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ABSTRACT
Acyclic schemes have numerous applications in databases

and in machine learning, such as improved design, more effi-

cient storage, and increased performance for queries and ma-

chine learning algorithms.Multivalued dependencies (MVDs)

are the building blocks of acyclic schemes. The discovery

from data of both MVDs and acyclic schemes is more chal-

lenging than other forms of data dependencies, such as Func-

tional Dependencies, because these dependencies do not hold

on subsets of data, and because they are very sensitive to

noise in the data; for example a single wrong or missing tuple

may invalidate the schema. In this paper we present Mai-
mon, a system for discovering approximate acyclic schemes

and MVDs from data. We give a principled definition of ap-

proximation, by using notions from information theory, then

describe the two components of Maimon: mining for ap-

proximate MVDs, then reconstructing acyclic schemes from

approximate MVDs. We conduct an experimental evaluation

of Maimon on 20 real-world datasets, and show that it can

scale up to 1M rows, and up to 30 columns.

1 INTRODUCTION
Acyclic schemes have numerous applications in databases

and in machine learning. Originally introduced by Beeri [5],

they have lead to Yannakakis celebrated linear time query

evaluation algorithms [42], and are used widely today in

database design [13, 31], to speed up query evaluation with

multiple aggregates [25], and to speed up machine learning

applications such as ridge linear regression, classification

trees, and regression trees [24, 39, 40]. When considering

which types of schemes to fit the data, acyclic schemes are

the natural choice due to their many desirable properties [6].

In this paper we study the following discovery problem:

given a database consisting of a single relation, generate a

set of acyclic schemes that fit the data to a large extent. For a

simple illustration, consider the database shown on the left

of Figure 1. It can be decomposed into an acyclic schema

with four relations, shown on the right.

The building blocks of an acyclic schema are Multival-

ued Dependencies, MVDs. Every acyclic schema can be fully

specified by the set of MVDs that it implies, which we call its

support. Therefore, when mining acyclic schemes, the first

step is to mine the MVDs satisfied by the data. MVDs were

first introduced by Fagin [13], which used them to introduce

the 4th normal form, a generalization of the Boyce-Codd

normal form (BCNF) [10]. They were studied extensively in

the database literature [2, 4, 14, 28], have been proven to be

equivalent to Saturated Conditional Independence in graphi-

cal models [17], and have recently been used as part of a data

repairing solution to enforce fairness of ML systems [36, 37].

The methods used to synthesize an acyclic schema from a

set of MVDs are well known [3, 7, 13, 32]. However, despite

their importance, there is little research on the discovery of

MVDs from data [1].

Work most closely related to the discovery of MVDs has

been on discovering Functional Dependencies (FDs) and

Unique Column Combinations (UCCs) [8, 21, 26, 27, 33, 35,

41]. These are special cases ofMVDs, butMVDs aremore gen-

eral. Discovering all FDs and all UCCs is insufficient for dis-

covering acyclic schemes. The only work that addressed the

discovery problem for MVDs is by Savnik and Flach [38] and

a master thesis by Draeger [12], and none of them address

the more challenging task of discovering acyclic schemes.

There are two major challenges that make the discovery

of MVDs and acyclic schemes, much harder than that of FDs

and UCCs. First, they don’t hold on subsets of the data. If a

relation satisfies an FD, or a UCC, then every subset also sat-

isfies the FD, or UCC, and this is exploited by many discovery

algorithms, e.g FastFD [41] mines FDs in all subsets of size 2,

while HyFD [35] mines FDs in a small subset extracted from

the data. This property fails for MVDs, preventing us from

considering subsets of the data. Second, MVDs and acyclic

schemes are much more sensitive to data errors than FDs and

UCCs. Even a single missing tuple may invalidate an MVD or

schema. Real-world data often has important dependencies

that do not hold exactly, but, if discovered, are very useful

for a variety of applications. For that reason, in this paper

we study the problem of discovering approximateMVDs and

consequently, approximate acyclic schemes.
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R:
A B C D E F
a1 b1 c1 d1 e1 f1 1/4

