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Abstract 
Context: Stack Overflow is a popular community question 
and answer portal used by practitioners to solve problems 
during software development. Developers can focus their 
attention on answers that have been accepted or where 
members have recorded high votes in judging good 
answers when searching for help. However, the latter 
mechanism (votes) can be unreliable, and there is currently 
no way to differentiate between an answer that is likely to 
be accepted and those that will not be accepted by looking 
at the answer's characteristics. Objective: In potentially 
providing a mechanism to identify acceptable answers, this 
study examines the features that distinguish an accepted 
answer from an unaccepted answer. Methods: We studied 
the Stack Overflow dataset by analyzing questions and 
answers for the two most popular tags (Java and 
JavaScript). Our dataset comprised 249,588 posts drawn 
from 2014-2016. We use random forest and neural network 
models to predict accepted answers, and study the features 
with the highest predictive power in those two models. 
Results: Our findings reveal that the length of code in 
answers, reputation of users, similarity of the text between 
questions and answers, and the time lag between questions 
and answers have the highest predictive power for 
differentiating accepted and unaccepted answers. 
Conclusion: Tools may leverage these findings in 
supporting developers and reducing the effort they must 
dedicate to searching for suitable answers on Stack 
Overflow. 
 
Keywords: Feature Selection; Textual Features; 
Non-textual Features; Random Forest; Neural 
Network; Text-Mining; Stack Overflow. 
 

1. INTRODUCTION 
Stack Overflow is a popular question and answer portal 
used regularly by software practitioners exploring solutions 
to programming- and technology-related challenges faced 
during software development. Recent studies have shown 

 
1   Relating to non-text (e.g., numbers, dates). 

that the majority of the questions that are asked on Stack 
Overflow receive one or more answers [1], and this forum 
is becoming a substitute for official programming 
languages’ tutorials and guides [2]. Stack Overflow users 
(contributors) who post questions can select an answer, 
which is then typically regarded as the accepted answer. 
This allows the user who created the post to point to an 
answer that satisfies his/her question, and gives confidence 
to the user who wrote the answer. This can be convenient 
for other users browsing the platform seeking help for a 
similar issue, as they could locate an answer that may 
resolve their query in a short space of time, with confidence 
that the answer is acceptable to others. Answers may also 
be voted up or down depending on users’ perception of 
their merit; however, this measure is said to be unreliable 
as users may manipulate the Stack Overflow voting scheme 
to enhance their reputation over others in the community 
[3]. In addition, while there is skepticism around the 
reliance of votes as a judgement of answers’ suitability, 
answers take time to accumulate votes, and so, there are 
instances when votes are not available with which to offer 
preliminary judgement on answers. 

Although answers on Stack Overflow may at times be 
accepted in 24 hours [3], in instances when there is delayed 
acceptance an automated mechanism may predict if an 
incoming answer will be acceptable (or accepted) based on 
specific features. Past studies have indicated that certain 
non-textual1 factors affect the quality (and thus, 
acceptability) of answers retrieved in question and answer 
(Q&A) portals [4, 5]. Jeon, et al. [6] presented a systematic 
approach for extracting aspects of non-textual information 
that may be used to predict the quality of an answer in a 
Q&A pair. Other studies have also focused on using 
textual2 features in finding high quality content in a Q&A 
platform [7]. This latter approach tends to overlook 
important non-textual features, while the former ignores 
those that are textual in nature. Therein exists the 
opportunity to evaluate features more comprehensively. In 
this paper, we examine the full range of features (textual 
and non-textual) that predict answers’ acceptability. Our 
main assumptions are that: the best answer is the answer 

2  Relating to text (e.g., words, phrases, sentences). 
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selected by the user who posed the question, and the best 
answer has the highest quality among the list of answers to 
a post. To the best of our knowledge, previous work did not 
examine the range of features that are common to Stack 
Overflow accepted answers, and how these may be used to 
differentiate acceptable answers. We thus set out to answer 
the following research question to guide our investigation: 

RQ. Which features are most significant in distinguishing 
an accepted Stack Overflow answer? 

We believe that our outcomes could be of practical 
significance to the many practitioners who use Stack 
Overflow to answer questions and overcome challenges, as 
we provide understandings for the specific important 
attributes to look for when reading through potentially 
many Stack Overflow answers. 

The remaining sections of the paper are organized as 
follows. Section 2 examines how other researchers have 
studied the quality and acceptability of answers in Q&A 
settings. Section 3 explores the structure of Stack Overflow 
processes. In Section 4, we present the research 
methodology, detailing our data extraction, data sampling 
and procedures, text data processing, features selection and 
modelling and analyses. Section 5 reports our results in 
answering the research question above. We next discuss our 
findings and explore implications in Section 6, before 
considering threats to the work in Section 7. This paper then 
concludes in Section 8, where we provide a summary of our 
work and recommendations for future research. 
 

