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ABSTRACT

This paper introduces a new learning paradigm called eXtreme
Regression (XR) whose objective is to accurately predict the nu-
merical degrees of relevance of an extremely large number of la-
bels to a data point. XR can provide elegant solutions to many
large-scale ranking and recommendation applications including
Dynamic Search Advertising (DSA). XR can learn more accurate
models than the recently popular extreme classifiers which incor-
rectly assume strictly binary-valued label relevances. Traditional
regression metrics which sum the errors over all the labels are
unsuitable for XR problems since they could give extremely loose
bounds for the label ranking quality. Also, the existing regression
algorithms won’t efficiently scale to millions of labels. This paper
addresses these limitations through: (1) new evaluation metrics for
XR which sum only the k largest regression errors; (2) a new al-

gorithm called XReg which decomposes XR task into a hierarchy
of much smaller regression problems thus leading to highly effi-
cient training and prediction. This paper also introduces a (3) new
labelwise prediction algorithm in XReg useful for DSA and other
recommendation tasks.

Experiments on benchmark datasets demonstrated that XReg
can outperform the state-of-the-art extreme classifiers as well as
large-scale regressors and rankers by up to 50% reduction in the
new XR errormetric, and up to 2% and 2.4% improvements in terms
of the propensity-scored precision metric used in extreme classifi-
cation and the click-through rate metric used in DSA respectively.
Deployment of XReg on DSA in Bing resulted in a relative gain
of 27% in query coverage. XReg’s source code can be downloaded
from [1]
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1 INTRODUCTION

Objective: This paper introduces a new learning paradigm called
eXtreme Regression (XR) which can provide elegant solutions to
many large-scale ranking and recommendation applications includ-
ing Dynamic Search Advertising (DSA). To effectively solve XR
problems, this paper also develops new evaluation metrics and a
new highly scalable and accurate algorithm called XReg.

eXtreme Regression: The objective of eXtreme Regression is
to learn to accurately predict the numerical degrees of relevance
of an extremely large number of labels with respect to a data point.
Many large-scale ranking and recommendation applications can
naturally be reformulated as XR problems. For example, the tasks
ofDSA,movie recommendation and document tagging can be posed
as the problems of predicting the search queries’ click probabili-
ties for an ad, the users’ ratings for a movie and the informative-
ness of tags while describing a web document, respectively. These
qualify as XR problems since the total number of queries, users
and tags can potentially be in millions in these applications. The
predicted relevance estimates could then be used to recommend
the most relevant labels to a data point which is the desired end
goal of recommendation systems. Alternatively, the recommenda-
tions can also be further refined by filtering off less relevant ones
or by re-ranking them to improve their relevance, and the rele-
vance estimates provide principledways of achieving these. To suc-
cessfully solve an XR problem, new algorithms which could train
and predict efficiently over millions of labels as well as millions
of data points while also maintaining high prediction accuracy are
required. Furthermore, the definition of accuracy, or equivalently
regression error, needs to be redefined for XR settings where both
the relevant labels and the desired label recommendations are ex-
tremely small in number compared to the complete label set whose
most labels have no influence on final recommendations. This pa-
per addresses these challenges by developing new evaluation met-
rics and algorithms.

DSA: DSA is a format of search advertising where the ads to be
shown against a search query, along with the associated ad-copy,
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ad-title, bid-phrases etc., are algorithmically obtained by leverag-
ing the content from the ad landing pages. This saves considerable
efforts for advertisers, results in faster deployment of new ad cam-
paigns and enables more accurate user targeting. The ads shown
by DSA algorithms need to be highly relevant and generate user
clicks for the given query in order to earn revenue for the search
engine and satisfy the users and advertisers. In addition, these al-
gorithms need to train and predict very efficiently in order to scale
to billions of ads and millions of search queries across multiple
markets and maintain milliseconds’ prediction latencies. This pa-
per solves DSA as an XR task of estimating the click probabilities
for the query, ad pairs by using the new XReg algorithm. Note that
different ads can have different click probabilities for same query
owing tomultiple query intents. For example the query "throne" on
Bing refers to an online strategy war game, an online tv series and
a furniture product with click probabilities of 0.2, 0.06 and 0.004 re-
spectively. Based on the predicted click probabilities, the less click-
able ads are filtered off, the remaining ads are re-ranked to promote
those of high quality and high advertiser bids, and a small number
of top ranked ads are finally shown for the given query.

Extreme Classification: Extreme classifiers annotate a data
point with the most relevant subset of labels from an extremely
large label set. Owing to their high scalability and accuracy in la-
bel subset selection scenarios, extreme classifiers are increasingly
being used for DSA [46] and other large-scale recommendation
problems. Unfortunately, they make a fundamentally incorrect as-
sumption that a label is either fully relevant or fully irrelevant to
a data point which hurts their model accuracy. When applied to
DSA, they approximate all click-through rates to either 0 or 1 dur-
ing training and thus end up predicting less clickable ads. In turn,
this also undermines further filtering and re-ranking steps due to
the lack of reliable click probability estimates. Also, the ranking at
the top metrics used for evaluating extreme classifiers ignore the
errors in estimating the relevances and are hence not suitable for
XR.

Regression and ranking: Multivariate regressors predict mul-
tiple numerical outcome variables as functions of the features of
a data point. Although such regressors could reliably estimate the
label relevances in XR, most existing regressors are designed for
small number of outcome variables and do not scale to millions
of labels in XR. Moreover, the standard regression metrics such
as Mean Absolute Deviation (MAD) which sum the regression er-
rors over all the labels are unsuitable for XR problems because
the quality of recommended labels, both before and after the filter-
ing and re-ranking steps, depend only on the accurate estimation
of a small number of label relevances. The pairwise ranking ap-
proaches, which ensure that a more relevant item is ranked ahead
of a less relevant one for each pair of items, have been extensively
used for moderate-sized ranking and recommendation tasks. How-
ever, their complexity scales quadratically in number of labels and
therefore don’t scale to million labels.

eXtreme Regression metrics: This paper proposes new re-
gression metrics for XR which serve as good proxies for the rank-
ing accuracy and for the qualities of the subsequent label filtering
and re-ranking steps. These metrics average of the largest few re-
gression errors which are usually caused by highly underestimat-
ing or highly overestimating the relevances of the most or the least

relevant labels which in turn degrade the ranking quality. The new
XMAD@k metric can give up to 69x tighter bounds over ranking
regret than MAD. These new metrics can guide the crucial steps
in XR such as training, performance evaluation, hyper-parameter
tuning, model selection etc.

eXtreme Regressor algorithm: This paper also develops a
new eXtreme Regressor (XReg) algorithm which can efficiently
regress on to millions of label relevance weights in only logarith-
mic time. XReg hierarchically clusters the labels into a balanced
tree and learns approximate regressors in each tree node which
are common to all the labels in the node. Due to high label sparsity,
each data point only participates in a logarithmic number of tree
nodes which can lead to a significant speed up during both train-
ing and prediction by using appropriate algorithms. XReg essen-
tially extends the state-of-the-art Parabel extreme classifier to the
regression setting. XReg consistently outperforms extreme classi-
fiers, large-scale regressors and rankers in terms of ranking accu-
racy. On a DSA dataset with 5M ads & 1M queries, XReg can train
within just 20 hours using 1 core, predict in just 3 ms per query
and give up to 27% lift in query coverage when deployed online.

Labelwise inference: The standard prediction scenario involves
recommending the most relevant labels for a test point, referred
here as pointwise prediction, but applications such as DSA and
movie recommendation can more naturally be posed in the reverse
manner of predicting the most relevant ads or movies (i.e. test
points) for each query or user (i.e. each label), referred here as
labelwise prediction. On these tasks, pointwise prediction might
recommend a small set of highly popular labels that are relevant to
all test points resulting in low label coverage. This paper develops
an efficient labelwise prediction algorithm in XReg, which signif-
icantly improves the query coverage in DSA. Note that the XReg
training is agnostic to the choice of the prediction setting and the
same learnt model works well for both types of predictions.

Contributions: This paper: (a) introduces a new learning par-
adigm called eXtreme Regression (XR) and reformulates tagging,
movie recommendation and DSA applications as XR problems; (b)
develops new evaluation metrics and a highly scalable and accu-
rate algorithm called XReg to effectively tackle XR problems; and
(c) demonstrates that XReg can significantly improve query cov-
erage on Bing DSA when deployed in production. XReg’s source
code can be downloaded from [1].

2 RELATED WORK

Extreme Classification: Much progress has recently been made
in developing extreme multi-label classifiers based on trees [4, 26,
28, 45, 47, 52], embeddings [9, 11, 14, 19, 22, 37, 41, 54, 58, 61] and
1-vs-all approaches [5, 6, 25, 34, 38, 42, 46, 59, 62, 63, 66]. Among
these, 1-vs-all approaches likeDiSMEC [5], ProXML [6], Parabel [46]
and Slice [25] achieve state-of-the-art results onPrecision@k , nDCG@k

and their propensity-scored counterparts, but train only from bi-
nary labels and are hence not apt for DSA. In terms of efficiency,
Parabel is many orders faster to train and predict than DiSMEC
and ProXML, hence XReg algorithm builds on top of Parabel. Slice
only works on low-dimensional embeddings and does not scale to
high-dimensional bag-of-words features used in this paper. Some

https://plarium.com/landings/en/throne/top_s
https://hbo.com/game-of-thrones
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extreme classifiers like PfastreXML [26] and LEML [67] can be eas-
ily adapted to learn from any relevance weights, but they tend to
be inaccurate and inefficient since they train a large ensemble of
weak trees and inaccurate low-dimensional projections with linear
reconstruction time, respectively.