a2 b2 c1 d1 e2 f2 1/4

a2 b2 c2 d2 e3 f2 1/4

a1 b2 c1 d2 e3 f1 1/4

a1 b2 c1 d2 e2 f1

=

A B D
a1 b1 d1 1/4

a2 b2 d1 1/4

a2 b2 d2 1/4

a1 b2 d2 1/4

Z

A C D
a1 c1 d1 1/4

a2 c1 d1 1/4

a2 c2 d2 1/4

a1 c1 d2 1/4

Z

B D E
b1 d1 e1 1/4

b2 d1 e2 1/4

b2 d2 e3 1/2

b2 d2 e2

Z

A F
a1 f1 1/2

a2 f2 1/2

Fig. 1 A relation R and it’s decomposition into an acylic schema

Fig. 2 Join Tree

We present Maimon1
, the first system for discovering ap-

proximate MVDs and acyclic schemes in the data. We intro-

duce a principled notion of approximation, based on informa-

tion theory, and develop the necessary theory for reasoning

about approximate MVDs and schemes. We then describe al-

gorithms for mining MVDs and schemes, and evaluate their

scalability on real-world datasets of up to 1M rows, and 30

attributes. By allowing approximations, Maimon finds more

interesting schemes without incurring too high a loss (i.e.,

spurious tuples). We make several contributions.

Our first contribution is to introduce a principled defini-

tion of approximation, and study its properties. Kivinen and

Mannila [26] give three definitions of approximate functional

dependencies, and Kruese and Naumann use one of them in

their approximate FDs and UCCs discovery algorithm [27].

We propose an alternative metric of approximation, based

on information theory. Each MVD or acyclic schema is as-

sociated with an information theoretic expression, and its

value represents the degree of approximation. Our definition

builds on early work by Lee [30].

Second, we propose novel algorithms for mining approxi-

mate MVDs and approximate acyclic schemes. For mining

MVDs, our theoretical results prove that we do not need

to discover all approximate MVDs, but only the so-called

full MVDs with minimal separators. Our algorithm builds

on previous results by Gunopulos et al. [20] for discovering

the most specific sentences in the data that meet a certain

criterion (e.g., maximal sets of items whose frequency in the

data is above a given threshold). Following the discovery

of the MVDs that hold in the data, we turn to the task of

enumerating the acyclic schemes that can be synthesized

from the set of discovered MVDs. Our algorithm is based on

an approach for efficiently enumerating the maximal inde-

pendent sets of a graph [11, 22], which has also been applied

to the problem of enumerating tree decompositions [9].

Third, we evaluate Maimon on 20 real-world datasets that

are part of theMetanome project that provides a repository of

benchmarks for a variety of data profiling tasks that include

1 Maimon stands for Multivalued Approximate Inference Mining and

NOrmalization.

the discovery of data dependencies. The datasets chosen for

evaluation have been used in a large body of work on min-

ing exact and approximate FDs [8, 12, 27, 33–35]. We show

that Maimon scales up to 1M rows, and up to 30 columns.

We empirically show that the loss entailed by the generated

acyclic schemes (i.e., number of spurious tuples), monotoni-

cally depends on and the information theoretic measure of

approximation we develop herein. We also show that a larger

degree of approximation enables the discovery of schemes

that exhibit a larger degree of decomposition, that leads to

significant savings in storage. These schemes generally have

more relations, and the width of the schema (i.e., relation

with the largest number of attributes), is smaller.

The most expensive operation of Maimon is the computa-

tion of the entropy H (X ) of a set of attributes X . Each such

computation requires a full scan over the data, and this is

prohibitively expensive due to the exponential number of

subsets of attributes. We describe a novel, efficient approach

to computing entropy, which reduces the problem to a set

of main-memory SQL queries. Our method is inspired by

the PLI cache (Position List Indices) data structure used for

mining both exact and approximate FDs [21, 27].