2. BACKGROUND 
While votes accumulated could influence answer 
acceptability [8], this measure is unreliable as users may 
manipulate voting schemes to enhance their reputation [8]. 
We therefore investigate the features that are most 
significant in predicting answer acceptability, and review 
works that have studied the attributes that influence the 
quality and acceptability of answers in Q&A settings. For 
instance, Jeon, et al. [6] focused on non-textual features 
when examining Q&A forums and proposed a framework 
to predict the quality and acceptability of content in a 
collection of Q&A pairs using clustering and maximal 
entropy. They extracted a range of non-textual features, and 
the length of the answer was utilized in determining answer 
acceptability. Larkey [9] used the length of answers to 
estimate the quality and acceptability of online writing. 
This feature was also supported by others (e.g.[10]), who 
observed that the quality of answers correlated with their 
length. [5] went on to demonstrate a graphical based 
approach to determining high quality content in a Yahoo 
Q&A dataset. They focused only on non-textual features, 
and found that answer length was the dominating feature 
among several other features in determining the quality of 
answers leading to their acceptance. This stream of work 
shows that non-textual features can be significant 
predictors of answer quality and acceptance in some 
contexts, and especially the number of words that are 
expressed in contributors’ responses. 

 
3    http://www.stackoverflow.com 

Other works have examined non-textual features with a 
slightly different focus. For instance, Burel, et al. [11] 
combined user and thread features to predict the best 
answer by using logistic regression. They found, contrary 
to the outcomes of previous work, that answer length was 
not correlated with the best answers that were provided by 
contributors to Q&A portals. In fact, in examining an online 
community website where users with no prior knowledge 
interacted with each other, users’ reputation was shown to 
be the strongest predictor of the quality of posts [12]. In 
order to compute users’ (contributors’) reputation in a 
Q&A setting, other work has combined both social network 
analysis (SNA) metrics and user rating [13]. The outcomes 
here show that no one variable may predict answer quality 
and acceptance, and in fact, isolated predictors may be 
evident by chance. 

The need to increase the range of features used for training 
models has thus led other researchers to combine both 
textual and non-textual features. Combining textual and 
non-textual features was seen in the work of  Blooma, et al. 
[14]. They predicted the best answer in a stack of answers 
by using a Bayesian model, and concluded that the best 
answer was greatly influenced by textual features. Other 
researchers have also combined both forms of features to 
extract high quality content in online forums. For instance 
Jizhou, et al. [15] combined structural information with 
textual and non-textual features to extract high-quality pairs 
(discussion threads) from an online discussion forum. Buse 
and Weimer [16] explored users’ metadata and other 
textual and non-textual features as input to a support vector 
machine to determine the best answer in Yahoo Q&A 
datasets. Both groups of authors found that the user profile 
variable was a strong predictor of content quality. These 
findings underscore the need to investigate both textual and 
non-textual features for their predictive power when 
exploring Q&A forums. 

Understanding the strength of various predictors could go 
some way towards identifying specific posts in software 
development Q&A forums, where practitioners are seen to 
rely heavily on such content for problem solving [2]. Stack 
Overflow, in particular, has become a central portal for 
developers’ support [1], and has attracted a large amount of 
research effort [17]. While works have attempted to predict 
accepted answers on this portal (e.g., via votes [18] and 
comments [19]), there has been less effort aimed at 
studying the full range of features towards predicting 
answers acceptability on Stack Overflow. We thus 
investigate this issue. 
  

3. STACK OVERFLOW 
Stack Overflow was built around four design decision 
mechanisms3 to ensure maintenance of content quality. 
These are the voting mechanism4, where users can up-vote 
or down-vote answers they like or dislike respectively. The 
Tag mechanism is used to organize Stack Overflow 
questions into groups; users are allowed the option to assign 
at least one (or up to five) tag(s) to their question. Users 
apply the editing mechanism to edit and refine their Q&A 

4    https://stackoverflow.com/help/why-vote 
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over time, thereby providing more reliable and precise 
information to the community. Finally, badges5 are given 
to contributors once their contributions have reached a 
certain threshold to reward them for their effort (as a form 
of prestige). 

Tags are particularly noteworthy for Stack Overflow users. 
As noted above, the user that registers the question on Stack 
Overflow is also allowed to label the question by placing a 
tag. The tag indicates the group(s) the question belongs to; 
for example, “computer programming”, “API” or “library”. 
A more granular classification may also be provided, e.g., 
PHP, MySQL, C#, and so on.  Each tag is presumed to be 
representative of the question, and the Stack Overflow 
system automatically suggests tags for users at the time of 
entering questions. Users of Stack Overflow sometimes use 
the tag mechanism to search for Q&A pairs, and the need 
for an accurate tagging system has led some researchers to 
develop models that predict the tag for given questions 
[20]. 

Other mechanisms have been provided for encouraging 
contributions on Stack Overflow. As noted above, in order 
to encourage users’ activities the concept of badges is used. 
Badges are usually earned by being helpful and performing 
particular tasks on Stack Overflow, which leads to the user 
building a positive reputation. Bosu, et al. [8] in their study 
of members’ reputation via badges in Stack Overflow 
found that a new user would usually gain status quickly and 
move on to a higher position within the Stack Overflow 
community by gaining badges. Finally, as mentioned 
earlier, users of the Stack Overflow website are encouraged 
to use the editing mechanism to edit and refine their Q&A 
over time. This feature is seen to be positive in terms of 
encouraging progressively more acceptable questions and 
answers over time. The abovementioned practices make 
Stack Overflow an interesting platform to study. We 
examine the specific research methodology used in this 
work next. 
 

4. RESEARCH METHODOLOGY 
In this section, we present our data extraction process 
(Section 4.1), efforts towards data sampling and 
preprocessing (Sections 4.2 and 4.3), feature selection 
(Section 4.4) and modelling and analyses (Section 4.5). 
 