Performance of extreme classifiers has traditionally been mea-
sured in terms of Precision@k and nDCG@k [9, 47]. Recently, propensity-
scored metrics were introduced in [26] which give higher impor-
tance to more useful and informative tail labels. However, all these
metrics ignore the regression error in the predicted relevance esti-
mates when applied to XR.

Regression & ranking: Most of the conventional regression
approaches [7, 17, 53, 56, 67] learn a separate regressor for each
outcome variable and hence do not scale to millions of labels. This
problem is mitigated to some extent in the multi-objective deci-
sion tree based approaches [4, 26, 32] which scale sublinearly in
the number on outcome variables. However, these approaches suf-
fer from low accuracy issues despite learning a large ensemble of
weak trees. As seen from experiments, XReg can be significantly
more scalable and accurate than the naive 1-vs-all least squares re-
gressor [56], the more efficient LEML regressor with low-rank as-
sumption on the parameter space [67] and the decision tree based
PfastreXML [26]. The performance accuracy in regression have tra-
ditionally been measured by error metrics such as Mean Absolute
Deviation (MAD) and Root Mean Square Error (RMSE) [10], but
these are not appropriate for XR.

Learning to rank methods [12, 16, 23, 35, 36, 43, 48, 50, 60, 65]
have been widely used in the recommendation and ranking liter-
atures, primarily to re-rank a small shortlist of items which has
been generated by simple heuristics like tf-idf scoring or by more
scalable approaches like extreme classifiers or XReg. These rankers
usually have super-linear dependence on the number of labels and
hence do not scale to XR. Although negative label sampling could
potentially be used to make these approaches more scalable, their
ranking performance suffers significantly as demonstrated in Sec-
tion 5 for the popular RankSVM [21, 35] and the more recent eX-
treme Learning to Rank (XLR) [12] approaches. A plethora of ac-
curacy metrics have been proposed in the ranking literature [9, 27,
31, 36, 47, 55, 69], but none of these measure the regression perfor-
mance.

Dynamic search advertising: Various approaches have been
proposed for DSA in the organic search literature including infor-
mation retrieval based methods [29], probabilistic methods and
topic models [57] and deep learning [24, 51]; however these do
not work well for pithy ad-landing pages. Techniques based on
landing page summarization [13], translation and query language
models [49, 64] and keyword suggestion based on Wikipedia con-
cepts [68] have also been proposed for sponsored search; but these
suffer from low coverage problem. Extreme classifiers such as Para-
bel have also been used in DSA to improve accuracy and ad cover-
age; but they still suffer from low query coverage due to pointwise
predictions. As demonstrated in Section 5, XReg significantly im-
proves query coverage when included in the Bing DSA ensemble
comprising all the above alternatives.

3 EXTREME REGRESSION METRICS

Notation: Let an XR dataset comprise N data points {(xi , yi )}Ni=1
where xi ∈ RD is a D dimensional feature vector and yi ∈ [0,∞)L
is a ground truth relevance weight vector for point i . The weight
yil measures the true degree of relevance of label l to point i , with
higher values indicating higher relevance. Similarly, let ŷi ∈ [0,∞)L
denote the predicted relevance weight vector for point i . The func-
tion S(v,k) indicates the ordered index set of the k highest scoring
labels in a score vector v ∈ [0,∞)L .

Regression & ranking metrics: The regression metrics such
asMADand RMSE; the rankingmetrics such as relevance-weighted
Precision and nDCG at k (WP@k , WN@k) and Kendall’s Tau at k
(Tau@k) [31]; and WP@k-regret which is the difference between
the optimal and the attained WP@k are pertinant for this paper.
Their formulae are provided in the supplementary. The WP@k

metric reduces to PSP@k , CTR@k suitable for DSA, or Rating@k

based onwhether yi are set to inverse propensity-scored relevances,
ad click-through rates, or user ratings respectively. Rating@k is the
undiscounted version of the familiar rating-based nDCG@k metric
used in recommender systems [27].

Extreme regression metrics: Let, ei be the vector of regres-
sion errors where eil = |ŷil − yil |. The new XR metrics, eXtreme
MeanAbsoluteDeviation atk (XMAD@k) and eXtreme RootMean
Square Error at k (XRMSE@k) are defined as follows:

XMAD@k(ŷi , yi ) =
1

k

∑

l ∈S (ei ,k)
eil (1)

XRMSE@k(ŷi , yi ) =
√

√

1

k

∑

l ∈S (ei,k)
e2
il

(2)

For ease of discussion, this paper mainly focusses on the XMAD
metric, although most of the observations and results also apply to
XRMSE. XMAD@k averages the k maximum regression errors but
is minimized when all the L label relevances are predicted exactly
right. The following lemma shows that XMAD serves as a good
proxy for the ranking error. This is based on an intuition that the
ranking errors at the top occur mainly due to either highly under-
estimating or highly overestimating the relevances of the most or
the least relevant labels respectively leading to high regression er-
rors on such labels.

Lemma 3.1. For any true and predicted relevance vectors y, ŷ ∈
[0,∞)L , 0 ≤ WP-regret@k(ŷ, y) ≤ 2 ∗ XMAD@2k(ŷ, y) holds true.

In addition, 0.5 ∗ XMAD@2k(ŷ, y) ≤ WP-regret@k(ŷ, y) also
usually holds empirically (see Section 5) thus making XMAD error
a close bound for the ranking error.

Although the top ranked labels with the highest predicted rel-
evances could directly be recommended to a test point, it usually
helps to further improve the recommendations by either filtering
or re-ranking. The objective of filtering step is to maximize both
precision and recall by removing as many irrelevant labels across
as many test points as possible. This is crucial in DSA where there
are system limitations against online hosting of too many relevant
query, ad pairs. The following lemma shows that when the esti-
mated label relevances are almost accurate in terms of the XMAD
metric, almost ideal precision-recall trade-offs could be obtained
by directly using a global threshold on the predicted relevances.

http://manikvarma.org/pubs/prabhu20-supp.pdf
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Lemma 3.2. Given a test set where the true and predicted relevance

vectors of ith point are yi , ŷi ∈ [0,∞)L ,AUPRC ≥ AUPRC∗−O(k ∗
XMAD@k) holds true where AUPRC,AUPRC∗ are the attained and
ideal areas under the micro-averaged precision-recall curves plotted

using a global threshold.

The lemma assumes that the number of retained labels per each
test point is less than k for the evaluated region of the curve. It is
reasonable to set k = log(L) since only a small number of labels
need to be recommended to each point.

Re-ranking the relevance estimates could significantly improve
the final ranking quality, especially when the XMAD errors are
small. An example of re-ranking is to combine these estimates with
the scores from tail classifiers (see [26]) to improve the recommen-
dation accuracies over rare labels. It is worth noting that bad rele-
vance estimates, despite inducing a good initial ranking, could hurt
the subsequent filtering or re-ranking performance. Unlike XMAD,
the traditional MAD metric is sensitive to the sparsity in the ŷ vec-
tor which does not directly affect the ranking performance in any
way. For example, MAD error becomes huge for a dense estimator
like 1-vs-All least squares regressor since small regression errors
could accrue over million labels into a large value. Results from
Section 5 corroborate these observations.

Labelwise metrics: To evaluate performance in the labelwise
prediction scenario, all the above ranking and regression metrics,
defined for pointwise predictions, need to be redefined appropri-
ately. The formulae for labelwisemetrics are provided in the supplementary.
Most discussions and results in this paper, while presented primar-
ily for pointwise prediction case, also hold for labelwise prediction
setting after interchanging the roles of data points and labels. To
promote clarity, all pointwise and labelwise metrics will be used
with suffixes "-p" and "-l" respectively.

Note that proofs for the lemmas in this section are available in
the supplementary.

4 XREG: EXTREME REGRESSOR

This section describes XReg’s key components including the label
tree construction, the probabilistic regression model and the point-
wise and labelwise prediction algorithms using the same model.
4.1 Label Tree Construction

XReg learns a small ensemble of up to 3 label trees quite similarly
to Parabel. Each tree is grown by recursively partitioning the la-
bels into two balanced groups. Label partitioning is achieved by a
balanced spherical k = 2-means algorithm [46] is which takes as
input the feature vectors for all those labels in the current node
and outputs 2 label clusters, efficiently, in O(D̂L logL) time where
D̂ is the number of non-zero features per data point. The feature
vector for a label is represented by the unit vector that points along
the average of the training points which are relevant to the label:

vl = v′
l
/‖v′

l
‖2 where v′

l
=

N
∑

i=1

yilxi (3)

This is based on the intuition that two labels are similar if they
are active in similar training points. In DSA, two queries (labels)
are similar according to the proposed representation if they lead
to clicks on similar ads (training points). As a result, the k-means
algorithm ensures that the labels relevant for a data point end up

in the same leaf. Note that, unlike Parabel, XReg uses non-binary
relevance-weighted average leading to more informative label fea-
ture representations.