To sum up, the contributions of this work are as follows:

(1) We define a principled notion of approximate data

dependencies based on information theory, and study

its properties; Sec. 4 and 5.

(2) We describe a novel MVD enumeration algorithms and

acylic schema enumeration algorithm; Sec. 6 and 7.

(3) We conduct an extensive experimental evaluation on

20 real datasets; Sec. 8.

2 RUNNING EXAMPLE
Wewill use the following running example in this paper. Con-

sider the relation R over the signature Ω = {A,B,C,D,E, F }
in Figure 1. Ignore the probabilities, wewill use them in Sec. 3.

Also, ignore for now the last row (in red). The table with

four rows can be decomposed into four tables, shown in the

figure. More precisely, the following join dependency holds:

R = R[ABD] ▷◁ R[ACD] ▷◁ R[BDE] ▷◁ R[AF ]. The schema

of these four tables is acyclic, because it admits a join tree,
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shown in Fig. 2 (reviewed in Sec. 3). Our goal is to discover

this acyclic schema from the data R. For that, we note that
the acyclic schema can be entirely described by three Mul-

tivalued Dependencies: BD ↠ E |ACF , AD ↠ CF |BE, and
A ↠ F |BCDE. Each corresponds to one edge of the join tree:

the left hand size of the MVD (that we call the key) is the

label of that edge, while the two sets of attributes correspond

to the subtrees connected by the edge. For example, the edge

ACD AD− ABD in the join tree defines the MVDAD ↠ CF |BE.
The key AD “separates” the attributes CF in one subtree

from BE in the other subtree, and we will also call such a set

a separator. Since MVDs are the building blocks of acyclic

schemas, their discovery is a prerequisite for discovering

acyclic schemas, and our first task is to discover MVDs from

data, then use them to discover acyclic schemas.

Consider the 5’th row in R, shown in red. By adding it,

we need to add a 4’th row to R[BDE], also shown in red.

However, now the join dependency no longer holds exactly,

because R[ABD] ▷◁ R[ACD] ▷◁ R[BDE] ▷◁ R[AF ] contains a
spurious tuple, namely (a2,b2, c2,d2, e2, f2), which is not in R
(it is not shown in the Figure); the first two MVDs no longer

hold, only A ↠ F |BCDE still holds, and the acyclic schema

is no longer a correct decomposition of R. Yet the schema

can still be useful for many applications, even it if leads to

a spurious tuple. Insisting on exact acyclic schemas would

severely restrict their applications, and also make them very

brittle since the addition of one single tuple would invalidate

the schema. In this paper we compute approximate acyclic

schemas, and approximate MVDs. By allowing approxima-

tions, the schema shown in the figure is still considered valid

for the data, despite the spurious tuple.

3 BACKGROUND
Table 1 summarizes the notations in this paper. We denote

by [n] = {1, . . . ,n}. Let Ω be a set of variables, also called

attributes. If X ,Y ⊆ Ω, then XY denotes X ∪ Y .

3.1 Data Dependencies
Fix a relation instance R of size N = |R |, and schema Ω.
For Y ⊆ Ω we let R[Y ] denote the projection of R onto the

attributes Y .
Let X ,Y ,Z ⊆ Ω. A schema is a set S = {Ω1, . . . ,Ωk } such

that

⋃k
i=1 Ωi = Ω and Ωi ⊈ Ωj for i , j. We say that the

relation instance R satisfies the join dependency JD(S), and
write R |= JD(S), if R =Zki=1 R[Ωi ]. We say that R satisfies

the multivalued dependency (MVD) ϕ = X ↠ Y1 |Y2 | . . . |Ym
wherem ≥ 2, the Yi s are pairwise disjoint, and XY1 · · ·Ym =
Ω, if R = R[XY1] Z · · · Z R[XYm]. We call X the key of the

MVD and {Y1, . . . ,Ym} it’s dependents, denoted key(ϕ) = X
and dep(ϕ) = {Y1, . . . ,Ym}. Most of the literature considers

only MVDs withm = 2, which we call here standard MVDs.

