translated from German to English.

this time that if the value of the sensor is less than 20, then the RGB LCD should
show the value for 5 seconds in the second row and fifth column. PostP(Q contains
all previous concepts plus loops. This time, we asked that if the value of the sensor
is more than 30, then the RGB LCD should show the value for 3 seconds in the
first row and the fourth column. In addition, the LCD should then blink in green
for 3 times with 1 second delay in between.

In each programming question, students were asked to answer the question via
selecting a set of blocks and identifying the order of them in a correct logical way. It
was noted that some blocks might not be needed and some may appear more than
one time in their answers. All programming questions are slightly different from
each other, and they are getting more advanced from the beginning towards the end
of the workshop. This counterbalance design of questions is to ensure that students
read the questions carefully and identify the order of blocks based on the question.
Furthermore, these questions represent realistic programming problems for a micro-
controller (e.g., Arduino), a sensor (e.g., light, temperature) and an actuator such as
RGB LCD. The solution given by the student were collected for each programming
question and evaluated by the 10-point grading rubric (see Table 4.1). Each solution
was scored independently by two researchers to ensure consistent grading.

7.3.2 Participants

A total of 12 6! grade female students (between 11 and 12 years old) of a Ger-
man secondary school participated in the study. The school teacher was contacted
regarding our programming workshop. Then, students and their parents were in-
formed by their school to register for it. Therefore, the students who participated
in this study were self-selected, and interested in learning programming and having
programming activities. None of the students had received teaching in program-

7. Students’ Attitudes and Skills: Impacts of Smart Objects’ Construction 103

environment

Second . Conditionals and How to connect Programming; IntermediateQ and
Introduction to A Learn- Perform o -Answer- .
Day Logical Operators Sensors and Actors Activities IntermediatePQ

¢
Programming Light, Programming LED Lights,
O_‘ Temperature, Humidity, water-pump, mp3-

and Sound Sensors layer and RGB LCD

Basic components and - -
PreQand . . . Variables and Programming
Answer Introduction to- the programming Introduction to Perform: .
PrePQ . Loops Activities

Boards and Grove
connectors

Displays and LED
Lights

{Programmivng Arduino} Controlling LC ‘

Student

; { Using block-based }
i
i
i
i
i
i
i

i
. n Constructing smart | |
programming environment houseplants
to program Arduino Boards P
Connecting sensors

i
Programming and !
i
Continue with decorating their Answe PostQand !
PostPQ ‘
houseplants |
N

and actors

Figure 7.4: Procedure of the programming workshop.

ming as part of their regular school curriculum. However, we employed a question
to record their previous programming experiences, and six students indicated that
they worked with block-based programming environments and tangibles in the past.

7.3.3 Procedure

The duration of each daily session was five hours, with one hour break. One female
and one male instructor led the whole workshop. Both instructors had a computer
science background with experience in working with young students. In this study,
students worked in pairs on each of the activities. Students with prior program-
ming experience were paired together, and those without experience were paired
with each other. All students answered pre, intermediate, and post questionnaires
and programming questions individually. The questionnaire was filled first each
time, followed by the programming question. Each day, an oral explanation was
given, using prepared slides. Additionally, we used supplementary documents—
including an explanation of all materials and necessary blocks for programming and
activities—in order to help the students, as well as minimize and control the instruc-
tor effects. The description of the topics and activities covered over the different
days are as follows(see Figure 7.4):

104 7.4. Experimental Evaluation

First Day. First, the students filled in PreQ and PrePQ. They were then informed
that they are going to have a set of programming activities in each group, and that
these activities help them to program and design a smart houseplant. Then, pairs of
two students (2 experienced or 2 inexperienced) were assigned to one computer. This
session was followed by an introduction to the block-based programming environ-
ment. The programming concepts introduced in this session were variables, loops,
and RGB coloring model, using Arduino and RGB LCD. Students also learned how
to show string and numerical values on the RGB LCD in different courser posi-
tions, and how to change the LCD color. We asked the students to explore the
corresponding blocks in the programming environment.

Second Day. First, we continued with how variables and loops function. Then,
students were introduced to sensors (light, temperature, humidity, sound, etc.) and
actuators (LED light, water-pump, mp3-player, RGB LCD, etc.). They also learned
how to get data from a sensor and put it into a variable. The programming concepts
included in this session were the definition of control-flow statements, such as condi-
tions and logical operators. Students were required to execute and understand the
blocks. In this respect, they started to program actuators to react to sensors data.
At the end of the second day, students filled in IntermediateQ and IntermediatePQ.

Third Day. At the beginning of this session, each group of students was asked
to present and share with others how the Arduino, sensors, actuators, variables,
loops, and control-flow statements work and are executed. Then, each group chose
a houseplant. We asked them to give a character to the houseplant and think of
how the sensors and actuators in their desire houseplant should communicate and
react to each other. This session followed by the implementation of the program-
ming concepts in Arduino and start programming it based on the character of the
houseplant.

Fourth Day. In this session, students continued with programming and designing
the houseplant. At the end of this session, PostQ and PostP(Q were given to the stu-
dents to find out the changes in their performance and attitudes from the beginning
of the workshop towards the end of it. The workshop ended with the presentation
of the character and the functionality of each houseplant.

7.4 Experimental Evaluation

All participants filled out PreQ and IntermediateQ, as well as PreP(Q and Intermedi-
atePQ—responses to all open-ended questions can be found in the appendix C.7;

7. Students’ Attitudes and Skills: Impacts of Smart Objects’ Construction 105

Table 7.1: Students’ Programming Performance

Experienced Inexperienced

Questions M (SD) M (SD) ANOVA Results

PrePQ 5.00 (2.45) 2.00 (1.26) F(1,10) = 7.11, *p = 0.024
IntermediatePQ 5.33 (2.73) 3.33 (1.03) F(1,10) = 2.81, p = 0.12
PostPQ 5.67 (2.94) 2.40 (0.89) F(1,9) = 5.63, *p = 0.042

M: Mean SD: Standard Deviation F: F-distribution p: p-value **p < 0.05: Significant Difference

all translated from German to English. One participant did not show up on the
last day, and thus, PostQ and PostPQ were filled by eleven students. Please note,
this student showed a negative attitude in PreQ and IntermediateQ. This case is
not addressed in the description of results, but it is included in the diagrams and
we refer to it in Section 7.5. The written responses to the questionnaires were
coded independently by two researchers and then discussed in order to find an
agreement on final categories. In each diagram (Figure 7.5 to Figure 7.7), P1 to
P6 are students with prior experience, and P7 to P12 are students without prior
experience in programming.

7.4.1 Acquisition of Programming Skills

The students’ performance was assessed three times, at the beginning, in the mid-
dle and at the end of the workshop (described in Section 7.3). The experienced
students performed significantly better than the inexperienced students in PrePQ
and PostPQ, and their performance improved (descriptively) from PrePQ towards
the PostPQ (see Table 7.1). Furthermore, the performance of inexperienced stu-
dents improved (descriptively) in IntermediatePQ, where no significant difference
was obtained compared with the performance of experienced students. However,
their performance dropped in PostPQ (see Table 7.1). No significant difference oc-
curred within each group of experienced and inexperienced students from PrePQ
towards PostPQ.

7.4.2 Attitudes and Perceptions of Programming
7.4.2.1 Confidence

Concerning the students’ confidence, they were asked to rate their programming
skills (Q1). After coding their responses, we had the following categories: "not so
good (bad)", "not so good but not so bad", "improving", "good", "great (very good)",
and "others" (see Figure 7.5a). We saw a positive trend in IntermediateQ for two-
third (8) of the students while it remained the same for the other participants. It

106 7.4. Experimental Evaluation

——P1 —=-P2 P3 P4 ——P5 —e—P6 —+—P1 -=-P2 P3 P4 —=P5 —o-P6
——P7 —P8 ——P9 —+—P10 —8-P11 ——P12 ——P7 —P8 —P9 ——P10 —-#-P11 —&—P12
others others

great (very good)

yes, definitely /

good
. . yes
improving : 4 ,/
not so good, not sure
not so bad

i

no, not really -—
PREQ INTERMEDIATEQ POSTQ PREQ INTERMEDIATEQ POSTQ

(a) (b)

Figure 7.5: (a) Students rate their programming skills (Q1); (b) Students’ thoughts
on their success in the workshop (Q2).

not so good (bad)

decreased for one student who did not show up on the last day (P9). No specific
difference was observed between inexperienced and experienced students. In PostQ,
we saw an increase in confidence for two participants (P2 and P10). One (P4) rated
her skills less positive than in IntermediateQ, but equal to PreQ. The remaining
participants rated their skills the same as in IntermediateQ.

The students were also asked whether they think that they would be successful
in the workshop (Q2). The answers were categorized as "no, not really", "not sure",
"yes", "yes, definitely", and "others" (see Figure 7.5b). At the beginning, three
students were unsure (P1, P3, and P12), and one said "no" (P9). The confidence
increased or remained the same (positively) for all students, except one (P9), towards
the end of the workshop. At the end, no unsureness was seen, and all students rated
their success with "yes" or "yes, definitely".

7.4.2.2 Enjoyment and Interest

With respect to the enjoyment of programming, students were asked to indicate
how they find programming (Q3). The answers were categorized in "complicated",
"fascinating and interesting", "hard fun' (inspired by [Pap02]), "easy and logical",
"fun (great)", and "others" (see Figure 7.6a). With respect to the term "hard fun',
Papert [Pap02] provided a special kind of fun when he saw kids liked hard challeng-
ing. Thus, he tried to find a term for these circumstances which could be called
"pleasure” or "fun", but he finally called it "hard fun'. All participants liked pro-
gramming in IntermediateQ and PostQ more than in PreQ. However, four students
(P2, P7, P10, and P11) changed their mind from IntermediateQ to PostQ; for in-
stance, they realized that the programming is not only "fun", but fun and, at the
same time, challenging ("hard fun'), or just "interesting".

7. Students’ Attitudes and Skills: Impacts of Smart Objects’ Construction 107

——P1 -#-P2 —4—P3 P4 ——P5 —o—P6 others

——P7 —P8 ——P9 ——P10-8-P11-—4+P12 itis useful

others for my future

fun (great) - it is interesting

) itis fun
easy and logical

learn how it works
hard fun

I do not want to

fascinating & " learn |
interesting
complicated P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12
PREQ INTERMEDIATEQ POSTQ W PreQ M IntermediateQ ™ PostQ

(a) (b)

Figure 7.6: (a) How students found programming (Q3); (b) Why students like to
learn programming (Q5).

The students were also required to indicate why they would like to learn pro-
gramming (Q5). This question aimed to find out about their general interest in
learning programming. The answers were categorized as "I do not want to learn",
"learn how it works", "It is fun", "It is interesting", "It is useful for my future",
and "others" (see Figure 7.6b). Four students (P1, P7, P10, and P11) mentioned
that programming is "fun" from the beginning of the workshop towards the end of
it. One student (P3) finally found that the programming is "fun'. Furthermore,
three students found it "useful for their futures" (P5, P6, and P8). However, P8
changed her idea and found programming is "fun" during the workshop. For seven
participants, the reason to learn programming remained the same throughout the
workshop. In particular, the motivation of inexperienced students to learn program-
ming was (expecting) "fun', while experienced students mentioned the learning of
how technical things work.

7.4.2.3 Block-based Programming and Smart Objects

In IntermediateQ and PostQ, participants were required to respond to how they
liked programming with blocks (Q7). The answers were categorized as "ezhausting",
"scope of action (e.g., opportunities to be creative)', "hard fun', "easy", "fun (great)",
"others". Here, the answers changed from IntermediateQ to PostQ for half of the
participants (see Figure 7.7). Experienced participants often mentioned that "it is
easy", or appreciated the "scope of action", while inexperienced students found it
"fun" or "hard fun". Please note that all experienced students mentioned in Q6 (in

PreQ) that they worked with other block-based programming environments before.

108 7.4. Experimental Evaluation

~—P1 -=-P2 P3 P4 ——P5 -o-P6

——P7 ——P8 ——P9 ——P10-8-P11—4&—P12
others

fun (great)

easy
hard fun

scope of action

exhausting /

INTERMEDIATEQ POSTQ

Figure 7.7: How students like to program with blocks (Q7).

PROGRAMMING A TANGIBLE (SMART) OBJECT PROGRAMMING A TANGIBLE (SMART) OBJECT

M Great (very cool) 33% M Great (very cool)

M Fun (cool) = Fun (cool)

IntermediateQ_| 16% " IntermediateQ |

o Interesting = Interesting

Did not respond 67% Did not respond

(a) Experienced students (b) Inexperienced students

Figure 7.8: How students like to program a tangible object (Q8).

We also distinctly asked how they liked programming a tangible (smart) ob-
ject ((@8) in IntermediateQ and PostQ). Categories were "great (very cool)", "fun
(cool)", "interesting", "no response" (see Figure 7.8). We saw a difference between
experienced and inexperienced students. Half of the experienced students indicated
that it was "fun (cool)" in both IntermediateQ (P2, P4, and P6) and PostQ (P2, P3,
and P6). P4 found it "interesting" in PostQ, and P3 did not answer this question
in IntermediateQ. Inexperienced students indicated that it was "great (very cool)"
(P8 and P11) or "fun (cool)" (P7, P9 and P10) in IntermediateQ; P12 found it "in-
teresting" to program a tangible object in IntermediateQ. Their enthusiasm grew
towards the PostQ with a shift of two students (P10 and P12) to "great (very cool)".
In general, half of the students did not change their minds between IntermediateQ
and PostQ.

Students were also asked (Q4) to answer what they look forward to in the work-
shop (PreQ) and what they liked about the workshop (in IntermediateQ and PostQ).

7. Students’ Attitudes and Skills: Impacts of Smart Objects’ Construction 109

LIKE ABOUT WORKSHOP LIKE ABOUT WORKSHOP

17%

m Programming with blocks m Programming with blocks

17%

7

y 17%
| IntermediateQ |

M Programming the
object (houseplant)
W Learning new things

M Programming the
object (houseplant)
16% W Learning new things

Everything Everything

H Others M Others

™ Did not respond M Did not respond

(a) Experienced students (b) Inexperienced students

Figure 7.9: What students like about the workshop (Q4).

n

Categories are "teamwork", "learning programming/technical things', "program a
real object", "others", and "no response" in PreQ. In addition, categories in both
Intermediate@Q and PostQ are "programming with blocks", "programming the object
(houseplant)", "learning new things", "everything", "others", and "did not respond'
(see Figure 7.9). In PreQ, students were mostly (5) looking forward to "learning
new and technical things". For inexperienced students, this was about two-third (P7,
P8, P10, and P12). However, experienced students were more differentiate, and two
of them specified "programming a tangible object" (P4 and P6). In IntermediateQ,
the distribution of categories changed, and we can see a clear difference between
experienced and inexperienced students. With this regard, experienced participants
mostly mentioned: "programming with blocks" (P2 and P3), and "everything" (P1 and
P4) in IntermediateQ. In PostQ, two-third (4) of them mentioned: "programming
the object (houseplant)" (P3, P4, P5, and P6). Inexperienced participants mostly
answered, "everything" (P11 and P12) and "programming with blocks" (P7 and P8)
in IntermediateQ. In PostQ, three of them (P10, P11, and P12) mentioned "every-
thing", and two of them (P7 and P8) mentioned "programming with blocks".

7.5 Integration and Discussion

In this pilot study, the students’ performance in the programming questions did
not correlate with their confidence concerning perceived programming concepts.
Therefore, although girls had some difficulties in understanding the subject, they
still felt positive and confident about their programming skills and success. This is
in line with the results presented in [Bei05, MCK17,NHCWO04] that girls’ confidence

110 7.5. Integration and Discussion

level increases by visual programming environments and experience with interactive
tangible objects.

With respect to the confidence, enjoyment and interest, a clear difference be-
tween experienced and inexperienced students was not observed. However, some
differences were seen in the students’ responses to the questions regarding the work-
shop activities and items. The majority of experienced participants mentioned that
they liked construction of a smart object in this workshop, while the inexperienced
students remained rather vague and mentioned "everything" or only "programming".
The results showed that especially the experienced students appreciated working
with the houseplant (as a tangible everyday object) and, due to their prior expe-
rience, they were able to articulate clearly what they like and why it was fun for
them. Furthermore, the opportunity of applying their programming skills to a tan-
gible object and making it smart was more meaningful and interesting for them. In
contrast, the inexperienced students did not mention the tangible everyday object
(in this case, houseplant) but they were mostly impressed by programming with a
visual block-based programming environment. In addition, the findings showed that
programming by itself was interesting for the inexperienced students and applying it
to the tangible object did not stand out. We can assume that they did not yet have
the terminology to distinguish between programming with and without tangibles.
From these results, we can draw implications on designing courses for experienced
and inexperienced (female) students. For experienced students, it is indicated that
having a meaningful application area for programming such as a tangible everyday
object, as well as making it smart is an important area that needs to be taken into
account. This supports the results from the programming questions that experi-
enced students performed significantly better than inexperienced students in the
PostPQ, while it was not significantly better in IntermediatePQ. This result is in
line with findings from [KP05], which showed that experienced students had more
benefits from tangible objects and platforms than inexperienced students.

Our initial research question was how programming skills and attitudes change
over time in the context of programming and constructing smart everyday objects.
This also includes finding out whether using a tangible everyday object and pro-
viding the possibility to make it smart changes young female students’ attitudes
towards programming. Concerning the confidence in programming, the biggest
changes were observed between PreQQ and IntermediateQ. After the introduction
to the block-based programming environment, the confidence in programming in-
creased. Except for one (the dropout student), all students felt that they performed
equal or better than what they had expected. The findings showed that the stu-
dents’ confidence in programming was not affected by the implementation of the
programming concepts in a tangible everyday object and the experience gained by
that time. This is in line with their opinion about programming. After initial

7. Students’ Attitudes and Skills: Impacts of Smart Objects’ Construction 111

excitement in IntermediateQ, their confidence dropped. This indicates that they
realized programming is not just fun but also challenging after programming and
constructing the smart object. However, the feeling of being successful increased
after working with the tangible object and making it smart. One reason could be
that "smart houseplant" was the general topic and the objective of the workshop,
which our participants felt that it was achieved.

Enjoyment of programming increased in IntermediateQ, and it had a decrease
for a few participants after using the tangible object. We assume, one reason is that
the complexity of the tasks increased. Nevertheless, working with tangibles did not
indicate a distinct effect on enjoyment but helped to keep it up.

As mentioned in Section 7.4, one student dropped out. Although she had excused
herself to the workshop instructor in advance that she had another commitment on
the last day, she showed negative confidence and attitude in her responses to some
questions in PreQ and IntermediateQ. While the results which are obtained from
the other students are promising, we would like to highlight that we can probably
learn a lot more from dropout participants. Thus, we argue for looking more in-
depth into these cases in future iterations of similar studies; for instance, using
ethnographic methods.

7.5.1 Limitations

While we tried to provide insights into the relationship between constructing smart
objects and improving young female students’ attitudes and programming perfor-
mance, this study has limitations which are addressed in the following.

The first limitation of this study relates to the number of programming tasks
and the period of the workshop. For instance, the findings of this study are limited
to the diversity of the programming tasks that the students performed and how
they speak to more diverse programming activities and computational skills. A
second similar limitation is that the intermediate programming question might have
had an influence on students’ performance in learning basic programming concepts
and their motivation. Further work is needed to address these limitations and to
generalize the findings beyond the specifics of this study, such as the period of
programming workshop and type of programming tasks.

Another limitation of this study is related to the number of participants. We
would like to emphasize that the relatively small sample size (12 female students)
lowers the power of findings to be generalized on a large scale. Thus, we look at
this as a major concern that needs to be addressed in future directions when we
expand the scope of this work with a larger sample size.

A final limitation of this study relates to the control group. This is another
pathway of future work to find out the impacts of programming courses on students’

112 7.6. Conclusion

attitudes and programming skills over time without using tangible objects as well
as when young male students are targeted for such programming courses. This
limitation is covered in the next chapter of this thesis (Chapter 8).

7.6 Conclusion

As the presence of women in computer science discipline is lower than men in most
western countries, raising girls’ interest in the programming side of computer sci-
ence is an active area of research. In this chapter, we presented a pilot study
investigating the impacts of programming and constructing a smart everyday ob-
ject (smart houseplant) on girls’ programming skills and attitudes. Programming
performance, enjoyment, interest, and confidence were not only assessed with pro-
gramming questions and open-ended questionnaires before and after a non-formal
programming workshop but also intermediately before starting to implement pro-
gramming in the tangible everyday object (a houseplant). Our findings indicate
the girls’ confidence did not match their actual performance. Their confidence
increased after introducing the block-based programming environment, and it re-
mained high after construction of the smart object. However, being able to pro-
gram the houseplant was perceived differently by experienced and inexperienced
participants. Data shows that block-based programming was interesting "enough'
for inexperienced students, while experienced students appreciated more to apply
their skills to make the houseplant smart. Furthermore, our study supports the
claim that construction of smart objects has a direct impact on young female stu-
dents’ performance and attitude towards programming. By studying the influence
of constructing smart everyday objects as an application of computing in reality,
we enhance our understanding of designing appropriate programming courses con-
cerning the students’ prior experience. While many questions still remain on how
to best introduce programming to girls, the findings of this study are essential to
inform other researchers and educators about the relation between tangible objects
together with block-based programming, and girls’ programming performance and
attitudes towards programming.