4.2 A Probabilistic Regression Model

XReg is a regression method which takes a probabilistic approach
to estimating the label relevance weights. Firstly, all the relevance
weights are normalized to lie between 0 and 1 by dividing by its
maximum value, thus allowing them to be treated as probability
values. Note thatwhile click-through rates inDSA are already valid
probabilities, the inverse propensities and the user rating could ex-
ceed 1. Also, note that the predicted estimates can be easily scaled
back since no information is lost due to this normalization.

XReg treats the normalized relevance weights for each label as
the marginal probability of its relevance to a data point, which is,
in fact, the case in DSA. This allows XReg to minimize the KL-
divergence between the true and the predicted marginal probabil-
ity for each labelwith respect to each data point. KL-divergence [33]
measures how close 2 distributions are and is minimized when the
2 are identical, thus justifying its use while regressing on to prob-
ability values.

A naive 1-vs-All approach, which learns a separate regressor
minimizing KL-divergences for each label,would be extremely costly
to train when labels are in millions. To reduce this complexity,
XReg leverages the previously trained label tree. XReg expresses
the marginal probability of a label as the probability that a data
point traverses the tree path starting from the root to the label. Let
the path from root to label l consist of nodes nl1, · · · ,nlH where
H is tree height, nl1 is the root and nlH is the leaf node contain-
ing solely label l . Let zlh denote the probability that a data point
x visits the node nlh after it has already visited the parent nl (h−1).
Then the true marginal probability yl that the label l is relevant
to x is equivalent to yl =

∏H
h=1 zlh . Similar equality holds for pre-

dicted marginal probability: ŷl =
∏H

h=1 ẑlh . XReg then learns to
minimize an upper bound on the KL-divergence between the two
according to the following theorem.

Theorem 4.1. Given thatyl =
∏H

h=1 zlh and ŷl =
∏H

h=1 ẑlh and

under the standard unvisited node assumption of Parabel

DKL (yl | |ŷl ) ≤
H
∑

h=1

slhDKL (zlh | |ẑlh) where slh =
h
∏

h̃=1

z
l (h̃−1) (4)

Proof. Proof is provided in the supplementary. �

The unvisited node assumption formalizes the observation that
the children of an unvisited internal node will never be traversed
and that the labels in an unvisited leaf nodewill never be visited by
a data point [46]. Due to the above theorem, XReg can separately
minimize the KL-divergence over the true and predicted probabil-
ities that a data point takes a particular edge in the tree, and still
end up minimizing the KL-divergences over each of the individ-
ual marginal label probabilities. The true probability value of edge
traversal zlh is essentially the probability that the data point vis-
its any of the labels in the subtree rooted at the node indexed lh.
We instantiate it to be equal to the largest marginal probability of
any label in the subtree, by assuming the worst-case scenario that

http://manikvarma.org/pubs/prabhu20-supp.pdf
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labels in each subtree are fully correlated, which promotes model
robustness.

The KL-divergence minimization is mathematically equivalent
to training a logistic regressor for estimating zlh values for each
tree edge where every data point is duplicated with weights zlh
and 1 − zlh :

min
wn

‖wn ‖2 +
C

|In |
∑

i ∈In
{sinzin log(1 + exp(−w⊤n xi ))+ (5)

sin(1 − zin) log(1 + exp(+w⊤n xi ))} (6)

where n is used to index the node instead of lh, In only include
those points which reach the node n. The problem in (Eq. 5) is
strongly convex and was optimized using the modified CDDual al-
gorithm available from Liblinear package [18]. To summarize, each
internal node in XReg contains 2 1-vs-All regressors which give the
probability that a data point traverses to each of its children, each
leaf node contains M 1-vs-All regressors which gives the condi-
tional probability of each label being relevant given the data point
reaches its leaf.

We make a mild assumption that each data point has at most
O(logL) positive labels is made which is often valid on extreme
learning datasets. As a result, each data point traverses at most
O(log2 L) tree edges, which directly leads to a huge reduction in
training complexity thus resulting in O(ND̂ log2 L)where D̂ is the
average number of non-zero features per data point. The following
lemma describes how XReg’s training objective is related to the
XMAD@k metric proposed earlier:

Lemma 4.2. XReg’s overall training objective minimizes an up-

per bound over XMAD@k for all k , with the bound being tighter for

smaller k values.

Proof. The proof is provided in the supplementary. �

4.3 Pointwise Inference

The pointwise inference algorithm in XReg utilizes the same beam
search prediction technique proposed in Parabel where only the
top ranked relevant labels are recommended based on a greedy,
breadth-first tree traversal strategy. The following theorem proves
that such traversal mechanism is not only asymptotically optimal
for bothWP@k and XMAD@k but also strongly generalizable with
O(polyloд(L)) sample complexity. This uses the assumption that
each data point has at most O(logL) positive labels. Also the the-
orem assumes that each individual regressor in well-generalizable
and achieves zero-regret with infinite data samples.

Theorem 4.3. When each data point has at most O(logL) posi-
tive labels, the expected WP@k regret and XMAD@k error suffered

by XReg’s pointwise inference algorithm are bounded by:

O(log2 L
√

W
√
Np

√

1 +

√

5 log
3L

δ
)

with probability at least 1 − δ , where N is the total training points,

L is the number of labels,W is the maximum norm across all node

classifier vectors and p is the minimum probability density of x dis-

tribution that any tree node receives.

Proof is available in the supplementary. Therefore the errors go
to 0 as N → ∞. The log2 L dependence arises because each data
point visits at most log2 L nodes in a tree.

4.4 Labelwise Inference

The XReg model also allows efficient labelwise inference. The core
idea here is to estimate from training data the fraction of points
with non-zero relevance that visit each node of the tree and allot
a factor F times the same fraction of top ranking test points to re-
spective nodes. On large scale datasets with enough training and
test points, the ratio of non-zero relevance points in each tree node
remain almost the same over training and test points. The factor ac-
counts for any small deviations. This strategy is adopted to ensure
that all non-zero relevance points for a label end up reaching the
label’s leaf node. Finally, the topmost scoring test points that visit
a label’s leaf node are ranked at the top for that label, where the
scores are marginal relevance probabilities, the average test time
complexity is O(F log2 L) per test point. Pseudocode for labelwise
inference is provided in the supplementary.

5 EXPERIMENTS

Datasets: Experiments were carried out on several medium and
large scale benchmark datasets with up to 4.9M training points,
1.8M features and 1.4M labels (see Table 1 for dataset statistics).
These datasets cover diverse applications such as document tag-
ging (BibTeX [47], EURLex-4K [40],Wiki10-31K [8]&WikiLSHTC-
325K [9, 44]), content-based movie recommendation (YahooMovie-
8K [3] & MovieLens-138K [2, 20]), item-to-item recommendation
of Amazon products (Amazon-670K [9, 39]), sponsored search ad-
vertising (SSA-130K) and dynamic search advertising (DSA-130K,
DSA-1M). For ease of discussion, the label size suffixes are dropped
from dataset names hereafter except for DSA. The document tag-
ging, item-to-item recommendation, and SSAdatasets require point-
wise inference whereas themovie recommendation andDSAdatasets
require labelwise inference. YahooMovie and MovieLens use nor-
malized (between 0 and 1) user-provided movie ratings as rele-
vance weights andmoviemeta-data like summary, genres, and tags
as features. For all the datasets, bag-of-words feature representa-
tion derived from text descriptions are used. SSA and DSA are pro-
prietary datasets that were created by mining the Bing logs. Rest
of the datasets are available from [1].

Baselines: XReg was compared to leading extreme classifiers
such as PfastreXML [26], Parabel [46], DiSMEC [5] and ProXML [6],
traditional multivariate regressors such as one-vs-all least-squares
regression (1-vs-all-LS) and LEML [67], and a popular pairwise

Table 1: Dataset statistics

Dataset Train Features Labels Test Avg. labels Avg. points
N D L N ′ per point per label

BibTeX 4,880 1,836 159 2,515 2.40 111.71
EURLex-4K 15,539 5,000 3,993 3,809 5.31 448.57
Wiki10-31K 14,146 101,938 30,938 6,616 18.64 8.52
SSA-130K 122,462 152,192 130,515 54,773 5.60 7.60
WikiLSHTC-325K 1,778,351 1,617,899 325,056 587,084 3.26 23.74
Amazon-670K 490,449 135,909 670,091 153,025 5.38 5.17

YahooMovie-8K 8,341 28,978 7,642 3,574 18.57 28.96
DSA-130K 122,462 152,192 130,515 54,773 5.60 7.60
MovieLens-138K 18,732 19,924 138,490 8,012 527.31 101.83
DSA-1M 4,914,640 1,840,877 1,453,150 2,106,273 0.23 7.80
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Table 2: XReg achieves the best or close to the best ranking and regression performance in both pointwise ("-p") and labelwise ("-l") prediction

settings. Re-ranking with tail classifiers (XReg-t) further improves the performance in many cases. More results are in the supplementary.