4.1 Data Extraction 
The Stack Overflow data dump is published by Stack 
Exchange in XML format6, and is available for researchers 
to perform various forms of analyses. We used the dataset 
added to the archive on September 12, 2016, which is 
divided into several XML files, consisting of posts, 
comments, tags, badges, post history, post links, users and 
votes. The Post XML file contains the questions and 
answers, and also the tag variable which is linked to the Tag 
XML file. The Tag XML file has the name of tags and 
associated IDs for the names. The PostLinks XML file 
provides linkages to related Post IDs for the various types 
of posts (question or answer). The Comment XML file has 

 
5 https://stackoverflow.com/help/badges 
6 https://archive.org/details/stackexchange 

comment text and corresponding Post ID (the post for the 
associated comment(s)), thus linking back to the Post XML 
file. A similar linkage exists for the Votes and Badges XML 
files, which are linked to the Post XML and Users XML 
files respectively. The Users XML file contains user 
(contributor) data, covering contributors to both questions 
and answers. The combined dataset extracted was 90 
gigabytes, and it contained over 35 Million posts (questions 
and answers). In order to simplify our working processes 
we created a Python script to convert all XML files to plain 
text and dumped the content into their corresponding tables 
in a SQLite database (e.g., the Posts.XML file was dumped 
into Post table). We were not interested in analyzing the 
entire dataset because our objective was to understand the 
features that make answers acceptable, and to accomplish 
this we sampled records that were useful for our study, i.e., 
posts with more than one answer, and which also have an 
accepted answer. 
 
4.2 Data Sampling and Procedures 
To answer our research question, we needed to understand 
the features that make answers acceptable; thus, we 
extracted questions that have accepted answers only. We 
studied the top 50 tags in our dataset to gain insight into the 
numbers of questions and answers that have been 
contributed to each tag and found that JavaScript, Java and 
C# were the three top tags. Since we are interested in 
understanding the strength of the various features that make 
an answer acceptable we reduced the scope of our dataset 
by including only questions with two or more answers. 
These questions were also required to have a corresponding 
accepted answer. To reduce our dataset further, to optimize 
our algorithms’ execution, we selected records for the top 
two tags only (Java and JavaScript), in light of these records 
having proportionally more answers than others. We 
explored the dataset associated with those two tags further 
to examine the trend of questions and answers over time, 
finding that the final 3 years (2014, 2015 and 2016) have 
recorded the highest number of questions (and associated 
answers) on Stack Overflow. While questions may be 
forwarded around the scale of data we analyzed (refer to 
Section 7 for additional details), our dataset comprised 
nearly 250,000 records, and we know that Stack Overflow 
data are generalizable across time and languages [21]. 

In this paper we are only interested in the predictive power 
of the features of accepted answers, and so we eliminated 
all features that do not relate to what makes an answer 
acceptable, prior to our analyses. We discarded the badges 
table because badges are given based on how many 
questions and answers a contributor provides; and do not 
relate to what the community thinks about those questions 
and answers. In addition, badges differ from the reputation 
score7 of contributors, with the latter attribute being more 
suitable for understanding a contributor’s worth to the 
community. We also discarded the post history, post link 
and user tables as these tables were not held to contain 
information related to our research question. Furthermore, 
we discarded answers that were given and accepted by the 

7 Based on the quality of the question and answer the user has posted. 
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same user who posted the question, and answers that were 
not linked to any registered user. 

Our dataset for experimentation thus consisted of 249,588 
posts. In line with our sampling procedure above, these 
posts comprised questions from 2014, 2015 and 2016 that 
have at least two answers, of which there is one accepted 
answer. We had a slightly unbalanced dataset (in terms of 
the number of accepted and unaccepted answers), where the 
number of accepted answers was 88,607, compared to 
160,981 answers not labelled as accepted. We randomly 
selected 70% (174,711) of the data for training, and the 
remaining 30% (74,877) was used for testing when 
performing our predictive modelling (refer to Section 4.5). 
 
4.3 Text Data Preprocessing 
In this section we present the approaches used for 
preprocessing our text data. We found that Stack Overflow 
Q&As are usually stored in Markdown (HTML), and code 
blocks are always placed between a tag block called 
“code”. An example of an answer with a code block is 
shown below: 
 
“<p>I do not think it is necessary and I would ...  2014 </p> 
 <code> def plot: a=c[1,2,3] </code>” 
 
Our first step was to extract these code blocks by separating 
them from the text body, before exploring both the code and 
text parts of answers in detail. Preprocessing of text 
documents is a vital task during text mining. This is because 
retrieving meaningful information from preprocessed texts 
is easier when compared to natural language because text 
documents are usually represented as a bag of words with 
various dimensions [22]. These dimensions can be reduced 
by applying preprocessing techniques such as stop word 
removal and tokenization [23]. The subsections below 
detail our text data preprocessing steps, which consist of 
stop word removal, stemming and tokenization. 

(1) Elimination of Stop Words: When retrieving 
information in a text document, many words do not add 
meaning to the sentences in which they belong [23] . These 
words are usually grouped as the most common words used 
in English language, and are classified as prepositions, 
conjunctions or articles [23]  . They are mostly used to join 
words in a sentence. Examples of stop words include: 
“above”, “but”, “an”, “anything”. These words are 
irrelevant because they do not provide any useful 
information during information retrieval. By eliminating 
stop words from a document containing text, we are also 
reducing the size of the document index structure, which 
ultimately results in improved performance of our text 
mining algorithms. We used the nltk corpus8 library to 
remove stop words. 