Chapter 8

From Block-based
Programming to Construction
of Smart Objects

Nowadays, with the advent of graphical programming environments, block-based
programming has been utilized to introduce young learners to programming and
computer science more broadly. When introducing programming to them via block-
based programming, showing the application of programming in reality is a key
aspect. Previous work have been done on how to teach basic programming con-
cepts, using block-based programming and tangible objects like robots, smart tex-
tiles, wearable products, LED lights, and smart artifacts. Nevertheless, there have
been very few studies with a special focus on how young students’ attitudes and
programming skills changed over time, when they introduce to real life-size smart
environments, as well as learn to program and construct a smart tangible object,
connecting to the smart environments.

In this chapter, we present findings from a user study, investigating how the use
of block-based programming together with a real life-size smart home can leverage
young learners’ (both female and male) interest in programming over time, and sup-
port the acquisition of programming skills. To do this, we use BEESM (introduced
in Chapter 3) along with constructionist learning theory. In Constructionism, ed-
ucational designers and researchers tried to turn the table providing learners with
greater opportunities to construct a product, and thus, enable them to learn by
doing. 28 8" grade students from a German secondary school participated in the
study, who programmed and constructed a smart-lightning object integrated into the

114 8.1. Introduction and Motivation

smart home. Their performance and trajectories of attitude towards programming
were assessed, using repeated questionnaires throughout the study. The findings
imply that using block-based programming in the context of smart homes can fos-
ter young learners’ programming skills, and develop a positive attitude towards
programming.

8.1 Introduction and Motivation

The importance of computer programming is increasingly growing together with the
dispersion of computing applications in our high-tech world. Increasingly, young
learners start with programming activities via visual block-based programming en-
vironments [Weil9]. These environments are highly used to design introductory
programming courses [WW17b, WHHF18], and workshops [MCK17, MGB15]. Fur-
thermore, the application of programming tends to be shown to the learners in
reality. In this respect, in addition to allowing them to learn the general purpose
of programming and author programs via block-based programming environments,
previous work provides possibilities to experience and implement new ideas into
tangible objects and real environments [MCK17, PHEC17, MGB15].

The design of introductory programming concepts has resulted in a growing
use of tangible objects and block-based programming to enable inexperienced and
young learners to program. However, relatively little attention has been given to
show potential for using educational block-based programming environments to
make state-of-the-art smart technologies accessible for them. More specifically, lit-
tle work has investigated how introducing young learners to real life-size smart
homes, and teaching basic programming concepts via block-based programming
can improve their programming performance and attitude towards programming
over time. Unfortunately, these smart homes rely on modern and powerful tech-
nologies, which make them not fully accessible for young learners. In previous
research, block-based programming environments are already employed to intro-
duce the general purpose of programming to young learners in the context of mo-
bile robots [MCK17, PHEC17, MGB15], and smart homes [KD18]. Additionally, it
is addressed that introducing young learners to modern technologies fosters their
programming skills [MGB15, MCK17] and interest in computer science [MGB15].
While there is much to show for teaching programming to young learners, less is
known about how their performance and attitude towards programming are influ-
enced over time in the context of smart homes. Thus, research is needed to show
that by using block-based programming along with real life-size smart homes, we
are able to not only introduce programming to young learners but also to show com-
puting applications in the aspect of everyday life. In this chapter, we investigate

8. From Block-based Programming to Construction of Smart Objects 115

the learners’ trajectories of acquisition of programming skills and their attitudes
towards programming in the context of real life-size smart homes by answering the
following research questions:

e In what ways can young learners benefit from learning environments that
use smart homes as an application area for block-based programming and
construction of smart objects?

e Does the construction of a smart interactive object in the context of smart
homes have a positive impact on young learners’ programming performance
and attitude towards programming?

e Are there differences between experienced and inexperienced young learners
with respect to their programming performance and attitude towards pro-
gramming?

To answer this question, we conducted a 2-day non-formal programming work-
shop with 28 8t" grade students (12 to 14 years old). We claim that it is possible to
introduce young learners to personally meaningful state-of-the-art smart technolo-
gies in the context of smart homes. This enables them to author programs and to
see their scope of action to creatively design and control a tangible object embedded
in a smart home system. The main goal of using the tangible object is to let the
learners apply their new gained programming skills into it, and making it smart.
This provides opportunities for them to find out the connection of programming to
modern reality, and thus, motivate them to begin with programming activities and
develop a greater interest in programming. In order to reduce the complexity of
programming and facilitate for the learners to learn basic programming concepts
and author programs, a block-based programming environment (BEESM) has been
employed as a form of visual programming environment. The block-based program-
ming environment integrated functionality for connecting a micro-controller (in this
case, WeMos D1 mini Wi-Fi board) to the smart home server in order to read the
data generated by different items in the smart home. The smart home is BAALL,
an approximately 60 m? smart living lab apartment which is equipped with var-
ious actuators (e.g., doors, toggleable, dimmable and RGB lights), sensors (e.g.,
lighting, temperature, and thermal cameras), voice recognition system, and smart
mirror and fridge. The additional features of BAALL can be found in more detail
in Section 5.3.2 of this thesis.

In a user study, young learners were enabled to author programs that connect the
micro-controller to the smart home server, and read the generated data by different
items. The data was then used in order to construct a smart-lightning object which
consists of lights and a organic light-emitting diode (OLED) display, both connected

116 8.2. Related Work

Figure 8.1: A sample of a "smart-lighting object", using the smart mirror.

to the micro-controller. For instance, learners can program the micro-controller to
show different colors in lights and suitable information on the display as soon as a
smart mirror detects someones’ face expression who is standing in front of it (see
Figure 8.1). It is a special feature of this study that the learners were able to author
pieces of code that can be applied to a tangible object like a lighting object and make
it smart, using the block-based programming and smart homes generated data. The
path of learners’ attitude towards programming based on repeated quantitative and
open-ended qualitative questionnaires was examined (i) at the beginning, (ii) at the
middle, and (iii) at the end of the programming workshop. Furthermore, we assessed
their programming performance at the beginning and at the end of the workshop,
using two programming questions.

The chapter begins with a review of previous work and how they employ smart
objects and environments to teach basic programming concepts together with block-
based programming environments (Section 8.2). Then, we describe the study design
and strategy for collecting and analyzing data in Section 8.3. The evaluation and
experimental results are presented in Section 8.4, and they are discussed in Sec-
tion 8.5. The chapter closes with limitations and conclusions 8.6.

8.2 Related Work

A key issue in learning programming, especially among young learners, is that they
do not have a clear idea how programming and computer science are relevant to
their daily life [GCNB18,CGN19]. Previous work have been done on how to teach
basic programming concepts, using block-based programming and tangible objects
like robots [MM19,PHEC17], wearable products [BEE06, GCNB18, KDS09, KDS15],

8. From Block-based Programming to Construction of Smart Objects 117

smart homes [KD18], LED lights, etc. In both CSE and CHI research communities,
several scientific studies tried to explore how young learners’ performance and atti-
tudes is influenced when they learn basic programming skills based on block-based
programming, and then apply them into tangible objects to build an smart object.
Nevertheless, there have been very few studies with a special focus on how young
students’ attitudes and programming skills changed over time, when they introduce
to smart environments and learn to program and construct a smart tangible object,
using these environments.

Robots are one of the most common tangible and smart devices which are used
for learning and educational purposes. The literature reports that mobile robots are
effectively used as a tool to generate positive interest and improve learning among
young learners [PHEC17, MGB15]. Paramasivam et al. [PHEC17] explored the use
of mobile robots as a tool for suited reflection in elementary school programming
courses. Furthermore, Martinez et al. [MGB15] enabled preschool and elementary
school learners to program and control the behavior of Arduino boards in the context
of N6 robots. The results show that the learners were highly engaged by robot
programming, and researchers were successful to establish the confidence that robot
programming is interesting. However, no information was provided whether this
approach enable them to have a higher intention of learning programming or not.

Another approach is to use smart homes and living labs in order motivate young
learners in learning programming and foster their interest in computer science.
Katterfeldt and Dittert [KD18] reported on three co-design workshops where young
female learners created ideas related to smart homes, and implemented them on a
doll house. Still, a key challenge with the use of real life-size smart homes is that
young learners can only perform limited actions on the environment and they are
not able to make a real application in there. For instance, in Chapter 5, we used
real life-size smart homes as a medium to teach basic programming skills to young
learners. However, the variety of activities were limited and learners could not really
show their creativity when they program different objects within the smart home.

8.2.1 Summary

Irrespective of the concrete approach, the question arises how to support young
learners to learn basic programming concepts, and improve their attitude towards
programming. The use of visual block-based programming environments can reduce
the complexity of programming for the learners. However, block-based program-
ming alone is not sufficient for them to develop a connection between programming
and its impacts in their daily life. Having access to smart environments may be
useful to show how these environments can react to daily needs. Although these
environments are able to show how programming and computer science are relevant

118 8.3. Methodology

to our daily life, they may not be fully accessible for young learners to build an ap-
plication for them. To this end, we designed and implemented a 2-day non-formal
programming workshop to provide opportunities for young learners to participate
and experience modern technologies in the context of smart homes. We analyzed
the learners’ trajectories of attitude towards programming and their performance
based on repeated questionnaires and programming questions from the beginning
towards the end of the workshop. In other words, by using block-based program-
ming and letting young learners to program and construct a smart object in the
context of smart homes, we not only aim to teach programming but also to leverage
their interest in learning programming and understanding the influences of it in
their daily life.

8.3 Methodology

This study aims at experimentally investigating the impacts of smart homes and
block-based programming environments on young learners’ programming skills and
attitudes towards programming. We conducted a user study in a 2-day non-formal
programming workshop. A visual block-based programming environment (BEESM),
and a smart home (BAALL) were used in order to enable the learners to have a
hands-on experience and construct a smart-lighting object. We used three ques-
tionnaires throughout the workshop, including both 5-point Likert Scale and open-
ended questions. The questionnaires were given to learners: (i) at the beginning
of the workshop (PreQ), (ii) at the middle of the workshop, before the learners
introduced and learned about the smart home (IntermediateQ), and (iii) at the end
of the workshop, when the learners implemented their newly learned programming
skills to construct the smart-lighting object based on the smart homes generated
data (PostQ). Three dimensions of learners’ attitude were considered: confidence,
enjoyment, and interest in future programming learning opportunities [WW17b].
Furthermore, the learners’ performance was assessed, focusing on three basic com-
putational concepts: variables, loops, and control-flow statements (conditions and
logical operators) [Lew10]. We applied programming questions at the beginning
(PrePQ), and at the end of the workshop (PostPQ).

The main emphasis of this study is to reveal possibilities how block-based pro-
gramming can be used to make modern and powerful technologies more accessible
to young learners. In doing so, an experimental basis for the used of block-based
programming in the context of real life-size smart homes was provided. Young
learners were enabled to construct a smart tangible object in the context of our
smart home, using the block-based programming environment. In this regard, the
learners’ experience of using the block-based programming application (ease-of-use,

8. From Block-based Programming to Construction of Smart Objects 119

Control ouput 3

Compiling. ..
Global variables use 32716 bytes (39%) of dynamic memory,
leaving 49204 bytes for local variables. Maximum is 81920
bytes.

Uploading. . .

1 Wifi Manager

1 Oniine Westherdata [

I oLED Dicplay

I Neopirel

I inpuvoutput

[v Smart Home
Connecti

I suus

......

Figure 8.2: Screenshot of the programming environment interface.

ease-of-learning, usefulness and satisfaction) [WAST18], and constructing a smart
tangible object was also measured, using collected data from IntermediateQ and
PostQ.

This section begins with the materials used in this study, followed by study
design and strategy for collecting and analyzing data. Then, the information about
the participants is presented. This section concludes with the procedure of the
study.

8.3.1 Study Design and Data Collection Strategy

In this study, we used the micro-controller and smart home parts of BEESM in
order to program a smart tangible object in the programming workshop (see Fig-
ure 8.2). The block-based programming environment enables students to focus on
programming structures and principles, the main computational concept which was
taught and exemplified through it. We changed the BEESM user interface to enable
our target students to have a full vision of the blocks (Block Panel), code syntax
(Code Panel), output of the code (Output Panel), and a 2D view of the smart home
(2D Graphical Panel). A useful feature of the programing environment added to
the BEESM interface (in this step) is the ability to toggle between the Code and
Output Panel by clicking on the "Qutput" button. This enables learners to have a
larger section for blocks which is suitable to improve the visibility of finding and
reading blocks in the program (addressed by Holwerda and Hermans [HH18] and in

120 8.3. Methodology

Chapter 6 of this thesis). Furthermore, Arduino code is used to connect to our smart
home, and to program the micro-controller (WeMos D1 mini board). The smart
home’s main educational use in the programming workshop is to allow the learners
to connect to its server and read the generated data via the WeMos D1 mini board
with Wi-fi functionalities. Then, they can program lights and a OLED display in a
way that they react to the data, and construct a smart-lighting object. We chose to
work with WeMos D1 mini boards because it has an on-chip Wi-fi Transceiver. It
is introduced as a very compact solution for prototyping small smart objects with
Wi-fi functionalities, such as connecting to Wi-fi and Web-based interactions (e.g.,
HTTP GET and POST requests). We also used OLED displays because they are
compatible with WeMos D1 mini boards, and they enable learners to show both
numerical and string values on them 1.

In the following, we describe the pre, intermediate, and post questionnaires, as
well as the pre and post programming questions. Questionnaire were employed to
collect data concerning the students’ attitudes towards programming, their prior
programming experience, their gender, and their age group. The acquisition of
basic programming skills among the students was assessed, using the programming
questions. All PreQ, IntermediateQ, and PostQ, as well as PrePQ and PostPQ can
be found in the appendix D; all translated from German to English.

Pre questionnaire (PreQ). The PreQ at the beginning of the workshop consists of
eight (Q1-Q8) 5-point Likert scale questions (with 1 "no, not at all", and 5 "yes, very
much"), two (Q9 and Q10) "yes" or "no" questions and two open-ended questions
(Q11 and Q12). PreQ was used to record the learners’ attitude towards program-
ming (confidence, enjoyment and interest), using the 5-point Likert Scale questions.
These attitudinal questions were designed based on the questions from [WW17b]
with specific questions being added for this study. The learners prior experience
with block-based programming environments and micro-controllers were asked via
the two "yes" or "no" questions. Learners were also required to indicate their in-
tentions towards the programming workshop, and their perception of computer
programming, using two open-ended questions.

Intermediate questionnaire (IntermediateQ). The IntermediateQ after the first
day of programming activities included: (1) one (Q1) 5-point Likert scale question
to measure the learners’ perception of using a tangible object and making it smart;
(2) eight (Q2-Q9) 5-point Likert scale questions to measure the learners’ attitude
towards programming (answers for all nine questions categorized as 1 "no, not at

'We make our workshop materials available at https://github.com/projekt-smile/Smartes-
Stimmungslicht

8. From Block-based Programming to Construction of Smart Objects 121

all", and 5 "yes, very much"); (3) eight (Q10-Q17) 5-point Likert scale questions
to measure the learners’ experience using the programming environment in terms
of its ease-of-use, ease-of-learning, usefulness and satisfaction (with 1 "strongly dis-
agree", and 5 "strongly agree"); (4) four (Q18-Q21) open-ended questions to record
learners feedback regarding the programming environment and the workshop. The
eight attitudinal questions are largely similar to the questions in the PreQ, just
with different words for two questions; "do you think you will be successful in this
workshop?" changed to "do you think you were successful in this workshop?", and
"would you like to learn how to program?" changed to "would you like to learn more
about programming?".

Post questionnaire (PostQ). The PostQ at the end of the workshop consists of all
questions which are asked in IntermediateQ, and two questions regarding the learn-
ers’ gender and age. In PostQ, "do you think it’s useful if you program a real object?
(e.g., the LEDs light up)" changed to "do you think it would be useful if you pro-
grammed a real smart object? (e.g., perform actions based on sensor information)".
Furthermore, two open-ended questions "what did you particularly like/dislike about
the 1%t workshop day?" change to "what did you particularly like/dislike about the
workshop? in PostQ.

Programming questions (PrePQ and PostPQ). We also assessed the learners’
performance in basic programming concepts during the study. The PrePQ and
PostPQ included programming examination, with two gap-filling and seven open-
answer questions. The answer of each question has one point, except for question
6 which has two points as the learners needs to mention both LED colors. The
answer given by the learners were collected for each question and evaluated in-
dependently by two researchers to ensure consistent grading. The first and sixth
questions concern understanding of "variable", questions 2, 3 and 9 concern " control-
flow statements", and questions 4, 5, 7 and 8 concern "loop". In this study, PrePQ
and PostPQ are slightly different from each other. This counterbalance design of
questions is to ensure that learners understand the blocks and read the questions
carefully in order to give the correct answers to them.

8.3.2 Participants

In total of 28 8*"grade students from a German secondary school were participated
in our workshop (22 boys and 6 girls; ages 12—14, M =12.96 | SD = 0.33). Teachers
suggested which students could participate in this study and came with them to
us. The school and teachers were informed about study protocols. All parents
were informed prior to the study by the school teachers. The students performed

122 8.3. Methodology

and completed all activities after parent consent. All equipment (computers and
components), as well as the smart home were provided by the German Research
Center for Artificial intelligence (DFKI). All students had prior experience with
block-based programming environments as part of their curriculum. In PreQ, we
employed two questions to record their previous programming experiences. All
girls indicated that in addition to block-based programming, they have worked
with micro-controllers (in this case, Arduino boards) and tangibles (in this case,
LED lights) in the past as part of an non-formal workshop. In this regard, we will
call them experienced students throughout this chapter, while 22 boys will be called
inexperienced students.

8.3.3 Procedure

The duration of each session in each day was six hours, with 90 minutes break. In
this study, students worked in a group of three and two on each of the programming
activities (10 groups in total). As prior experience and gender factors were consid-
ered, girls (they worked with Arduino boards and LED lights before) were grouped
together, and boys (they did not work with micro-controllers before) were grouped
with each other. However, all students answered PreQ, IntermediateQ, and postQ,
as well as PrePQ and PostPQ individually. All students filled the questionnaire first
each time, followed by the programming question. Each day, an oral explanation
was given, using prepared slides. Additionally, we used supplementary documents,
including an explanation of all components and necessary blocks for programming
and activities. These materials were used in order to help the students, as well
as minimize and control the instructor effects. The description of the topics and
activities covered over the first and second day are as follows (see Figure 8.3):

First Day. Each student began by completing the PreQ and PreP(Q. The students
got an explanation that they are going to use the block-based programming in
order to perform a set of programming activities in each group. They were also
informed that these activities help them to program and construct a smart-lighting
object, using the smart homes generated data. The students were then introduced
to the block-based programming environment. Each group of students was provided
with the basic components (WeMos boards, LEDs, OLED display, cables and mini
breadboard) and brief instructions for connection and construction. Students ex-
perienced how to control an OLED display, as well as how to show different string
and numerical values on the display in different cursor positions. This session was
followed by introducing students to LED lights, necessary blocks to control them,
and the RGB coloring model to change the color of the lights. We asked the stu-
dents to explore the corresponding blocks in the programming environment. Then,

8. From Block-based Programming to Construction of Smart Objects 123

Introduction to basic
components and the Using block-based
programming
application

Variables, Loops,
Introduction tox Conditionals, and
Logical Operators

Student

Thinking of how their desire
smart lighting system
should be constructed

[
|

Programming
WeMos D1 Mini
Boards

Using block-based Connecting to
programming Smart Home Server
application and get data

Figure 8.3: Procedure of the programming workshop.

the students were required to fill in the IntermediateQ. This session ended with an
introduction to the smart home. All objects (e.g., lights, doors, sensors, etc.) and
their functionalities in the smart home were explained to all students to identify
different smart items and their functionalities in the smart home.

Second Day. At the beginning of the second day, each group of students was
asked to present and share with the others how the WeMos boards, OLED displays,
and LED lights worked. Different smart items in the smart home were explained
again to the students. In addition to the RGB coloring model, using WeMos boards
and OLED displays, the programming concepts introduced in this session were
variables, loops, and control-flow statements. The students also learned how to
write a program for WeMos boards in order to connect them to the smart home
server, read the data, and put it into a variable. In this respect, they started
to program the micro-controller to control the OLED display and LED lights in
order to react to the smart homes generated data. Students then formed groups
of 2-3 students and developed their project ideas by considering how they would
design artifacts with LED lights and displays to be embedded in the smart home
ecosystem. They were required to think of how the LED lights and displays in their
object should communicate and react to the data which is generated by different
items in the smart home. They further designed the layout of the artifacts for
their smart-lighting object, and implemented their project functionality using the
programming concepts in WeMos boards. An overview of the smart-lighting objects
and number of groups which made each object is shown in Table 8.1. At the end of
the second day, students filled in the PostQ and PostPQ. The workshop ended with
the presentation of the characters and the functionality of each lighting object.