Method
PSP-p@5

(%)
Tau-p@5

(%)
XMAD-p@5

Training
time (hrs)

Test time
/point (ms)

Model
size (GB)

BibTex

PfastreXML 59.75 53.68 0.3151 0.0050 0.2348 0.0246
Parabel 57.36 51.48 0.3372 0.0015 0.1945 0.0035
LEML 56.42 51.58 0.3520 0.0229 0.1737 0.0032
1-vs-all-LS 60.14 54.21 0.3337 0.0007 0.1137 0.0023
RankSVM 59.12 52.58 0.7089 0.0015 0.0719 0.0023
DiSMEC 57.23 51.47 0.3371 0.0004 0.0951 0.0012

ProXML 58.30 - - - - -
XReg 58.61 52.35 0.3158 0.0035 0.1642 0.0030
XReg-t 58.77 52.46 0.3386 0.0025 0.1256 0.0043

EURLex-4K

PfastreXML 45.17 48.85 0.1900 0.0887 1.3891 0.2265
Parabel 48.29 50.75 0.4227 0.0245 1.1815 0.0258
LEML 32.30 37.24 0.2115 0.3592 4.4483 0.0281
1-vs-all-LS 52.27 53.96 0.1744 0.1530 4.5378 0.1515
RankSVM 46.70 51.43 1.1967 0.1834 4.7635 0.1470
DiSMEC 50.62 52.33 0.4308 0.0999 1.9489 0.0072

ProXML 51.00 - - - - -
XReg 49.72 52.86 0.1849 0.0642 1.2899 0.0378
XReg-t 50.40 53.45 0.2132 0.0544 1.2074 0.0692

Wiki10-31K

PfastreXML 15.91 20.29 0.5705 0.3491 11.6855 0.5466
Parabel 13.68 19.83 0.7085 0.3204 3.7275 0.1799
LEML 13.05 20.06 0.5716 0.9546 54.9470 0.5275
1-vs-all-LS 21.89 26.71 0.5459 2.4341 129.8342 16.9871
RankSVM 18.46 25.84 1.2236 4.9631 92.2684 10.8536
DiSMEC 15.61 22.43 0.7140 2.1945 13.8993 0.0290

XReg 16.94 24.97 0.5716 0.6184 3.7649 0.3218
XReg-t 22.60 30.55 0.5506 0.6431 5.4910 0.9026

WikiLSHTC-325K

PfastreXML 28.04 36.38 0.1437 7.1974 6.9045 13.3096
Parabel 37.22 41.71 0.2459 1.2195 2.2486 3.0885

DiSMEC 39.50 - - - - -
ProXML 41.00 - - - - -
XReg 36.92 41.62 0.1411 4.5119 3.0312 3.5105
XReg-t 40.33 43.39 0.3140 3.8552 3.0896 4.1955

Amazon-670K

PfastreXML 28.53 30.97 0.4019 3.3143 11.4931 9.8113
Parabel 32.88 31.32 0.4292 0.5815 2.3419 1.9297

DiSMEC 34.45 31.94 0.4275 373 1414 3.7500
ProXML 35.10 - - ≈1200 ≈1000 -
XReg 33.24 34.72 0.3869 1.4925 2.4633 3.4186
XReg-t 34.29 35.83 0.4473 1.1864 2.2242 4.5952

Method
CTR-p@5

(%)
Tau-p@5

(%)
XMAD-p@5

Training
time (hrs)

Test time
/point (ms)

Model
size (GB)

SSA-130K

PfastreXML 27.79 23.77 0.0655 1.3765 5.2419 1.6258
Parabel 32.97 30.25 0.1430 0.2283 1.9098 0.3625

LEML 6.54 8.10 0.0654 8.3253 161.6891 1.1308
RankSVM 13.06 14.03 2.7871 9.6026 130.0945 7.4834
DiSMEC 32.75 29.16 0.1562 31.4358 61.0967 0.0802
XReg 32.39 28.27 0.0684 0.4570 7.4715 0.7871
XReg-t 32.81 28.73 0.1131 0.5049 1.7746 1.4156

Method
Rating-l@5

(%)
Tau-l@5

(%)
XMAD-l@5

Training
time (hrs)

Test time
/point (ms)

Model
size (GB)

YahooMovie-8K

PfastreXML 10.18 19.72 0.6286 0.0241 8.5074 0.0753
Parabel 9.73 28.22 0.6284 0.0299 0.9639 0.1307
LEML 21.79 28.85 0.6408 0.0593 5.3650 0.0586
1-vs-all-LS 21.63 31.24 0.6269 0.0740 6.8841 1.6977
RankSVM 24.88 33.28 1.0579 0.1282 5.1620 0.7172
DiSMEC 24.53 32.75 0.6207 0.0337 3.4258 0.0376
XLR 4.66 10.72 0.6716 - 4.7724 0.0293

XReg 25.86 35.00 0.6248 0.0685 4.1965 0.2829
XReg-t 26.05 35.33 0.6185 0.0615 3.6353 0.4500

MovieLens-138K

PfastreXML 7.25 22.84 0.9199 0.4514 19.8270 0.1837
Parabel 3.51 37.80 0.9200 1.7790 1.6132 3.4322
LEML 43.19 64.78 0.8722 0.4186 91.4262 0.2535
1-vs-all-LS 42.16 63.92 0.8832 2.5756 121.6169 16.1334
DiSMEC 45.35 61.55 0.8857 1.5437 74.9537 1.0514
XLR 9.67 21.42 0.9134 4.579 68.347 0.0634

XReg 48.94 66.99 0.8741 2.6287 7.7996 3.6223
XReg-t 49.29 67.36 0.8285 2.7437 9.8279 4.8958

Method
CTR-l@5

(%)
Tau-l@5

(%)
XMAD-l@5

Training
time (hrs)

Test time
/point (ms)

Model
size (GB)

DSA-130K

PfastreXML 28.18 34.75 0.0422 1.3765 5.2419 1.6258
Parabel 33.97 28.37 0.0891 0.2283 1.9098 0.3625
LEML 10.36 7.70 0.0415 8.3253 212.1707 1.1308
DiSMEC 34.06 27.96 0.1039 31.4358 55.4037 0.0802
XLR 0.09 0.10 0.4816 5.5430 64.1134 0.0678

XReg 35.66 28.51 0.0439 0.4570 7.4715 0.7871
XReg-t 36.32 28.45 0.0587 0.3669 8.4376 1.3512

DSA-1M

Parabel 37.95 30.93 0.1004 9.2800 2.5031 5.6774

XReg 37.57 31.09 0.0563 20.7463 3.1792 11.0178
XReg-t 38.81 31.41 0.0714 15.4201 3.4036 18.7434

ranker, RankSVM [21, 35]. XReg was also compared to the recent
eXtreme Learning to Rank (XLR) [12] approach. ProXML is the
current state-of-the-art over propensity scored precision@k (PSP-
p@k) during pointwise inference. Results forDiSMECand ProXML,
which required 1000s of cores, could not be replicated on large
datasets and hence the numbers from the corresponding papers
have been reported directly. RankSVMwas unable to scale to datasets
larger than SSA-130K and hence required down-sampling of neg-
atives up to 0.1% on these larger datasets. XLR, which specifically
addresses the labelwise recommendation task, has only been ap-
plied to labelwise datasets. For the other baselines, results have
been reported for only those datasets up to which the implementa-
tions scale. Since many of these large-scale datasets have a prepon-
derance of tail labels, results for a variant of XReg where predicted
labels have been reranked with tail classifier scores have also been

reported with a "-t" suffix. The tail classifiers are generative clas-
sifiers which are tailored for accurate predictions on labels with
< 5 training point samples [26]. For extreme classifiers which train
on binary labels (Parabel, DiSMEC, and ProXML), all positive rel-
evance weights were approximated to be fully relevant (value 1).
Remaining baselines, including the PfastreXML and LEML, were
trained on relevance weighted labels for a fair comparison.

Hyperparameters: XReg has 5 hyperparameters: (a) number
of label trees in the ensemble (T ); (b) number of tree paths ex-
plored by a test point during pointwise prediction (P ); (c) maxi-
mum ratio of test to train points that traverse to each node during
labelwise prediction (F ); (d) maximum number of labels in a leaf
node of XReg tree (M); and (e) regularization parameter common
to logistic regressors in all the internal and leaf node classifiers
(C). On medium-sized datasets, the XReg’s hyperparameters were
set by fine-grained tuning over a 10% validation dataset. On larger

http://manikvarma.org/pubs/prabhu20-supp.pdf
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datasets where tuningwas not feasible, the default hyperparameter
setting of T = 3, P = 10, F = 4,M = 100 and C = 10 was used. Re-
sults in table 8 of the supplementary demonstrates that the above
default values of T , P ,M achieve the best trade-off between accu-
racy and scalability across multiple datasets and increasing any
of them further leads to minimal gains in accuracy while linearly
increasing the training or prediction cost. The value of α , which
adjusts the influence of tail classifiers in XReg-t, was also tuned on
the validation data. The hyperparameters for baseline algorithms
were also set by tuning on medium datasets and set to defaults
suggested in the respective papers/codebases on larger datasets.

Metrics and hardware: Performances were evaluated using ac-
curacymetrics such asWP@k variants, Tau@k and XMAD@k (see
Section 3) as well as efficiency metrics such as training time, test
time per data point andmodel size. AmongWP@k variants, for tag-
ging (BibTeX, EURLex,Wiki10, WikiLSHTC) and Amazon datasets
PSP@k are reported; for SSA and DSAwhich are ads datasets CTR@k

is reported; and for movie recommendation datasets (YahooMovie
and MovieLens) Rating@k is reported. All accuracy metrics are
suffixed with "-p" or "-l" depending on whether the prediction sce-
nario is pointwise or labelwise. All experiments were run on an
Intel Xeon 2.5 GHz processor with 256 GB RAM.

