

1

Full citation: Omondiagbe, O.P., Licorish, S.A., & MacDonell, S.G. (2019) Features that predict
the acceptability of Java and JavaScript answers in Stack Overflow, in Proceedings of the 23rd
International Conference on Evaluation and Assessment in Software Engineering (EASE2019).
Copenhagen, Denmark, ACM Press, pp.101-110. doi:10.1145/3319008.3319024

Features that Predict the Acceptability of
Java and JavaScript Answers on Stack Overflow

Osayande P. Omondiagbe
Landcare Research

Lincoln, New Zealand
omondiagbep@landcareresearch.co.nz

Sherlock A. Licorish
Department of Information Science

University of Otago
Dunedin, New Zealand

sherlock.licorish@otago.ac.nz

Stephen G. MacDonell
Department of Information Science

University of Otago
Dunedin, New Zealand

stephen.macdonell@otago.ac.nz

Abstract
Context: Stack Overflow is a popular community question
and answer portal used by practitioners to solve problems
during software development. Developers can focus their
attention on answers that have been accepted or where
members have recorded high votes in judging good
answers when searching for help. However, the latter
mechanism (votes) can be unreliable, and there is currently
no way to differentiate between an answer that is likely to
be accepted and those that will not be accepted by looking
at the answer's characteristics. Objective: In potentially
providing a mechanism to identify acceptable answers, this
study examines the features that distinguish an accepted
answer from an unaccepted answer. Methods: We studied
the Stack Overflow dataset by analyzing questions and
answers for the two most popular tags (Java and
JavaScript). Our dataset comprised 249,588 posts drawn
from 2014-2016. We use random forest and neural network
models to predict accepted answers, and study the features
with the highest predictive power in those two models.
Results: Our findings reveal that the length of code in
answers, reputation of users, similarity of the text between
questions and answers, and the time lag between questions
and answers have the highest predictive power for
differentiating accepted and unaccepted answers.
Conclusion: Tools may leverage these findings in
supporting developers and reducing the effort they must
dedicate to searching for suitable answers on Stack
Overflow.

Keywords: Feature Selection; Textual Features;
Non-textual Features; Random Forest; Neural
Network; Text-Mining; Stack Overflow.

1. INTRODUCTION
Stack Overflow is a popular question and answer portal
used regularly by software practitioners exploring solutions
to programming- and technology-related challenges faced
during software development. Recent studies have shown

1 Relating to non-text (e.g., numbers, dates).

that the majority of the questions that are asked on Stack
Overflow receive one or more answers [1], and this forum
is becoming a substitute for official programming
languages’ tutorials and guides [2]. Stack Overflow users
(contributors) who post questions can select an answer,
which is then typically regarded as the accepted answer.
This allows the user who created the post to point to an
answer that satisfies his/her question, and gives confidence
to the user who wrote the answer. This can be convenient
for other users browsing the platform seeking help for a
similar issue, as they could locate an answer that may
resolve their query in a short space of time, with confidence
that the answer is acceptable to others. Answers may also
be voted up or down depending on users’ perception of
their merit; however, this measure is said to be unreliable
as users may manipulate the Stack Overflow voting scheme
to enhance their reputation over others in the community
[3]. In addition, while there is skepticism around the
reliance of votes as a judgement of answers’ suitability,
answers take time to accumulate votes, and so, there are
instances when votes are not available with which to offer
preliminary judgement on answers.

Although answers on Stack Overflow may at times be
accepted in 24 hours [3], in instances when there is delayed
acceptance an automated mechanism may predict if an
incoming answer will be acceptable (or accepted) based on
specific features. Past studies have indicated that certain
non-textual1 factors affect the quality (and thus,
acceptability) of answers retrieved in question and answer
(Q&A) portals [4, 5]. Jeon, et al. [6] presented a systematic
approach for extracting aspects of non-textual information
that may be used to predict the quality of an answer in a
Q&A pair. Other studies have also focused on using
textual2 features in finding high quality content in a Q&A
platform [7]. This latter approach tends to overlook
important non-textual features, while the former ignores
those that are textual in nature. Therein exists the
opportunity to evaluate features more comprehensively. In
this paper, we examine the full range of features (textual
and non-textual) that predict answers’ acceptability. Our
main assumptions are that: the best answer is the answer

2 Relating to text (e.g., words, phrases, sentences).

2

selected by the user who posed the question, and the best
answer has the highest quality among the list of answers to
a post. To the best of our knowledge, previous work did not
examine the range of features that are common to Stack
Overflow accepted answers, and how these may be used to
differentiate acceptable answers. We thus set out to answer
the following research question to guide our investigation:

RQ. Which features are most significant in distinguishing
an accepted Stack Overflow answer?

We believe that our outcomes could be of practical
significance to the many practitioners who use Stack
Overflow to answer questions and overcome challenges, as
we provide understandings for the specific important
attributes to look for when reading through potentially
many Stack Overflow answers.

The remaining sections of the paper are organized as
follows. Section 2 examines how other researchers have
studied the quality and acceptability of answers in Q&A
settings. Section 3 explores the structure of Stack Overflow
processes. In Section 4, we present the research
methodology, detailing our data extraction, data sampling
and procedures, text data processing, features selection and
modelling and analyses. Section 5 reports our results in
answering the research question above. We next discuss our
findings and explore implications in Section 6, before
considering threats to the work in Section 7. This paper then
concludes in Section 8, where we provide a summary of our
work and recommendations for future research.

2. BACKGROUND
While votes accumulated could influence answer
acceptability [8], this measure is unreliable as users may
manipulate voting schemes to enhance their reputation [8].
We therefore investigate the features that are most
significant in predicting answer acceptability, and review
works that have studied the attributes that influence the
quality and acceptability of answers in Q&A settings. For
instance, Jeon, et al. [6] focused on non-textual features
when examining Q&A forums and proposed a framework
to predict the quality and acceptability of content in a
collection of Q&A pairs using clustering and maximal
entropy. They extracted a range of non-textual features, and
the length of the answer was utilized in determining answer
acceptability. Larkey [9] used the length of answers to
estimate the quality and acceptability of online writing.
This feature was also supported by others (e.g.[10]), who
observed that the quality of answers correlated with their
length. [5] went on to demonstrate a graphical based
approach to determining high quality content in a Yahoo
Q&A dataset. They focused only on non-textual features,
and found that answer length was the dominating feature
among several other features in determining the quality of
answers leading to their acceptance. This stream of work
shows that non-textual features can be significant
predictors of answer quality and acceptance in some
contexts, and especially the number of words that are
expressed in contributors’ responses.