Ω set of variables (attributes)

n = |Ω | number of variables (attributes)

X ,Y ,A,B, . . . sets of variables ⊆ Ω
S a schema = {Ω1, . . . ,Ωm }
X ↠ Y |Z a standard MVD

X ↠ Y1 |Y2 | · · · |Ym an MVD [4]

(T , χ ) a join tree

H (X ) entropy of a set of variables X
H (Y |X ), I (Y ;Z |X ) entropic measures

J(T , χ ) the entropic measure in Eq.(6)

J(S) J of any join tree for S
J(X ↠ Y1 | · · · |Ym ) J of the schema {XY1, . . . ,XYm }
J(X ↠ Y |Z ) = I (Y ;Z |X )
R a relation

N = |R | number of tuples

R |= AJD(S) R satisfies an acyclic

join dependency

R |=ε AJD(S) R ε-satisfies an acyclic

join dependency

Table 1: Notations

Beeri et al. [4] noted that a generalized MVD can encode

concisely multiple MVDs; for example X ↠ A|B |C holds iff

X ↠ AB |C , X ↠ A|BC and X ↠ AC |B hold. We review a

join tree from [6]:

Definition 3.1. A join tree is a pair

(
T , χ

)
where T is an

undirected tree, and χ is a function that maps each u ∈
nodes(T ) to a set of variables χ (u), called a bag, such that

the following running intersection property holds: for every

variableX , the set {u ∈ nodes(T ) | X ∈ χ (u)} is a connected
component of T . We denote by χ (T ) def= ⋃

u χ (u), the set of
variables of the join tree.

We often denote the join tree as T , dropping χ when

it is clear from the context. The schema defined by T is

S = {Ω1, . . . ,Ωm}, where Ω1, . . . ,Ωm are the bags of T . We

call a schema S acyclic if there exists a join tree whose schema

is S. Since we required Ωi ⊈ Ωj for i , j, one can prove

that any acyclic schema with n attributes andm relations

satisfiesm ≤ n. We say that a relation R satisfies the acyclic

join dependency S, and denote R |= AJD(S), if S is acyclic and
R |= JD(S). An MVD X ↠ Y1 | · · · |Ym represents a simple

acyclic schema, namely S = {XY1,XY2, . . . ,XYm}.
Let S = {Ω1, . . . ,Ωm} be an acyclic schema with join

tree (T , χ ). We associate to every (u,v) ∈ edges(T ) an
MVD ϕu,v as follows. Let Tu and Tv be the two subtrees

obtained by removing the edge (u,v). Then, we denote by
ϕu,v

def

= χ (u) ∩ χ (v) ↠ χ (Tu )|χ (Tv ). We call the support of

T the set ofm − 1 MVDs associated to its edges, in notation

MVD(T ) = {ϕu,v | (u,v) ∈ edges(T )}. If T defines the

acyclic schema S, then it satisfies R |= AJD(S) iff it satisfies
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all MVDs in its support: R |= ϕu,v for all ϕu,v ∈ MVD(T ) [6,
Thm. 8.8].

Example 3.2. We will illustrate with the running example

from Sec. 2. The tree in Fig. 2 is a join tree. Its bags are the

ovals labeled AF , ACD, ABD, and BDE, and it is custom to

show the intersection of two bags on the connecting edge.

MVD(T ) = {BD ↠ E |ACF ,AD ↠ CF |BE,A ↠ F |BCDE}.

3.2 Information Theory
Lee [29, 30] gave an equivalent formulation of data depen-

dencies in terms of information measures; we review this

briefly here, after a short background on information theory.