Results on benchmark datasets: Table 2 compares XReg’s
performance to diverse baselines on datasets belonging to tagging,
recommendation and DSA applications. In terms of prediction ac-
curacy, XReg consistently achieves close to best performance in
terms of WP@5, Tau@5 as well as XMAD@5 metrics. In particu-
lar, XReg can be up to 2.4%, 3.89% and 2x better than all baselines
in WP@5, Tau@5 and XMAD@5 respectively.

On most tagging datasets, XReg scores within 2% of the state-
of-the-art ProXML in terms of the popular PSP@5 metric but can
be up to 1000x faster during both training and prediction.

XReg consistently outperforms extreme classifiers like Parabel
and DiSMEC which train only on binary labels. In particular, XReg
can be up to 9% and 45% better than Parabel over pointwise and la-
belwise datasets in terms of WP@5. The larger gains on labelwise
datasets are due to pointwise prediction in Parabel which can lead
to low label coverage, especially on datasets like MovieLens with
only 8K test points but around 140K labels. Owing to similar clas-
sifier architectures, XReg can be highly efficient just like Parabel.
XReg is at most 3.75x and 4.8x slower during training and predic-
tion and has at most 2.15x the model size as Parabel.

Owing to their high scalability, both Parabel and XReg scale to
the largest DSA-1M dataset where none of the other approaches
scale. On this dataset, XReg has 50% smaller XMAD@5 than Para-
bel.

XReg-t denotes the re-ranked XReg where the predicted rele-
vance estimates are combined with tail classifier scores to improve
ranking performance over more informative tail labels. XReg-t con-
sistently improves performance over XReg since most XR datasets
are dominated by tail labels. XReg-t can be up to 5.66% and 5.58%
better than XReg in terms of PSP@5 and Tau@5. However, XReg-t
often increases XMAD@5 over XReg since tail classifiers are not
regressors but are good generative classifiers which and therefore
increase regression errors. Since the tail classifiers are extremely
efficient to train and the re-ranking step is only applied to a small
number (100s) of labels with high relevance estimates from XReg,

XReg-t can be very efficient with 1.1, 1.96 and 2.8 times the training
time, prediction time and model size as XReg in worst case.

Additional results for WP@k, Tau@k where k=1,3, nDCG@5
and XRMSE@5 are available in the supplementary.

Filtering and re-ranking: The accurate relevance weight esti-
mates that XReg produces can be used for many downstream tasks
such as filtering and re-ranking as discussed in Sections 1 and 3.
Table 3 reports (1) AUPRC which measures the quality of filter-
ing and (2) WP-rerank@5 which measures the quality of rerank-
ing with tail classifiers by using the relevance estimates gener-
ated by (a) Parabel, (b) XReg and (c) XReg-zero which corrupts
XReg’s estimates by setting all relevances to almost 0 while main-
taining the same rankings. As can be seen, XReg consistently out-
performs Parabel and XReg-zero, both of which have higher re-
gression errors as measured by XMAD@5, during both filtering
and re-ranking. XReg-zero’s results demonstrate that just accurate
ranking, asmeasured by theWP@5 column, is not enough for good
filtering and re-ranking performance and that low regression er-
rors are also necessary. Furthermore, regression errors measured
in terms of traditional MAD are not reliable since MAD is sensitive
to the sparsity in relevances and can in fact be lower for corrupted
relevances such as in XReg-zero. Figures showing the AUPRC plots
can be found in supplementary.

Analysis of ranking errors and regression metrics: Table 4
presents the relationship between XMAD & MAD to the ranking
error (WP-regret@k). Table 4 shows that, across all the baselines,
2*XMAD@2k is amuch better upper bound forWP-regret@k com-
pared to the traditionalMAD. Particularly, on regression and classi-
fication techniques, 2*XMAD@2k is 1.35-5.84 times theWP-regret@k
while MAD can be up to 69x larger than 2*XMAD@2k. In general,
ranking baselines (RankSVM, XLR) do not produce good regres-
sion values making the ratio of 2*XMAD@2k and MAD to WP-
regret@k much higher. Lastly, for the dense score prediction algo-
rithms like 1-vs-all-LS, MAD is significantly high since it sums up
the errors across all labels.

Ablation Studies: To test the effectiveness of the proposedXReg
along with its novel labelwise prediction algorithm, experiments
were done to show the boost due to each of the factors. First, the ex-
tension of Parabel-logloss to utilize label weights lead to pointwise
XReg which improved the ranking metrics up to 1.5% over Parabel
across the 3 labelwise datasets showing that XReg can learn bet-
ter from relevance weights. Further, when XReg was coupled with
the novel labelwise prediction algorithm, the gains were up to 16%,
1.1% and 45% on YahooMovie-8K, DSA-130K, and MovieLens-138K
respectively due to higher label coverage. Lastly, the use of tail
classifiers with XReg (XReg-t) further increased the ranking per-
formance by up to 0.7% over labelwise XReg.

DSAResults: Table 2 shows the offline evaluation onDSA-130K
and DSA-1Mwhile Table 6 showcases the results of the live deploy-
ment of labelwise XReg in Bing DSA pipeline. Even though few of
the extreme classification techniques could scale to DSA-130K, the
live deployment requires the techniques to scale to tens of millions
of labels (queries) and data points (ads). In the actual deployment
only PfastreXML, Parabel, and XReg were able to scale.

Table 6 compares XReg’s performance to the existing DSA en-
semble, consisting of BM25 information retrieval based algorithm [29]
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Table 3: XMAD@k is a better indicator of the filtering and re-ranking qualities than purely ranking metrics likeWP@k or traditional regres-

sion metrics like MAD.

Method AUPRC
WP-rerank-p

@5 (%)
XMAD-p@5 MAD

WP-p
@5 (%)

EURLex-4K

Parabel 0.092 49.67 0.4227 3.96 48.29
XReg 0.117 50.39 0.1849 1.22 49.72

XReg-zero 0.085 50.12 0.2255 1.21 49.72

Wiki10-31K

Parabel 0.036 21.14 0.7084 10.15 13.67
XReg 0.046 22.60 0.5716 6.01 16.94

XReg-zero 0.036 19.20 0.5781 5.61 16.94

Method AUPRC
WP-rerank-l

@5 (%)
XMAD-p@5 MAD

WP-l
@5 (%)

YahooMovie-8K

Parabel 0.135 10.09 0.6283 6.39 9.72
XReg 0.175 26.03 0.6248 6.78 25.85

XReg-zero 0.076 25.93 0.6306 5.83 25.85

DSA-130K

Parabel 0.016 34.59 0.0890 0.88 33.97
XReg 0.035 36.32 0.0438 0.24 35.65

XReg-zero 0.010 35.90 0.0402 0.20 35.65

Table 4: Ranking regret at k is up to 69x more closely bounded by 2*XMAD@2k compared to the traditional MAD as proposed in Section 3.

k = 5, "-p": pointwise, "-l": labelwise and "-t": use of tail classifiers. Please refer to the text for details.

Method
WP-regret-p

@k
2*XMAD-p

@2k
MAD

2*XMAD-p@2k /

WP-regret-l@k
MAD /

WP-regret-p@k

EURLex-4K

PfastreXML 0.1237 0.2481 1.8667 2.01 15.09
Parabel 0.1166 0.5696 3.9622 4.89 33.98
LEML 0.1527 0.2739 2.0779 1.79 13.61
1-vs-all-LS 0.1076 0.2468 2.696 2.29 25.06
RankSVM 0.1202 2.1303 37.7822 17.72 314.33
DiSMEC 0.1107 0.5733 4.9883 5.18 45.06
XReg 0.1134 0.2432 1.2284 2.14 10.83

XReg-t 0.1119 0.3141 3.4887 2.81 31.18

Wiki10-31K

PfastreXML 0.4861 0.8862 9.3561 1.82 19.25
Parabel 0.4990 1.1784 10.1523 2.36 20.35
LEML 0.5027 0.8886 25.5622 1.77 50.85
1-vs-all-LS 0.4515 0.8492 34.1409 1.88 75.62
RankSVM 0.4714 2.2960 75.4734 4.87 160.10
DiSMEC 0.4878 1.1519 80.3084 2.36 164.63
XReg 0.4802 0.8938 6.0104 1.86 12.52

XReg-t 0.4475 0.8741 32.2013 1.95 71.96

Method
WP-regret-l

@k
2*XMAD-l

@2k
MAD

2*XMAD-l@2k /

WP-regret-l@k
MAD /

WP-regret-l@k

YahooMovie-8K

PfastreXML 0.5665 0.8875 8.4893 1.57 14.99
Parabel 0.5693 0.8850 6.3913 1.55 11.23

LEML 0.4933 0.9571 36.0738 1.94 73.13
1-vs-all-LS 0.4943 0.9288 47.1887 1.88 95.47
RankSVM 0.4738 2.0235 76.6099 4.27 161.69
DiSMEC 0.4760 0.9003 38.0254 1.89 79.89
XLR 0.6013 1.0423 17.0795 1.73 28.40
XReg 0.4676 0.8847 6.7809 1.89 14.50
XReg-t 0.4664 0.8964 12.1071 1.92 25.96

DSA-130K

PfastreXML 0.0289 0.0500 0.3291 1.73 11.39
Parabel 0.0266 0.1230 0.8827 4.62 33.18
LEML 0.0361 0.0486 0.2828 1.35 7.83
DiSMEC 0.0265 0.1547 4.0878 5.84 154.26
XLR 0.0402 0.9157 34.429 22.78 856.44
XReg 0.0259 0.0519 0.2482 2.00 9.58

XReg-t 0.0256 0.0787 0.5862 3.07 22.90

Table 5: The ablation study of Parabel leading to per-label XReg-t

which clearly outperforms its predecessors on ranking metrics.