3 http://www.stackoverflow.com

Other works have examined non-textual features with a
slightly different focus. For instance, Burel, et al. [11]
combined user and thread features to predict the best
answer by using logistic regression. They found, contrary
to the outcomes of previous work, that answer length was
not correlated with the best answers that were provided by
contributors to Q&A portals. In fact, in examining an online
community website where users with no prior knowledge
interacted with each other, users’ reputation was shown to
be the strongest predictor of the quality of posts [12]. In
order to compute users’ (contributors’) reputation in a
Q&A setting, other work has combined both social network
analysis (SNA) metrics and user rating [13]. The outcomes
here show that no one variable may predict answer quality
and acceptance, and in fact, isolated predictors may be
evident by chance.

The need to increase the range of features used for training
models has thus led other researchers to combine both
textual and non-textual features. Combining textual and
non-textual features was seen in the work of Blooma, et al.
[14]. They predicted the best answer in a stack of answers
by using a Bayesian model, and concluded that the best
answer was greatly influenced by textual features. Other
researchers have also combined both forms of features to
extract high quality content in online forums. For instance
Jizhou, et al. [15] combined structural information with
textual and non-textual features to extract high-quality pairs
(discussion threads) from an online discussion forum. Buse
and Weimer [16] explored users’ metadata and other
textual and non-textual features as input to a support vector
machine to determine the best answer in Yahoo Q&A
datasets. Both groups of authors found that the user profile
variable was a strong predictor of content quality. These
findings underscore the need to investigate both textual and
non-textual features for their predictive power when
exploring Q&A forums.

Understanding the strength of various predictors could go
some way towards identifying specific posts in software
development Q&A forums, where practitioners are seen to
rely heavily on such content for problem solving [2]. Stack
Overflow, in particular, has become a central portal for
developers’ support [1], and has attracted a large amount of
research effort [17]. While works have attempted to predict
accepted answers on this portal (e.g., via votes [18] and
comments [19]), there has been less effort aimed at
studying the full range of features towards predicting
answers acceptability on Stack Overflow. We thus
investigate this issue.

3. STACK OVERFLOW
Stack Overflow was built around four design decision
mechanisms3 to ensure maintenance of content quality.
These are the voting mechanism4, where users can up-vote
or down-vote answers they like or dislike respectively. The
Tag mechanism is used to organize Stack Overflow
questions into groups; users are allowed the option to assign
at least one (or up to five) tag(s) to their question. Users
apply the editing mechanism to edit and refine their Q&A

4 https://stackoverflow.com/help/why-vote

3

over time, thereby providing more reliable and precise
information to the community. Finally, badges5 are given
to contributors once their contributions have reached a
certain threshold to reward them for their effort (as a form
of prestige).

Tags are particularly noteworthy for Stack Overflow users.
As noted above, the user that registers the question on Stack
Overflow is also allowed to label the question by placing a
tag. The tag indicates the group(s) the question belongs to;
for example, “computer programming”, “API” or “library”.
A more granular classification may also be provided, e.g.,
PHP, MySQL, C#, and so on. Each tag is presumed to be
representative of the question, and the Stack Overflow
system automatically suggests tags for users at the time of
entering questions. Users of Stack Overflow sometimes use
the tag mechanism to search for Q&A pairs, and the need
for an accurate tagging system has led some researchers to
develop models that predict the tag for given questions
[20].

Other mechanisms have been provided for encouraging
contributions on Stack Overflow. As noted above, in order
to encourage users’ activities the concept of badges is used.
Badges are usually earned by being helpful and performing
particular tasks on Stack Overflow, which leads to the user
building a positive reputation. Bosu, et al. [8] in their study
of members’ reputation via badges in Stack Overflow
found that a new user would usually gain status quickly and
move on to a higher position within the Stack Overflow
community by gaining badges. Finally, as mentioned
earlier, users of the Stack Overflow website are encouraged
to use the editing mechanism to edit and refine their Q&A
over time. This feature is seen to be positive in terms of
encouraging progressively more acceptable questions and
answers over time. The abovementioned practices make
Stack Overflow an interesting platform to study. We
examine the specific research methodology used in this
work next.

4. RESEARCH METHODOLOGY
In this section, we present our data extraction process
(Section 4.1), efforts towards data sampling and
preprocessing (Sections 4.2 and 4.3), feature selection
(Section 4.4) and modelling and analyses (Section 4.5).

4.1 Data Extraction
The Stack Overflow data dump is published by Stack
Exchange in XML format6, and is available for researchers
to perform various forms of analyses. We used the dataset
added to the archive on September 12, 2016, which is
divided into several XML files, consisting of posts,
comments, tags, badges, post history, post links, users and
votes. The Post XML file contains the questions and
answers, and also the tag variable which is linked to the Tag
XML file. The Tag XML file has the name of tags and
associated IDs for the names. The PostLinks XML file
provides linkages to related Post IDs for the various types
of posts (question or answer). The Comment XML file has

5 https://stackoverflow.com/help/badges
6 https://archive.org/details/stackexchange

comment text and corresponding Post ID (the post for the
associated comment(s)), thus linking back to the Post XML
file. A similar linkage exists for the Votes and Badges XML
files, which are linked to the Post XML and Users XML
files respectively. The Users XML file contains user
(contributor) data, covering contributors to both questions
and answers. The combined dataset extracted was 90
gigabytes, and it contained over 35 Million posts (questions
and answers). In order to simplify our working processes
we created a Python script to convert all XML files to plain
text and dumped the content into their corresponding tables
in a SQLite database (e.g., the Posts.XML file was dumped
into Post table). We were not interested in analyzing the
entire dataset because our objective was to understand the
features that make answers acceptable, and to accomplish
this we sampled records that were useful for our study, i.e.,
posts with more than one answer, and which also have an
accepted answer.