124 8.4. Experimental Evaluation

Table 8.1: Overview of Smart-lighting Objects Constructed by Each Group

Smart-lighting Object Number of Groups
...communicating with the smart mirror 4
...communicating with the light and temperature sensors | 3
...reacting to the status of lights and doors 2
...reacting to the status of TV (TV volume) 1

8.4 Experimental Evaluation

The results section is divided into three parts. First, results from an analysis of the
programming part of the study are presented, reporting the students’ performance
in each PrePQ and PostPQ. Second, results from an analysis of the PreQ, Inter-
mediateQ and Post(Q are presented, looking at the students’ confidence, enjoyment,
and interest in future programming learning opportunities. Finally, we report on
results from an analysis of the IntermediateQ and Post(Q, focusing on students’ ex-
perience in terms of ease-of-use, ease-of-learning, usefulness and satisfaction during
the use of block-based programming environment. Additionally, in this part, stu-
dents’ perception of being able to construct and see the impacts of their programs
on a tangible smart object is reported.

The following analysis was computed based on the factor "prior experience". In
this study, as the main difference between boys and girls is that the girls previ-
ously worked with micro-controllers and tangible objects in addition to block-based
programming, the factor "prior experience" can also cover the factor "gender". Fur-
thermore, no significant difference was observed between the experienced (girls)
and inexperienced students (boys) with respect to their age (F < 1). In Table 8.2
and Table 8.3, all significant results between the groups and within each group are
shown in " Yellow" and in "Orange", respectively.

Responses to the open-ended questions were coded independently by two re-
searchers and then discussed in order to find an agreement on final categories. We
addressed these responses throughout the result section in order to support the
quantitative data—responses to all open-ended questions can be found in the ap-
pendix D.6; all translated from German to English.

8.4.1 Acquisition of Programming Skills

With respect to the PrePQ, an ANOVA showed that the effect of prior experience
was not significant, F(1,26) = 3.55, p = 0.071. However, concerning the PostPQ,
this effect was significant, F'(1,26) = 7.62, p=0.010. Focusing on the average perfor-
mance of the students in PrePQ and PostP(Q shows that their performance increased

8. From Block-based Programming to Construction of Smart Objects 125

——Experienced Students —#Inexperienced Students
*

Mean Students’ Performance
o N b O ©

PREPQ POSTPQ
Figure 8.4: Students’ performance on the PrePQ and PostPQ.

in both groups; for experienced students (girls), M =4.83 | SD = 2.23 in PrePQ,
and M =6.83 | SD =2.32 in PostPQ; for inexperienced students (boys), M =2.95 |
SD =2.15 in PrePQ, and M =3.77 | SD = 2.43 in PostPQ. In this respect, a paired-
samples t-test showed that experienced students performed significantly better in
PostPQ compared to the PrePQ, t(6) = 3.87, p =0.012, M D = 2.00. However,
no significant result occurred for inexperienced students, ¢(22) = 1.71, p = 0.10,
MD = 0.82. Descriptively, although the experienced students indicated a higher
level of performance in PrePQ, their performance was not significantly better than
the inexperienced students. However, experienced students showed a greater im-
provement in PostPQ compared to their performance in the PreP(Q, and to the
inexperienced students (see Figure 8.4).

8.4.2 Attitudes and Perceptions of Programming
8.4.2.1 Confidence

With respect to students’ confidence, we measured their responses to the three
questions in PreQ (Q1-Q2, and Q6), IntermediateQ, and PostQ (Q2-Q3, and Q7).

Concerning the question whether they think that they are good at program-
ming, inexperienced students (boys) indicated a higher level of confidence in all
questionnaires (see Table 8.2). In particular, they showed a significantly higher
level of confidence at the beginning of the workshop (PreQ) compared to the ex-
perienced students (girls). However, in IntermediateQ and PostQ, no significant
results occurred. Furthermore, no significant difference was observed within the
group of inexperienced students from the beginning towards the end of the work-
shop. In contrast, a paired-samples t-test yielded a significant result between the
PreQ and the PostQ within the group of experienced students, t(6) =2.71, p=0.042,
MD = 0.83. It shows that the level of confidence significantly increased among the
experienced students at the end of the workshop.

126 8.4. Experimental Evaluation

Table 8.2: Students’ Attitude Towards Programming

Confidence Tnterest Enjoyment
B Good at Successful in Programming | Interested in Learn how | Programming Like Excited about
Questionnaires i oer : : :
programming workshop is difficult | programming _to program is fun programming __ workshop
ff’;‘s'%"“d 3.67 (0.82) 4.00 (0.89) 467 (0.52) 4.67 (052) 450 (0.55) 483 (0.41) 433 (0.82)
PreQ Ineaperienced
" 4(2141/ “) 332 (0.84) 2,91 (1.11) 436 (0.85) 436 (0.73) 164 (0.66) 164 (0.58)
ANOVA F(1,26) = 6.57, F(1,26) = 4.89, F(1,
Results p = 0.017 Pl p = 0.036 Pt et Pl Pl p =013
f}”"gg;""’“’l 2.83 (0.98) 3.17 (0.98) 3.67 (1.03) 450 (0.84) 467 (0.52) 167 (0.52) 450 (0.84) 3.50 (1.22)
Intermediate@) 0%
g(’z’;) eneed | 359 (0.85) 432 (0.89) 414 (0.94) 4.64 (0.66) 445 (0.91) 4.00 (0.98)
ANOVA F(1,26) = 3.49, F(1,26) = 9.23, F(1,25) = 2.97, F(1,26) = 1.73, F(1,26) = 111,
Results b= 0073 p = 0.005 p = 0.097 Pl p =020 Pt Pt p = 0.30
Erperienced 3.67 (0.82) 3.67 (1.03) 450 (122) 450 (0.84) 4.83 (0.41) 467 (0.82) 4.00 (1.10)
PostQ A (SD)

Ineaperienced

M (SD) 3.64 (0.79) 4.18 (0.66) 4.27 (0.88) 4.09 (1.23) 4.50 (0.74) 4.50 (0.74) -

ANOVA F(126) = 104, F(126) = 258, F(L26) = 124, | | | el F(126) = 110, | Pl
Results p=0.18 p =012 p =028 p =030
M: Mean SD: Standard Deviation F: F-distribution p: p-value

With respect to the question whether they think that they will be/were suc-
cessful in this workshop, in general, students indicated a medium level of confi-
dence in PreQ. Inexperienced students (boys) showed a significantly higher level of
confidence in IntermediateQ, where the confidence of experienced students (girls)
dropped. However, in PostQ, no significant result was obtained between the two
groups of students (see Table 8.2). No statistical differences were observed within
the group of experienced students throughout the workshop. Although, a paired-
samples t-test showed a significant result between the PreQ and IntermediateQ
within the group of inexperienced students, ¢(22) = 2.42, p = 0.025, M D = 0.55.
Moreover, within this group, the result between the PreQ and PostQ just barely
missed the level of significance, ¢(22) = 2.00, p = 0.059, M D = 0.41.

Concerning the difficulty of programming, on average, the experienced students
(girls) found programming more difficult throughout the workshop. In PreQ, the
experienced students showed a significantly higher level of difficulty for program-
ming compared to the inexperienced students (boys). However, in IntermediateQ
and PostQ, no significant result occurred, where experienced students found pro-
gramming less difficult and inexperienced students found it more difficult (see Ta-
ble 8.2). Having a closer look into each group of students, a paired-samples t-test
yielded a significant result within the group of inexperienced students between the
IntermediateQ and PostQ, ¢(21) =2.12, p =0.047, M D = 0.43.

8.4.2.2 Interest.

In order to calculate a measure of students’ interest in programming, they responded
to the two questions in PreQ (Q7-Q8), IntermediateQ, and PostQ (Q8-Q9). On
average, all students showed a high tendency (all M > 4) towards programming
and learning how to program from the beginning until the end of the workshop.

8. From Block-based Programming to Construction of Smart Objects 127

With this regard, no significant result occurred between and within each group of
students throughout the workshop (see Table 8.2).

Additionally, in the open-ended question "I find programming..." in preQ, 26
students associated programming with a positive attitude, except one who called
it "boring", and one did not give any answer, both inexperienced (boys). Most
of students (16) found it "very interesting", "interesting", or "fascinating"; others
responded: "cool", "great", "good", etc. Four students additionally reasoned that
programming allows them to be creative; for example "good and interesting, because
you can let your creativity run freely". These four were all part of the experienced
students (girls) group. This question was not asked again in Intermediate@ and
PostQ, and it was replaced by the two questions regarding the block-based pro-
gramming environment.

8.4.2.3 Enjoyment.

With respect to students’ enjoyment, we measured their responses to the three
questions in PreQ (Q3-Q5), IntermediateQ, and PostQ (Q4-Q6). In all question-
naires, students indicated a high level of enjoyment for programming in terms of
"programming is fun', and "I like programming", all M > 4 (see Table 8.2). There
were no statistical differences between and within each group of students through-
out the workshop. When the students were asked whether they are excited about
this workshop, in PreQ, experienced students (girls) indicated a broad approval,
while inexperienced students (boys) were undecided (see Table 8.2). In contrast, a
paired-samples t-test showed that in PostQ, inexperienced students indicated that
they are excited about the workshop significantly more than what they showed at
the beginning, ¢(21) = 2.12, p = 0.047, M D = 0.43. Experienced students showed
lower level of excitement in IntermediateQQ compared to the beginning and to the
end of the workshop; no significant result occurred within this group of students.
Students were also required to respond to the open-ended question "what do
you think of this workshop?" in PreQ, and "what do you particularly like about the
first workshop day?" in IntermediateQ, and "what did you particularly like about the
workshop?" in PostQ. In preQ, ten inexperienced students (boys) did not answer
the question, or wrote that they do not know it. Among the remaining 18 stu-
dents, three of the experienced students (girls) mentioned that they "appreciate the
workshop offer"; the other three were "excited" or "interested" about the workshop.
Other inexperienced students (12) addressed different thoughts; for instance, "the
importance of programming for their future", or "having insights into smart homes".
Overall, their expectation towards the workshop appeared positive. 25 students an-
swered the question in IntermediateQ. Working with "LED lights" or "displays" was
mentioned by eight students (all inexperienced), and "programming" was addressed

128 8.4. Experimental Evaluation

by seven of them (one experienced, and seven inexperienced). The scope of action
(e.g., opportunities to be creative) was mentioned by three (all experienced); other
answers (seven) were "fun', "everything', or "the instruction and explanation'. In
PostQ, five students mentioned the "scope of freedom in working" (two experienced,
and three inexperienced), five "programming" (two experienced, and three inexpe-
rienced), seven "constructing or decorating the tangible objects" (one experienced,
and six inexperienced), and four addressed the "smart home" (one experienced, and
three inexperienced). Other students (five) wrote other statements, such as the "the
programming environment" (two), "explanation' (two), or "everything" (one); two
students did not answer. Furthermore, in IntermediateQ, students were asked "what
did you particularly dislike about the first workshop day?", and in Post(Q they were
asked "what did you particularly dislike about the workshop?". In IntermediateQ, all
experienced students (girls) complained about the "length", too much "repetition",
or what they called "boring"; for example, they mentioned that they have done it
(working with micro-controllers and LED lights) one time before. Among the inex-
perienced students (boys), six complained about "too much explanation', and that
they would like to have "more experiment". In PostQ, experienced students mostly
complained about the "missing variety of tasks"; for example, they indicated that
it is better to divide the programming tasks, or provide more tasks. Likewise, two
inexperienced students still were not happy with "too much explanation". Overall,
we can conclude that the opportunity to work on personally meaningful projects
within the smart home, as well as programming caused the enjoyment. However,
experienced students were not happy with the variety and level of programming
tasks in the workshop.

8.4.3 Programming Experience
8.4.3.1 Students’ experience with the programming environment

The IntermediateQ and PostQ included eight questions asking students to reflect on
how they perceive the ease-of-use (Q10-Q11), ease-of-learning (Q12-Q13), usefulness
(Q14-Q15), and satisfaction of the programming environment (Q16-Q17).

With respect to the ease-of-use, no significant result occurred with respect to
the students’ prior experience, neither in the IntermediateQ nor in the PostQ (see
Table 8.3). However, within each group of students, the ease-of-use was rated signif-
icantly higher in the Post@Q compared to the IntermediateQ. A paired-samples t-test
showed that both experienced (girls) and inexperienced students (boys) liked to use
the programming environment more in the PostQ compared to the IntermediateQ,
t(6) =3.16, p =0.025, M D = 0.67, and ¢(22) = 3.78, p=0.001, M D = 0.64, respec-
tively. Similarly, experienced students thought that the programming environment

8. From Block-based Programming to Construction of Smart Objects 129

Table 8.3: Students’ Experience of Using the Block-based Programming Application

Ease-of-Use Ease-of-Learning Usefulness Satisfaction
R Like to Tt is casy Ttis casy ~ Written instruction | Complete tasks) T am satisfied
Questionnaires) ! ¢ Tt is useful | It is great At
use it to use to learn is not needed quickly with it
Eaperienced 433 (0.82) 4.00 (1.26) 333 (0.52) 433 (0.52) | 4.00 (1.10) 4.33 (0.52)
. M (SD)
Intermediate@ 5 7
o (é’m ‘ 423 (0.81) 4.05 (1.00) 3.95 (0.90) 427 (0.77) | 4.23 (0.69) 4.27 (0.70)
ANOVA i i F(1,26) = 2.59, i)
Results F <l F <l b=0.12 F <1 F <l F <1
ff‘”(%”‘)"“d 450 (0.55) 3.50 (0.55) 3.66 (1.03) 4.33 (0.82) | 4.33 (0.52) 4.67 (0.82)
PostQ Ineaperienced a1 (0 06T 4 (0 Lo (0 6 e e | g e e
M (8D) 441 (0.73) 450 (0.67) 4.32 (0.72) 127 (0.63) 4.36 (0.66) | 4.45 (0.60) 4.45 (0.60)
ANOVA F(1,26) = 1.82, F(1,26) = 6.69, F(1,26) = 3.29,
Results p =019 et p = 0.016 p = 0.081 Pl Pl Pl
M: Mcan SD: Standard Deviation F: F-distribution p: p-value

is significantly easier to use in the PostQ in comparison to the IntermediateQ,
t(6) =2.71, p=10.042, M D = 0.83. However, no significant difference was observed
for inexperienced students from the IntermediateQ towards the PostQ, #(22) = 1.79,
p=0.088, M D = 0.36.

Concerning the ease-of-learning, in general, students mentioned that they could
easily learn how to use the programming environment (all M > 4). No significant
result was obtained between and within each group of students in both Interme-
diateQ and PostQ. Concerning the use of the programming environment without
instruction, both group of experienced (girls) and inexperienced students (boys)
showed a high tendency towards using the environment without instruction in In-
termediateQ; no significant result was obtained within each group of students. In
PostQ, inexperienced students rated this question significantly higher compared
to the experienced students (see Table 8.3). Descriptively, experienced students
would prefer to use the environment together with a written instruction more than
inexperienced students.

With respect to the usefulness of programming environment, on average, all stu-
dents found it highly useful (all M > 4). No significant differences were obtained
between and within each group of students in both IntermediateQ and PostQ. With
respect to the question whether they are able to complete the tasks quickly with
the programming environment, the inexperienced students (boys) showed (descrip-
tively) broad approval, while the experienced students (girls) were undecided in
both IntermediateQ and Post Q. Likewise, no significant difference was observed
between and within each group of students, neither in IntermediateQ nor in PostQ
(see Table 8.3).

Concerning the students’ satisfaction, all students indicated a high level of sat-
isfaction after using the block-based programming environment (all M > 4); no sig-
nificant difference was observed concerning the students prior experience, neither in
the IntermediateQ nor in the PostQ. Likewise, no significant result occurred within
each group of students from the IntermediateQ towards the PostQ (see Table 8.3).

130 8.4. Experimental Evaluation

With respect to the block-based programming environment, the following open-
ended questions were also asked in IntermediateQ and in PostQ: "what do you like
about the programming environment?", and "what do you dislike about the program-
ming environment?". In IntermediateQ, being "easy to use", or "easy to understand"
was mentioned by five students as a positive aspect of the programming environ-
ment. Seven students appreciated the "clarity", or "arrangement"', two did not
answer, and two said "nothing". Other (twelve) answers included "blocks", "every-
thing", and "not complez". In PostQ, twelve students mentioned that it is easy
to understand, learn, use, or program, five indicated that they liked "everything",
and three liked the "clarity" or "arrangement". Other answers (five) included the
"scope of action" or "programming"; three students did not answer this question.
Furthermore, with respect to what the students dislike about the programming en-
vironment, in IntermediateQ, seven students did not answer the question or wrote
that they do not know, and four indicated that it was "complicated", or "diffi-
cult". Five students mentioned "specific functionality issue" (e.g., too simple), and
six addressed "usability issues" (e.g., block labels are sometimes unclear). Oth-
ers (six) answered "nothing" to this question. In PostQ, eleven students did not
answer or wrote that they do not know, and seven mentioned "nothing". Four stu-
dents indicated "specific functionality issue" (e.g., sometimes it is difficult to find
blocks), and three mentioned "usability issue" (e.g., the meaning of some block la-
bels are unclear), and three students complained about the "complexity". Across
the four questions regarding the programming environment, we could not make a
clear distinction between the answers given by experienced (girls) and inexperienced
students (boys).

The qualitative results support the notion that programming and using blocks
were respectively perceived easier and more useful towards the end of the workshop.
Although the question was to find out students’ experience with the programming
environment, these results reflect their overall programming experience and learn-
ing. This is in line with their performance in PrePQ and PostPQ — as their per-
formance increased in PostPQ, the programming environment was perceived easier
to use and to understand.

8.4.3.2 Programming a tangible and smart object

Concerning programming a tangible object (Q1 in IntermediateQ), both experienced
(girls) and inexperienced students (boys) indicated a high level of usefulness of pro-
gramming a tangible object, M =4.00 | SD = 0.63, and M =4.36 | SD = 0.79,
respectively; no significant difference was observed. Likewise, students found pro-
gramming a real smart object useful in the PostQ (Q1); M =4.50 | SD = 0.55 for
experienced, and M =4.41 | SD =0.73 for inexperienced students. No significant

8. From Block-based Programming to Construction of Smart Objects 131

difference occurred neither between nor within each group of students. With respect
to these scores, all students in both groups indicated a higher (descriptively) level of
usefulness of programming a real smart object in PostQ compared to programming
a tangible object in IntermediateQ.

8.5 Integration and Discussion

One of the main contributions of this study is to show how programming a tangi-
ble object and then make it smart in the context of smart homes influences young
learners’ attitude towards programming. With respect to the enjoyment, the result
shows that experienced students (girls), did not enjoy (descriptively) the first day of
the workshop. It also shows that the introduction to programming and basic com-
ponents (e.g., micro-controller, LED lights and OLED displays), as well as seeing
the impacts of programming in a tangible object reduced their excitement about
the workshop. This finding is in line with the outcome of the question regarding
their confidence, where their level of confidence in being successful in this workshop
also decreased (descriptively). However, the results show that their level of enjoy-
ment and confidence increased at the end of the workshop. The qualitative outcome
shows that among the experienced students, feeling "bored" affects their enjoyment
of the first day of the workshop. However, having an opportunity to construct a
smart-lighting object in the context of smart homes was enjoyed the most among
them during the second day. We can conclude that the implementation of program-
ming concepts into tangibles and the construction of a smart object in the context
of smart homes can foster their confidence and increase the level of enjoyment of
the workshop.

In contrast, inexperienced students (boys) showed different attitudes regard-
ing confidence and enjoyment. Our findings show that their level of excitement
about the workshop, as well as their confidence in being successful in the workshop
increased from the beginning towards the end of the workshop. The qualitative
results show that improvement in the level of enjoyment among the inexperienced
students is due to having an opportunity to program a tangible object during the
first day. This improvement continue during the second day, as they could work
creatively on constructing the smart-lighting object and apply their newly gained
programming skills to it. As there was some evidence in the students’ comments, it
seems substantial enough to report that the differences between groups are due to
their prior experience. In line with this result is the finding by [KPO05] that young
learners’ performance and interest towards programming depend on their prior ex-
perience rather than gender. Please note that all students had prior experience with
block-based programming environments. Additionally, experienced students (girls)

132 8.5. Integration and Discussion

previously worked with tangibles (in this case, Arduino boards and LED lights),
while inexperienced students (boys) did not work with them.

The results obtained with respect to the students’ confidence in programming
are encouraging, as experienced students (girls) found programming significantly
more difficult compared to the inexperienced students (boys), at the beginning of
the workshop. Likewise, at the beginning of the workshop, inexperienced students
found themselves significantly better in programming compared to the experienced
students. Although the level of inexperienced students’ confidence in programming
was higher from the beginning towards the end of the workshop, no significant re-
sults occurred at the middle and at the end of it, where experienced students found
themselves significantly better in programming. This finding shows that our study
was successful to establish a clearer picture of programming for both groups of stu-
dents. Furthermore, the slope from beginning to the end of the workshop indicates
that inexperienced students found programming significantly more difficult. How-
ever, they still rate themselves better (descriptively) in programming at the end of
the workshop compared to the beginning. This result is in line with the learners’
programming performance that shows a significant difference within the group of
experienced students, and between two groups at the end of the workshop, while
it was not significant at the beginning. This is supporting the results presented
in [Bei05,Sny14, GCO02] that girls come to the technical courses with less confidence,
but their confidence level increases with experience.