(2) Stemming: Stemming involves reducing derived words 
from a corpus into their root form; e.g., “coming” to 
“come”. This is done because the related word will map 
back to the root form giving the same meaning [23]. A 
stemming algorithm removes prefixes and suffixes and 
produces a stem. Stemming is said to be an important step 
in text mining because this exercise reduces variation of 

 
8 http://www.nltk.org/howto/corpus.html 

words which have the same root form from those that have 
a common meaning [23]  . The stemming process also 
further reduces the size of the document index structure. 
We applied the popular Porter stemming algorithm [24] to 
our dataset. 

(3) Tokenization: After performing stemming and stop 
word removal, the texts in each record were separated into 
individual words by removing punctuation, whitespace and 
alphanumeric characters. This process is called 
tokenization. The tokenized words are separated by spaces 
in each record and are passed as input to our text mining 
algorithm. The main aim of tokenizing the sentence is to 
identify meaningful keywords in each sentence [25]. 
 
4.4 Features Selection 
In this section we describe the features used in our models 
and the reason for selecting those features. We grouped our 
features into four categories (code, textual, non-textual and 
user features), and describe these in the following 
subsections. 

(1) Code Features: Code features describe the properties 
of the code found in each answer. Previous work on code 
readability concluded that lines of code and the average 
number of identifiers (e.g., constant and parameters) per 
line predict code readability [14]. Based on this finding, we 
extracted the number of lines present in the code 
(NumberOfcodeLine) and number of identifiers 
(Codelength) as features in our models. 

(2) Textual Features: Textual features describe the 
properties of each text answer. In order to extract 
meaningful textual features we examined the work of 
Blooma, et al. [14].  Their work pointed out that accurate 
answers may have syntactic relations to associated 
questions. Thus, we computed the textual similarity 
between questions and answers. The textual similarity 
shows how close the question and answer are to each other, 
allowing us to map word usage across these pairs. Beyond 
this feature, we computed the polarity of answers (i.e., 
measurement of emotional content), vector concordance 
similarity between the questions and answers, length of 
answers (in words), and the number of sentences in given 
answers. We now list the textual features extracted, the 
methods used for extraction, and justification for selecting 
these features where necessary: 

Question and Answer Similarity (TFAnswerText): This is 
a similarity score evaluated based on the textual similarity 
of a question and answer pair. This feature was computed 
by first converting the pre-processed text (question and 
answer) to a vector matrix of term frequency-inverse 
document frequency9 (tf-idf) features, and comparing the 
similarity of the question and answer vector by using cosine 
similarity defined in (1): 

 

9 A statistic which reflect how important a word is in a document. 
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Where: 
𝑡𝑓!,# = number of times a term (t) appears in a given Q&A 
pair/document (d); 

Document frequency (𝑑𝑓!) = number of Q&A pairs in 
which a term (t) appears;  

Inverse document frequency (𝑖𝑑𝑓!) = how much 
information a given term provide, where N represent the 
total number of Q&A pairs and 𝑑𝑓! is the number of Q&A 
pairs in which term t appears. It is expressed as the 
logarithmically scaled inverse fraction of the Q&A pairs 
(document) containing the term [26] . 
 
The questions and answers were also converted to a vector 
matrix of term frequency-inverse document frequency 
vectors which was then used to compute the similarity 
between questions and answers using cosine similarity 
(using (2)): 

              Similarity (Q, A) =	$	.		'|$||)|
                                  (2)            

Where: 
 |A| = magnitude of answer vector;     

 |Q| = magnitude of question vector;                   

 Q. A = dot product of the question and answer vector. 
 
We also compute the similarity between the question and 
code in answers using the same approach 
(TFAnswerCode). 

Polarity (TextPolarity): This feature measures the 
emotional content of answers. The sentiment of answers 
could be positive, negative or neutral. This feature was 
extracted because it is assumed that a positive response will 
be more likely to be helpful than a negative response [27]. 
However, previous research has not studied the importance 
of such a feature in a Q&A setting. That said, beyond 
Licorish and MacDonell [28], other work has shown that 
specific software development tasks attract various forms 
of developers’ emotions [29]. We use Textblob10, a python 
library, to assign a polarity score to each of the answers. 
Textblob was chosen because it provides a simple API for 
performing most natural language processing (NLP) tasks; 
for instance, part-of-speech tagging [25] . 

Vector Concordance Similarity (TextualSimilarity): We 
computed the count of every word that occurred in the 
question and answer separately. Then, we converted these 
to vectors, and calculated how similar the vectors were. 

Given the work of Blooma, et al. [14], which measures the 
accuracy and completeness of an answer by looking at the 
numbers of sentences and words in an answer, and finding 
concise answers to be more accurate, we extracted the 
following three additional textual features: 

Length of Answer (NumberOfWord): This is the number 
of words in each answer after stop words are removed. 

 
10 http://textblob.readthedocs.io/en/dev/ 
11 The number of people in the Stack Overflow community who think 
the answer was not helpful. 

Number of Sentences (NumberOfSentence): This is the 
number of sentences in each answer. 