4.2 Data Sampling and Procedures
To answer our research question, we needed to understand
the features that make answers acceptable; thus, we
extracted questions that have accepted answers only. We
studied the top 50 tags in our dataset to gain insight into the
numbers of questions and answers that have been
contributed to each tag and found that JavaScript, Java and
C# were the three top tags. Since we are interested in
understanding the strength of the various features that make
an answer acceptable we reduced the scope of our dataset
by including only questions with two or more answers.
These questions were also required to have a corresponding
accepted answer. To reduce our dataset further, to optimize
our algorithms’ execution, we selected records for the top
two tags only (Java and JavaScript), in light of these records
having proportionally more answers than others. We
explored the dataset associated with those two tags further
to examine the trend of questions and answers over time,
finding that the final 3 years (2014, 2015 and 2016) have
recorded the highest number of questions (and associated
answers) on Stack Overflow. While questions may be
forwarded around the scale of data we analyzed (refer to
Section 7 for additional details), our dataset comprised
nearly 250,000 records, and we know that Stack Overflow
data are generalizable across time and languages [21].

In this paper we are only interested in the predictive power
of the features of accepted answers, and so we eliminated
all features that do not relate to what makes an answer
acceptable, prior to our analyses. We discarded the badges
table because badges are given based on how many
questions and answers a contributor provides; and do not
relate to what the community thinks about those questions
and answers. In addition, badges differ from the reputation
score7 of contributors, with the latter attribute being more
suitable for understanding a contributor’s worth to the
community. We also discarded the post history, post link
and user tables as these tables were not held to contain
information related to our research question. Furthermore,
we discarded answers that were given and accepted by the

7 Based on the quality of the question and answer the user has posted.

4

same user who posted the question, and answers that were
not linked to any registered user.

Our dataset for experimentation thus consisted of 249,588
posts. In line with our sampling procedure above, these
posts comprised questions from 2014, 2015 and 2016 that
have at least two answers, of which there is one accepted
answer. We had a slightly unbalanced dataset (in terms of
the number of accepted and unaccepted answers), where the
number of accepted answers was 88,607, compared to
160,981 answers not labelled as accepted. We randomly
selected 70% (174,711) of the data for training, and the
remaining 30% (74,877) was used for testing when
performing our predictive modelling (refer to Section 4.5).

4.3 Text Data Preprocessing
In this section we present the approaches used for
preprocessing our text data. We found that Stack Overflow
Q&As are usually stored in Markdown (HTML), and code
blocks are always placed between a tag block called
“code”. An example of an answer with a code block is
shown below:

“<p>I do not think it is necessary and I would ... 2014 </p>
 <code> def plot: a=c[1,2,3] </code>”

Our first step was to extract these code blocks by separating
them from the text body, before exploring both the code and
text parts of answers in detail. Preprocessing of text
documents is a vital task during text mining. This is because
retrieving meaningful information from preprocessed texts
is easier when compared to natural language because text
documents are usually represented as a bag of words with
various dimensions [22]. These dimensions can be reduced
by applying preprocessing techniques such as stop word
removal and tokenization [23]. The subsections below
detail our text data preprocessing steps, which consist of
stop word removal, stemming and tokenization.

(1) Elimination of Stop Words: When retrieving
information in a text document, many words do not add
meaning to the sentences in which they belong [23] . These
words are usually grouped as the most common words used
in English language, and are classified as prepositions,
conjunctions or articles [23] . They are mostly used to join
words in a sentence. Examples of stop words include:
“above”, “but”, “an”, “anything”. These words are
irrelevant because they do not provide any useful
information during information retrieval. By eliminating
stop words from a document containing text, we are also
reducing the size of the document index structure, which
ultimately results in improved performance of our text
mining algorithms. We used the nltk corpus8 library to
remove stop words.

(2) Stemming: Stemming involves reducing derived words
from a corpus into their root form; e.g., “coming” to
“come”. This is done because the related word will map
back to the root form giving the same meaning [23]. A
stemming algorithm removes prefixes and suffixes and
produces a stem. Stemming is said to be an important step
in text mining because this exercise reduces variation of

8 http://www.nltk.org/howto/corpus.html

words which have the same root form from those that have
a common meaning [23] . The stemming process also
further reduces the size of the document index structure.
We applied the popular Porter stemming algorithm [24] to
our dataset.

(3) Tokenization: After performing stemming and stop
word removal, the texts in each record were separated into
individual words by removing punctuation, whitespace and
alphanumeric characters. This process is called
tokenization. The tokenized words are separated by spaces
in each record and are passed as input to our text mining
algorithm. The main aim of tokenizing the sentence is to
identify meaningful keywords in each sentence [25].

4.4 Features Selection
In this section we describe the features used in our models
and the reason for selecting those features. We grouped our
features into four categories (code, textual, non-textual and
user features), and describe these in the following
subsections.

(1) Code Features: Code features describe the properties
of the code found in each answer. Previous work on code
readability concluded that lines of code and the average
number of identifiers (e.g., constant and parameters) per
line predict code readability [14]. Based on this finding, we
extracted the number of lines present in the code
(NumberOfcodeLine) and number of identifiers
(Codelength) as features in our models.

(2) Textual Features: Textual features describe the
properties of each text answer. In order to extract
meaningful textual features we examined the work of
Blooma, et al. [14]. Their work pointed out that accurate
answers may have syntactic relations to associated
questions. Thus, we computed the textual similarity
between questions and answers. The textual similarity
shows how close the question and answer are to each other,
allowing us to map word usage across these pairs. Beyond
this feature, we computed the polarity of answers (i.e.,
measurement of emotional content), vector concordance
similarity between the questions and answers, length of
answers (in words), and the number of sentences in given
answers. We now list the textual features extracted, the
methods used for extraction, and justification for selecting
these features where necessary:

Question and Answer Similarity (TFAnswerText): This is
a similarity score evaluated based on the textual similarity
of a question and answer pair. This feature was computed
by first converting the pre-processed text (question and
answer) to a vector matrix of term frequency-inverse
document frequency9 (tf-idf) features, and comparing the
similarity of the question and answer vector by using cosine
similarity defined in (1):

9 A statistic which reflect how important a word is in a document.

5

Where:
𝑡𝑓!,# = number of times a term (t) appears in a given Q&A
pair/document (d);

Document frequency (𝑑𝑓!) = number of Q&A pairs in
which a term (t) appears;

Inverse document frequency (𝑖𝑑𝑓!) = how much
information a given term provide, where N represent the
total number of Q&A pairs and 𝑑𝑓! is the number of Q&A
pairs in which term t appears. It is expressed as the
logarithmically scaled inverse fraction of the Q&A pairs
(document) containing the term [26] .