With respect to the students experience while using the block-based program-
ming environment, descriptively, all students found it more useful and showed a
higher level of satisfaction at the end of the workshop compared to the beginning
of it. Experienced students (girls) indicated that they prefer a written instruction
to use the environment at the end of the workshop, while inexperienced students
(boys) found it easy to learn, and they indicated that a written instruction is not
needed in order to use the environment. Having a closer look to the results obtained
from our study, we found that all students found the environment significantly eas-
ier to use at the end of the workshop. It shows that experienced students found
the environment easy to use and they like to use it, but with a written instruction,
while inexperienced students do not need the instruction to use the environment.

In this study, young learners were enabled to use block-based programming to
learn basic programming concepts, and implement these concepts into a tangible
object in order to construct a personally meaningful smart-lighting object in the
context of a smart home. Our main take-home message is that by experiencing the
application of programming in the context of state-of-the-art smart technologies, the
young learners may have a clearer picture of what programming is and what are the
capabilities of it to have significant impacts in their daily life. Moreover, while it is
not possible to trace our result back to the programming of a real object embedded

8. From Block-based Programming to Construction of Smart Objects 133

in smart home or smart object construction activities, it might be possible that the
usage of these had a positive influence on the learners’ confidence, enjoyment, and
interest in dealing with programming, as well as enable them to link their creativity
to the technologies which are available in smart homes. Therefore, we conclude
that students can benefit from situating block-based programming and smart object
construction activities in the context of real life-size smart homes, concerning their
programming experience and attitudes towards programming. Our results suggest
that the tight connection of the programming workshop to a real life-size smart
home can especially improve the learners’ confidence and programming skills.

8.5.1 Limitations

There are several limitations of our study. The first limitation relates to the gender
disparity of our participants. As the recruitment for our programming workshop
was out of the researchers’ control, not much could be done to tackle this issue.
A second similar limitation of this study is that all of participants came from the
same school and all were interested to learn programming. The lack of diversity
in participants’ background could have affected our results. Although this can be
considered as minor limitation, we seek to address it in our future work. Our
sample size (28 8t" grade students) is the third similar limitation which is too small
to generalize the findings of this study on a large scale. While we tend to expand
the scope of this work, having a larger sample size is our major concern which needs
to be addressed in future iterations.

The second limitation of this study is related to the number of programming
tasks, and the period of the programming workshop. The findings of this study are
limited to the diversity of the programming tasks and period of the programming
workshop. Thus, it is an interesting approach for future work to find out whether
further number of sessions would have any effect on the findings.

The third and final limitation of this study relates to the control group. This
is a major concern for future work in order to find out the impacts of block-based
programming on young learners’ performance and attitude over time without using
smart homes. Similarly, using text-based programming environments in the con-
text of smart homes can be another pathway of future work to evaluate the young
learners’ trajectories of attitude towards programming and performance throughout
a programming course.

8.6 Conclusion

With the increasing usage of block-based programming to design introductory pro-
gramming environments, it is becoming increasingly important to not only introduce

134 8.6. Conclusion

young learners to programming but also show them the application of it in real life.
The evaluation of young learners’ performance and attitude before and after inte-
grating block-based programming into the hot topic of smart homes allows us to
compare their understanding of basic programming concepts and attitude towards
programming. With respect to our results, we conclude that the infrastructures
provided by smart homes can be beneficial for introductory programming courses
and workshops as a meaningful area of application in both CSE and CHI research
communities. Through analysis of the learners’ responses to repeated questionnaires
and programming questions, we are starting to learn how their attitude and perfor-
mance changed over time when they used block-based programming alone compared
to using it to construct a smart-lightning object in the context of smart homes. The
next step is to apply these findings to design and implement more introductory pro-
gramming courses and environments, enabling young learners to rapidly prototype
and experiment with new applications for smart environments. However, in order
to enable the learners to experience new technologies, learn programming and see
its impacts in a real tangible object, the present study establishes a sound basis.

Chapter 9

Conclusion

In this thesis, a novel experience-based educational approach was presented. This
approach enables researchers and educators to evaluate the engagement of inexpe-
rienced and young learners within the computer science discipline from two per-
spectives: (i) their acquisition of programming skills, and (ii) their perceptions and
attitudes towards programming and computer science, more broadly. We designed,
developed and implemented several non-formal programming training sessions (from
2-hour to 4-day) in order to foster the learners’ programming skills and improve their
attitudes towards programming.

The former approach provides young learners with a computer programming
area that requires them to experience smart tangible objects (e.g., toy robots and
doll houses) but not smart life-size environments (e.g., smart homes and living labs).
Thus, in case of the existence of a motivating context where the learners can actively
participate and experience latest research efforts on a real-world environment and
learn about the future, it is the only approach. We showed how visual block-
based programming enables inexperienced and young learners to learn and author
programs which is applied in real life-size smart environments, mobile robots and
micro-controllers. Later in this thesis, we introduced a methodology to analyze
the learner’s trajectories of attitudes towards programming and their programming
performance over time. The required data is collected via repeated questionnaires
and programming questions from the beginning towards the end of each experience.

In comparison to the previous work, the main advantages of the proposed ap-
proach are as follows:

e Showing the potential for using educational block-based programming envi-
ronments to make modern and powerful technologies accessible for inexperi-
enced and young learners.

136

e Using the programming environments in order to help the learners to solve
programming problems in the context of real-world environments and tangible
objects.

e Development, implementation, and evaluation of non-formal programming
training sessions, with the goal to teach basic programming concepts to the
learners, and to arouse their interest in programming and computer science.

e Showing how the learners’ programming performance and attitude towards
programming change over time, when they apply their new gained program-
ming skills in a tangible object and make it smart in the context of real life-size
smart homes.

e Studying the construction process of smart and tangible objects as interactive
artifacts with physical computing material. These artifacts are integrated into
real life-size smart homes in order to engage the learners with a focus on their
programming performance and attitude.

Apart from the aforementioned advantages, we introduced a block-based rapid
programming tool for educators and researchers to help learners to have a short
time span between the development of ideas and their implementation in real-world
environments. Using the proposed tool leverages the interest of learners for pro-
gramming and helps them by adequate computational supports. Apart from the
development and implementation of this tool , its effectiveness and ease of use were
evaluated, thereby comparing two helping features (supplementary documents) to
support learners, namely presenting examples and explaining procedures.

The information related to the comparison of Scratch with Google Blockly in
fostering the learners’ programming skills and improving their attitudes towards
programming was presented. These two block-based programming editors have
been chosen as (i) Scratch is popular in current educational use of block-based
programming, and (ii) Google Blockly is used in design and development of BEESM.
Thus, it can be used by future researchers and educators as a starting point to
describe under what circumstances a given block-based programming editor is a
better choice to foster interest and programming skills among inexperienced and
young learners, especially girls.

The findings from an investigation of how implementation of programming in a
real object and make it smart can leverage the young learner’ interest in program-
ming, and, at the same time, support the acquisition of programming skills were
presented. During longer (2- and 4-day) periods of programming training sessions,
learners were introduced to basic programming concepts based on block-based pro-
gramming, and learned how to implement them in a real object to make it smart.
This explicit intervention allows educators and researchers to quickly adopt their

9. Conclusion 137

training sessions to provide more opportunities for their learners to learn program-
ming and apply new gained skills to construct a smart tangible object.

In the case of evaluating inexperienced and young learners’ programming per-
formance and attitudes towards programming (which is the primary goal of this
thesis) and in comparison to the existing approaches, our approach has four main
advantages as follows:

(1) All programming questions are slightly different from each other in all training
sessions to ensure that learners read all questions carefully and identify the
correct solution based on the question.

(2) In addition to prepared slides (for oral explanation), we used supplemen-
tary documents (including an explanation of necessary blocks and hardware
components) in order to help the learners to work with the programming en-
vironment and components, and minimize and control the instructor effects.

(3) In addition to the quantitative data (which is collected through close-ended
questions), we collected and analyzed qualitative data using open-ended ques-
tions to support the quantitative data.

(4) Learners’ attitudes, programming performance and experience were evaluated
in the context of smart homes, smart tangible artifacts and a combination of
both of them, using block-based programming environments.

Therefore, concerning the main emphasis of this thesis, an extensive educational
block-based programming approach was presented which extends the application
area of designing smart objects to the state-of-the-art area of real-world smart envi-
ronments (in Chapter 3). This approach shows the potential for using block-based
programming to make state-of-the-art smart technologies accessible for inexperi-
enced and young learners. Furthermore, regarding the primary goal of this thesis,
we introduced the learners to personally meaningful state-of-the-art smart technolo-
gies in the context of smart homes. This motivates them to begin with programming
activities and to take part in learning programming in the future.

With respect to gender and prior experience, the results (in Chapter 5) showed
that inexperienced girls performed better in order to solve programming problems.
However, inexperienced boys showed a higher interest in learning programming. In
contrast, experienced girls both performed better and showed a hight tendency to-
wards programming learning opportunities than experienced boys. Furthermore, we
had a closer look (in Chapter 7) into the programming performance and attitude to-
wards programming among both experienced and inexperienced girls. Experienced
girls showed higher interest in the construction of smart objects, while inexperienced

138

girls were impressed by learning basic programming concepts with block-based pro-
gramming. In addition, programming performance increased among inexperienced
girls when they showed a higher level of confidence after working with the block-
based programming environment. Similarly, when it came to construction of a smart
object which is integrated into the smart homes (in Chapter 8), experienced stu-
dents (girls) did not show a high level of enjoyment and confidence when they only
worked with the programming environments. However, when they were enabled to
apply their gained programming skills into a tangible object and make it smart,
they showed a higher level of confidence and enjoyment. In general, we conclude
that programming performance and attitude towards programming is more based
on young learners’ prior experience than gender difference.

Being well aware that many researchers and educators do not have immediate
access to real life-size smart environments, we aim to introduce our learners to an
innovative, unique environment which provides possibilities of how computer science
is connected to real-world environments and to their daily life. We support learners
and motivate them to learn general purposes of programming via a visual block-
based programming tool. This enables them to program and see its impacts on real
life-size smart homes, mobile robots and micro-controllers. The results show that
with this tool, learners are able to program successfully in the context of smart and
tangible objects and environments by themselves. In this respect, visual block-based
programming environments are suitable to simplify programming and to remove
difficulties for inexperienced and young learners. Additionally, we can conclude
that smart objects and homes provide a motivating and fascinating context for the
learners to begin with programming activities and experience new technologies.

We would also like to emphasize that in our studies, we directly asked school
teachers to come to us with their interested students. In this respect, teachers
need to allocate a time slot in order to come with a group of students, limiting the
possible number of students attending our training sessions and working with the
programming environment.

Future studies with a larger sample size should focus on possible influences of
young learners’ gender and competence levels (e.g., prior programming knowledge)
with respect to block-based programming and tangible smart objects and environ-
ments. In future work, young learners should be enabled to practice self-paced and
to perform more creative tasks in a longer period of time, following their own ideas
in the smart tangible objects and environments (i.e., formal programming training
sessions as part of the students’ regular school curriculum). Including self-paced
and creative tasks will also help to better adapt the training sessions to different
levels of students’ prior knowledge, and it becomes easier to capture the interest
and performance of the individual learners. In future iterations of this work, we
need control groups, including students with different gender, prior programming

9. Conclusion 139

experience, socio-economic status and from different reigns in order to generalize the
findings. Including a control group will help us to have two groups of participants
in each phase of the research. For instance, one group starts with programming
activities, using block-based programming and smart tangible objects and envi-
ronments, while the other group uses neither block-based programming nor smart
tangible objects and environments. Another question for future work is to ascer-
tain when young learners can move from block-based programming environments to
pure programming IDEs, using traditional text-based code syntax. More detailed
knowledge about learners’ performance and their attitudes is necessary in order to
adapt the learning environment to individual learning prerequisites in an optimal
way. However, in order to enable young learners to experience new technologies,
foster their interest in learning programming and see its impacts in real life-size
smart environments and objects, this thesis establishes a sound basis.

Bibliography

[ADRWOO]

[AH16]

[AMWW15]

[B*15]

[Baul5]

[BBDP15]

[BBE+09]

ATKINSON, Robert K. ; DERRY, Sharon J. ; RENKL, Alexander ;
WORTHAM, Donald: Learning from examples: Instructional princi-
ples from the worked examples research. In: Review of educational
research 70 (2000), Nr. 2, S. 181-214

A1vALOGLOU, Efthimia ; HERMANS, Felienne: How kids code and
how we know: An exploratory study on the Scratch repository. In:
Proceedings of the 2016 ACM Conference on International Comput-
ing Education Research, 2016, S. 53-61

AsHROV, Adiel ; MARRON, Assaf ; WEISS, Gera ; WIENER, Guy: A
use-case for behavioral programming: an architecture in JavaScript
and Blockly for interactive applications with cross-cutting scenarios.
In: Science of Computer Programming 98 (2015), S. 268-292

BLIKSTEIN, Paulo u. a.: Computationally enhanced toolkits for chil-
dren: historical review and a framework for future design. In: Foun-
dations and Trends® in Human—Computer Interaction 9 (2015), Nr.
1, S. 1-68

BAu, David: Droplet, a blocks-based editor for text code. In: Jour-
nal of Computing Sciences in Colleges 30 (2015), Nr. 6, S. 138-144

Bau, David ; BAau, D A. ; DAwsoN, Mathew ; Pickens, C S.:
Pencil code: block code for a text world. In: Proceedings of the 1jth
International Conference on Interaction Design and Children, 2015,
S. 445-448

BRUCKMAN, Amy ; BIGGERS, Maureen ; ERICSON, Barbara ; McK-
LIN, Tom ; DimoND, Jill ; DISALVO, Betsy ; HEWNER, Mike ; NI,

142

BIBLIOGRAPHY

[BECCOS]

[BEEOG]

[BEE07]

[Bei05]

[Ben12]

[BGK*17]

[BLV+17]

[BN84]

Lijun ; YARDI, Sarita: " Georgia computes!" improving the comput-
ing education pipeline. In: ACM SIGCSE Bulletin 41 (2009), Nr. 1,
S. 86-90

BUECHLEY, Leah ; EISENBERG, Mike ; CATCHEN, Jaime ; CROCK-
ETT, Ali: The LilyPad Arduino: using computational textiles to in-
vestigate engagement, aesthetics, and diversity in computer science
education. In: Proceedings of the SIGCHI conference on Human
factors in computing systems, 2008, S. 423-432

BUECHLEY, Leah ; ELUMEZE, Nwanua ; EISENBERG, Michael: Elec-
tronic/computational textiles and children’s crafts. In: Proceedings
of the 2006 conference on Interaction design and children, 2006, S.
49-56

BUECHLEY, Leah ; EISENBERG, Mike ; ELUMEZE, Nwanua: Towards
a curriculum for electronic textiles in the high school classroom. In:
Proceedings of the 12th annual SIGCSE conference on Innovation
and technology in computer science education, 2007, S. 28-32

BEISSER, Sally R.: An examination of gender differences in ele-

mentary constructionist classrooms using Lego/Logo instruction. In:
Computers in the Schools 22 (2005), Nr. 3-4, S. 7-19

BenNITTI, Fabiane Barreto V.: Exploring the educational potential of
robotics in schools: A systematic review. In: Computers €& Education
58 (2012), Nr. 3, S. 978-988

BAu, David ; GrAY, Jeff ; KELLEHER, Caitlin ; SHELDON, Josh ;
TURrRBAK, Franklyn: Learnable programming: blocks and beyond.
In: Communications of the ACM 60 (2017), Nr. 6, S. 72-80

BroLL, Brian ; LEDECzI, Akos ; VOLGYESI, Peter ; SALLAI,
Janos ; MAROTI, Miklos ; CARRILLO, Alexia ; WEEDEN-WRIGHT,
Stephanie L. ; VANAGS, Chris ; SWARTZ, Joshua D. ; Lu, Melvin: A
visual programming environment for learning distributed program-
ming. In: Proceedings of the 2017 ACM SIGCSE Technical Sympo-
stum on Computer Science Education, 2017, S. 81-86

BIRRELL, Andrew D. ; NELSON, Bruce J.: Implementing remote pro-
cedure calls. In: ACM Transactions on Computer Systems (TOCS)
2 (1984), Nr. 1, S. 39-59

BIBLIOGRAPHY 143

[Bral7]

[BS11]

[CDP00]

[CGN19

[Chel8]

[CLKL14]

[Cofl7]

[Coh02]

[Com17]

[Corl7]

BrAY, Tim: The javascript object notation (json) data interchange
format. 2017. — Forschungsbericht

BARR, Valerie ; STEPHENSON, Chris: Bringing computational think-
ing to K-12: what is Involved and what is the role of the computer
science education community? In: Acm Inroads 2 (2011), Nr. 1, S.
48-54

COOPER, Stephen ; DANN, Wanda ; PAUscH, Randy: Alice: a
3-D tool for introductory programming concepts. In: Journal of
computing sciences in colleges 15 (2000), Nr. 5, S. 107-116

CHu, Sharon L. ; GARCIA, Brittany ; NAM, Beth: Understanding
Context in Children’s Use of Smartwatches for Everyday Science Re-
flections. In: Proceedings of the 18th ACM International Conference
on Interaction Design and Children, 2019, S. 83-93

CHERRYPY: CherryPy Homepage. 2018. — Retrieved January 1,
2020 from https://cherrypy.org/

CHARTERS, Polina ; LEE, Michael J. ; KO, Andrew J. ; LOKSA,
Dastyni: Challenging stereotypes and changing attitudes: the effect
of a brief programming encounter on adults’ attitudes toward pro-
gramming. In: Proceedings of the 45th ACM technical symposium
on Computer science education, 2014, S. 653-658

COFFEY, John W.: A study of the use of a reflective activity to
improve students’ software design capabilities. In: Proceedings of
the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education, 2017, S. 129-134

COHOON, J M.: Recruiting and retaining women in undergraduate
computing majors. In: ACM SIGCSE Bulletin 34 (2002), Nr. 2, S.
48-52

CoMMITTEE, Computer Science Framework S.: K-12 computer
science framework. 2017. — Retrieved January 10, 2020 from
http://www.k12cs.org

CORPORATION, Microsoft: Why Furope’s girls aren’t studying
STEM. 2017. — Retrieved January 10, 2020 from http://hdl.
voced.edu.au/10707/427011

144

BIBLIOGRAPHY

[DHB*04]

[DLY " 06]

[DSK05]

[ELP17]

[Fet18)]

[Fral4]

[FSK*13]

[FSR*10]

[GBBB19]

DEY, Anind K. ; HaMmID, Raffay ; BECKMANN, Chris ; L1, Tan ; Hsu,
Daniel: a CAPpella: programming by demonstration of context-
aware applications. In: Proceedings of the SIGCHI conference on
Human factors in computing systems, 2004, S. 33—40

DAvIDOFF, Scott ; LEE, Min K. ; Y1u, Charles ; ZIMMERMAN, John ;
DEY, Anind K.: Principles of smart home control. In: International
conference on ubiquitous computing Springer, 2006, S. 19-34

DAGDILELIS, Vassilios ; SARTATZEMI, Maya ; KAGANI, Katerina:
Teaching (with) robots in secondary schools: some new and not-so-
new pedagogical problems. In: Fifth IEEE International Conference
on Advanced Learning Technologies (ICALT’05) IEEE, 2005, S. 757—
761

ERrTL, Bernhard ; LUTTENBERGER, Silke ; PAECHTER, Manuela:
The impact of gender stereotypes on the self-concept of female stu-
dents in STEM subjects with an under-representation of females. In:
Frontiers in psychology 8 (2017), S. 703

FETTE, lan: The websocket protocol. 2018. — Retrieved January 10,
2020 from https://tools.ietf.org/html/rfc6455

FRASER, Neil: Google blockly-a visual programming editor. 2014.
— Retrieved January 10, 2020 from https://developers.google.
com/blockly/

FLANNERY, Louise P. ; SILVERMAN, Brian ; KAZAKOFF, Elizabeth R.
; BERS, Marina U. ; BONTA, Paula ; RESNICK, Mitchel: Designing
ScratchJr: Support for early childhood learning through computer
programming. In: Proceedings of the 12th International Conference
on Interaction Design and Children, 2013, S. 1-10

FREY, Jochen ; STAHL, Christoph ; ROFER, Thomas ; KRIEG-
BRUCKNER, Bernd ; ALEXANDERSSON, Jan: The DFKI competence
center for ambient assisted living. In: International Joint Conference
on Ambient Intelligence Springer, 2010, S. 310-314

GORBACHEVA, Elena ; BEEKHUYZEN, Jenine ; BROCKE, Jan vom
; BECKER, Jorg: Directions for research on gender imbalance in
the IT profession. In: Furopean Journal of Information Systems 28
(2019), Nr. 1, S. 43-67