UrlCount: This is the number of URLs present in each 
answer. We decided to include this feature because URLs 
were embedded in some of the answers. An URL in an 
answer could mean the poster is trying to point the reader 
to more resource online, making this feature worthy of 
inclusion. 

(3) Non-Textual Features: Non-textual features show the 
non-textual properties related to each Q&A, comprising a 
feature-set that is structured (and not derived from text). 
We examined all the available attributes in our dataset to 
generate these features, comprising the following: 

Response Time (Timelag): This is the difference in time 
between when a question was posted and when it was 
answered. This was calculated by subtracting the answer 
date from the question date, and the difference was then 
converted to milliseconds (for all answers). 

Number of Comments (CommentCount): This feature was 
present in our initial dataset, and we decided to include it in 
keeping with earlier evidence, which established that good 
answers usually attract numerous comments [30]. 

AnswerCount: This feature was present in our dataset. It 
shows the number of answers a given question has. This 
measure was also used to subset our dataset, as we needed 
questions with more than one answer. We included this 
feature because it is anticipated that numerous answers may 
result if a question is interesting, which may influence 
answer quality. 

AnswerScore (Score): This is the voting score for each 
answer, and was initially present in our dataset. Stack 
Overflow calculates this score by subtracting the number of 
downvotes11 from the number of upvotes12. 
Notwithstanding some concerns around users’ gamification 
of votes [8], we anticipated that this feature would 
influence how the community regard answers. 

ViewCount: This feature shows how many people have 
viewed an answer. We included this feature because it was 
part of our initial dataset, and from the visualizations in Fig. 
1 it is noted that there was not much difference between the 
view count of accepted and unaccepted answers. Here 
“Frequency Count” (y-axis) is the number of answers with 
various view counts (x-axis). This pattern could be evident 
because answers are usually viewed by Stack Overflow 
community members before they are accepted and scored. 

(4) User Features: User features describe the 
characteristics of the user writing the answer. We included 
the reputation of the user who posted the answer 
(Reputation) and how long the user has been a contributor 
to Stack Overflow (SignUpDateTimeLag) as part of our 
list of features. Previous studies have reported that 
individuals with a strong and established reputation usually 
write good answers (see for example: [8]). The features 
above were all used to distinguish acceptable answers,  

12 The number of people in the Stack Overflow community who think 
the answer was helpful. 
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 where we excluded all features which occurred after the 
user accepted an answer for a given question. 
 
4.5 Modelling and Analyses 
We used a random forest to build a model that classifies an 
answer as either accepted or unaccepted. Given the 
exploratory nature of the study, the random forest method 
was chosen as it takes many input variables without the 
need for replacement [31]. In addition, random forest 
estimates the importance of each variable in the classifier, 
while using an out-of-bag13 estimator to estimate the 
classification error when sampled with replacement [32]. 
This approach helps to prevents overfitting, and does not 
require the use of k-fold cross validation (which can be 
computationally intensive with numerous data points) [31]. 

Due to the unbalanced nature of our dataset, we employed 
the recommended synthetic minority over-sampling 
‘SMOTE’ algorithm [33], and the adaptive synthetic 
sampling ‘ADASYN’ algorithm [34]. We created a 
parameter grid to aid sampling, where six hyperparameters 
were chosen: n_estimators (100 to 1200, stepping through 
by 100, which makes a total of 12 steps), max_features 
(sqrt of 14 =3.75, approximate 4), max_depth (10 to 110 
(step through 11), which makes a total of 10 steps), 
min_samples_split (set to 3), min_samples_leaf (set to 3), 
and bootstrap (set to True, i.e., 1). Use of the six 
parameters selected above resulted in a total search space 
of 12*4*10*3*3*1=4,320. This may be assessed as 
computationally expensive, hence, we did a random search 
to sample a wide range of these parameters. We used 100 
iterations and 4-fold cross validation to fit our model and 
retrieve the best parameters, including; bootstrap: True, 
max_depth: 60, max_features: auto, min_samples_leaf: 3, 
min_samples_split: 8, n_estimators: 200. We then applied 
the two sampling techniques (SMOTE and ADASYN) and 
the best parameters mentioned above to tune our model. 

In providing triangulation for our random forest outcomes, 
we repeated our experiment with a more complex model –  

 
13 Method that works by estimating the error by leaving out a sample of 
the data. 

a neural network – to classify answers. This was chosen 
because such models are universal approximators, able to 
learn complex relationships manifested in multi-
dimensional datasets [35]. Our neural network model had 
five hidden layers, and a stochastic gradient descent (SGD) 
was used as our optimizer because our data are not sparse, 
and SGD is faster and less prone to unfavorable local 
minima [36] . We also applied the two sampling algorithms 
(SMOTE and ADASYN) when modelling using our neural 
network. We seeded the random split function in order to 
have the same split for each execution of our algorithm (i.e., 
random forest and neural network). Modeling was done 
through the use of the Python scklearn library. We evaluate 
both models in the next section and provide other 
associated results. 
 