The questions and answers were also converted to a vector
matrix of term frequency-inverse document frequency
vectors which was then used to compute the similarity
between questions and answers using cosine similarity
(using (2)):

 Similarity (Q, A) =	$.		'|$||)|
 (2)

Where:
 |A| = magnitude of answer vector;

 |Q| = magnitude of question vector;

 Q. A = dot product of the question and answer vector.

We also compute the similarity between the question and
code in answers using the same approach
(TFAnswerCode).

Polarity (TextPolarity): This feature measures the
emotional content of answers. The sentiment of answers
could be positive, negative or neutral. This feature was
extracted because it is assumed that a positive response will
be more likely to be helpful than a negative response [27].
However, previous research has not studied the importance
of such a feature in a Q&A setting. That said, beyond
Licorish and MacDonell [28], other work has shown that
specific software development tasks attract various forms
of developers’ emotions [29]. We use Textblob10, a python
library, to assign a polarity score to each of the answers.
Textblob was chosen because it provides a simple API for
performing most natural language processing (NLP) tasks;
for instance, part-of-speech tagging [25] .

Vector Concordance Similarity (TextualSimilarity): We
computed the count of every word that occurred in the
question and answer separately. Then, we converted these
to vectors, and calculated how similar the vectors were.

Given the work of Blooma, et al. [14], which measures the
accuracy and completeness of an answer by looking at the
numbers of sentences and words in an answer, and finding
concise answers to be more accurate, we extracted the
following three additional textual features:

Length of Answer (NumberOfWord): This is the number
of words in each answer after stop words are removed.

10 http://textblob.readthedocs.io/en/dev/
11 The number of people in the Stack Overflow community who think
the answer was not helpful.

Number of Sentences (NumberOfSentence): This is the
number of sentences in each answer.

UrlCount: This is the number of URLs present in each
answer. We decided to include this feature because URLs
were embedded in some of the answers. An URL in an
answer could mean the poster is trying to point the reader
to more resource online, making this feature worthy of
inclusion.

(3) Non-Textual Features: Non-textual features show the
non-textual properties related to each Q&A, comprising a
feature-set that is structured (and not derived from text).
We examined all the available attributes in our dataset to
generate these features, comprising the following:

Response Time (Timelag): This is the difference in time
between when a question was posted and when it was
answered. This was calculated by subtracting the answer
date from the question date, and the difference was then
converted to milliseconds (for all answers).

Number of Comments (CommentCount): This feature was
present in our initial dataset, and we decided to include it in
keeping with earlier evidence, which established that good
answers usually attract numerous comments [30].

AnswerCount: This feature was present in our dataset. It
shows the number of answers a given question has. This
measure was also used to subset our dataset, as we needed
questions with more than one answer. We included this
feature because it is anticipated that numerous answers may
result if a question is interesting, which may influence
answer quality.

AnswerScore (Score): This is the voting score for each
answer, and was initially present in our dataset. Stack
Overflow calculates this score by subtracting the number of
downvotes11 from the number of upvotes12.
Notwithstanding some concerns around users’ gamification
of votes [8], we anticipated that this feature would
influence how the community regard answers.

ViewCount: This feature shows how many people have
viewed an answer. We included this feature because it was
part of our initial dataset, and from the visualizations in Fig.
1 it is noted that there was not much difference between the
view count of accepted and unaccepted answers. Here
“Frequency Count” (y-axis) is the number of answers with
various view counts (x-axis). This pattern could be evident
because answers are usually viewed by Stack Overflow
community members before they are accepted and scored.

(4) User Features: User features describe the
characteristics of the user writing the answer. We included
the reputation of the user who posted the answer
(Reputation) and how long the user has been a contributor
to Stack Overflow (SignUpDateTimeLag) as part of our
list of features. Previous studies have reported that
individuals with a strong and established reputation usually
write good answers (see for example: [8]). The features
above were all used to distinguish acceptable answers,

12 The number of people in the Stack Overflow community who think
the answer was helpful.

6

 where we excluded all features which occurred after the
user accepted an answer for a given question.

4.5 Modelling and Analyses
We used a random forest to build a model that classifies an
answer as either accepted or unaccepted. Given the
exploratory nature of the study, the random forest method
was chosen as it takes many input variables without the
need for replacement [31]. In addition, random forest
estimates the importance of each variable in the classifier,
while using an out-of-bag13 estimator to estimate the
classification error when sampled with replacement [32].
This approach helps to prevents overfitting, and does not
require the use of k-fold cross validation (which can be
computationally intensive with numerous data points) [31].

Due to the unbalanced nature of our dataset, we employed
the recommended synthetic minority over-sampling
‘SMOTE’ algorithm [33], and the adaptive synthetic
sampling ‘ADASYN’ algorithm [34]. We created a
parameter grid to aid sampling, where six hyperparameters
were chosen: n_estimators (100 to 1200, stepping through
by 100, which makes a total of 12 steps), max_features
(sqrt of 14 =3.75, approximate 4), max_depth (10 to 110
(step through 11), which makes a total of 10 steps),
min_samples_split (set to 3), min_samples_leaf (set to 3),
and bootstrap (set to True, i.e., 1). Use of the six
parameters selected above resulted in a total search space
of 12*4*10*3*3*1=4,320. This may be assessed as
computationally expensive, hence, we did a random search
to sample a wide range of these parameters. We used 100
iterations and 4-fold cross validation to fit our model and
retrieve the best parameters, including; bootstrap: True,
max_depth: 60, max_features: auto, min_samples_leaf: 3,
min_samples_split: 8, n_estimators: 200. We then applied
the two sampling techniques (SMOTE and ADASYN) and
the best parameters mentioned above to tune our model.

In providing triangulation for our random forest outcomes,
we repeated our experiment with a more complex model –

13 Method that works by estimating the error by leaving out a sample of
the data.

a neural network – to classify answers. This was chosen
because such models are universal approximators, able to
learn complex relationships manifested in multi-
dimensional datasets [35]. Our neural network model had
five hidden layers, and a stochastic gradient descent (SGD)
was used as our optimizer because our data are not sparse,
and SGD is faster and less prone to unfavorable local
minima [36] . We also applied the two sampling algorithms
(SMOTE and ADASYN) when modelling using our neural
network. We seeded the random split function in order to
have the same split for each execution of our algorithm (i.e.,
random forest and neural network). Modeling was done
through the use of the Python scklearn library. We evaluate
both models in the next section and provide other
associated results.