BIBLIOGRAPHY 145

(GC02]

[GCNB1S]

[GSHT18]

[HA17]

[HC15]

[HCB14]

[HH12]

[HH18]

[HHKM17]

GURER, Denise ; Camp, Tracy: An ACM-W literature review on
women in computing. In: ACM SIGCSE Bulletin 34 (2002), Nr. 2,
S. 121-127

GARCIA, Brittany ; CHU, Sharon L. ; NAM, Beth ; BANIGAN, Colin:
Wearables for learning: examining the smartwatch as a tool for sit-
uated science reflection. In: Proceedings of the 2018 CHI conference
on human factors in computing systems, 2018, S. 1-13

GUTIERREZ, Francisco J. ; SIMMONDS, Jocelyn ; HITSCHFELD,
Nancy ; CAsaNovA, Cecilia ; SOTOMAYOR, Cecilia ; PENA-ARAYA,
Vanessa: Assessing software development skills among K-6 learn-
ers in a project-based workshop with scratch. In: 2018 IEEE/ACM
40th International Conference on Software Engineering: Software
Engineering Education and Training (ICSE-SEET) IEEE, 2018, S.
98-107

HERMANS, Felienne ; AIVALOGLOU, Efthimia: Teaching software
engineering principles to k-12 students: a mooc on scratch. In: 2017
IEEE/ACM 39th International Conference on Software Engineering:
Software Engineering Education and Training Track (ICSE-SEET)
IEEE, 2017, S. 13-22

HuANG, Justin ; CAKMAK, Maya: Supporting mental model ac-
curacy in trigger-action programming. In: Proceedings of the 2015
ACM International Joint Conference on Pervasive and Ubiquitous
Computing, 2015, S. 215-225

Hicks, Andrew ; CATETE, Veronica ; BARNES, Tiffany: Part of
the game: Changing level creation to identify and filter low quality
user-generated levels. In: FDG, 2014

HwaNG, Amy ; HOEY, Jesse: Smart home, the next generation:
Closing the gap between users and technology. In: 2012 AAAI Fall
Symposium Series, 2012

HOLWERDA, Robert ; HERMANS, Felienne: A usability analysis of
blocks-based programming editors using cognitive dimensions. In:
2018 IEEE symposium on visual languages and human-centric com-

puting (VL/HCC) IEEE, 2018, S. 217-225

HEIMGAERTNER, Florian ; HETTICH, Stefan ; KOHLBACHER, Oliver
; MENTH, Michael: Scaling home automation to public buildings: A

146

BIBLIOGRAPHY

[HLC16]

[HM10]

[HMW12]

[Inv18]

[JKGM18]

[JLY04]

[KABT11]

[Kaf16]

[Kall5]

distributed multiuser setup for OpenHAB 2. In: 2017 Global Internet
of Things Summit (GIoTS) IEEE, 2017, S. 1-6

HuanNg, Justin ; LAau, Tessa ; CAKMAK, Maya: Design and evalua-
tion of a rapid programming system for service robots. In: 2016 11th
ACM/IEEE International Conference on Human-Robot Interaction
(HRI) IEEE, 2016, S. 295-302

HARVEY, Brian ; MONIG, Jens: Bringing “no ceiling” to Scratch:
Can one language serve kids and computer scientists. In: Proc.
Constructionism (2010), S. 1-10

HAREL, David ; MARRON, Assaf ; WEIsS, Gera: Behavioral pro-
gramming. In: Communications of the ACM 55 (2012), Nr. 7, S.
90-100

INVENTOR, MIT A.. MIT App Inventor Homepage. 2018. —
Retrieved January 7, 2020 from http://appinventor.mit.edu/
explore/

JIMENEZ, Yerika ; KAPOOR, Amanpreet ; GARDNER-MCCUNE,
Christina: Usability Challenges that Novice Programmers Expe-
rience when Using Scratch for the First Time. In: 2018 IEEE
Symposium on Visual Languages and Human-Centric Computing

(VL/HCC) IEEE, 2018, S. 327-328

JIANG, Li ; Liu, Da-You ; YANG, Bo: Smart home research. In:
Proceedings of 2004 international conference on machine learning
and cybernetics (IEEE Cat. No. 04EX826) Bd. 2 IEEE, 2004, S.
659-663

Ko, Andrew J. ; ABRAHAM, Robin ; BECKWITH, Laura ; BLACK-
WELL, Alan ; BURNETT, Margaret ; ERwWIG, Martin ; SCAFFIDI,
Chris ; LAWRANCE, Joseph ; LIEBERMAN, Henry ; MYERS, Brad
u.a.: The state of the art in end-user software engineering. In:
ACM Computing Surveys (CSUR) 43 (2011), Nr. 3, S. 1-44

KAFrAL, Yasmin B.: From computational thinking to computational
participation in K-12 education. In: Communications of the ACM
59 (2016), Nr. 8, S. 26-27

KALELIOGLU, Filiz: A new way of teaching programming skills to
K-12 students: Code. org. In: Computers in Human Behavior 52
(2015), S. 200210

BIBLIOGRAPHY 147

[KB13]

[KD18]

[KDS09]

[KDS15]

[KHO04]

[Kit18]

[KLPK15]

[KLR16]

[KLS*14]

KArAL, Yasmin B. ; BURKE, Quinn: The social turn in K-12 pro-
gramming: moving from computational thinking to computational
participation. In: Proceeding of the 44th ACM technical symposium
on computer science education, 2013, S. 603-608

KATTERFELDT, Eva-Sophie ; DITTERT, Nadine: Co-designing Smart
Home Maker Workshops with Girls. In: Proceedings of the Confer-
ence on Creativity and Making in Education, 2018, S. 100-101

KATTERFELDT, Eva-Sophie ; DITTERT, Nadine ; SCHELHOWE,
Heidi: EduWear: smart textiles as ways of relating computing tech-
nology to everyday life. In: Proceedings of the 8th International
Conference on Interaction Design and Children, 2009, S. 9-17

KATTERFELDT, Eva-Sophie ; DITTERT, Nadine ; SCHELHOWE,
Heidi: Designing digital fabrication learning environments for Bil-
dung: Implications from ten years of physical computing workshops.
In: International Journal of Child-Computer Interaction 5 (2015),
S. 3-10

KoENIG, Nathan ; HOWARD, Andrew: Design and use paradigms
for gazebo, an open-source multi-robot simulator. In: 2004
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS)(IEEE Cat. No. 04CH37566) Bd. 3 TEEE, 2004, S.
2149-2154

KiTr, Smart H.: LittleBits Homepage. 2018. — Re-
trieved January 5, 2020 from https://littlebits.com/blog/
introducing-the-smart-home-kit/

Kawm, Hyeong R. ; LEE, Sung-Ho ; PARK, Taejung ; Kim, Chang-
Hun: RViz: a toolkit for real domain data visualization. In: Telecom-
munication Systems 60 (2015), Nr. 2, S. 337-345

KHAN, Nazish Z. ; LUuXTON-REILLY, Andrew: Is computing for
social good the solution to closing the gender gap in computer sci-
ence? In: Proceedings of the Australasian Computer Science Week
Multiconference, 2016, S. 1-5

KArAlL, Yasmin B. ; LEE, Eunkyoung ; SEARLE, Kristin ; FIELDS,
Deborah ; KapLAN, Eliot ; Lul, Debora: A crafts-oriented approach
to computing in high school: Introducing computational concepts,
practices, and perspectives with electronic textiles. In: ACM Trans-
actions on Computing Education (TOCE) 14 (2014), Nr. 1, S. 1-20

148

BIBLIOGRAPHY

[KMO6]

[KM16]

[KMAO4]

[KPO5)

[Lab18]

[Lag05]

[Lag08]

[Lav08]

[Lew10]

[Lin19]

Ko, Andrew J. ; MYERS, Brad A.: Barista: An implementation
framework for enabling new tools, interaction techniques and views
in code editors. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, 2006, S. 387-396

KEREKI, Inés F. ; MANATAKI, Areti: “Code Yourself” and “A
Programar”: a bilingual MOOC for teaching Computer Science to
teenagers. In: 2016 IEEE Frontiers in Education Conference (FIE)
IEEE, 2016, S. 1-9

Ko, Andrew J. ; MYERS, Brad A. ; Aung, Htet H.: Six learning
barriers in end-user programming systems. In: 2004 IEEE Sympo-
stum on Visual Languages-Human Centric Computing IEEE, 2004,
S. 199-206

KELLEHER, Caitlin ; PAuscH, Randy: Lowering the barriers to
programming: A taxonomy of programming environments and lan-
guages for novice programmers. In: ACM Computing Surveys
(CSUR) 37 (2005), Nr. 2, S. 83-137

LAB, Human-Centered R.: A standalone Blockly programming appli-
cation, integrated with ROS. https://github.com/hcrlab/code_
it. Version: 2018

LAGESEN, Vivian A.: Extreme Make-over?: The Making of Gender
and Computer Science. STS-report 71/2005. Trondheim: Centre
for Technology and Society, Norwegian University of Science and
Technology, 2005

LAGESEN, Vivian A.: A cyberfeminist utopia? Perceptions of gender
and computer science among Malaysian women computer science
students and faculty. In: Science, Technology, € Human Values 33
(2008), Nr. 1, S. 527

LAVRAKAS, Paul J.: Encyclopedia of survey research methods. Sage
Publications, 2008

Lewis, Colleen M.: How programming environment shapes percep-
tion, learning and goals: logo vs. scratch. In: Proceedings of the 41st
ACM technical symposium on Computer science education, 2010, S.
346-350

LiN, Fred: A web-based visual programming editor for Arduino.
https://github.com/BlocklyDuino/BlocklyDuino. Version: 2019

BIBLIOGRAPHY 149

[LK14]

[LPKWO6]

[Mak18]

[Mak19]

[Mat04]

[MB11]

[MCK17]

[MEM16]

[MGB15]

MGG ™14]

LYE, Sze Y. ; KoH, Joyce Hwee L.: Review on teaching and learning
of computational thinking through programming: What is next for
K-127 In: Computers in Human Behavior 41 (2014), S. 51-61

LIEBERMAN, Henry ; PATERNO, Fabio ; KLANN, Markus ; WULF,
Volker: End-user development: An emerging paradigm. In: End
user development. Springer, 2006, S. 1-8

MAKECODE: MakeCode Homepage. 2018. — Retrieved January 10,
2020 from https://www.microsoft.com/en-us/makecode

MAKEBLOCK: mBlock - The educational programming software.
2019. — Retrieved January 17, 2020 from http://www.mblock.cc

MATARIC, Maja J.: Robotics education for all ages. In: Proc.
AAAT Spring Symposium on Accessible, Hands-on AI and Robotics
FEducation, 2004

MILLNER, Amon ; BAAFI, Edward: Modkit: blending and extending
approachable platforms for creating computer programs and inter-
active objects. In: Proceedings of the 10th International Conference
on Interaction Design and Children, 2011, S. 250-253

MERKOURIS, Alexandros ; CHORIANOPOULOS, Konstantinos ;
KaAMEAS, Achilles: Teaching programming in secondary education
through embodied computing platforms: Robotics and wearables.
In: ACM Transactions on Computing Education (TOCE) 17 (2017),
Nr. 2, S. 1-22

MAHADEVAN, Anand ; FREEMAN, Jason ; MAGERKO, Brian: An
interactive, graphical coding environment for EarSketch online using

Blockly and Web Audio API. (2016)

MARTINEZ, Cecilia ; GOMEZ, Marcos J. ; BENOTTI, Luciana: A
comparison of preschool and elementary school children learning
computer science concepts through a multilanguage robot program-
ming platform. In: Proceedings of the 2015 ACM Conference on
Innovation and Technology in Computer Science Education, 2015, S.
159-164

MCcLAREN, Bruce M. ; GOG, Tamara van ; GANOE, Craig ; YARON,
David ; KARABINOS, Michael: Exploring the assistance dilemma:
Comparing instructional support in examples and problems. In:

150

BIBLIOGRAPHY

[MI18]

[MKP*08]

[ML18]

[MM19]

[MPA19]

[MRR*10]

[MRT03]

[MSABAL1]

International Conference on Intelligent Tutoring Systems Springer,
2014, S. 354-361

MELCER, Edward F. ; ISBISTER, Katherine: Bots & (Main) frames:
exploring the impact of tangible blocks and collaborative play in an
educational programming game. In: Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems, 2018, S. 1-14

MYERS, Brad A. ; Ko, Andrew J. ; PARK, Sun Y. ; STYLOS, Jeffrey
; LATozA, Thomas D. ; BEATON, Jack: More natural end-user soft-
ware engineering. In: Proceedings of the 4th international workshop
on End-user software engineering, 2008, S. 30-34

MILNE, Lauren R. ; LADNER, Richard E.: Blocks4All: overcoming
accessibility barriers to blocks programming for children with visual
impairments. In: Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems, 2018, S. 1-10

MicHAELIS, Joseph E. ; MuTLU, Bilge: Supporting Interest in Sci-
ence Learning with a Social Robot. In: Proceedings of the 18th ACM
International Conference on Interaction Design and Children, 2019,
S. 71-82

MARIKYAN, Davit ; PAPAGIANNIDIS, Savvas ; ALAMANOS, Elefthe-
rios: A systematic review of the smart home literature: A user
perspective. In: Technological Forecasting and Social Change 138
(2019), S. 139-154

MALONEY, John ; RESNICK, Mitchel ; RUSK, Natalie ; SILVERMAN,
Brian ; EASTMOND, Evelyn: The scratch programming language

and environment. In: ACM Transactions on Computing Education
(TOCE) 10 (2010), Nr. 4, S. 1-15

MONTEMERLO, Michael ; ROy, Nicholas ; THRUN, Sebastian: Per-
spectives on standardization in mobile robot programming: The
Carnegie Mellon navigation (CARMEN) toolkit. In: Proceedings
2003 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2003)(Cat. No. 03CH37453) Bd. 3 IEEE, 2003, S.
24362441

MEERBAUM-SALANT, Orni ; ARMONI, Michal ; BEN-ARI,
Mordechai: Habits of programming in scratch. In: Proceedings
of the 16th annual joint conference on Innovation and technology in
computer science education, 2011, S. 168-172

BIBLIOGRAPHY 151

[MSS*13]

MWW12]

[Mye8&6]

[Mye90]

[NHCWO04]

[PA19)]

[Pap80]

[Pap02]

[PB15]

[PEHO7]

MuUBIN, Omar ; STEVENS, Catherine J. ; SHAHID, Suleman ;
AL MAHMUD, Abdullah ; DONG, Jian-Jie: A review of the applica-
bility of robots in education. In: Journal of Technology in Education
and Learning 1 (2013), Nr. 209-0015, S. 13

MARRON, Assaf ; WEIss, Gera ; WIENER, Guy: A decentralized
approach for programming interactive applications with javascript
and blockly. In: Proceedings of the 2nd edition on Programming
systems, languages and applications based on actors, agents, and
decentralized control abstractions. 2012, S. 59-70

MYERS, Brad A.: Visual programming, programming by example,
and program visualization: a taxonomy. In: ACM sigchi bulletin 17

(1986), Nr. 4, S. 59-66

MyYERS, Brad A.: Taxonomies of visual programming and pro-
gram visualization. In: Journal of Visual Languages & Computing
1 (1990), Nr. 1, S. 97-123

NOURBAKHSH, Illah R. ; HAMNER, Emily ; CROWLEY, Kevin ;
WILKINSON, Katie: Formal measures of learning in a secondary
school mobile robotics course. In: IEEFE International Conference on
Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 Bd. 2
IEEE, 2004, S. 1831-1836

PEREIRA ATENCIO, Carlos: Ardublockly. 2019. — Retrieved January
15, 2020 from https://ardublockly.embeddedlog.com

PAPERT, Seymour: Mindstorms: Children, computers, and powerful
ideas. Basic Books, Inc., 1980

PAPERT, Seymour: Hard Fun. 2002. — Retrieved January 8, 2020
from http://www.papert.org/articles/HardFun.html

PricE, Thomas W. ; BArNES, Tiffany: Comparing textual and
block interfaces in a novice programming environment. In: Proceed-
ings of the eleventh annual international conference on international
computing education research, 2015, S. 91-99

Powers, Kris ; EcoTT, Stacey ; HIRSHFIELD, Leanne M.: Through
the looking glass: teaching CSO with Alice. In: Proceedings of the
38th SIGCSE technical symposium on Computer science education,
2007, S. 213-217

152

BIBLIOGRAPHY

[PHO7]

[PHEC17]

[PP03)]

[PR12]

[PR14]

[QBBD13]

[QCGT09]

[QL17]

[RA10]

PArsSoNs, Dale ; HADEN, Patricia: Programming osmosis: Knowl-
edge transfer from imperative to visual programming environments.
In: Procedings of The Twentieth Annual NACCQ Conference, 2007,
S. 209-215

PArAMASIVAM, Vivek ; HUANG, Justin ; ELLIOTT, Sarah ; CAKMAK,
Maya: Computer science outreach with end-user robot-programming
tools. In: Proceedings of the 2017 ACM SIGCSE Technical Sympo-
stum on Computer Science Education, 2017, S. 447-452

PLAYER ; PROJECTS, Stage: GAZEBO Homepage. 2003. — Retrieved
January 21, 2020 from http://gazebosim.org/

PRzYBYLLA, Mareen ; ROMEIKE, Ralf: My Interactive Garden—A
Constructionist Approach to Creative Learning with Interactive In-
stallations in Computing Education. In: Constructionism: Theory,
Practice and Impact. Proceedings of Constructionism 2012 (2012),
S. 395-404

PrzyBYLLA, Mareen ; ROMEIKE, Ralf: Physical Computing and
Its Scope-Towards a Constructionist Computer Science Curriculum
with Physical Computing. In: Informatics in Education 13 (2014),
Nr. 2, S. 241-254

QIu, Kanjun ; BUECHLEY, Leah ; BAAFr1, Edward ; DuBow, Wendy:
A curriculum for teaching computer science through computational
textiles. In: Proceedings of the 12th international conference on in-
teraction design and children, 2013, S. 20-27

QUIGLEY, Morgan ; CONLEY, Ken ; GERKEY, Brian ; FAusT, Josh
; FOOTE, Tully ; LEIBS, Jeremy ; WHEELER, Rob ; NG, Andrew Y.:
ROS: an open-source Robot Operating System. In: ICRA workshop
on open source software Bd. 3 Kobe, Japan, 2009, S. 5

QIAN, Yizhou ; LEHMAN, James: Students’ misconceptions and
other difficulties in introductory programming: A literature review.
In: ACM Transactions on Computing Education (TOCE) 18 (2017),
Nr. 1,S.1-24

REDDY, Y M. ; ANDRADE, Heidi: A review of rubric use in higher ed-
ucation. In: Assessment €& evaluation in higher education 35 (2010),
Nr. 4, S. 435-448

BIBLIOGRAPHY 153

[RI06]

[RMB+98]

[RMH14]

[RMMH*09)

[RMSS96]

[Rom07]

[SB16]

[SDP*15]

[SKL16]

REPENNING, Alexander ; [OANNIDOU, Andri: What makes end-user

development tick? 13 design guidelines. In: End user development.
Springer, 2006, S. 51-85

REsSNICK, Mitchel ; MARTIN, Fred ; BERG, Robert ; Borovoy,
Rick ; CoOLELLA, Vanessa ; KRAMER, Kwin ; SILVERMAN, Brian:
Digital manipulatives: new toys to think with. In: Proceedings of the
SIGCHI conference on Human factors in computing systems, 1998,
S. 281-287

RuUF, Alexander ; MUHLING, Andreas ; HUBWIESER, Peter: Scratch
vs. Karel: impact on learning outcomes and motivation. In: Pro-
ceedings of the 9th Workshop in Primary and Secondary Computing
FEducation, 2014, S. 50-59

RESNICK, Mitchel ; MALONEY, John ; MONROY-HERNANDEZ, An-
drés ; Rusk, Natalie ; EASTMOND, Evelyn ; BRENNAN, Karen ;
MILLNER, Amon ; ROSENBAUM, Eric ; SILVER, Jay ; SILVERMAN,
Brian u.a.: Scratch: programming for all. In: Communications of
the ACM 52 (2009), Nr. 11, S. 60-67

REsNICK, Mitchel ; MARTIN, Fred ; SARGENT, Randy ; SILVERMAN,
Brian: Programmable bricks: Toys to think with. In: IBM Systems
journal 35 (1996), Nr. 3.4, S. 443-452

ROMEIKE, Ralf: Applying creativity in CS high school education:
criteria, teaching example and evaluation. In: Proceedings of the
Seventh Baltic Sea Conference on Computing Education Research-
Volume 88, 2007, S. 87-96

SULLIVAN, Amanda ; BERS, Marina U.: Girls, boys, and bots: Gen-
der differences in young children’s performance on robotics and pro-
gramming tasks. In: Journal of Information Technology Education:
Innovations in Practice 15 (2016), S. 145-165