Let X be a random variable with a finite domain D and

probability mass p (thus,

∑
x ∈D p(x) = 1). Its entropy is:

H (X ) def
=

∑
x ∈D

p(x) log 1

p(x) (1)

If N = |D| then H (X ) ≤ logN , and equality holds iff p is

uniform. For a set of jointly distributed random variables

Ω = {X1, . . . ,Xn} we define the function H : 2
Ω → R as

the entropy of the joint random variables in the set. For

example, H (X1X2) =
∑

x1∈D1,x2∈D2

p(x1,x2) log 1

p(x1,x2) . Let

A,B,C ⊆ Ω. The mutual information I (B;C |A) is defined as:

I (B;C |A) def
= H (AB) + H (AC) − H (ABC) − H (A) (2)

It is known that the conditional independence p |= B ⊥ C | A
(i.e., B is independent of C given A) holds iff I (B;C |A) = 0.

In this paper we use only the following two properties of

the mutual information:

I (B;C |A) ≥0 (3)

I (B;CD |A) =I (B;C |A) + I (B;D |AC) (4)

The first inequality follows from monotonicity and submod-

ularity (it is in fact equivalent to them); the second equal-

ity is called the chain rule. All consequences of these two

(in)equalities are called Shannon inequalities; for example,

monotonicity H (AB) ≥ H (A) is a Shannon inequality be-

cause it follows from (3) by setting B = C .
Let R be relation with attributes Ω = {X1, . . . ,Xn} and N

tuples. The empirical distribution is the uniform distribution

over its tuples: ∀t∈R, p(t)=1/N . It’s entropy satisfiesH (Ω) =
logN . For α ⊆ [n], we denote by Xα the set of variables

Xi , i ∈ α , and denote by R(Xα=xα ) the subset of tuples t ∈
R where t[Xα ]=xα , for fixed values xα . By uniformity, the

marginal probability is p(Xα=xα )= |R(Xα=xα ) |
N , and therefore:

H (Xα )
def
= logN − 1

N

∑
xα ∈Dα

|R(Xα=xα )| log |R(Xα=xα )| (5)

The sum above can be computed using a simple SQL query:

SelectXα , count(*)×log(count(*)) From R Group ByXα .

Lee [29, 30] formalized the following connection between

database constraints, and entropic measures. Let (T , χ ) be a
join tree. We define the following expression:

J(T , χ )def
=

∑
v ∈

nodes(T)

H (χ (v))−
∑
(v1,v2)∈
edges(T)

H (χ (v1)∩χ (v2))−H (χ (T ))

(6)

We abbreviate it with J(T ), or J , when T , χ are clear

from the context; we will prove later (Th. 5.1) that J ≥ 0 is a

Shannon inequality. Lee proved that J depends only on the

schema S defined by the join tree, and not on the tree itself.

To see this on a simple example, consider the MVD X ↠
U |V |W and its associated acyclic schema {XU ,XV ,XW }.
If we consider the join tree XU − XV − XW , then J =
H (XU ) + H (XV ) + H (XW ) − 2H (X ) − H (XUVW ). Another
join tree is XU − XW − XV , and J is the same. There-

fore, if S is acyclic, then we write J(S) to denote J(T )
for any join tree of S. We denote by J(X ↠ Y1 | · · · |Ym)

def

=

H (XY1)+ · · ·+H (XYm)−(m−1)H (X )−H (XY1 · · ·Ym) for any
sets of variablesX ,Y1, . . . ,Ym whereY1, . . . ,Ym are pairwise

disjoint, even when XY1 · · ·Ym is not necessarily Ω. When

m = 2, then J (X ↠ Y |Z ) = I (Y ;Z |X ). Lee proved the follow-
ing:

Theorem 3.3. ([30]) Let H be the entropy of the empirical

distribution on R, and let S be any acyclic schema. Then R |=
AJD(S) iff J(S) = 0.

In the particular case of a standard MVD, Lee’s result

implies that R |= X ↠ Y |Z if and only if I (Y ;Z |X ) = 0.

Example 3.4. Continuing Example 3.2, the empirical distri-

bution of the relationR in Fig 1 (without the red tuple) assigns

probability 1/4 to each tuple. Thus, H (ABCDEF ) = log 4 = 2.