Table 1. Information gain for all features
Feature Information Gain
Timelag 0.873
URLCount 0.432
CommentCount 0.563
Reputation 0.893
TextPolarity 0.567
AnswerCount 0.445
ViewCount 0.563
Score 0.456
NumberOfcodeLine 0.612
NumberOfSentence 0.654
TextualSimilarity 0.534
Codelength 0.456
TFAnswerCode 0.579
TFAnswerText 0.467
SingupDateTimeLag 0.234
NumberOfWords 0.345

5. RESULTS
To avoid multi-collinearity, we executed a Pearson’s
correlation plot for all of the features extracted. This
informed our modelling, where we selected only the feature
pairs where the root mean square was < 0.7, in keeping with
convention [37]. Fig. 2 shows the correlation matrix for all

Fig 1. View counts for accepted and unaccepted answers

Fig 2. Correlation plot of features

7

features, where darker squares reveal variable convergence
(r ~ 1, i.e., associations were linear or close to linear). We
also compute the mutual information gain for each feature
[37], as presented in Table 1. Of note in Fig. 2 is that
“number of words” had a strong correlation with “number
of sentences” (coefficient = 0.82), and the former variable
has lesser information gain in Table 1. Thus, “number of
words” was discarded prior to modelling. In addition,
“sign-up date” correlated with “reputation” (coefficient =
0.76), with the former variable also having lesser
information gain, and hence, this variable was also
removed prior to executing our final models. We included
all other features with information gain > 0.4 [38] in Table
1.

Fig. 3 shows the ROC curves for our random forest model,
depicting accuracy of 70.6% when sampling with the
ADASYN algorithm, and 71.7% when sampling with the
SMOTE algorithm. We observe a similar outcome for our
neural network model (with accuracy of 70.9% when
sampling with the SMOTE algorithm, and 69.8% when
sampling with the ADASYN algorithm). In Fig. 3 the area
between the blue and dashed red lines measures how useful
our random forest model performs over a random guess
when our dataset was sampled using the SMOTE
algorithm. The green line measures how useful our model
performs over a random guess when our dataset is sampled
using the ADASYN algorithm. This illustrates how
accurately the random forest model could separate accepted
answers from unaccepted answers. In fact, our random
forest (SMOTE sampling) accuracy of 71.7% is considered
to be “fair” at separating accepted answers from unaccepted
answers.

To understand which features predict answers’
acceptability, we examined the features and their
contributed weights in our random forest and neural
network models. Table 2 shows the features and their
corresponding weights in both models when using the
SMOTE algorithm, where it is noted that all of our features
had a positive direction (e.g., the longer the code provided
in answers and higher the reputation of the contributor the
greater the likelihood of acceptance). In Table 2 it is
observed that the length of code (Codelength), time it takes
to post an answer (Timelag), and reputation of the answerer
(Reputation) had the largest coefficients in both random
forest and neural network models (Codelength = 0.234 and
0.153, Timelag = 0.162 and 0.152, Reputation = 0.143 and
0.149, respectively). Table 2 shows that the textual

similarity between a question and answer pair
(TFAnswerText) was also noteworthy in predicting Stack
Overflow acceptable answers, with coefficients of 0.124
and 0.133 returned for our random forest and neural
network models respectively. Other features did not
consistently predict answers’ acceptability in both models,
with their coefficients tending to be higher in the random
forest model. For instance, the number of lines of code
(NumberOfcodeLine) and text polarity (TextPolarity)
features recorded coefficients of higher magnitudes for the
random forest model in Table 2.

Overall, our outcomes here confirm that several features
have a positive impact on answer acceptability, with these
features accounting for 71.7% and 70.9% accuracy in the
prediction of acceptable answers when sampling with the
SMOTE algorithm, and 70.6 % and 69.8% when sampling
with the ADASYN algorithm for our random forest and
neural network models respectively.

We computed a confusion matrix for the random forest and
neural network models for the different sampling
techniques used and observed good to excellent precision
and recall values. Precision and recall results for our
SMOTE sampling technique were: Random Forest = 88.25,
73.29 and Neural Network = 87.29, 72.15, respectively.
When sampling with the ADASYN technique our precision
and recall results were: Random Forest = 85.04, 71.07 and
Neural Network = 83.13, 69.45, respectively. Our
Matthews Correlation Coefficients (MCC) for the
respective models when sampling with the SMOTE
technique were moderate (Random Forest = 0.39 and
Neural Network = 0.34).

This outcome suggests that, on the whole, in the absence of
an accepted answer, it is feasible to inform the software
engineering community’s selection of Stack Overflow
answers that are acceptable (or are more likely to be
accepted) based on specific features. This evidence may
thus support developers’ timely identification of suitable
Stack Overflow answers. We discuss our outcomes and
their implications in the following section.

Table 2. Coefficients for features of random forest and neural
network models

Feature Random Forest
Coefficient

Neural Network
Coefficient

Timelag 0.162 0.152
URLCount 0.044 0.021
CommentCount 0.043 0.008
Reputation 0.143 0.149
TextPolarity 0.065 0.007
AnswerCount 0.023 0.015
ViewCount 0.025 0.057
Score 0.052 0.047
NumberOfcodeLine 0.087 0.023
NumberOfSentence 0.054 0.076
TextualSimilarity 0.005 0.024
Codelength 0.234 0.153
TFAnswerCode 0.064 0.043
TFAnswerText 0.124 0.133
Note: Italics denote noteworthy features

6. DISCUSSION AND IMPLICATIONS
RQ. Which features are most significant in distinguishing
an accepted Stack Overflow answer? Reflecting on our

Fig 3. ROC curve of baseline model

8

outcomes, both of our models show that the time lag
between when a question was posted and an accepted
answer was provided, the reputation of the user
(contributor), the code length in posts and the textual
similarity between the question and answer pairs were
consistently the most dominant features that distinguished
chosen Stack Overflow answers.

