Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3330204.3330223acmotherconferencesArticle/Chapter ViewAbstractPublication PagessbsiConference Proceedingsconference-collections
research-article

A Model for Predicting Disapproval of Apprentices in Distance Education Using Decision Tree

Published: 20 May 2019 Publication History

Abstract

This paper proposes the MD-PREAD, a model that uses the decision tree technique for predicting apprentices with risk of failure. The capability of choosing the decision tree as a way to generate a greater set for educators is the highlight of this project. After the data was collected and processed, it was possible to generate a list of students that had the greatest chance to fail, this data would give the opportunity to help the students to recover their grades before the end of the course. Finally, to evaluate the model, the indexes of the classifiers were compared and the J48 algorithm stood out with an accuracy predominance of 84.5%, precision of 85.52%. It was concluded that the MD-PREAD model can assist in the prognosis of groups at risk of failure.

References

[1]
Pete Chapman. 2000. CRISP-DM 1.0: Step-by-step Data Mining Guide. SPSS.
[2]
Evandro Costa, Ryan S J Baker, Lucas Amorim, and Jonathas Magalhães. 2012. Mineração de Dados Educacionais: Conceitos, Técnicas, Ferramentas e Aplicações. Jornada de Atualização em Informática na Educação - JAIE 2012 (2012), 1--29.
[3]
Daniel Miranda De Brito, Iron Araújo de Almeida Júnior, Eduardo Vieira Queiroga, and Thaís Gaudencio Do Rêgo. 2014. Predição de desempenho de alunos do primeiro período baseado nas notas de ingresso utilizando métodos de aprendizagem de máquina. Anais do XXV SBIE (2014), 882.
[4]
Douglas Detoni, Ricardo Matsumura Araujo, and Cristian Cechinel. 2014. Predição de Reprovação de Alunos de Educação a Distância Utilizando Contagem de Interações. Anais do XXV SBIE 896--905 (2014), 896.
[5]
Reginaldo Gotardo, Paulo Roberto Massa Cereda, and Estevam Rafael Hruschka Junior. 2013. Predição do Desempenho do Aluno usando Sistemas de Recomendação e Acoplamento de Classificadores. Anais do XXIV SBIE 24, 1 (2013), 657--666.
[6]
L. Heidrich, J. L. V. Barbosa, W. Cambruzzi, Rigo S. J., M. G. Martins, and R. B. S. dos Santos. 2018. Diagnosis of learner dropout based on learning styles for online distance learning. Telematics and Informatics 35, 6 (2018), 1593--1606.
[7]
Richard Arnold Johnson and Dean W Wichern. 1998. Applied multivariate statistical analysis (4th. ed.) (4th ed.). Upper Saddle River, N.J Prentice Hall.
[8]
H. Johnson, L., Adams Becker, S., Cummins, M., Estrada, V., Freeman, A., and Ludgate. 2013. Horizon Report. 2013 Higher Education Edition. Technical Report. Austin, Texas, USA.
[9]
L. P. Macfadyen and S. Dawson. 2010. Mining LMS data to develop an "early warning system" for educators: A proof of concept. Computers & Education 54, 2 (2010), 588--599.
[10]
Oded Maimon and Lior Rokach. 2010. Data Mining and Knowledge Discovery Handbook (2nd. ed.) (2nd ed.). Springer US, New York, USA.
[11]
Humberto Rabelo, Aquiles Burlamaqui, Ricardo Valentim, Danieli Silva de Souza Rabelo, and Soraya Medeiros. 2017. Utilização de técnicas de mineração de dados educacionais para predição de desempenho de alunos de EaD em ambientes virtuais de aprendizagem. Anais do XXVIII SBIE (2017), 1527.
[12]
RapidMiner 2018. RapidMiner. Retrieved November 5, 2018 from https://rapidminer.com
[13]
S. J. Rigo, W. Cambruzzi, J. L. V. Barbosa, and S. C. Cazella. 2014. Minerando Dados Educacionais com foco na evasão escolar: oportunidades, desafios e necessidades. Revista Brasileira de Informática na Educação 22 (2014), 132--146.
[14]
Rodrigo Lins Rodrigues, Francisco P. A. De Medeiros, and Alex Sandro Gomes. 2013. Modelo de Regressão Linear aplicado à previsão de desempenho de estudantes em ambiente de aprendizagem. Anais do XXIV SBIE (2013), 607--616.
[15]
Cristóbal Romero and Sebastián Ventura. 2010. Educational Data Mining: A Review of the State of the Art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews 40, 6 (Nov. 2010), 601--618.
[16]
Cristobal Romero and Sebastian Ventura. 2013. Data mining in education. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 3 (2013), 12--27.
[17]
Francisco Silva, Josenildo Da Silva, Reinaldo Silva, and Luís Carlos Fonseca. 2015. Um modelo preditivo para diagnóstico de evasão baseado nas interações de alunos em fóruns de discussão. Anais do XXVI SBIE (2015), 1187.

Cited By

View all

Index Terms

  1. A Model for Predicting Disapproval of Apprentices in Distance Education Using Decision Tree

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    SBSI '19: Proceedings of the XV Brazilian Symposium on Information Systems
    May 2019
    623 pages
    ISBN:9781450372374
    DOI:10.1145/3330204
    © 2019 Association for Computing Machinery. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of a national government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

    In-Cooperation

    • SBC: Brazilian Computer Society

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 20 May 2019

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Decision Tree
    2. Educational Data Mining
    3. Prediction

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Conference

    SBSI'19

    Acceptance Rates

    Overall Acceptance Rate 181 of 557 submissions, 32%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 73
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 30 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media