The marginal probabilities need not be uniform, e.g. the

marginals for BDE are 1/4, 1/4, 1/2, and thus H (BDE) =
1/4 log 4 + 1/4 log 4 + 1/2 log 2 = 3/2. The value of J is:

J(T ) = H (AF ) + H (ACD) + H (ABD) + H (BDE) − H (A) −
H (AD)−H (BD)−H (ABCDEF ). For the empirical distribution

in the figure, this quantity is 0.

4 PROBLEM STATEMENT
Our main goal is to discover an acyclic schema for a given

relation instance R. Since exact schemas are very sensitive

to data errors, Maimon discovers approximate schemas.

Definition 4.1 (Approximate Acyclic Schema). Fix a rela-

tion instance R, and ε≥0. We say that an acyclic schema

S is an ε-schema for R, or simply approximate schema, if

J(S) ≤ ε . In notation, R |=ε AJD(S).

Maimon takes as input ε ≥ 0 and discovers approximate

acyclic schemas for R. By Lee’s theorem, if we set ε = 0,

then Maimon returns exact schemas. In practice, a relation
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R may not have any exact schemas, or may have very lim-

ited schemas; by allowing ε ≥ 0 we may find approximate

schemas that are quite useful for many applications.

Problem 4.1 (Schema Enumeration Problem). Given

a relational instance R, enumerate the approximate acyclic

schemas of R.

In practice, we are not interested in enumerating all ap-

proximate acyclic schemas of R. This would take a pro-

hibitively long time, and some acyclic schemas are supe-

rior to others. For example, consider a relation over four

attributes that satisfies the acyclic join dependency S =
{XA,XB,XC}. The following acyclic join dependencies also

hold in R: {XAB,XC}, {XAC,XB}, and {XA,XBC}. The lat-
ter schemas are less useful than S = {XA,XB,XC} that leads
to a larger degree of decomposition. Therefore, in this paper

we address the problem of enumerating acyclic schemas that

cannot be extended (i.e., with additional relational instances)

while continuing to satisfy the accuracy threshold.

We derive the approximate schemas from the MVDs in

their support. Since an MVD is, in particular, an acyclic

schema, Def. 4.1 applies to them as well: a ε-MVD is one

for which J(X ↠ Y1 | · · · |Ym) ≤ ε . Our second problem is:

Problem 4.2 (MVD Enumeration Problem). Given a re-

lational instance R, enumerate the approximate MVDs of R.

Maimon works as follows. The user provides a parameter

ε ≥ 0. In the first phase, Maimon enumerates ε-MVDs, using

the algorithm in Sec. 6. When it finishes, or after a timeout,

it starts the second phase, where it enumerates approximate

schemaswith support from the set returned by the first phase,

using the algorithm in Sec. 7. Since the support of a schema

consists ofm − 1 MVDs, the algorithm reports schemas with

J(S) ≤ (m−1)ε , wherem is the number of relations in S but,
since the enumeration algorithm is exhaustive, all schemas

with J ≤ ε are reported eventually.

5 THREE MAIN TECHNIQUES
We describe here three main techniques that allow us to de-

sign efficient schema- and MVD-discovery algorithms. The

first reduces the approximate schema discovery to approx-

imate MVD discovery, the next two reduce the number of

MVD’s that need to be discovered.