Method
Rating-l@5

(%)
AUC-l@5

(%)
CTR-l@5

(%)
AUC-l@5

(%)
Rating-l@5

(%)
AUC-l@5

(%)

YahooMovie-8K DSA-130K MovieLens-138K

Parabel-logloss 8.99 32.00 33.58 28.46 2.36 48.20
Pointwise XReg 9.47 34.00 34.59 27.13 3.89 52.35
Labelwise XReg 25.86 35.00 35.66 28.51 48.94 66.99
Labelwise XReg-t 26.05 35.33 36.32 28.45 49.29 67.36

Table 6: XReg significantly improves query coverage over the exist-

ing ensemble forDSAonBing.Note: Cov:Query Coverage, CY: Click

Yield, IY: Impression Yield, BR: Bounce Rate

Method Relative Relative Relative Relative Relative
Cov (%) CY (%) IY (%) CTR (%) BR (%)

Pointwise XReg - 105 105 100 100
Labelwise XReg 127 148 150 98 100

and PfastreXML when deployed on Bing. Both pointwise and label-
wise XRegwere deployed and evaluated. Pointwise XReg increased

RPM, CY, and IY by 5% while maintaining the CTR and BR. Finally,
the labelwise XReg improves query coverage by 27% along with a
48% and 50% increase in click yield and impression yields at a cost
of only 2% reduction in CTR.

6 CONCLUSIONS

This paper proposed a new learning paradigm called eXtreme Re-
gression (XR)which provides a scalable solution tomany real-world
recommendation and ranking problems such as tagging, recom-
mendation, DSA etc.XR involves learning to accurately predict the
numerical relevance weights of an extremely large number of la-
bels with respect to a data point. These weights not only induce
an accurate ranking but are also useful for subsequent filtering
and re-ranking steps. To effectively solve XR problems, this pa-
per also develops a new evaluation metric called XMAD@k and
a new algorithm called XReg. XReg consistently outperforms the
state-of-the-art extreme classifiers as well as large-scale regressors
and rankers in terms of ranking accuracies and efficiently scales to
datasets with millions of data points and labels. Deployment of
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XReg on DSA in Bing resulted in a relative gain of 27% in query
coverage.
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Algorithm 1 XReg Labelwise Prediction

Input:

Test data points {xi }Mi=1
Trained tree T
Required no. of most relevant test points per label N
Fraction of test points relevant for each node

{ f rac(n)} |nodes(T) |n=1
Multiplicative factor F # F ∗ f rac(n) most relevant test points are passed

down to node n

Output:

Predicted test points for each label {pred(l)}L
l=1

Initialize:

points(1) ← {1, · · · ,M} # points (n) is set of test points passed to node n

ẑi1 = 1.0 ∀i ∈ {1, · · · ,M} # All test points visit the root node with

probability 1

for n ∈ {1, · · · , |nodes(T)|} do # Breadth-first exploration of the tree

if n ∈ internalnodes(T) then
for n′ ∈ children(n) do # Iterate over children nodes of n

for i ∈ points(n) do
ẑin′ ← ẑin ∗Siдmoid(w⊤n′xi ) # Siдmoid (x ) = 1

1+exp(−x )
end for

points(n′) ← retain top({ẑin′}i ∈points(n), F ∗
f rac(n′))

end for

else if n ∈ lea f nodes(T) then
for l ∈ labels(n) do # Iterate over labels in leaf node n

for i ∈ points(n) do
ŷil ← ẑin ∗ Siдmoid(wl⊤xi )

end for

pred(l) ← retain top({ŷil }i ∈points(n),N )
end for

end if

end for

Note: In case there aremultiple trees in ensemble, the probability
predictions estimated by all trees are averaged for a each test
point, label pair and top N test points are outputted for each
label
return {pred(l)}L

l=1

procedure retain top({si }Ii=1,N )

R ← argsort({si }Ii=1, comparator← si1 > si2 ) # Sort the

test points in decreasing order of node or label probabilities

B ← {R[1], ..,R[N ]}
return B
end procedure

A THEOREMS AND PROOFS

Lemma A.1. Given any true and predicted relevance weight vec-

tors y, ŷ ∈ [0,∞)L , the following inequality hold true:

0 ≤ M

2
≤ XMAD@2k(ŷi , yi ) ≤ XRMSE@2k(ŷi , yi ) (7)

with,M =max(Ranking-error@k,Regression-error@k) (8)
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Table 7: XReg has the best or close to the best ranking and regression performance across all the datasets compared to state-of-the-art extreme

classifiers and large-scale regressors and rankers. Re-ranking with tail classifiers (XReg-t) further improves the accuracies. PSP@k , CTR@k

and Rating@k are variants of WP@k as discussed in Section 3. "-p": pointwise, "-l": labelwise.

Method
PSP-p@1

(%)
PSP-p@3

(%)
Tau-p@1

(%)
Tau-p@3

(%)
nDCG-p@5

(%)
XRMSE-p@5

BibTex

PfastreXML 52.43 53.41 41.31 48.36 56.41 0.3813
Parabel 50.88 52.42 36.57 46.28 54.58 0.4104
LEML 51.30 52.17 39.32 47.31 54.10 0.3935
1-vs-all-LS 53.50 55.10 39.91 49.31 57.30 0.3834
RankSVM 49.31 51.79 39.22 47.07 54.97 0.7228
DiSMEC 50.88 52.52 36.66 46.34 54.54 0.4104
ProXML 50.10 52.00 - - - -
XReg 49.66 52.66 38.48 47.09 54.98 0.3958
XReg-t 49.86 53.04 38.68 47.33 55.14 0.3805

EURLex-4k

PfastreXML 40.16 43.07 46.97 46.50 43.64 0.2188
Parabel 36.36 44.04 40.96 46.03 44.78 0.4673
LEML 27.20 30.15 30.47 33.62 30.73 0.2406
1-vs-all-LS 47.02 50.85 54.12 52.45 50.82 0.2006

RankSVM 39.52 43.82 51.23 49.79 44.49 1.2093
DiSMEC 37.58 45.92 42.32 47.56 46.73 0.4771
ProXML 45.20 48.50 - - -
XReg 44.00 47.44 51.69 50.51 47.99 0.2127
XReg-t 45.23 48.51 53.06 51.59 48.89 0.2338

Wiki10-31K

PfastreXML 12.94 14.80 11.93 17.53 15.13 0.5925
Parabel 11.66 12.73 13.36 17.18 13.13 0.7201
LEML 11.25 12.38 15.29 18.40 12.58 0.5938
1-vs-all-LS 26.78 23.06 36.59 29.50 23.01 0.5691

RankSVM 21.06 18.99 32.63 27.58 19.05 1.2279
DiSMEC 11.91 14.09 14.41 19.47 14.63 0.7140
XReg 17.33 16.73 26.76 25.01 16.98 0.5931
XReg-t 25.92 23.56 38.72 33.09 23.40 0.5722

WikiLSHTC-325K

PfastreXML 25.67 26.57 31.11 34.15 27.09 0.1922
Parabel 26.71 33.16 28.05 36.99 33.48 0.3130
DiSMEC 29.10 35.60 - - - -
ProXML 34.80 37.70 - - - -
XReg 32.36 34.36 36.59 39.10 35.13 0.1877

XReg-t 36.85 37.98 41.41 41.96 38.87 0.3241

Amazon-670K

PfastreXML 24.52 26.65 28.18 29.30 27.36 0.4356
Parabel 25.43 29.45 20.54 26.56 30.72 0.4640
DiSMEC 25.82 30.20 20.40 26.77 31.89 0.4582
ProXML 30.80 32.80 - - - -
XReg 29.12 31.19 31.69 32.63 32.01 0.4189

XReg-t 31.16 32.71 33.83 34.28 33.34 0.4639

Method
CTR-p@1

(%)
CTR-p@3

(%)
Tau-p@1

(%)
Tau-p@3

(%)
nDCG-p@5

(%)
XRMSE-p@5

SSA-130K

PfastreXML 21.34 25.24 22.33 23.1 25.56 0.0817

Parabel 21.95 28.87 26.98 28.83 29.22 0.1636
LEML 3.79 5.11 7.2 7.61 5.50 0.0835
RankSVM 8.92 10.96 13.14 13.74 11.51 2.7945
DiSMEC 21.36 28.41 25.68 27.64 28.85 0.1746
XReg 24.69 29.02 27.52 27.71 29.64 0.0826
XReg-t 24.7 29.22 27.32 27.83 29.93 0.1225

Method
Rating-l@1

(%)
Rating-l@3

(%)
Tau-l@1

(%)
Tau-l@3

(%)
nDCG-l@5

(%)
XRMSE-l@5

YahooMovie-8K

PfastreXML 11.5 9.9 22.29 20.21 10.36 0.7047
Parabel 11.28 9.73 30.11 29.08 10.03 0.7054
LEML 21.33 21.06 28.81 29.5 21.55 0.6851
1-vs-all-LS 22.75 21.02 34.9 32.59 21.76 0.6791
RankSVM 24.89 23.16 36.99 34.7 24.53 1.0613
DiSMEC 23.76 23.19 34.62 33.45 24.10 0.6826
XLR 3.87 4.2 12.44 11.78 4.40 0.7182
XReg 26.49 24.77 39.02 35.8 25.76 0.6944
XReg-t 26.53 24.86 39.28 36.42 25.90 0.6772