SPYROPOULOU, Natalia ; DEMOPOULOU, Gerasimoula ; PIER-
RAKEAS, Christos ; KOUTSONIKOS, Toannis ; KAMEAS, Achilles: De-
veloping a computer programming mooc. In: Procedia Computer
Science 65 (2015), S. 182-191

SHIM, Jaekwoun ; KwON, Daiyoung ; LEE, Wongyu: The effects of
a robot game environment on computer programming education for

elementary school students. In: IEEE Transactions on Education 60
(2016), Nr. 2, S. 164-172

154

BIBLIOGRAPHY

[SKR+10]

[Snal9]

[Sny14]

[Str09]

[SVMPYS]|

[SWYM17]

[TPO12]

[UMPYHLI14]

[WAS*+18]

[Weil9]

SALDEN, Ron J. ; KOEDINGER, Kenneth R. ; RENKL, Alexander ;
ALEVEN, Vincent ; MCLAREN, Bruce M.: Accounting for beneficial
effects of worked examples in tutored problem solving. In: Fduca-
tional Psychology Review 22 (2010), Nr. 4, S. 379-392

SNAP4ARDUINO: Snap4Arduino Homepage. 2019. — Retrieved Jan-
uary 6, 2020 from http://snap4arduino.rocks

SNYDER, Thomas D.: Mobile Digest of Education Statistics, 2013.
NCES 2014-086. In: National Center for Education Statistics (2014)

STRECKER, Kerstin M.: Informatik fir Alle-wie viel Program-
mierung braucht der Mensch?, University of Gottingen, Diss., 2009

SWELLER, John ; VAN MERRIENBOER, Jeroen J. ; PAAs, Fred G.:
Cognitive architecture and instructional design. In: Educational psy-
chology review 10 (1998), Nr. 3, S. 251-296

SENTANCE, Sue ; WAITE, Jane ; YEOMANS, Lucy ; MACLEOD,
Emily: Teaching with physical computing devices: the BBC mi-
cro: bit initiative. In: Proceedings of the 12th Workshop on Primary
and Secondary Computing Education, 2017, S. 87-96

TecLAW, Robert ; PRICE, Mark C. ; OSATUKE, Katerine: Demo-
graphic question placement: Effect on item response rates and means
of a veterans health administration survey. In: Journal of Business
and Psychology 27 (2012), Nr. 3, S. 281-290

UR, Blase ; McMaNus, Elyse ; PAK YONG HO, Melwyn ; LITTMAN,
Michael L.: Practical trigger-action programming in the smart home.
In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, 2014, S. 803-812

WEINTROP, David ; AFzAL, Afsoon ; SALAC, Jean ; FRANCIS,
Patrick ; Li, Boyang ; SHEPHERD, David C. ; FRANKLIN, Diana:
Evaluating CoBlox: A comparative study of robotics programming
environments for adult novices. In: Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems, 2018, S. 1-12

WEINTROP, David: Block-based programming in computer science
education. In: Communications of the ACM 62 (2019), Nr. 8, S.
22-25

BIBLIOGRAPHY 155

[WH17]

[WHHF18]

[WL15]

[WROS]

[WW15]

[WW17a]

[WW17b)

[Zim17]

[ZLP18|

WEINTROP, David ; HOLBERT, Nathan: From blocks to text and
back: Programming patterns in a dual-modality environment. In:
Proceedings of the 2017 ACM SIGCSE technical symposium on com-
puter science education, 2017, S. 633638

WEINTROP, David ; HANSEN, Alexandria K. ; HARLOW, Danielle B.
; FRANKLIN, Diana: Starting from Scratch: Outcomes of early com-
puter science learning experiences and implications for what comes
next. In: Proceedings of the 2018 ACM Conference on International
Computing Education Research, 2018, S. 142-150

Woo, Jong-bum ; LiM, Youn-kyung: User experience in do-it-
yourself-style smart homes. In: Proceedings of the 2015 ACM in-
ternational joint conference on pervasive and ubiquitous computing,
2015, S. 779-790

WITTWER, Joerg ; RENKL, Alexander: Why instructional explana-
tions often do not work: A framework for understanding the effec-

tiveness of instructional explanations. In: Educational Psychologist
43 (2008), Nr. 1, S. 49-64

WEINTROP, David ; WILENSKY, Uri: Using Commutative Assess-

ments to Compare Conceptual Understanding in Blocks-based and
Text-based Programs. In: ICER Bd. 15, 2015, S. 101-110

WEINTROP, David ; WILENSKY, Uri: Between a block and a type-
face: Designing and evaluating hybrid programming environments.
In: Proceedings of the 2017 conference on interaction design and
children, 2017, S. 183-192

WEINTROP, David ; WILENSKY, Uri: Comparing block-based and
text-based programming in high school computer science classrooms.
In: ACM Transactions on Computing Education (TOCE) 18 (2017),
Nr. 1, S. 1-25

ZIMMERMAN, Bryant: Programming education for students of any
age: LEGO® education-mindstorms® EV3 robotics. In: Journal
of Computing Sciences in Colleges 33 (2017), Nr. 1, S. 42-43

Zu1, Rui ; LyTLE, Nicholas ; PRICE, Thomas W.: Exploring instruc-
tional support design in an educational game for K-12 computing
education. In: Proceedings of the 49th ACM Technical Symposium
on Computer Science Education, 2018, S. 747-752

Appendix A

Questionnaires and
Instructional Materials

158 A.1. Pre-questionnaire

A.1 Pre-questionnaire

Since we want to ask you both before and after the course, we need a code to assign your
answers. This is necessary so that the survey can be done anonymously.

What is the first letter of your mother's first name? I:I
What is the second letter of your father's first name? I:I
What is the third letter of your first name? I:I
Which day is your birthday? (for example, 27, if you were born on I:I
27/03/2000)

Please answer the following questions. There are no right or wrong answers. Your personal
opinion is important.

Yes No

Do you think that computer science is difficult
to understand?

Would you like to learn how to program? O O O O O

What grade would you give to your
programming skills?

A. Questionnaires and Instructional Materials 159

A.2 Post-questionnaire

In order to conduct the survey anonymously, we need your code again:

What is the first letter of your mother's first name?

What is the second letter of your father's first name?

What is the third letter of your first name?

Which day is your birthday? (for example, 27, if you were born on
27/03/2000)

HiNnn

Please answer the following questions. There are no right or wrong answers. Your personal
opinion is important.

Yes No
Is it easy to program with blocks? O O O O O
Do blocks help you to easily understand programs? O O O O O

Do you think that it is helpful to be able to see directly
in reality whether the program works as desired?

Do you think computer science is difficult to
understand?

Would you like to learn how to program? O O O O O

Block Code

Do you prefer to program with block or directly with

code syntax? = = = = =

Are you a boy or a girl? O Girl
[Boy

How old are you? ... years

A.3. Worked Example for Programming Task 1

160

uo
T1ybTTUHOOIPSg
330
ZHoBLUmoOoIpaq
330
IioermocIpaq
37O
SATIDHFUCOES(
330
IoopuooIYyleq
LT

IS TEHIS T TOIWooIY1Eg
37O
aybTTuocoayleq
5

urseq

ageBsny

J
_ yeaig aur]

aleu 126 o) NS0

aweu Jab

"}581 JNOA 10} JOMSUER 3] o2l 0] J9PJO Ul SPAJU JnOA uo paseq 31 dSueyd 01 Aly pue Aj|njaJed 11 peal ases|d
"op 03 paau NoA 1ey1 dsel ay3 03 a|dwexa Jejiwis e s iyl

A.3 Worked Example for Programming Task 1

161

A. Questionnaires and Instructional Materials

Instructional Procedure for Programming Task 1

A.4

uo

T1ybTTUOO TIPS
F30
ZioEeruooIpagq
F30
TY2BruooIpaqg
F30
SATIOYUOIES]
F30
IoopuiooIyleq
ZLT
1yfTeHIs T TOIWo0Iyleg
730
aybtmwooayleg
s

utseq

agebsny

= =

-

J3A25 JJ2UU0d

"¥se3 InoA Joj Jamsue 3y} pulj 03 JapJo u saSueyd AJessadau xew pue wayl mojjoj oy Ay pue Ajinjaued sdais ayy peal asealq

*yse3 JnoA ujop Jo 3.npadoud By SI S1yL

A.5. Worked Example for Programming Task 2

162

A.5 Worked Example for Programming Task 2

g¢ :eunfEA
cagbTTbuTATT :euwEy
L8 enTEA
cagbTTbuTATT :euwEy
ST :enfEA
cagbTTbuTATT :euwEy
05 :enfEA
cabrTbuTATT ewEN

aqeBsny

7 %m_m;

Lol Jafajur wopues 9 Jawwiples

saun) jeadal op

Sl - - I - owey 1o

|E=D oweu | o EETETED s op

B D s) wen ey |

JETVELR R VY « ejep JE

"}5e14n0A Joj Jamsue 3y 4aeal 0} JapJo Ul SPAAU InoA uo paseq 1l 3Gueyd 03 A1y pue Ajjnjaied i peas ases|d

"0p 03 paau NoA ey yse3 ay 03 3 duwexa Jejiuis e si siy|

163

A. Questionnaires and Instructional Materials

woy safajur wopue

0}

op

Sunees i « G »

o) CETE s

3¢ :ENTEA E

£1yBTTOUTATT :ouey
L8 :enTRA

B C=Th
— LD

mu.cm.mqm:.:?._”.ﬁ — - E am I
0§ :sufea

£1yBTTOUTATT :owWeN
ageBsny E

o) 3= Jes

Instructional Procedure for Programming Task 2

"Yse} InoA 1o} Jamsue ay} pulj 03 JapJo Ul sa8ueyd AJessadau dxew pue wayl mojjoj 03 Ay pue Ajnjaued sdals ayy peas ases|d
"§5e3 4noA Suiop Jo 34npa204d BY3 S SIYL

A.6

Appendix B

Questionnaires and
Programming Questions

166 B.1. Pre-questionnaire in the beesm-group

B.1 Pre-questionnaire in the beesm-group

Since we want to ask you both before and after the course, we need a code to assign your answers.
This is necessary so that the survey can be done anonymously.

What is the first letter of your mother's first name?

What is the second letter of your father's first name?

What is your birthday? (e.g. 27, if you were born on 27.03.2000)

Please answer the following questions. There are no right or wrong answers. Your personal opinion is
important.

No, not | Don’t
Yes, very atall know
Do you think programming is fun? O O O O O
Do you think you are good at programming? O O O O O O
Do you think programming is difficult to understand? O] O O] O
Would you like to learn how to program? O O O O O O

Here you can see two examples of block-based programming:

oo X80

» Q

(oe'¢

Setze Block 4 an den Anfang:

PP

o oo []

Yes No
Have you ever worked with a block-based programming O 0
environment?
No, not at
Yes, very good all

Can you program yet? O O O O O

B. Questionnaires and Programming Questions 167

B.2 Post-questionnaire in the beesm-group

In order to conduct the survey anonymously, we need your code again:

What is the first letter of your mother's first name?

What is the second letter of your father's first name?

What is your birthday? (e.g. 27, if you were born on 27.03.2000)

Please answer the following questions. There are no right or wrong answers. Your personal opinion is
important.

No, notat | Don’t
Yes, very all know
Do you think programming is fun? O O O O O O
Do you think you are good at programming? O O O O (] O
Do you think programming is difficult? O O O O m] [m}
Would you like to learn better how to program? O O O O O O
Do you find it easy to program with blocks? O O O O O O
Do you think it’s helpful if you program a real object?
E.g. the LED light and the micro-controller. = = = o o =
Don’t
Yes No know
Did you pay attention to the code that is generated "matching" the O O O O O O
blocks?
Do you think that the "edit code" function is helpful to better O O O O O O
understand your own program?
Do you think that the "Output" area (console) is helpful to O o O O O O
understand your own program?

I siverng Ardy Code

Zanien

& s e e e

@ veu @

Blocks Area

Code area

[——
Output area

168 B.2. Post-questionnaire in the beesm-group

Direct Dont’t
With blocks with code | Know
Po you prefer programming with block blocks or directly o o O o o o
in code?
Strongly Strongly Don’t
agree disagree know
| think the programming environment is easy to use. O [} O O O O

How old are you? .. years

B. Questionnaires and Programming Questions 169

B.3 Pre-questionnaire in the mBlock-group

Since we want to ask you both before and after the course, we need a code to assign your answers.
This is necessary so that the survey can be done anonymously.

What is the first letter of your mother's first name?

What is the second letter of your father's first name?

What is your birthday? (e.g. 27, if you were born on 27.03.2000)

Please answer the following questions. There are no right or wrong answers. Your personal opinion is
important.

No, not | Don’t
Yes, very atall know
Do you think programming is fun? O O O O O
Do you think you are good at programming? O O O O O O
Do you think programming is difficult to understand? O O O O O O
Would you like to learn how to program? O O O O O O

Here you can see two examples of block-based programming:

B
[T, MAUS °°
l--r‘ »
j=—--0-]
m -
—
—
Setze Block 4 an den Anfang:
| p
Q
Q
Ly R0 []

Yes No
Have you ever worked with a block-based programming O 0
environment?
No, not at
Yes, very good all

Can you program yet? O O O O O

170 B.4. Post-questionnaire in the mBlock-group

B.4 Post-questionnaire in the mBlock-group

In order to conduct the survey anonymously, we need your code again:

What is the first letter of your mother's first name?

What is the second letter of your father's first name?

What is your birthday? (e.g. 27, if you were born on 27.03.2000)

Please answer the following questions. There are no right or wrong answers. Your personal opinion is
important.

No, not Don’t
Yes, very atall know
Do you think programming is fun? O [} [} O [} O
Do you think you are good at programming? O [} [} O (m} O
Do you think programming is difficult? O O [} O O O
Would you like to learn better how to program? O O [} O [} O
Do you find it easy to program with blocks? O O [} O [} O
Do you think it’s helpful if you program a real object?
E.g. the LED light and the micro-controller. o o o o o -
Don’t
Yes No know
Did you pay attention to the code that is generated "matching" the O O O O O O
blocks?
Do you think the "Edit with the Arduino IDE" feature is helpful to O O O O O o
better understand your own program?
Do you think the "Output" area (console) is helpful to understand O o O O O O
your own program?

0l
3

Mitgler Arduino IDE editeren

| s I - Arduino weg:ma Blocks Area : p b
€ z Editing with the

I

o @ [] Arduino IDE
e setze Servo-Pin @ Winkel auf (fpos) Grad
)
E—

ndere [um @
T [pos °}
Spm— =

o5 ~ JR0Y 10

- setze [auf EEQ
et pos <EEEN
o a
[w - &ndere um @
2 @) o
— setze Servo-Pin @ Winkel auf {pos’ Grad

o

e —)
R —]

eesRsRaes | 1008 0.610

Output area

e [

a=a Sendel

B. Questionnaires and Programming Questions 171

direct Don’t
With blocks with code | know
Do you prefer programming with block blocks or directly O O o o) o
in code?
Strongly Strongly Don’t
agree disagree know
| think the programming environment is easy to use. [} [} O [} O O

How old are you? .o years

172 B.5. Pre-programming Question in the beesm-group

B.5 Pre-programming Question in the beesm-group

What is the first letter of your mother's first name?

What is the second letter of your father's first name?

What is your birthday? (e.g. 27, if you were born on 27.03.2000)

Task: on our small computer we have connected a small lamp to pin D3. Now we want to let the

light flash red 3 times with a 2 second break in between.

Imagine that you write a program for this. Put the available boxes in the correct logical order. Just

write down all numbers of the boxes in your desired order.

Note: Some blocks may appear more than once in your program and some blocks you may not

need in your program.

1 Connected to pin with @ light(s) 1 0

Connected to pin with light(s) 1 1

Connected to pin with @ light(s) 1 2

set light [1] to R[255] G[o] B[o] 13

iet light @ to R S’@ilﬁli 14

set light to R[0] G@ B [255]

15
set lamp @ to R@ G@ B@

16
set lamp to R@ G@ B@

0 N O G h~ WO N

9 set light to R[255 G[255] B[255

Solution:

delay Seconds

delay Second

delay Second

Display Pin

Repeat the following
commands times

Repeat the following
commands E times

Repeat the following
commands [3] times

B. Questionnaires and Programming Questions 173

B.6 Post-programming Question in the beesm-group

What is the first letter of your mother's first name?

What is the second letter of your father's first name?

What is your birthday? (e.g. 27, if you were born on 27.03.2000)

Task: on our small computer we have connected a small lamp to pin D3. Now we want to let the
light flash blue 6 times with a 1 second break in between.

Imagine that you write a program for this. Put the available boxes in the correct logical order. Just
write down all numbers of the boxes in your desired order.

Note: Some blocks may appear more than once in your program and some blocks you may not
need in your program.

1 Connected to pin with @ light(s) 1 0 delay Seconds

Connected to pin with light(s) 1 1 delay Second

Connected to pin with @ light(s) 12 delay Second

set light [1] to R[255] G[0] 8[o] 43 | Display Pin

set light @ to RE G@ B 14 Repeat the following

commands times

set light to R@ G@ B

1 5 Repeat the following
commands E times

set lamp @ to R@ G@ B@

1 6 Repeat the following
commands times

00 N o a0 A W DN

set lamp to R@ GIE' BIE'

9 set light to R[255] G [255] B[255

Solution:

174

B.7. Pre-programming Question in the mBlock-group

B.7 Pre-programming Question in the mBlock-group

What is the first letter of your mother's first name?

What is the second letter of your father's first name?

What is your birthday? (e.g. 27, if you were born on 27.03.2000)

Task: on our small computer we have connected a small lamp to pin 6. Now we want to let the

light flash red 3 times with a 2 second break in between.

Imagine that you write a program for this. Put the available boxes in the correct logical order. Just

write down all numbers of the boxes in your desired order.

Note: Some blocks may appear more than once in your program and some blocks you may not
need in your program.

1

0 N O G A~ WO N

9

Connected to pin with @ light(s)

Connected to pin @ with light(s)

Connected to pin IE with @ lights

set light to R G@ B@

set light to R@ G@ B

set light @ to R G@ B@

set lamp @ to RIE G@ B@

set lamp to R@ G@ B@

set light to R|255[G|255[B|255

Solution:

10
11
12
13

14

15

16

delay Seconds

delay Second

delay Second

Program

Repeat the following
commands times

Repeat the following
commands times

Repeat the following
command times

B. Questionnaires and Programming Questions

175

B.8 Post-programming Question in the mBlock-group

What is the first letter of your mother's first name?

What is the second letter of your father's first name?

What is your birthday? (e.g. 27, if you were born on 27.03.2000)

Task: on our small computer we have connected a small lamp to pin 6. Now we want to let the

light flash blue 6 times with a 1 second break in between.

Imagine that you write a program for this. Put the available boxes in the correct logical order. Just

write down all numbers of the boxes in your desired order.

Note: Some blocks may appear more than once in your program and some blocks you may not
need in your program.

1

00 N o G ~ WO N

9

Connected to pin E with @ light(s)

Connected to pin IE with light(s)

Connected to pin @ with @ lights

set light to R G@ B@

S

o

t light [1] to R[0] G[o] B [255]

set light @ to R@ G@ B

set lamp @ to R@ GIE' B@

set lamp to R@ G@ B@

0]
-

S

light [1] to R[255] G[255] B

Solution:

10
11
12
13

14

15

16

delay Seconds

delay Second

delay Second

Program

Repeat the following
commands times

Repeat the following
commands El times

Repeat the following
commands times

Appendix C

Questionnaires and
Programming Questions

178 C.1. Pre Questionnaire (PreQ)

C.1 Pre Questionnaire (PreQ)

Since we want to ask you both before and after the course, we need a code to assign your
answers. This is necessary so that the survey can be done anonymously.

What is the first letter of your mother's first name?

What is the second letter of your father's first name?

What is your birthday? (e.g. 27, if you were born on 27.03.2000)

Please answer the following questions. There are no right or wrong answers. Your personal
opinion is important.

How do you rate your programming skills?

Here are two examples of block-based programming:

= — e oo »eo

B imn U - . N -33‘, g
=== . e vy 3

O -
S Ep ¢Be m e
Yes No
Have you ever worked with a block-based . .

programming environment?

C. Questionnaires and Programming Questions 179

C.2 Intermediate Questionnaire (IntermediateQ)

In order to conduct the survey anonymously, we need your code again:

What is the first letter of your mother's first name?

What is the second letter of your father's first name?

What is your birthday? (e.g. 27, if you were born on 27.03.2000)

Please answer the following questions. There are no right or wrong answers. Your personal
opinion is important.

What do you think about programming with blocks?

180 C.3. Post Questionnaire (PostQ)

C.3 Post Questionnaire (PostQ)

In order to conduct the survey anonymously, we need your code again:

What is the first letter of your mother's first name?

What is the second letter of your father's first name?

What is your birthday? (e.g. 27, if you were born on 27.03.2000)

Please answer the following questions. There are no right or wrong answers. Your personal
opinion is important.

What do you think about programming with blocks?

How old are you?ccceeeeevvereverresrnnreenne years

C. Questionnaires and Programming Questions 181

C.4 Pre Programming Question (PrePQ)

What is the first letter of your mother's first name?

What is the second letter of your father's first name?