Our outcome here that accepted answers are delayed is
surprising. Evidence has shown that Stack Overflow
answers are typically accepted within a day, even though
questions may start receiving answers in around 21 minutes
[3]. This evidence suggests that those posting questions
deliberate on the answers that are provided by the
community before finally selecting an answer as accepted.
In fact, our outcomes in this work suggest that these
members may have no choice but to wait for
appropriate answers, which tend to take some time
before they are logged by knowledgeable community
members. This evidence suggests that a utility to predict
the next best (or acceptable) answer would be noteworthy,
and particularly in instances where votes are not available
with which to offer preliminary judgement on answers. In
fact, our outcomes show that the votes (Score) that Stack
Overflow answers attracted did not influence their
acceptability.

Other significant features revealed in this work may
provide insights to those posing questions in informing
their selection of a most suitable answer. Our evidence also
points to a potential lack of timeliness of acceptable
answers being provided by the community, which could
have negative consequences on software development
time. While previous work has established that the
questions that are asked on Stack Overflow usually receive
one or more answers [1], it is preferable that acceptable
answers are provided in the shortest possible time. This is
necessary as software developers frequently consult Stack
Overflow for solutions to their programming challenges, to
the extent that Stack Overflow is becoming a substitute for
official programming languages’ tutorials [2]. If developers
ask questions and must then wait for extended periods of
times before acceptable answers are provided, they may
lose interest in the Stack Overflow community.

Our outcomes show that the reputation of the user was
one of the most dominating features that distinguished
a chosen Stack Overflow answer. This evidence
converges with the outcomes of previous work, which
found users’ reputation to be the strongest predictor of the
quality of posts [12]. In the Stack Overflow community,
members enhance their reputation through the votes they
receive from their questions and answers. If a question or
answer logged by a user is voted up that user receives 5 or
10 points respectively. Accepting an answer gives the
acceptor 2 points, and the contributor providing the answer
is awarded 15 points. Other means of enhancing reputation
include through edits (2 points), upvotes (5 points) and
changes approved (2 points). Contributors also lose
reputation when their contributions are voted down (-1
point) or when posts are tagged as offensive or spam (-100
points). Through this complex mechanism of rewards,
those contributors that are ranked more highly (or acquire
more points) tend to stand out in terms of Stack Overflow

answer acceptance. While on the one hand highly ranked
members may indeed provide the best answers [5], on the
other, these members’ prestige may also enhance others’
trust for their contributions. This could be problematic for
the Stack Overflow community. For instance, the need to
‘win’ reputation rewards can at times influence answer
quality, as users may be driven to provide an answer
without considering the quality [6]. Contributors may also
set out to game the Stack Overflow platform, by answering
questions relating to popular or easy topics, which may in
turn lead to an increase in their reputation. To this end,
while community members may regard these contributors
on the basis of the points they have acquired, such members
may in fact not be as knowledgeable of certain topics as
their reputation suggests. Thus, members’ reputation
should be considered in relation to other aspects of their
answers (e.g., code length, considered below).

Evidence in this work shows that code length in posts
distinguished acceptable Stack Overflow answers.
Generally, those having more to say tend to write more,
which in turn may be linked to their more knowledgeable
demeanor. However, evidence of more code statements is
not always linked to the quality of the solution that is
provided. Previous studies have challenged this view; for
instance, Jeon, et al. [6] established that the quality of an
answer is related to its length. More specifically, previous
work on code readability concluded that lines of code and
the average number of identifiers per line predict the level
of readability evident in code [16]. While it is not plausible
that code length on its own is likely to predict answer
acceptability, and in fact, evidence has shown that isolated
predictors may be significant by chance [13]. , when
combined, multiple variables observed in this work do
interact to reflect Stack Overflow answer acceptability.

Our results show that the textual similarity between the
question and answer pairs also enhanced answers’
acceptability. Those answers that possessed syntactic
relations with associated questions were more likely to be
accepted. The work of Blooma, et al. [14] pointed out that
the accuracy of an answer was the most significant
contributing factor that determines the best answer. This
was assessed based on how close an answer was to a given
question in vector space. Our outcome in this work
provides confirmation for this assessment, where we
observed this feature to be among the top four established
for distinguishing a chosen Stack Overflow answer. We
anticipate that acceptable answers need to be
contextualized, such that aspects of the answer should be
situated in relation to request(s) in the question. This way,
those reading the answer are able to make sense of the
solution. This in turn likely leads to textual similarities, and
thus, the evidence observed here.

Overall, the attributes (features) above were shown to be
consistent predictors across two modelling approaches
(random forest and neural network), adding credibility to
our evaluations. The time lag between when a question was
posted and an answer was provided, the reputation of the
user (contributor), the code length in posts and the textual
similarity between question and answer pairs were
consistently the dominant features that distinguished
chosen Stack Overflow answers. In fact, these features

9

recorded similar predictive power in both models. To this
end, our outcomes are somewhat divergent to those
provided by the work of [14], which concluded that the
best answers are greatly influenced by textual features only.
In our case, code (e.g., code length), textual (e.g., textual
similarity of question and answer), non-textual (e.g., time
lag), and user (e.g., reputation of contributor) features were
seen to have some level of influence on an answer being
accepted (or not) on Stack Overflow. Moreover, these
features may be strictly dichotomized across textual (e.g.,
textual similarity of question and answer) and non-textual
(e.g., reputation of contributor) features, also diverging
from earlier findings.

We contend that this outcome is of interest as we have
examined the predictive power of a large number of
features (textual and non-textual) in terms of discriminating
accepted from unaccepted answers. To this end, we believe
this study could be useful for software developers focused
on developing plugins that integrate with IDEs in order to
display Stack Overflow question and answer pairs. In fact,
researchers and developers could use the results of our
work to rank answers in their tool (based on the features
that demonstrate significance). Also, in relation to software
practitioners that use Stack Overflow for overcoming
various challenges in their work (both in terms of
developing high quality software and speed of
development), we believe we have provided insights into
the features to focus on when looking through answers that
are not accepted or those that are low on community votes.
For instance, under these circumstances, Stack Overflow
administrators may implement a feature whereby answers
are ordered based on the prediction of their acceptability.
Our work also provides support for the combination of
textual and non-textual attributes that influence answers
that are accepted on Stack Overflow. That said, there is
need for experiments to go one step further and to explore
the effects of users changing their accepted answers over
time, as this data was not examined in our study.