MovieLens-138K

PfastreXML 9.03 7.82 25.92 23.88 7.63 0.9253
Parabel 5.95 4.25 40.67 39.08 4.03 0.9254
LEML 46.51 44.89 69.58 66.96 43.97 0.8773
1-vs-all-LS 46.94 43.88 43.17 69.28 65.92 0.8882
DiSMEC 50.85 47.05 65.45 62.93 46.49 0.8909
XLR 14.49 10.31 31.61 21.5 10.55 0.9184
XReg 54.65 50.83 71.59 68.83 50.16 0.8793
XReg-t 55.04 51.21 72.07 69.3 50.52 0.8337

Method
CTR-l@1

(%)
CTR-l@3

(%)
Tau-l@1

(%)
Tau-l@3

(%)
nDCG-l@5

(%)
XRMSE-l@5

DSA-130K

PfastreXML 18.15 23.7 26.77 30.99 23.93 0.0647

Parabel 19.97 28.06 23.44 26.04 28.13 0.1091
LEML 3.94 6.9 5.35 6.46 7.54 0.0657
XLR 0.03 0.07 0.1 0.1 0.07 0.4837
DiSMEC 18.94 27.52 22.20 25.25 27.70 0.1201
XReg 22.07 29.73 23.73 26.08 29.95 0.0654
XReg-t 22.41 30.1 23.98 26.13 30.43 0.0744

DSA-1M

Parabel 25.78 33.15 27.93 29.38 33.28 0.1218
XReg 26.75 33.06 28.67 29.51 33.36 0.0806

XReg-t 27.83 34.27 29.68 30.18 34.55 0.0892

Proof. The ranking and regression errors are defined as fol-
lows

Ranking-error@k(ŷi , yi ) =
1

k

∑

l ∈S (yi ,k)
yil −

1

k

∑

l ∈S (ŷi ,k)
yil (9)

Regression-error@k(ŷi , yi ) =
1

k

∑

l ∈S (ŷi ,k)
|ŷil − yil | (10)

Since S(yi ,k) picks thek largest values ofyil , Ranking-error@k(ŷi , yi ) ≥
0 always. Due to summation over only non-negative values, Regression-
error@k(ŷi , yi ) ≥ 0 always too, which together establish the in-
equality 0 ≤ M

2 .

Now, let’s prove that M
2 ≤ XMAD@2k(ŷ, y). First, we begin

by showing that Ranking-error@k(ŷi , yi ) ≤ 2XMAD@2k(ŷ, y).
Without loss of generality, let’s assume that the sets S(yi ,k) and

S(ŷi ,k) are non-overlapping. In the contrary case, the same argu-
ments can be applied to another predicted set S ′ created by replac-
ing the overlapping labels in S(ŷi ,k) with different labels having
smaller ŷil values. Thus bounding ranking error on S ′ will also
bound it on S(ŷi ,k). Now,
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Table 8: Hyperparameter tuning for # trees (T ), Max leaf labels (M ), Beam width (P ) and points reaching leaf node per label in labelwise

prediction of XReg. Note: The hyperparameters in bold face are finally chosen for the default setting.

#
trees

WP@5
(%)

Tau@5
(%)

XMAD@5
Training
time (hrs)

Test time
/point (ms)

Model
Size (GB)

EURLex-4K (pointwise)

1 48.05 51.14 0.1899 0.0307 0.3911 0.0125
3 49.72 52.86 0.1849 0.0642 1.2899 0.0378
5 50.25 53.24 0.1836 0.0995 2.638 0.0629
7 50.44 53.42 0.1831 0.1543 3.4703 0.0881

Amazon-670K (pointwise)

1 30.50 32.31 0.3956 0.6788 0.6551 1.1478
3 33.24 34.72 0.3869 1.4925 2.4633 3.4186
5 34.00 35.45 0.3847 2.1499 6.9283 5.6978
7 34.37 35.86 0.3837 3.4298 8.564 7.9768

DSA-130K (labelwise)

1 33.64 27.52 0.0448 0.2165 1.8552 0.2624
3 35.66 28.51 0.0439 0.4570 7.4715 0.7871
5 36.24 28.94 0.0436 0.6836 16.3785 1.3117
7 36.55 29.2 0.0435 1.0897 21.7585 1.8358

Beam
width

WP@5
(%)

Tau@5
(%)

XMAD@5
Training
time (hrs)

Test time
/point (ms)

Model
Size (GB)

EURLex-4K (pointwise)

5 49.6 52.76 0.1858 0.0627 0.6869 0.0378
10 49.72 52.86 0.1849 0.0642 1.2899 0.0378
20 49.7 52.86 0.1847 0.0638 2.4982 0.0378
30 49.71 52.86 0.1847 0.0682 3.8542 0.0378

Amazon-670K (pointwise)

5 32.77 34.37 38.77 1.3654 1.4467 3.4186
10 33.24 34.72 0.3869 1.4925 2.4633 3.4186
20 33.38 34.82 0.3866 1.3721 4.8842 3.4186
30 33.4 34.83 0.3866 1.5508 9.1728 3.4186

Max leaf
labels

WP@5
(%)

Tau@5
(%)

XMAD@5
Training
time (hrs)

Test time
/point (ms)

Model
Size (GB)

EURLex-4K (pointwise)

20 49.34 52.75 0.1845 0.0323 0.4694 0.0494
50 49.6 52.71 0.1859 0.0458 0.8198 0.0428
100 49.72 52.86 0.1849 0.0642 1.2899 0.0378
200 50.11 53.05 0.1846 0.1031 2.6368 0.0337

Amazon-670K (pointwise)

20 32.26 33.96 0.3869 0.7514 0.7051 6.0288
50 32.89 34.46 0.3868 1.1171 1.7382 4.124
100 33.24 34.72 0.3869 1.4925 2.4633 3.4186
200 33.56 34.99 0.3866 2.1426 4.3993 2.9268

DSA-130K (labelwise)

20 34.76 28.2 0.0448 0.2678 2.279 0.9867
50 35.21 28.42 0.0443 0.3516 4.8664 0.8764
100 35.66 28.51 0.0439 0.4570 7.4715 0.7871
200 35.96 28.63 0.04351 0.6925 8.9019 0.7128

# per-label
points

WP@5
(%)

Tau@5
(%)

XMAD@5
Training
time (hrs)

Test time
/point (ms)

Model
Size (GB)

DSA-130K (labelwise)

5 35.56 28.41 0.0438 0.4989 4.3407 0.7871
10 35.66 28.51 0.0439 0.4570 7.4715 0.7871
20 35.68 28.54 0.0438 0.5164 11.1622 0.7871
30 35.68 28.54 0.0438 0.5135 11.5373 0.7871
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Figure 1: Precision-Recall curves showing thatXReg is consistently better thanXReg-Zero andParabel approaches for precision recall tradeoff.
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yil −
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yil (11)

≤ 1

k

∑

l ∈S (yi ,k)
yil −

1

k

∑

l ∈S (ŷi ,k)
yil +

1

k

∑

l ∈S (ŷi ,k)
ŷil −

1

k

∑

l ∈S (yi ,k)
ŷil

(12)

≤ 1

k

∑

l ∈S (yi ,k)
eil +

1

k

∑

l ∈S (ŷi ,k)
eil where, eil = |yil − ŷil | (13)

≤ 1

k

∑

l ∈S (ei ,2k)
eil (14)

= 2MAD@2k(ŷ, y) (15)

Bounding the regression error is quite straightforward, hence we
skip the proof here.

Finally, the XMAD@2k(ŷi , yi ) ≤ XRMSE@2k(ŷi , yi ) property
follows by using Jensen’s inequality on the square function which
is concave. �

Theorem A.2. Given that yl =
∏H

h=1 zlh and ŷl =
∏H

h=1 ẑlh
and under the standard unvisited node assumption of Parabel

DKL(yl | |ŷl ) ≤
H
∑

h=1

slhDKL (zlh | |ẑlh) where slh =
h
∏

h̃=1

z
l (h̃−1) (16)

Proof. We assume that 0 log 0
p = 0 where 0 ≤ p ≤ 1. We also

use the unvisited node assumption in Parabel, P(zlh = 0|zl (h−1) =
0) = 1, which means that a child of an unvisited node is never
visited.

Let Iyl ∈ {0, 1} be the probabilistic variable which says whether
label l is relevant to a data point in reference, i.e. P(Iyl = 1) = yl
and P(Iyl = 0) = 1−yl . Similarly let Izlh ∈ {0, 1} be the probabilis-
tic variable which says whether the data point visits node nlh or
not, i.e. P(Izlh = 1) = zlh and P(Izlh = 0) = 1 − zlh .

Now, since the relevance of label l to a data point is equivalent
whether the label path is traversed in the tree by the data point:
yl = zlH and P(Iyl ) = P(IzlH , · · · , Izl1 ) hold true.

Due the fact that x log x
y is a convex function, it is easy to show

that the KL-divergence between 2 marginal distributions is upper
bounded by the KL-divergence of the corresponding joint distribu-
tions.