Table 1. Information gain for all features 
Feature Information Gain 
Timelag 0.873 
URLCount 0.432 
CommentCount 0.563 
Reputation 0.893 
TextPolarity 0.567 
AnswerCount 0.445 
ViewCount 0.563 
Score 0.456 
NumberOfcodeLine 0.612 
NumberOfSentence 0.654 
TextualSimilarity 0.534 
Codelength 0.456 
TFAnswerCode 0.579 
TFAnswerText 0.467 
SingupDateTimeLag 0.234 
NumberOfWords 0.345 

 

5. RESULTS 
To avoid multi-collinearity, we executed a Pearson’s 
correlation plot for all of the features extracted. This 
informed our modelling, where we selected only the feature 
pairs where the root mean square was < 0.7, in keeping with 
convention [37]. Fig. 2 shows the correlation matrix for all 

 
Fig 1. View counts for accepted and unaccepted answers 

 
Fig 2. Correlation plot of features 
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features, where darker squares reveal variable convergence 
(r ~ 1, i.e., associations were linear or close to linear). We 
also compute the mutual information gain for each feature 
[37], as presented in Table 1. Of note in Fig. 2 is that 
“number of words” had a strong correlation with “number 
of sentences” (coefficient = 0.82), and the former variable 
has lesser information gain in Table 1. Thus, “number of 
words” was discarded prior to modelling. In addition, 
“sign-up date” correlated with “reputation” (coefficient = 
0.76), with the former variable also having lesser 
information gain, and hence, this variable was also 
removed prior to executing our final models. We included 
all other features with information gain > 0.4 [38] in Table 
1. 

Fig. 3 shows the ROC curves for our random forest model, 
depicting accuracy of 70.6% when sampling with the 
ADASYN algorithm, and 71.7% when sampling with the 
SMOTE algorithm. We observe a similar outcome for our 
neural network model (with accuracy of 70.9% when 
sampling with the SMOTE algorithm, and 69.8% when 
sampling with the ADASYN algorithm). In Fig. 3 the area 
between the blue and dashed red lines measures how useful 
our random forest model performs over a random guess 
when our dataset was sampled using the SMOTE 
algorithm. The green line measures how useful our model 
performs over a random guess when our dataset is sampled 
using the ADASYN algorithm. This illustrates how 
accurately the random forest model could separate accepted 
answers from unaccepted answers. In fact, our random 
forest (SMOTE sampling) accuracy of 71.7% is considered 
to be “fair” at separating accepted answers from unaccepted 
answers. 

To understand which features predict answers’ 
acceptability, we examined the features and their 
contributed weights in our random forest and neural 
network models. Table 2 shows the features and their 
corresponding weights in both models when using the 
SMOTE algorithm, where it is noted that all of our features 
had a positive direction (e.g., the longer the code provided 
in answers and higher the reputation of the contributor the 
greater the likelihood of acceptance). In Table 2 it is 
observed that the length of code (Codelength), time it takes 
to post an answer (Timelag), and reputation of the answerer 
(Reputation) had the largest coefficients in both random 
forest and neural network models (Codelength = 0.234 and 
0.153, Timelag = 0.162 and 0.152, Reputation = 0.143 and 
0.149, respectively). Table 2 shows that the textual 

similarity between a question and answer pair 
(TFAnswerText) was also noteworthy in predicting Stack 
Overflow acceptable answers, with coefficients of 0.124 
and 0.133 returned for our random forest and neural 
network models respectively. Other features did not 
consistently predict answers’ acceptability in both models, 
with their coefficients tending to be higher in the random 
forest model. For instance, the number of lines of code 
(NumberOfcodeLine) and text polarity (TextPolarity) 
features recorded coefficients of higher magnitudes for the 
random forest model in Table 2. 

Overall, our outcomes here confirm that several features 
have a positive impact on answer acceptability, with these 
features accounting for 71.7% and 70.9% accuracy in the 
prediction of acceptable answers when sampling with the 
SMOTE algorithm, and 70.6 % and 69.8% when sampling 
with the ADASYN algorithm for our random forest and 
neural network models respectively. 

We computed a confusion matrix for the random forest and 
neural network models for the different sampling 
techniques used and observed good to excellent precision 
and recall values. Precision and recall results for our 
SMOTE sampling technique were: Random Forest = 88.25, 
73.29 and Neural Network = 87.29, 72.15, respectively. 
When sampling with the ADASYN technique our precision 
and recall results were: Random Forest = 85.04, 71.07 and 
Neural Network = 83.13, 69.45, respectively. Our 
Matthews Correlation Coefficients (MCC) for the 
respective models when sampling with the SMOTE 
technique were moderate (Random Forest = 0.39 and 
Neural Network = 0.34). 

This outcome suggests that, on the whole, in the absence of 
an accepted answer, it is feasible to inform the software 
engineering community’s selection of Stack Overflow 
answers that are acceptable (or are more likely to be 
accepted) based on specific features. This evidence may 
thus support developers’ timely identification of suitable 
Stack Overflow answers. We discuss our outcomes and 
their implications in the following section. 

Table 2. Coefficients for features of random forest and neural 
network models 

Feature Random Forest 
Coefficient 

Neural Network 
Coefficient 

Timelag 0.162 0.152 
URLCount 0.044 0.021 
CommentCount 0.043 0.008 
Reputation 0.143 0.149 
TextPolarity 0.065 0.007 
AnswerCount 0.023 0.015 
ViewCount 0.025 0.057 
Score 0.052 0.047 
NumberOfcodeLine 0.087 0.023 
NumberOfSentence 0.054 0.076 
TextualSimilarity 0.005 0.024 
Codelength 0.234 0.153 
TFAnswerCode 0.064 0.043 
TFAnswerText 0.124 0.133 
Note: Italics denote noteworthy features 

 

6. DISCUSSION AND IMPLICATIONS 
RQ. Which features are most significant in distinguishing 
an accepted Stack Overflow answer? Reflecting on our 

 
Fig 3. ROC curve of baseline model 
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outcomes, both of our models show that the time lag 
between when a question was posted and an accepted 
answer was provided, the reputation of the user 
(contributor), the code length in posts and the textual 
similarity between the question and answer pairs were 
consistently the most dominant features that distinguished 
chosen Stack Overflow answers. 