What is your birthday? (e.g. 27, if you were born on 27.03.2000)

Task: We have connected an LC display to our small computer (Arduino). We also connected a
SENSOR (light, distance, temperature, etc.) to a pin and wrote its VALUE into a VARIABLE. Now
we want the LC Display to show the VALUE for 2 seconds.

Imagine that you write a program for this. Put the available blocks in the correct logical order.
Just note down all numbers of the blocks in your desired order.

Note: Some blocks may appear more than once in your program and some blocks you may not
need in your program.

1 increase Variable by: 5 delay Seconds

2 clear Display 6 read Sensor at one Pin

3 Variable 7 set Variable to:

4 delay Seconds 8 show on Display :

Solution:

182 C.5. Intermediate Programming Question (IntermediatePQ)

C.5 Intermediate Programming Question (Intermedi-
atePQ)

hat is the first letter of your mother's first name?

hat is the second letter of your father's first name?

hat is your birthday? (e.g. 27, if you were born on 27.03.2000)

Task: We have connected an LC display to our small computer (Arduino). We also connected a SENSOR (light,
distance, temperature, etc.) to an analog pin and wrote its VALUE to a VARIABLE. IF the VALUE of the SENSOR
is less than 20, THEN we want the LC Display to show the VALUE for 5 seconds in line 2 and column 5.

Imagine that you write a program for this. Put the available blocks in the correct logical order. Just note down
all numbers of the blocks in your desired order.

Note: Some blocks may appear more than once in your program and some blocks you may not need in your
program.

set Display Position on Row Column 8 set Display Position on Row Column

clear Display

9 read Sensor at Pin

read Sensor at Pin

10 set Variable to:
delay Seconds I

11 show on Display :
increase Variable by: ——

Variable 1 2 delay Seconds

N oo g A W DN =

IF Variable | < 20 |: 13 IF Variable [>= 20

Solution:

C. Questionnaires and Programming Questions 183

C.6 Post Programming Question (PostPQ)

hat is the first letter of your mother's first name?

hat is the second letter of your father's first name?

hat is your birthday? (e.g. 27, if you were born on 27.03.2000)

M(: We have connected an LC display to our small computer (Arduino). We also connected a SENSOR (light,
distance, temperature, etc.) to an analog pin and wrote its VALUE to a VARIABLE. IF the VALUE of the SENSOR
is greater than 30, THEN we want the LC Display to show the VALUE for 3 seconds in line 1 and column 4, and
additionally the LC Display should blink green 3 times with a pause of 1 second.

Imagine that you write a program for this. Put the available blocks in the correct logical order. Just note down
all numbers of the blocks in your desired order.

Note: Some blocks may appear more than once in your program and some blocks you may not need in your
program.

set Display Position on Row Column 1 0 set Display Position on Row Column

clear Display 41 | read Sensorat Pin

read Sensor at Pi” 12 set Variable to:
delay Seconds

13 show on Display :

increase Variable by:

14 set color of Display tolzl II'
REPEAT the following
instructions Eltimes : 15 delay Second
IF Variable [> 30 |: 16 IF Variable]
REPEAT the following

instructions times : 17 seticoloriofDisplay tolzl El Iz]
set color of Display to II] 18 Variable

0 N oo a b~ O DN =

©

Solution:

C.7. Learners’ Responses to the Open-ended Questions

184

C.7 Learners’ Responses to the Open-ended Questions

S}I0M 3 |13un awi} Suoj Joy

8UIYIAWOS U0 YoM 0 3| | ‘BuNIdNg “7d a)eald pue
unjaney oL Td | Ul 03w noA anig pue uny i Td 1l puelsiapun noA Ji ‘ung ‘T4 “Buiwwesdoid puly | - €0
NGV CTd MOUY 10U 0P | InG ‘B ¥ 'ZTd
S9A"T1d SOA'TTd S3A'TTd
S9A 'TTd SPUBLY YHM payiom unj aney ||im | pue

20u3l4adxa Jo Jo| B paules aney

PUE 10| B pauies| aney | ey yuly} | '0Td
T

Apuuap ‘soj "8d

10| B paue3| | ‘S35 "Ld

S9A"9d

S9A'Gd

aJow 11q e weadoid pjnod | ‘yd

S9A"Ed

mou ue|d, 1eau8 e aney am pue

‘unj 40 10| B peY ‘10| B pauea) | ‘saA 7d
Jauped mau Aw yum ‘sap Td

pUE 10| & PauJea| 3.y | ‘s3A "0Td
|eal Jou ‘ON ‘6d

Ajsuuigap ‘s3j "84
SIUY X YUIYY | ‘S9A "Ld

313y 10| & UJe3| [|IM | 18y} 2AR1[3q | '0Td
AwAa w1 Ing ‘Ajjeas 1N “6d

05 YUIy} | ‘534 8d

0S YUY} | ‘53 "Ld

S3A'9d

3INS 10N 'Sd

mou |un syse) SulwwesSoud sy}
UIA|OS U POOS WE | 18y} YUIY} | ‘SIA "vd
S3A'td

mou ujwwesdoud

N0QE 10| B MOUY | 1BYY YUIYY | ‘S3A ‘Td
S3A 'Td

$9A "9d

05 july | "d

31039

doysyJom ay} auop aney | 3duls ‘SaA “hd
0S YUIY} | ‘24Nns Jou We | "g4

31039

UL 2J0W MOUY ARYULRp [IM | ‘Zd

op ||IM 3M Jeym uo spuadag ‘14

1504 pue DajeIpawR|
U] ¢ doysoM SIY3 Ul nyssa0ans aam / ¢ doysyiom
143 Ul [nJ$S822ns 3q [|IM noA yuly3 noA oq - 7D

9510M 10 J3133q 3¢ Ued ‘Aey0 11| 7Td
poo3 we | Jeyy yuly} | ‘T1d

3w} 0} Swy wioyy djay pasu s
13nq 0] e puelsiapun | ‘Ajlenay 0Td

p003 05 10N ‘ZTd

auly s11eypjuIyl | TTd

31 uJea| 03 Y| pjnom

| ‘13A3MOH Moy 3,uop | 194 pjaly siyy
ul SulysAue auop Jou aney | 3duIS 0Td

agesany ‘714 peg ‘6d poog os 1N “6d

po09 'T1d poog AJan 03 poo9 ‘g4 A8eiane,, aJe Asyy jeyy yuiyl | 'gd

G'£'0T 030 WoJ4 *0Td ageJany “£d peq 0s Jou inq ‘poos 0s 10N /d
'6d

poo9 'gd Suiyhiana 11438104 | 3snedaq ‘Yajad JoN ‘94

a8eJany *£d puelsiapun | pue poog Aiap ‘94 009 "4

1e3.8 Aj|eay "gd sweJgoud

pood Aiap 94

1e3.3 Ajjeay 'S4

33pajmouy Joud Jouly ‘7d

poo9 ‘gd

diay anoyaim 31 op

0} 3|qe 3G J0U PINOM ||} | INg ‘DUl “Zd
Jay1aq pue J31aq 198 AayL ‘Td

3|qepuedxa

$1311nq ‘2uaLadXa 31| B dARY | pd
3ulj SYJoM }l ‘po09 "g4

Aueld, 31| 123(qo |eau e 0} Wiay)
Suihdde awry pJey e aney [jim | Ing
‘awy Joys Aian e ul 10| e pauses] | ‘zd
13119q pue Jan1aq 123 Ay ‘14

jeu08 3|duls 938310 Ued | ‘deudny ‘td
P03 05 Jou We | Inq ‘peq 0s Jou we

1 B3 JUIY3 | “AjoeXS MOu Jou 0P | “Ed
21030 pasn

| ey} JuawuoJiaua SujwwesSold awes
UM 31 0P | JI ‘PUBISISPUN PINOM | ‘Zd
103j48d J0u 05 ‘Yonw weadosd 3,uop | ‘Td

¢SI1ts SuiwwiesSo.d InoA a3eu noA op MoH - TD

puae jou pip 6d - DIsOd

Da1eIpawIau|

D3.d

20uLIAdXa oYUM 7Td-£d | 3duaLIadXa YUM 94-Td

185

C. Questionnaires and Programming Questions

uoissajo.d

J3)e| Aw Joy |njasn aq pinod 3 ‘94
auninj Aw Joy

Juepodwi st 31 3sneasq ‘yanw Aisp "5d
193[qns INIIN 31 | “pd

uny si 31 asneag ‘¢d

110 3] & pauJed] Apeauje aney | ‘zd
uny si)1 asnedag ‘Td

a.niny Aw Joj

Jueliodul st 31 3sneasq ‘Yonw AJaA ‘Gd
Hns

|B21UY23] Ajurew pue uey INJIAl B WE | ‘td
s3uIy1 JuaJayIp

Auew weioid uea noA asnedag ‘¢4
18yl yam

Addey we | pue saiseq ay1 paulea| | ‘zd
uny s131 asneaaq ‘yonw Aap Td

SO Yum 31| Aw Ul op 03 30| B ey

M | pue 3ney | asnedaq ‘A|pes AJap ‘Gd
11 UIBD] 0} Y| | PUB IUIIS

|e43Ua3 pue sanewayew ayl| | ‘d
Bunsauaqul s1 31 asnedsg ‘gd

0} pai|dde aq uea SujwwesSoid
2J3ym mouy| 0} Juem | ‘SujwwesSoid
ulea| 03 Juem AjLiessadau Jou op | ‘zd
s3uly} 938310 03 U} 5131 BSNEIA] ‘SAA "Td

dAym ¢ BuiwwesSoud usea) 03 1| noA pjnom MoH - SO

eaJe sly) ul Ajjeinadsa ‘s3uiyy

U13S9J33Ul PUB MaU MOUY 03 395 [|IM | 'ZTd
(3ueyd) 193(0 3y weidoud |Im SM "TTd

(239 ‘s193ndwiod 8+3) SuIy) [eaIUYIBY YIM [B3P 0} MOY Bulules] 0Td

a|doad mau yum yiom o] ‘64

aney | op s||iys Sulwwe.Soid Jeym mouy 03 pJemio) unjoo| We | ‘g4

Suiwweloud /4

ulege S10SU3S Y3Im YJom I ‘94
SuiwwesSoud 3j1ym uny aney 1M | ‘G4
(1ueyd) 193[q0 3y3 yum Buiiom vd
-'td

ynsas jealde 9A31Yde 0} Wesj e ul w:_v_‘_o>> U

3y aM Jeym op ued ap ‘Td

¢doysyJom sty ur 03 premuoy Suijoo| no ale Jeym - ¥

SHOY3 SPaau pue pajedl|duod

1nq ‘Bunsausjul ‘|eanoesd ‘poo 714
Suiyawos

Aiy shemie ued noA ‘Bunsasaiul T1d
Suipuewsap g e Ing |003 Jadns *OTd

Bunsauaqul pue poos

os|e 3nq pajedl|duwiod ‘Bunsneyx3 ‘z1d
1003 'TTd

uny

st siy) ‘Ajjeai3o) pue |lam s3uyy Auew
auIqu09 0} aAeY noA |00d Aa 0T d
[003 5,31

SIWIIBWOS NG YNAUHP ‘Bunsneyx3 ‘6d
18319 '8d

op 0} unj pue Sunix3 */d

Sunpx3 z1d

Bunsaumui Ajjesy ‘114

Suipuewsap

Suiyrawos Ajqissod pue Suniox3 ‘oTd
Bunsaau| ‘64

uny

S, pue 31 uies| noA asnedsq 1ealn ‘g4
aininy

3y} 4o} Juepodwi pue Suiisaiaiu] '/d

“6d
10313 Ajjeay "84
Sunsauaul “/d

poo3 sjaa} 1 pue |edido| ‘Ase3 ‘94
uny 0s 5131 9SNLIIQ ‘1LY "Gd
Buiyoxa pue SunsasRu| vd
Sunsauaul “ed

poo3 s|aaj 11 pue [eaifo] ‘Aseq ‘94
Sunsasajul pue 1eal3 ‘Ung ‘G4

Sunoxa pue [ea1807 ‘d

Sunsaselu] ‘g4

wea)

£ Ul y40M noA uaym Ajjernadss ‘pajoadxs
QAR | UBY] UNJ 3JOUI PUB J3ISe] 7d

|e2130] pue Bunsauu] ‘94

unj yonw os s1 3 3sneasq ‘1eals ‘d
Sunsauaqul pue Suox3 ‘vd

9I| ut Jueyoduwi pue Sunidx3 ‘g4

urede SuiyiAiana

0op 03 9AeY NoA ‘Buiuui3aq ay3 1e axeIsiw
e 3xew noA Ji ‘pajealjdwod Aiap zd

C.7. Learners’ Responses to the Open-ended Questions

186

100] "€d
Auuny st yaiym Jueyd, Ajjernadss ‘1003 ‘zd
Sunsale| 1d

uny 210U U3A3 sI 427 pue sqI7 yum Suikejd Ing ‘siojenyoe
Meuipio, pue siosuas yym yiom 03 poos s, 3 yulys | ‘zd
‘Td

01504 ul(suejdasnoy 1iews) ¢123(qo Jews

|B3J B / D3)BIPALLIBIU] Ul (SI0JBNIIS PUE SIOSUBS) ¢ Wd)shs

|eaJ e SuiwwesSoad 1noge yuiyl noA op 1eym - 80

pajeal|duwiod ose 1nq Bul3saJaiul pue pooo ‘7Td
A pakofua | 'TTd

un4 4030/ e sy 0Td

-'6d
A13.031002 5131 3eY3 juIy} | ‘8d

11y3noay1 10| e ulea| noA pue 3l yum uny Jo 10| B 3ARY | */d

aA1jeald pue Ase3 ‘94

Bunsneyx3 ‘71d

WOSaMY "TTd

s8u1y3 o 10| e A1y uea noA pue uny Ajjeas s1 3| "0Td
AVO S 113nq Bunsneyx3 64

18313 pue Sunioxa 3 puly | ‘g4

pa3eal|duwod 31q 3[3| &SI 313G ‘Uny si | “Ld

18310 "G4 1002 pue Asea Aiap ‘94
10213513 "pd 002 Ana1d G4
a|dwis "ed pue}SIapuN 0} J3ISed §13| ‘po0D “pd
(Ao1es0(dX3-}j35) pJey 0s1ou sl "gd
J1351noA Aq a1ojdxa 03 paau noA sawiawos pue (221807 '7d (11 pooysiapun noA 1) pajoadxa aney | uey) JaIsea Yan| ‘zd
Apoaui0d Apdaui0d
wesSoud 03 sAem JuaJaip noA aAI3 Ay} asnedaq ‘|00) ‘Td weJS0ud 03 shem Jo 30 & noA anig Aay asnesaq poon ‘T4 | ¢SY20]q Yum Suiwuwe.3old 1noge yuiyy noA op 1eyMm - L0
Disod DOMRIPIULIBIUL | g ko ok kK KA KR KSR KRR
ON ‘ZTd S9A"9d
ON'TTd S3A"4d
ON ‘0Td 9\ ¥d
ON ‘6d S9A "€d
N "84 oA Td uawuoliAud SulwwesSoud
ON ‘/d S8A'Td [paseq-320|q e Y1m paxJom Jans noA 9AeY - 90

uny s11 asnedaq ‘Ajpe3 Aisp “T1d
Burisneyxa s, SaWAWOS
nq ‘uny s "2 ‘0T 03 0 Woi4 ‘0Td

SyJom jey) 3y Suiylawos

MO pUE 3 Op 0} MOY MOUY 0}

Juem | asneaaq Aidwis 31 op 03 1| | ‘ZTd
uny aq [Im

TTd | M3IBYIyUIYY | 3sneaaq ‘Yonw AJ3A "TTd
3A1e31D 3q pue Suiwwe.doid yum
uny 0 30| B 3ABY UBD NOA YUIY} | 0T d
aJnyn} ay3 Ul i paau

- d 18 JON '6d | |3Y3{UlY} 30U Op | I UJea]| 03 3| | ‘6d

uny s11 asnedaq ‘Ajpe3 Aiap ‘114 18318 5131 pue Aja1u 31 op ued | ‘g4 9J1| |euoissajoid Awl

Suipuewsap uny s 31 pue ainang ayy | ur aw djay ued 31 asnedsq ‘Yonw A1ap ‘gd

Asansi 2 ‘0T 010 Wod4 0Td | U}l paau noA asnedsq ‘yanw AJap /4 uny s 31 asnedaq ‘Ajpes Aisp *£d
‘6d

18943 5131 pue 11 PauJes) | ‘g4
unj s1 31 asneaaq ‘Apej8 Aiap *£d

uoissajoud
J1218] Aw Joy |njasn aq pnod 3| ‘94

13918 N3Ny
Aw 10§ |njasn ag pinom 31 Jeys yuIyd | ‘94

187

C. Questionnaires and Programming Questions

BUIYION ‘ZTd
BuYION 'TTd
0Td
-~ 6d

BuiyioN "84
saJjeuuonsanb Auew 00 /4

0€'T 89 |[IM 3 pue 3oy 003 513] ‘7Td

BuiyloN T1d

19139 8q UeJ Jey} swod suoneyadxa SoW}aWos "0Td
0€:T |13un $308 31 INq WIEM 003 S| ‘6d

SuiypoN '8d

saJjeuuolisanb Auely */d

3uipon 9
BuIyloN '5d
BuIYIoN pd
aJleuuonsanb ayy |} UsHo 3 “€d
u
duoje aw 33| pue Suiyiou auop sey Jauped A 'Td

3ulpoN ‘94

Jej 05 SuIyo 'Sd
BUILION ‘td

€d
(yueyd) 129100 34 BY3 YM PRYIOM JOU BARY B “Td
suom dyssaupied st Suiyihiang ‘1d

¢doysyiom 3y 3noge ax1| noA Jou pIp JYM - 0

SuiyiAiana Ajenyy ‘714

IV °TTd

s3ujy) mau Suju.ea| pue sJay3o yym uolesadoo) ‘0Td
-'6d
5420/ 341 Y3im BuIRIOM '8d
Suiwwesdoud /4

allsap

1o s yaiym Aem e ul (jueyd) 103lqo ay) weuSoid ued ap ‘94
(yueyd) 303(00 ay) Suiwwesdolq 54

anea) Aian sem | yd

(ueyd) 12900 [eau ay) Bunes0dap pue Sulwwesoid ‘¢4

u
ulphiang ‘Td

Je} 05 BulyAIana Jsowy ‘zTd

Y TTd

Sulylswos paulea) pue unj pey 3 ‘0Td
SYe3.q 3YL '6d

INS336 "8d

SuiwwesSoud */d

Buiyphiang 9d

Jey 05 Buiyihiang 'sd

da3s Aq da1s SuiyiAiana axew s td

wea) e uf s3uly} JuaJaylp weidoud ued noj g4
W[} LIOYS B Ul YyInw 05 pauJea| ey | ‘7d
uanid sdjay poo3 ase asayL ‘14

¢doysyiom ay3 3noge ax1| noA pip 1eyMm - ¥0

poog Jadns ‘714
10218 Ajjeay T1d
Suiioxa pue 1838 BuIy1awos op am Jey} |00 S 11 YuIYl | '0Td

3UI0SIMY "8
mau Suiyiawos A1y ued noA pue Buiioxs /4

uny pue Asea Ajjeay ‘94
1002 A131344 'Sd
Bunixs pue SunsauRu| ‘vd

poo3 pue 3unsasa| ‘z1d
awosamy ‘T1d

1002 pue Sunixa Aisp 0Td
[00) "6d

1002 AJ3 8d

P008 SI 31 1Ry YuIy} | *d

uny 40 10| B Sem 3| ‘94
LETORS

Buioxe 33nD ‘vd
€d

Appendix D

Questionnaires and
Programming Questions

190 D.1. Pre Questionnaire (PreQ)

D.1 Pre Questionnaire (PreQ)

Since we want to ask you both before and after the course, we need a code to assign your answers. This is
necessary so that the survey can be done anonymously.

What is the first letter of your mother's first name?
What is the second letter of your father's first name?
What is your birth-day? (e.g. 27, if you were born on 27.03.2000)

Please answer the following questions. There are no right or wrong answers. Your personal opinion is important.

yes, very no,
much not at all

1. Do you think you're good at programming? O [} O O O
2. Do you think you will be successful in this workshop? O O O O O
3. Do you think programming is fun? O [} O O O
4. Do you like programming? O O O O O
5. Are you excited about this workshop? O O O O O
6. Do you think programming is difficult? O [} O O O
7. Are you interested in programming? O O O O O
8. Would you like to learn how to program? O [} O O O

Here are two examples of block-based programming and a micro-controller:

= e

!!HHE?I

T *Eo
Yes No
9. Have you ever worked with a micro-controller (e.g.
) O O
Arduino)?
10. Have you ever worked with a block-based programming O O

environment?