7. THREATS TO VALIDITY
Our dataset consisted of 249,588 records which were
posted on Stack Overflow over three years (2014-2016).
These may not represent all the types of questions asked
and answers provided for posts tagged with Java or
JavaScript on Stack Overflow. To this end, our results may
not hold true for other categories of questions, although
recent evidence suggests that there is consistency in trends
across languages for aspects of Stack Overflow code [21].
That said, the Stack Overflow dataset is not representative
of all Q&A portals, although we expect that portals
dedicated to technology-related Q&A may hold similar
content (e.g., Yahoo!Answers for programming). Thus, the
features that discriminate accepted answers for such portals
may be similar. Also, we have based the acceptable answer
on the answer selected by the user who posed the question.
This may not necessarily be the best answer in all cases, as
some users may lack knowledge, affecting their ability to
differentiate among answers. Furthermore, we have only
used two modelling approaches in this work, and thus, we
cannot definitively say that our outcomes will hold true for
other modelling methods (e.g., Bayesian logistic regression

or support vector machines (SVM)). Finally, we made
some assumptions in Section 3 in discarding some of the
features (i.e., badges and post history) in the dataset. These
were discarded because we believe such features do not
relate to the answer contained in the text. This issue may be
validated through inductive analysis. These potential
threats should be taken into account when evaluating our
outcomes.

8. CONCLUSION AND FUTURE WORK
Mechanisms to determine the features that differentiate an
acceptable answer from an unacceptable answer in a Q&A
forum such as Stack Overflow could be used to build
models that are able to rank the best answers available.
Having such a ranked list of answers may be used to re-
order appropriate answers, potentially making it easier for
users of such a forum to more easily find solutions to their
problems. In addition, developers of plugins and tools
could create artifacts that are able to rank answers from
such outcomes, and users of such plugins may then drag
and drop such documents (Q&A pairs) into their
programming environment.

The main objective of this paper was thus to explore the
predictive power of textual and non-textual features in
discriminating acceptable Stack Overflow answers. In this
regard, we observed that the length of code, time lag, user
reputation, and similarity of the text between questions and
answers were features that characterized acceptable
answers. We have provided insights into the key attributes
for users to look for in distinguishing what makes a Stack
Overflow answer acceptable. This outcome could be of
practical significance to the many practitioners that use
Stack Overflow to answer their questions, or developers
interested in developing plugins which use the Stack
Overflow dataset in reducing development time (in terms
of ranking returned outcomes). Developers of such plugins
could incorporate the features found to rank answers. This
could be particularly valuable in instances where no answer
is accepted on Stack Overflow, as users could consider
those features revealed in this work in selecting the best
possible answer. However, we concede that there is a need
for follow-up work before we could fully encourage
implementation of these recommendations on Stack
Overflow and other community forums. Beyond Stack
Overflow, we believe that the outcomes of this work may
also aid Q&A feature selection more generally.
Accordingly, a plausible next step for future work is to
replicate this study for similar Q&A forums. We also plan
to evaluate other feature selection algorithms and perform
inductive analysis to validate our outcomes.

REFERENCES
[1] Cordeiro, J., Antunes, B. and Gomes, P. 2012. Context-based

recommendation to support problem solving in sof development.
Proceedings of the 3rd Workshop on Recommendation Systems for
Software Engineering (RSSE '12). IEEE Press, 85–89.

[2] Ponzanelli, L., Bacchelli, A. and Lanza, M. 2013. Leveraging crowd
knowledge for software comprehension and development.
Proceedings of the 2013 17th European Conference on Software
Maintenance and Reengineering (CSMR '13). IEEE, 57–66.

[3] Lena, M., Bella, M., Manas, M., George, H. and Björn, H. 2011.

10

Design lessons from the fastest q&a site in the west. In Proceedings
of the conference on human factors in computing systems (CHI '11).
ACM Press, NY, 2857-2866.

[4] Harper, F. M., Raban, D., Rafaeli, S. and Konstan, J. A. 2008.
Predictors of answer quality in online Q&A sites. Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI
'08). ACM New York, NY, 865-874.

[5] Agichtein, E., Castillo, C., Donato, D., Gionis, A. and Mishne, G.
2008. Finding high-quality content in social media. Proceedings of
the 2008 International Conference on Web Search and Data Mining
(WSDM '08). ACM New York, NY, 183-194.

[6] Jeon, J., Croft, W. B., Lee, J. H. and Park, S. 2006. A framework to
predict the quality of answers with non textual features. Proceedings
of the 29th annual international ACM SIGIR conference on Research
and development in information retrieval (SIGIR '06). ACM New
York, NY, 228 – 235.

[7] Ashton, A., Daniel, H., Jon, K. and Jure, L. 2012. Discovering value
from community activity on focused question answering sites: a case
study of stack overflow. Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery and data mining
(KDD '12). ACM New York, NY, 850-858.

[8] Bosu, A., Corley, C. S., Heaton, D., Chatterji, D. and Carver, J. C.
2013. Building reputation in stackoverflow: an empirical
investigation. In Proceedings of the 10th. International Workshop on
Mining Software Repository (MSR '13). IEEE, 89-92.

[9] Larkey, L. S. 1998. Automatic essay grading using text categorization
techniques. Proceedings of the 21st annual international ACM SIGIR
conference on Research and development in information retrieval
(SIGIR '98). 90-95.

[10] Lin, J., Quan, D., Sinha, V., Bakshi, K., Huynh, D., Katz, B. and
Karger, D. R. 2003. What makes a good answer? The role of context
in question answering. Proceedings of the 9th IFIP TC13
International Conference on Human-Computer Interaction
(INTERACT '03).

[11] Burel, G., He, Y. and Alani, H. 2012. Automatic Identification of
Best Answers in Online Enquiry Communities. In Proceedings of the
9th Semantic Web:Research and Applications: 9th Extended
SemanticWeb Conference (ESWC '12). Springer, Berlin, Heidelberg.

[12] Lin, Z., Li, D., Janamanchia, B. and Huangc, W. Reputation
distribution and consumer-to-consumer online auction market
structure: an exploratory study. Decision Support Systems, 41, 2
(2006), 435– 448.

[13] Wei, C., Qingtian, Z., Liu, W. and Tianyong, H. A user reputation
model for a user‐interactive question answering system. Concurrency
and Computation: Practice and Experience, 19, 15 (2007), 2091-
2103.

[14] Blooma, M. J., Chua, A. Y. K. and Goh, D. H.-L. 2008. A predictive
framework for retrieving the best answer. Proceedings of the 2008
ACM symposium on Applied computing (SAC '08). ACM New
York, NY, 1107-1111.