Our outcome here that accepted answers are delayed is 
surprising. Evidence has shown that Stack Overflow 
answers are typically accepted within a day, even though 
questions may start receiving answers in around 21 minutes 
[3]. This evidence suggests that those posting questions 
deliberate on the answers that are provided by the 
community before finally selecting an answer as accepted. 
In fact, our outcomes in this work suggest that these 
members may have no choice but to wait for 
appropriate answers, which tend to take some time 
before they are logged by knowledgeable community 
members. This evidence suggests that a utility to predict 
the next best (or acceptable) answer would be noteworthy, 
and particularly in instances where votes are not available 
with which to offer preliminary judgement on answers. In 
fact, our outcomes show that the votes (Score) that Stack 
Overflow answers attracted did not influence their 
acceptability. 

Other significant features revealed in this work may 
provide insights to those posing questions in informing 
their selection of a most suitable answer. Our evidence also 
points to a potential lack of timeliness of acceptable 
answers being provided by the community, which could 
have negative consequences on software development 
time. While previous work has established that the 
questions that are asked on Stack Overflow usually receive 
one or more answers [1], it is preferable that acceptable 
answers are provided in the shortest possible time. This is 
necessary as software developers frequently consult Stack 
Overflow for solutions to their programming challenges, to 
the extent that Stack Overflow is becoming a substitute for 
official programming languages’ tutorials [2]. If developers 
ask questions and must then wait for extended periods of 
times before acceptable answers are provided, they may 
lose interest in the Stack Overflow community. 

Our outcomes show that the reputation of the user was 
one of the most dominating features that distinguished 
a chosen Stack Overflow answer. This evidence 
converges with the outcomes of previous work, which 
found users’ reputation to be the strongest predictor of the 
quality of posts [12]. In the Stack Overflow community, 
members enhance their reputation through the votes they 
receive from their questions and answers. If a question or 
answer logged by a user is voted up that user receives 5 or 
10 points respectively. Accepting an answer gives the 
acceptor 2 points, and the contributor providing the answer 
is awarded 15 points. Other means of enhancing reputation 
include through edits (2 points), upvotes (5 points) and 
changes approved (2 points). Contributors also lose 
reputation when their contributions are voted down (-1 
point) or when posts are tagged as offensive or spam (-100 
points). Through this complex mechanism of rewards, 
those contributors that are ranked more highly (or acquire 
more points) tend to stand out in terms of Stack Overflow 

answer acceptance. While on the one hand highly ranked 
members may indeed provide the best answers [5], on the 
other, these members’ prestige may also enhance others’ 
trust for their contributions. This could be problematic for 
the Stack Overflow community. For instance, the need to 
‘win’ reputation rewards can at times influence answer 
quality, as users may be driven to provide an answer 
without considering the quality [6]. Contributors may also 
set out to game the Stack Overflow platform, by answering 
questions relating to popular or easy topics, which may in 
turn lead to an increase in their reputation. To this end, 
while community members may regard these contributors 
on the basis of the points they have acquired, such members 
may in fact not be as knowledgeable of certain topics as 
their reputation suggests. Thus, members’ reputation 
should be considered in relation to other aspects of their 
answers (e.g., code length, considered below). 

Evidence in this work shows that code length in posts 
distinguished acceptable Stack Overflow answers. 
Generally, those having more to say tend to write more, 
which in turn may be linked to their more knowledgeable 
demeanor. However, evidence of more code statements is 
not always linked to the quality of the solution that is 
provided. Previous studies have challenged this view; for 
instance, Jeon, et al. [6] established that the quality of an 
answer is related to its length. More specifically, previous 
work on code readability concluded that lines of code and 
the average number of identifiers per line predict the level 
of readability evident in code [16]. While it is not plausible 
that code length on its own is likely to predict answer 
acceptability, and in fact, evidence has shown that isolated 
predictors may be significant by chance [13]. , when 
combined, multiple variables observed in this work do 
interact to reflect Stack Overflow answer acceptability. 

Our results show that the textual similarity between the 
question and answer pairs also enhanced answers’ 
acceptability. Those answers that possessed syntactic 
relations with associated questions were more likely to be 
accepted. The work of Blooma, et al. [14] pointed out that 
the accuracy of an answer was the most significant 
contributing factor that determines the best answer. This 
was assessed based on how close an answer was to a given 
question in vector space. Our outcome in this work 
provides confirmation for this assessment, where we 
observed this feature to be among the top four established 
for distinguishing a chosen Stack Overflow answer. We 
anticipate that acceptable answers need to be 
contextualized, such that aspects of the answer should be 
situated in relation to request(s) in the question. This way, 
those reading the answer are able to make sense of the 
solution. This in turn likely leads to textual similarities, and 
thus, the evidence observed here. 