12, 1 FiNd PrOBrAMIMINEG ...veiieieiieiiiii ettt b ettt b bbb bt et bt e bt s b s b et ettt e b e e b e b e s sebesbense st eseestanensens

12. What do you think of this workshop? PPN

D. Questionnaires and Programming Questions 191

D.2 Intermediate Questionnaire (IntermediateQ)

In order to conduct the survey anonymously, we need your code again:

What is the first letter of your mother's first name?
What is the second letter of your father's first name?
What is your birth-day? (e.g. 27, if you were born on 27.03.2000)

Please answer the following questions. There are no right or wrong answers. Your personal opinion is important.

yes, very no,
much not at all
1. Do you think it is useful to program a real object? (e.g., the O O O O O
LEDs light up)
2. Do you think you are good at programming? O O O O [m]
3. Do you think you were successful in this workshop? O O O O O
4. Do you think programming is fun? O O O O O
5. Do you like programming? O O O O O
6. Are you excited about this workshop? O O O O O
7. Do you think programming is difficult? m] O O O O
8. Are you interested in programming? O O O O O
9. Would you like to learn more about programming? O O O O O
strongly strongly
agree disagree

10. | like to use [the programming environment]. O m] O O]
11. I think [the programming environment] is easy to use. O] O O
12. It was easy to learn how to use [the programming O O o O o
environment].
13. | can use [the programming environment] without written O O O O o
instructions.
14. 1 am able to complete tasks and exercises quickly with [the
programming environment]. o o o o o
15. [The programming environment] is useful. O O O O O
16. [The programming environment] is great. O O O O O
17. Overall, | am satisfied with [the programming environment]. O O O O O

18. What do you like about [the programming environment]? .

192 D.3. Post Questionnaire (PostQ)

D.3 Post Questionnaire (PostQ)

In order to conduct the survey anonymously, we need your code again:

What is the first letter of your mother’s first name?
What is the second letter of your father’s first name?
What is your birth-day? (e.g. 27, if you were born on 27.03.2000)

Please answer the following questions. There are no right or wrong answers. Your personal opinion is important.

yes, very no,
much not at all
1. Do you think it's useful if you program a real smart object? O O O o o
(e.g., perform actions based on sensor information)
2. Do you think you are good at programming? O] O | O
3. Do you think you were successful in this workshop? O O O O O
4. Do you think programming is fun? O] O | O
5. Do you like programming? O O O O O
6. Are you excited about this workshop? O] O O |
7. Do you think programming is difficult? O O O O O
8. Are you interested in programming? O] O O O
9. Would you like to learn more about programming? O O O O O
strongly strongly
agree disagree
10. | like to use [the programming environment]. [} O O O]
11. I think [the programming environment] is easy to use. O O O O O
12. It was easy to learn how to use [the programming
environment]. o o - - o
13. | can use [the programming environment] without written O O O O O
instructions.
14. 1 am able to complete tasks and exercises quickly with [the O O O O O
programming environment].
15. [The programming environment] is useful. O O O O]
16. [The programming environment] is great. O O O O O
17. Overall, | am satisfied with [the programming environment]. O O O O O

18. What do you like about [the programming enVIrONMENT]?uuuuiuueeiieiiiieiiieieie s

Are you a girl or a boy? O Girl O Boy

How old are you? e years old

D. Questionnaires and Programming Questions

193

D.4 Pre Programming Question (PrePQ)

What is the first letter of your mother's first name?

What is the second letter of your father's first name?

What is your birth-day? (e.g. 27, if you were born on 27.03.2000)

Programming Task: please answer the following questions about this program.

Arduino run setup()
set OLED display

setup neopixel pin# [BEJE@ number of pixel :n

Arduino run loop()
[Vsel to temporature sensor pin#

SN var = - T8 24)
iz repeat [t} times

do

show from pin# [BEES
delay ofiEIE0)
- - - N of 1 of [
set pixel color from pin# [BEJ@ pixel number ‘Q red ‘(i) green \‘0 blue
show from pin# [BEED
—
detay ofTR0)

~—
show OLED Display
OLED display
show <) create text with SUNELRS
174 Hot! B2J

5

EEEC 3000 ||

=
else repeat | g[) times

do | set pixel color from pin# (353 pixel number ‘m red ‘rm green :m blue T@

show from pin# [BEED
delay O[]

- = E P T gm .
set pixel color from pin# [BEJd pixel number ‘m red ‘m green | ‘m blue | ‘m
show from pin# [BEES

delay fJEIEED

~—
show OLED Display
OLED display
show <) create text with |

=

set pixel color from piné# [BEJ@ pixel number | m' red }xm green 1‘0 blue #)

194

D.4. Pre Programming Question (PrePQ)

. What is the value of "var", when this program is executed?

. The "LED" flashes forccceeveviniinicnnnnn... seconds, each time the loop is

executed.

. What color is the "LED", when the program is executed?

. The value of "var" is shown on the display forc.c.c....o... seconds,

each time the loop is executed.

How often is the comparison "var >= 24" tested during the execution

Of this PrOgramM? .o e e aens

Under what condition is the word "Cold!" shown on the display, when

this program is @XeCUted? ...t

D. Questionnaires and Programming Questions 195

D.5 Post Programming Question (PostPQ)

What is the first letter of your mother's first name?

What is the second letter of your father's first name?

What is your birth-day? (e.g. 27, if you were born on 27.03.2000)

Programming Task: please answer the following questions about this program.

Arduino run setup()
set OLED display

setup neopixel pin# [BEJR# number of pixel | :n

Arduino run loop()
| “set [var ~ R light sensor pin

S i € oi
do

r "
repeat ‘) times

j

do | set pixel color from pin# (BEES pixel number $i0) red | B3 green) blue ‘m"
show from pin# [BERES
delay ofEEEL)
- jp— 0 [
set pixel color from pin# [pixel number (s} red) green G} blue |

show from pin# [BEES
delay ofETEL)

S—

show OLED Display
OLED display
show <) create text with |

delay OIEL)
S

else ol
repeat “B times

do 5 f T - F J =
set pixel color from pin# [pixel number (s} red) green § L) blue ‘m
show from pin# [BEES

EEEVE 2000 |

L

- 3 ol o 1 5
set pixel color from pin# ([BERP pixel number it} red Gt} green ‘m blue)
show from pin# [DEES

delay oJELED)

S—
show OLED Display
| OLED display
show &) create text with SRR
(73 Night! B2

R 5000

~

196

D.5. Post Programming Question (PostPQ)

. What is the value of "var", when this program is executed?

. The "LED" flashes forc.cceveeveiienannn.. seconds, each time the loop is

executed.

. What color is the "LED", when the program is executed?

. The value of "var" is shown on the display forc.cceeienanil seconds,

each time the loop is executed.

How often is the comparison "var >= 100" tested during the execution

Of this ProOgram ™ ... eeans

Under what condition is the word "Night!" shown on the display, when

this Program is @XeCULEA?iiniiiiiiii et eeaas

197

D. Questionnaires and Programming Questions

D.6 Learners’ Responses to the Open-ended Ques-
tions

doysyJom pood e st 3 quIyl | '8zd
243y 3q 03 Addey we | ng mouy J0u 0p | *£Zd
~'9td

134 payies jou s1 doysyiom ay)
3snea ‘uoiuido A I8 Jouued | 3ng YO SI 3 MOU [1UN 'SZd
vid
LIS 31 210J3q) SIY} |33 | ASNLIA] ‘Bul) 3¢ ||IM Jey} adoy | €7

Mmou Jou 0p | ‘zzd
T
1009 AJ3A 13| *0Zd
MOUY J0u 0P | ‘6d
‘81d
a3y Bulnl| Jeuws ay ojul JyBisur ue 198 noA Jeyy adoy | *£Td

uepodwi AjSuiseaoul Sujwodaq

$1:92U3125 JaIndwiod asnedaq poos si eap! Ay} yuIy} | HTd
Ay asow

1 A0[U3 1M | INQ OP |j1M 3M JeyM Jey} MOy J0U Op | "ETd
d
doys}iom siy1 o 10| & pey | TTd
pood s yui | 0Td

poo3 Ajjeas s, yuiy | ‘6d

POO0S S 31 YUIL} | '8d

Ul 03 SunsaJalul Spunos 3 */d
13N0Ge 3J0W 3| Ued
noA 35ne3q ‘PaJao SI Buly) e yans Jey} poos s Uiyl | ‘94
BuNsaJRIUI B ||} YUY | *Sd

Bulop 3J,3M 1eym Inoge palaxa Aian w | ‘pd

Huow,| "ed

paJaljo s siyy) Suiyawos

JeU} P00 S31 JUIly} | PUB Uy JO 30| 3¢ ||} 3INS U| 'Zd
BLETEEN]

03 u103 5,31 pue ‘paJayjo Sulaq I SIy3 18y} pood s QUL | ‘Td

¢doysyaom s1y3 Jo yuryy noA op 1eym - Daid

poo3 A3 82d

100)°Ld

Bunsasamul 974

Suuiog 1 puly | Ajjesauad 3ng Sunioxa s 11 sawBWOS *57d
Ases pue Bunsasaul AJaA ‘vzd

Mau Asan Suiyawos S| 31 asneaaq ‘Bunisalaiu] ‘€zd
Sunnoxg zzd

iPoo9 Tzd

MO "0zd

Sunsasa| ‘64

18319 '31d

100 pue Bunsasu| *L1d

Buinox3 974

Suoxa pue 1ealn ‘§Td

Sunsasay| p1d

JjsAw 31 A1y 03 syuem pue Sunsasaiul Aap "€Td
‘d
18319 'T1d

Sunsasau| Aap 014

Bunisaaiu| A3 64

Sunsaaiu| Aap "8d

1002 A3 *d

EINLETVEIY]

1195N823(11 INOGE 3J0W MOUY 0} 3| PNOM | PUE BulIX 94
3AI1e3J2 3¢ Ued noA pue ‘s3uiyy Juasayip Auew os wesdosd
ued noA asneaaq Sunsasaiul Aan pue naiylp AJap Gd
318312 3J,n0A 3sneaaq ‘Sully) Sunsauaiul uy ‘vd

Sunsasay| ¢4

Ajoauy uny

Aunneasn inoA 13| ued noA asneaaq Sunysaiaiul pue pooy ‘zd
Ajeaiso|

YUy pue 10| e A1y 03 aAey noA asneaaq ‘Sunioxa Jadng T4

Suiwwelsoid puly | - Daid

(sAoq) @auawiadxa 3noyym gzd-£d | (|418) souaLiadxa yum 94-1d

D.6. Learners’ Responses to the Open-ended Questions

198

Aeydsip ayL *5zd

weJgold Mau 353} pue unJ pnod | “vzd
Jea|a sem i ieyl "ezd

uoreue|dxa ay] ‘zzd

42019 yym SuiwwesSoid ‘1zd

Asea 003 30U pue JNJ1LIP 0S 10U BI3M SYSe) BY} 1BYL ‘0Zd
~'61d

SuiyaAana 1sowy ‘gTd

Aejdsia 14

$Q31°91d

- 'GTd

s1y81| 3y weudold T1d

SuiwwesBoid '0Td

Suiwweloud ‘64

Suiwweloud ‘g4

SHYol] 3Y3 Yum ysel 3yl “Ld

uo1INIISUI YaNnw Inoy)m Wwetdoud pinod am ey "94
s3uly) 210U PauLe3| IAN0A Sd

15314135 BA1B3) “Bd

U01eM UBD 3M Jey] "Ed

Suiyahiana Ajjenoy “zd

9jeJado 03 Jadns - JjasinoA |NSI3E, Yyam Sunuswiiadx3 Td

¢Aep doysyiom isay ay3
noge ayl| Apejnaiuied noA pip 1eym - Dajelpawalu|

pazeal|duiod g 3[1I| e si 3 Jey] '8zd

N0 /Ut wooz */zd

- '9td

S|aqe| pa1eal|dwiod aney $¥20|q 3y} Jo IV *Szd
ajduiis 00| "yzd

5302 J3)ud 0} AYIqe Ay dAeY 3,Uop NoA ey "€Zd
BUIION "72d

JNouP AJSA 3WOS “TZd

BuIyioN “0zd

- '61d

120]q , udy3 41, ou punoy | "8Td

W 3|qepuUBSIAPUN AJBA JOU BJE SI0MI3 3Y] */Td
‘9Td
pue3siapun 0} Ases jou si Aejap, ‘STd

- 7Td

3|0epUBISIZPUN 10U SI BUIYIBWOS "ETd

= "Cld

BUILION 'TTd

8uiyloN 01d

BUIYION 64

BuIYION 84

MOUY J0U 0P | “/d

y4om jou pip sweaSoid ay3 Ajed 94
pazed|dwiod AJan os|e aJe s3uly} awos ‘G4
1B3]0UN 3)3}]] B SAUWIIBWOS "hd

- '¢d

1e3}2 33Inb 10U 3Je SPJOM B} SIWIIBWOS 18y *7d
O / uj wooz '

[yuawuosiaua SuiwwesSoud
ay3] 1noge ay1|sip noA op 1ey - DaleIpaWIRIY|

[ensiAJi s 1ey] “8zd

pasuedse |[am st SulyiAiang £zd

pajeljdwiod s jou s1 3 ‘9zd

1003 Ayaud

aJe pa| pue Aejdsip jo SutwwesSoid sy} Ing yanw JoN ‘Gzd
Asea sl pd

$}20|q YIIM SYIOM)| *€7d

BunpAiang zzd

unj pue Jes|) '1zd

-~ '02d

-~ '61d

[e2180] 5134384 "8Td

asn 0} Asea siy| *£Td

$%20|q Jeajd ajdwis 3y ‘9Td

J19s1noA Aq A1y ued noA ey Ayjiqissod sy “STd

X3|dwod 0 30U S| | “¥Td

$Y20/9 "€Td

- "Tld

BuiiAiong ‘114

puB3SI3pUN PUB 35N 0} ASe3 S13| “0Td

pue3sIapun 0} Ases s} pue 1eau8 s,)| ‘6d

18302 5,)| "84

asn 0} Asea s1 | “/d

weuSoud 03 moy uses|

0} SJ3UUI33q SMOJ[e 31 35Nedaq ‘[eanoeid Aian s 31 Uyl | '9d
sweuSoud Jayjo ueyy JaJeap s 'Sd

Juawasueuse Ase3 pd

't
painjonuis Aeajd AJan pue paguesse [|am st ‘zd
Apadoud 1on135U00 pue paduelie sty ‘Td

[uawuouiaua Sulwwesoid
ay1] 1noge ayi| noA op 18y - DIIeIPAWIBIU]

199

10ns

d Programming Quest

ionnaires an

D. Quest

INO/N| W00z *£Td
9Td
w3} ensnun ue st Aejap, ‘STd

}Iom 3, usaop Sulpeojdn sawilawWos ‘94

s3u1yy pajealjdwod Auew aue aiay] “Gd

31 PUBISIBPUN 03 31 YUM 0] B }IOM 0} 9ABY NOA "td
- 'td

(Suiueaw J13y3) Jeajd J0u 3ue S|aqe| A0S Z7d
INO/N| Wooz 'Td

[aawuoaiAua
SuiwwesSouad ay3] anoge ayysip noA op 1y - DISod

Asea si31ey] 8zd

Suiyphiana Ajlendy *£zd

35N pue pueysiapun 0} Asea Aan s3] '9zd
Ajjea1 30N "Szd

Asea syl yzd

€ud
Aseasiy ‘zed

Suiyadiang ‘1zd

weuSoud Ajisea uea noA jey] "ozd
--'61d

Suiyhiana 150wy '8Td

asn 03 Ase3*/1d

Suiyphiana Ajleniy ‘914

‘STd

SuiwwesSoud peis 0y adoad Joy Asea 1y ¥Td

10| e 0p Ued NoA 1ey] €14

SuiwwesSoud 714

SW 0} ASea s1 31 1eyL ‘TTd

Buiyihiang 01d

asn 03 Asea s 31 pue 1eai3 51 “6d

puesiapun 03 Asea s3] 8d

pasueuse ||am - e */d

sdays Suiwuwe.oid ay3 ues| 01 JaIsea S13| ‘94
sweuSoud Jayjo ueyy JaJeap sy 'Sd

puejsiapun 03 Asea pue Jeajd s 31 1y ‘yd

||3M 3 puelsiapun ued noA pue paguesse Aeajd sy “ed
puiy 03 Asea pue Jea)d S| uiyihiana ey zd
pue)sIapun 0} Ases s3I pue puejsiapun 0} Asea aJe sy20|g ‘Td

[auawuoaiAua
SuiwwesSoud ay3] 1noge ay1| noA op 1eyMm - DISOd

‘8td
paysiuly syse3 ay} |e 398 30u p|nod | *£zd
'92d
uononpo.ul Suol szd

SJUaW1IAAX3 240U 0P 01 PaYl| 3ARY PINOM | “HZd

J|9sinoA

Aq op 03 3500y2 noA s3ulyy Auew os op 3,ued noA 1ey “€zd
't

SN yum SulyiAue) 03 pamoj|e 10U 4e am Jey] 'Tzd
BuILION ‘0zd

- '61d

paule|dxa uaag sey yanw

05 JBU} PU 10YS OS }I0M 0} PIMOJ[B U3 3A,3M JeY] '8Td
‘L1d
J195-4n0 Aq Juawiiadxs

10U N0 3M pue AjIsow op 03 sysel aney IM 9Td
- 'STd

= t1d
sn yam Suiylhue ey 0} pamojje Jou dJe am ey “€Td
~T1d

9J0W $3p0d yum weuSoud 03 Juem | ‘TTd

syeaig Hoys ‘014

BuiyioN "6d

BuiyioN ‘84

Ajjequan suonnjos ayy passnasip Ajuo am ey */d

100Ys Ul 2J0J8q 11 dUOP BA3M 94

@37 Yy1m Suppiom suop Apealje aney | 54

auop Apealje aA,| Suly) swes sy} 10wy ‘vd

uoniyadal Jo 10| ¥ ¢d

910497 W1} 3U0 }I aUOp dAeY | se m::on SoWI}BWOos SI'}| '7d
(syse3 apIAIp 0} J3133q) Swil} yum AyiSus| swedag ‘Td

¢Aep doysyaom 151y ayy
noge ax1|sip Ajejnaryed noA pip yeyp - Dajelpaway|

5037 9y3 Jo SuiwwesSoud ay| 'gzd
unj jojo| e apew | ‘Lzd
SuiwwesBolq 9z

1YB1] 3Y3 Ym syse] “yTd
Aejdsiq €14
= d

D.6. Learners’ Responses to the Open-ended Questions

200

8ullpoN 'gd

Suroxa st duwey ay3 SutwwesSoud ey puty Jou pip | */7d
92d
SuiwweBoiq szd
= vtd

¢l

=

Tud
‘0td
suoijeue(dxd 8uo7 'gTd
suorjeue|dxa 8uo| ay] "gTd
~'L1d

- 91d

'STd

= "yTd

SN yam SujyiAue axe) Jouued am Jey ‘€14
-~ Td

- Tld

$)e31q 1OYS PUB SUOSANY ‘0Td

$yealq Moy ‘6d

$Ye3.1q HoysS '3d

H|lequan suoin|os ay3 passnasip AjuQ */d
‘9
134 [ngasn 0s J0u 3JaM SBulY} WS "G4
(Buriog) Aaten ou uaYQ ‘vd

uor1adal o 10| B Sep "€d

310}3q SBUIL} Isow pIp | 7

Aya8uay 108 1 "syse3 10w 3¢ pjnoys aJdy] Td

doysyiom
ay3 anoge axjsip Apenaned no pip Jeym - DIsod

auiphiang gzd

INS33g Mouy 01338 pInod | /4
T1vg pue BujwweiBold ‘94

due| 3y '5zd

duwe| 3y piing “2d

- 'Eld

uoneue|dxa 3y 'zzd

Surjes00ap pue SujwwesSold Td
TV pue Aejdsip 3y} yim 1eyL 0zd
314 20uaLiadx3 ‘gTd

(331} }10M 0} pamojle 313Mm am Jey] ‘gTd
duiej 3y} pjing 01 *£Td

Sulwwe.Soiq ‘914

SuiwwelBoiq STd

<

N0y 1YY ‘¥Td

INS338 €Td

e

3UO[e auop pue pawwesSoud aney am Buiyikiang T1d
Suiwwessold 0Td

SuwwesSolq 64

SI4B1] 341 YM 3U0 3y ‘g4

SHYB1] 3y3 yam yse3 3y */d

weJ3oid AjaAnejas pnod am jey | ‘94

SwajsAs Juadijjajul 3noge Suiyiawos ajpuey o] 54
(yuapuadapul) yiom aAieaL) ‘hd

53A|5In0 A SuIylawos op 0 pamoj|e 1am am UaYM ‘€4
Suiwwel3oid 7d

TIYYg 341 pue sanpays 1481 oN 'Td

¢doysyJom
ay3 ynoge ayi| Aejnaryed noA pip yeym - DIsod

0} uonuaye Aed 03 30| € 51 213y '87d
$20[puL} 03 JNILIP SI I SDWINBWOS */7d
~9d

Ayjea11oN 574

12d
£2d
-t
BulyloN 'Tzd

- y1d

BulpoN '¢1d

BulpoN ‘71d

3p0J Yimjou s NS3IG TTd
Mmou Jouop|‘0Td
BuiyiAiana ay| Ajjenyoe | 6d
3uloN 'gd

MOUY J0U 0P | */d