[15] Jizhou, H., Ming, Z. and Dan, Y. 2007. Extracting chatbot knowledge
from online discussion forums. . In Proceedings of International Joint
Conference on Artificial Intelligence (IJCAI '07). 423–428.

[16] Buse, R. P. L. and Weimer, W. R. Learning a metric for code
readability. IEEE Transactions on Software Engineering, 36, 4
(2010), 546-558.

[17] Meldrum, S., Licorish, S. A. and Savarimuthu, T. R. B. 2017.
Crowdsourced Knowledge on Stack Overflow: A Systematic
Mapping Study. Proceedings of the 21st International Conference on
Evaluation and Assessment in Software Engineering (EASE '17).
ACM New York, NY, 180-185.

[18] Gantayat, N., Dhoolia, P., Padhye, R., Mani, S. and Sinha, V. S.
2015. The synergy between voting and acceptance of answers on
stackoverflow, or the lack thereof. Proceedings of the 12th Working
Conference on Mining Software Repositories (MSR '15). IEEE Press
Piscataway, NJ, 406-409.

[19] Islam, M. M., Arafat, S. S. I., HossainMd, M. S., RahmanMd, M. and
Hasan, M. RAiTA: Recommending Accepted Answer Using Textual
Metadata. In Proceedings of the Emerging Technologies in Data
Mining and Information Security (2019). Springer.

[20] Stanley, C. and Byrne, M. D. 2013. Predicting Tags for

StackOverflow. In Proceedings of the 12th ICCM International
Conference on Cognitive Modelling (ICCM '13). 414-419.

[21] Lotter, A., A.Licorish, S., Savarimuthu, B. T. R. and Meldrum, S.
2018. Code Reuse in Stack Overflow and Popular Open Source Java
Projects. 25th Australasian Software Engineering Conference
(ASWEC '18). IEEE, 141-150.

[22] Tang, B., Shepherd, M., Milios, E. and I.Heywood, M. 2005.
Comparing and combining dimension reduction techniques for
efficient text clustering. In Proceedings International Workshop on
Feature Selection for Data Mining: Interfacing Machine Learning and
Statistics (SIAM '05). 17-26.

[23] Hotho, A., Nürnberger, A. and Paaß, G. A brief survey of text mining.
LDV Forum - GLDV Journal for Computational Linguistics and
Language, 20, 1 (2005), 19-62.

[24] Porter, M. F. An algorithm for suffix stripping. Program, 14, 3
(1980), 130-137.

[25] Patil, H., Patil, A. and Pawar, B. Part-of-Speech Tagger for Marathi
Language using Limited Training Corpora. In Proceedings of the
Proceedings on National Conference on Recent Advances in
Information Technology (2014).

[26] Sparck, K. J. A statistical interpretation of term specificity and its
application in retrieval. Journal of documentation, 28, 1 (1972), 11-
21.

[27] Licorish, S. A. and MacDonell, S. G. Exploring the links between
software development task type, team attitudes and task completion
performance: Insights from the Jazz repository. Information and
Software Technology, 27 (2018).

[28] Licorish, S. A. and MacDonell, S. G. 2013. What can developers'
messages tell us? a psycholinguistic analysis of jazz teams' attitudes
and behavior patterns. 2013 22nd Australian Software Engineering
Conference (ASWEC '13). IEEE, 107-116.

[29] Daniel, G., Xiaofeng, W. and Pekka, A. Happy software developers
solve problems better: psychological measurements in empirical
software engineering. PeerJ, 2, e289 (2014).

[30] Qiongjie, T., Peng, Z. and Baoxin, L. 2013. Towards Predicting the
Best Answers in Community-Based Question-Answering Services
Proceedings of the Seventh International AAAI Conference on
Weblogs and Social Media (AAAI '13).

[31] Breiman, L. Random forests. Machine learning, 45, 1 (2001), 5-32.
[32] Cutler, A., Cutler, R. and Stevens, J. R. Random forests. Springer,

2012.

[33] Chawla, N. V., Bowyer, K. W., Hall, L. O. and Kegelmeyer, W. P.
SMOTE: synthetic minority over-sampling technique. Journal of
artificial intelligence research, 16 (2002), 321-357.

[34] He, H., Bai, Y., Garcia, E. A. and Li, S. 2008. ADASYN: Adaptive
synthetic sampling approach for imbalanced learning. IEEE
International Joint Conference on Neural Networks (IJCNN '08).
IEEE, 1322-1328.

[35] Gurney, K. An introduction to neural networks. CRC press, 2014.

[36] Léon, B. Stochastic gradient learning in neural networks.
Proceedings of Neuro-Nımes, 91, 8 (1991).

[37] Jolliffe, I. T. Discarding variables in a principal component analysis.
I: Artificial data. Applied statistics (1972), 160-173.

[38] Ross, B. C. Mutual information between discrete and continuous data
sets. PloS one, 9, 2 (2014), e87357.

[32] J. Shore and S. Warden, The Art of Agile Development, New York:
O'Reilly Media, 2010.

[33] A. Rüping, Agile Documentation: A Pattern Guide to Producing
Lightweight Documents for Software Projects, West Sussex: John
Wiley & Sons Ltd, 2003.

[34] K. M. Oliveira, A. . Rocha, G. H. Travassos and C.S. Menezes,
“Using domain knowledge in software development environments”,
in Learning Software Organizations: Methodology and Applications,
G. Ruhe and F. Bomarius, Eds. Berlin Heidelberg: Springer-Verlag,
1999

[35] I. Valiela, Doing Science: Design, Analysis, and Communication of
Scientific Research, New York: Oxford University Press, Inc, 2001.

[36] T. Moynihan, “An inventory of personal constructs for risk
researchers”, Journal of information Technology, 1996, pp. 359-371.

11

[37] F.Fagerholm,A.S.Guinea,J.BorensteinandJ.Münch,“Onboarding in
open source projects”. IEEE Software, vol. 31 no. 6, 2014, pp. 54-
61.

[38] F. Fagerholm, A. S .Guinea, J. Borenstein, J. Münchand J.
Borenstein, “The role of mentoring and project characteristics for
onboarding in open source software projects”. In Proceedings of the
8th ACM/IEEE international symposium on empirical software
engineering and measurement, 2014, pp. 55-64.