Overall, the attributes (features) above were shown to be 
consistent predictors across two modelling approaches 
(random forest and neural network), adding credibility to 
our evaluations. The time lag between when a question was 
posted and an answer was provided, the reputation of the 
user (contributor), the code length in posts and the textual 
similarity between question and answer pairs were 
consistently the dominant features that distinguished 
chosen Stack Overflow answers. In fact, these features 
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recorded similar predictive power in both models. To this 
end, our outcomes are somewhat divergent to those 
provided by the work of  [14], which concluded that the 
best answers are greatly influenced by textual features only. 
In our case, code (e.g., code length), textual (e.g., textual 
similarity of question and answer), non-textual (e.g., time 
lag), and user (e.g., reputation of contributor) features were 
seen to have some level of influence on an answer being 
accepted (or not) on Stack Overflow. Moreover, these 
features may be strictly dichotomized across textual (e.g., 
textual similarity of question and answer) and non-textual 
(e.g., reputation of contributor) features, also diverging 
from earlier findings. 

We contend that this outcome is of interest as we have 
examined the predictive power of a large number of 
features (textual and non-textual) in terms of discriminating 
accepted from unaccepted answers. To this end, we believe 
this study could be useful for software developers focused 
on developing plugins that integrate with IDEs in order to 
display Stack Overflow question and answer pairs. In fact, 
researchers and developers could use the results of our 
work to rank answers in their tool (based on the features 
that demonstrate significance). Also, in relation to software 
practitioners that use Stack Overflow for overcoming 
various challenges in their work (both in terms of 
developing high quality software and speed of 
development), we believe we have provided insights into 
the features to focus on when looking through answers that 
are not accepted or those that are low on community votes. 
For instance, under these circumstances, Stack Overflow 
administrators may implement a feature whereby answers 
are ordered based on the prediction of their acceptability. 
Our work also provides support for the combination of 
textual and non-textual attributes that influence answers 
that are accepted on Stack Overflow. That said, there is 
need for experiments to go one step further and to explore 
the effects of users changing their accepted answers over 
time, as this data was not examined in our study. 
 

7. THREATS TO VALIDITY 
Our dataset consisted of 249,588 records which were 
posted on Stack Overflow over three years (2014-2016). 
These may not represent all the types of questions asked 
and answers provided for posts tagged with Java or 
JavaScript on Stack Overflow. To this end, our results may 
not hold true for other categories of questions, although 
recent evidence suggests that there is consistency in trends 
across languages for aspects of Stack Overflow code [21]. 
That said, the Stack Overflow dataset is not representative 
of all Q&A portals, although we expect that portals 
dedicated to technology-related Q&A may hold similar 
content (e.g., Yahoo!Answers  for programming). Thus, the 
features that discriminate accepted answers for such portals 
may be similar. Also, we have based the acceptable answer 
on the answer selected by the user who posed the question. 
This may not necessarily be the best answer in all cases, as 
some users may lack knowledge, affecting their ability to 
differentiate among answers. Furthermore, we have only 
used two modelling approaches in this work, and thus, we 
cannot definitively say that our outcomes will hold true for 
other modelling methods (e.g., Bayesian logistic regression 

or support vector machines (SVM)). Finally, we made 
some assumptions in Section 3 in discarding some of the 
features (i.e., badges and post history) in the dataset. These 
were discarded because we believe such features do not 
relate to the answer contained in the text. This issue may be 
validated through inductive analysis. These potential 
threats should be taken into account when evaluating our 
outcomes. 
 

8. CONCLUSION AND FUTURE WORK 
Mechanisms to determine the features that differentiate an 
acceptable answer from an unacceptable answer in a Q&A 
forum such as Stack Overflow could be used to build 
models that are able to rank the best answers available. 
Having such a ranked list of answers may be used to re-
order appropriate answers, potentially making it easier for 
users of such a forum to more easily find solutions to their 
problems. In addition, developers of plugins and tools 
could create artifacts that are able to rank answers from 
such outcomes, and users of such plugins may then drag 
and drop such documents (Q&A pairs) into their 
programming environment. 

The main objective of this paper was thus to explore the 
predictive power of textual and non-textual features in 
discriminating acceptable Stack Overflow answers. In this 
regard, we observed that the length of code, time lag, user 
reputation, and similarity of the text between questions and 
answers were features that characterized acceptable 
answers. We have provided insights into the key attributes 
for users to look for in distinguishing what makes a Stack 
Overflow answer acceptable. This outcome could be of 
practical significance to the many practitioners that use 
Stack Overflow to answer their questions, or developers 
interested in developing plugins which use the Stack 
Overflow dataset in reducing development time (in terms 
of ranking returned outcomes). Developers of such plugins 
could incorporate the features found to rank answers. This 
could be particularly valuable in instances where no answer 
is accepted on Stack Overflow, as users could consider 
those features revealed in this work in selecting the best 
possible answer. However, we concede that there is a need 
for follow-up work before we could fully encourage 
implementation of these recommendations on Stack 
Overflow and other community forums. Beyond Stack 
Overflow, we believe that the outcomes of this work may 
also aid Q&A feature selection more generally. 
Accordingly, a plausible next step for future work is to 
replicate this study for similar Q&A forums. We also plan 
to evaluate other feature selection algorithms and perform 
inductive analysis to validate our outcomes. 
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