DKL(P(Iyl )| |P(Iŷl )) = DKL(P(IzlH )| |P(IẑlH )) (17)

≤ DKL(P(IzlH , · · · , Izl1 )| |P(IẑlH , · · · , Iẑl1 )) (18)

By using chain rule of KL-Divergence: (19)

= DKL(P(Izl (H−1) , · · · , Izl1 )| |P(Iẑl (H−1) , · · · , Iẑl1 )) (20)

+ P(Izl (H−1) = 1)DKL(P(IzlH |Izl (H−1) = 1)| |P(IẑlH |Iẑl (H−1) = 1))
(21)

+ P(Izl (H−1) = 0)DKL(P(IzlH |Izl (H−1) = 0)| |P(IẑlH |Iẑl (H−1) = 0))
(22)

By unvisited node assumption, (23)

Izl (H−1) = 0 =⇒ IzlH = 0 and Iẑl (H−1) = 0 =⇒ IẑlH = 0 (24)

hence: (25)

= DKL(P(Izl (H−1) , · · · , Izl1 )| |P(Iẑl (H−1) , · · · , Iẑl1 )) (26)

+ P(Izl (H−1) = 1)DKL(P(IzlH |Izl (H−1) = 1)| |P(IẑlH |Iẑl (H−1) = 1))
(27)

= DKL(P(Izl (H−1) , · · · , Izl1 )| |P(Iẑl (H−1) , · · · , Iẑl1 )) (28)

+ (
H−1
∏

h̃=1

z
l h̃
)
(

zlh log
zlh
ẑlh
+ (1 − zlh) log

1 − zlh
1 − ẑlh

)

(29)

By recursively applying above simplification (30)

at higher level tree nodes: (31)

=

H
∑

h=1

slh

(

zlh log
zlh
ẑlh
+ (1 − zlh) log

1 − zlh
1 − ẑlh

)

(32)

The above upper bound is exactly the quantity that XReg mini-
mizes during training by assuming logistic model for probability
estimates. �

Lemma A.3. XReg’s overall training objective minimizes an up-

per bound over XMAD@k for all k , with the bound being tighter for

smaller k values.

Proof. As presented in the next theorem, XReg minimizes an
upper bound onXMAD@1 =maxL

l=1 |yl−ŷl |. Note that XMAD@k ≤
XMAD@1∀k . Furthermore, ask increases, XMAD@k averages smaller
and smaller errors compared the largest errors, therefore the bound
is tighter for smaller values of k which are close to k = 1. �

Theorem A.4. When each data point has at most O(logL) posi-
tive labels, the expected WP@k regret and XMAD@k error suffered

by XReg’s pointwise inference algorithm are bounded by:

O(log2 L
√

W
√
Np

√

1 +

√

5 log
3L

δ
)

with probability at least 1 − δ , where N is the total training points,

L is the number of labels,W is the maximum norm across all node

classifier vectors and p is the minimum probability density of x dis-

tribution that any tree node receives.

Proof. The outline of the proof is as follows. First, we see that
the WP@k regret and XMAD@k error for a given data point are
bounded, in a straight forward manner, by XReg’s node and label
classifier objectives over that data point. For good overall general-
ization performance, each classifier needs to receive enough train-
ing samples as well as learn to generalize well from those sam-
ples.We derive probability bounds for those events simultaneously.
While these steps together give the regret bounds for the classifier
during exact prediction (i.e., calculate the scores for all labels for
a given test point), the regret suffered by the greedy, beam-search
algorithmmight actually be more than that. Therefore, in a follow-
up step, we also give a bound for this approximate algorithmwhich
is only worse byO(logL). This gives us the final sample complexi-
ties.
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By Lemma (7), both 1
2WP@k and XMAD@2k are bounded by

XRMSE@2k which is in turn bounded by maxL
l=1
|yl − ŷl |.

Now, using Pinsker’s inequality [15],

L
max
l=1
|yl − ŷl | (33)

≤ L
max
l=1

√

1

2
DKL (yl , ŷl ) (34)

=

√

L
max
l=1

1

2
DKL(yl , ŷl ) (35)

From (16): (36)

≤

√

√

√

L
max
l=1

1

2

H
∑

h=1

slhDKL(zlh | |ẑlh) (37)

≤
√

1

2

∑

n:zn−1>0

snDKL(zn | |ẑn) (38)

where zn−1 is value in parent of node n (39)

(40)

�

For good generalization performance, we need a small expected
regret with respect to distribution over data point x:

Ex
L

max
l=1
|yl − ŷl | (41)

By concavity of square root function: (42)

≤
√

1

2
Ex

∑

n:zn−1>0

snDKL(zn | |ẑn) (43)

Now we try to bound the above quantity by relating it to train-
ing error.

Let pn be the expected fraction of the probability density over
x that a tree node n receives. This is precisely the density of data
points which have at least one label with non-zero relevance in the
subtree rooted at node n. Now, let’s compute the probability that
the node n receives at least Npn(1 − k) training points where N is
the number of total training points and Npn is the expected num-
ber of training points that node n would receive. By using chernoff

bound, this probability is at least 1− exp(−pnNk2

2 ). Now, the prob-
ability that all tree nodes n would simultaneously receive at least

Npn(1−k) training points is at least 1−L exp(−pNk2

2 ) since there
are at most L tree nodes and each has x density of at least p.

Now, we use the result in [30]. Since the logistic loss used for
modeling probabilities in XReg is lipschitz continuous with con-
stant 1 and logistic regression parameters are bounded by norm
W , and x is bounded by norm 1, for any regressor in XReg,

ExsnDKL (zn, ẑn) ≤ ÊxsnDKL (zn, ẑn) + 2W
√

1

Np(1 − k) + 2W ∆

(44)

with probability at least 1−exp(−2Np(1−k)∆2)where ÊxDKL (zn , ẑn)
is the average training error in nodenwhich is 0 as per our assump-
tion.

Combining the above reasonings, along with the fact that there
are at most 2L regressors in XReg, we can conclude that with prob-

ability of at least 1−L exp(−pNk2

2 ) − 2L exp(−2Np(1−k)∆2), each
node has expected error bounded simultaneously as below:

ExsnDKL(zn , ẑn) ≤ 2W

√

1

Np(1 − k) + 2W∆ (45)

Now, note that k can be given any value in [0, 1] and the above

bounds vary accordingly. We choose to give k = 2∆(
√
∆2
+ 1 − ∆).

Then, with probability at least 1− 3L exp(−2(
√

(2) − 1)2Np∆2), for
all regressors

ExsnDKL (zn, ẑn) ≤ 2W

√

1

Np(1 − 2∆(
√

(∆2
+ 1) − ∆))

+ 2W∆

(46)

In other words, with probability at least 1 − δ over the training
samples, for all regressors,

ExsnDKL(zn , ẑn) ≤ 2W

√

1

Np(1 − 2∆(
√

(∆2
+ 1) − ∆))

(47)

+ 2W

√

1

2(
√
2 − 1)2Np

log
( 3L

δ

)

(48)

where ∆ =

√

1
2(
√
2−1)2Np

log
(

3L
δ

)

. Now since ∆ → 0 as N → ∞,
for large enough N , the above bound can be approximated to

ExsnDKL(zn , ẑn) ≤ 2W

√

1

Np
+ 2W

√

1

2(
√
2 − 1)2Np

log
( 3L

δ

)

(49)

From (50),

Ex
L

max
l=1
|yl − ŷl | (50)

≤
√

1

2
Ex

∑

n:zn−1>0

snDKL(zn | |ẑn) (51)

Since any x has on average logL non-zero labels and (52)

since height of the tree is logL (53)

the number of nodes with zn−1 > 0 for any x is on average log2 L, hence:
(54)

≤

√

√

√

log2 L

2

(

2W

√

1

Np
+ 2W

√

1

2(
√
2 − 1)2Np

log
( 3L

δ

))

(55)

≤ logL

√

W
√
Np

√

1 +

√

5 log
( 3L

δ

)

(56)

with probability at least 1 − δ over training samples.
The above bound holds for exact predictionwhere all label prob-

abilities are computed for a given test point. Now we analyse the
extra regret due to the greedy, approximate, beam search based,
pointwise inference algorithm used by XReg.

During beam-search, a point traverses the tree level-by-level. At
each tree level, a small shortlist of around k = 10 most probable
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nodes, i.e. nodes with most relevant labels their subtrees, are main-
tained and extended on to next level. If accurate label relevances
were available, then beam search would always return the best set
of labels, since each node’s zn variable valuematches themost rele-
vant label in its subtree. Unfortunately, due to generalization error,
the estimated ẑn values might not exactly match the Zn values. As
a result, the regret accumulates at each tree level whenever a node
with lower zn is maintained in shortlist instead of the highest one.
The regret suffered is at most maxn∈S 2|zn − ẑn |, where S is the
set of shortlisted nodes at a tree level. A little more algebra reveals
that this quantity is in fact bounded by (50).

max
n∈S

2|zn − ẑn | ≤
√

1

2
Ex

∑

n:zn−1>0

snDKL (zn | |ẑn) (57)

which is the bound on the regret suffered by exact prediction al-
gorithm. That is, beam-search can suffer at most the same amount
of regret at each tree level that exact prediction suffers as a whole.
Now since there are logL tree levels, the regret of beam search
algorithm is bounded by

≤ log2 L

√

W
√
Np

√

1 +

√

5 log
( 3L

δ

)

(58)
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