5.1 From MVDs to Acyclic Schemas
Beeri at al. [6] showed that, for exact constraints, an acyclic

schema overm relations is equivalent to the set ofm−1MVDs

in its support. We give here a non-trivial generalization to

approximate schemas and MVDs. We start with two simple

inequalities which we need throughout the paper:

Proposition 5.1. Let Y1,Z1, . . . ,Ym ,Zm be pairwise dis-

joint sets of variables, and let X be any set of variables. Then

the following are Shannon inequalities:

J(X ↠ Y1 | · · · |Ym ) ≤J(X ↠ Y1Z1 | · · · |YmZm ) (7)

J(XZ1 · · ·Zm ↠ Y1 | · · · |Ym ) ≤J(X ↠ Y1Z1 | · · · |YmZm ) (8)

Proof. The first inequality follows from this chain of in-

equalities:J(X ↠ Y1 | · · · |Ym) ≤ J(X ↠ Y1Z1 |Y2 | · · · |Ym) ≤
J(X ↠ Y1Z1 |Y2Z2 | · · · |Ym) ≤ · · · ; to prove it, we show only

the first step (the others are similar), which follows by observ-

ing J(X ↠ Y1 | · · · |Ym) + I (Z1;Y2 · · ·Ym |XY1) = J(X ↠
Y1Z1 | · · · |Ym) then using inequality (3). The second inequal-

ity follows from a similar chain, where the first step follows

from J(XZ1 ↠ Y1 | · · · |Ym) +
∑m

i=2 I (Yi ;Z1 |X ) = J(X ↠
Y1Z1 |Y2 | · · · |Ym) and the inequality follows from (3). □

Let (T , χ ) be a join tree, defining an acyclic schema S
over the variables χ (T ) = Ω. Choose an arbitrary root,

orient the tree accordingly, and let u1, . . . ,um be a depth-

first enumeration of nodes(T ). Thus, u1 is the root, and

for every i > 1, parent(ui ) is some node uj with j < i .

For every i , we define Ωi
def

= χ (ui ), Ωi :j
def

=
⋃

ℓ=i, j Ωℓ , and

∆i
def

= χ (parent(ui )) ∩ χ (ui ) (by the running intersection

property this is equal to Ω
1:(i−1) ∩ Ωi ). We prove:

Theorem 5.1. The following hold:

J(T ) =
m∑
i=2

I (Ω
1:(i−1);Ωi |∆i ) (9)

max

i=2,m
I (Ω

1:(i−1);Ωi :m |∆i ) ≤ J(T ) ≤
m∑
i=2

I (Ω
1:(i−1);Ωi :m |∆i ) (10)

The first is an identity, and the second is a Shannon inequality.

The identity (9) captures precisely the intuition that the

information measure associated with a join tree T is equiva-

lent tom − 1 mutual information. This identity implies that

J(T ) ≥ 0, because I (· · · ) ≥ 0. But the expressions I (· · · ) in
(9) do not correspond to MVDs, because they do not include

all variables Ω. The Shannon inequality (10) rectifies this,

by showing that J(T ) lies between the max and the sum

ofm − 1 MVDs. Notice that the MVDs ∆i ↠ Ω
1:(i−1) |Ωi :m ,

i = 2,m are precisely the support, MVD(T ), thus (10) gen-
eralizes Beeri’s observation to approximate schemas. An

immediate consequence of (10) is the following relationship

between an acyclic schema S and its support.

Corollary 5.2. Let S be an acyclic schema with join tree

(T , χ ). Then: (1) if R |=ε AJD(S) then R |=ε MVD(T ). (2)
If R |=ε MVD(T ) then R |=(m−1)ε AJD(S). In particular, (1)

and (2) are equivalent if ε = 0. Here R |=ε MVD(T ) means

R |=ε ϕ, forall ϕ ∈ MVD(T ).
Proof. (of Theorem 5.1) Let Ti denote the subtree con-

sisting of the nodes u1, . . . ,ui . We prove (9) by induction
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on m. Assume the identity holds for m − 1. Compared to

Tm−1, the tree Tm has one extra node um and one extra edge

(parent(um),um), hence by the definition of J in (6):

J(Tm ) =J(Tm−1) + H (χ (um )) − H (χ (um ) ∩ χ (parent(um ))
+ H (χ (Tm−1)) − H (χ (Tm ))
=J(Tm−1) + H (Ωm ) − H (∆m ) + H (Ω1:(m−1)) − H (Ω1:m )
=J(Tm−1) + I (Ω1:(m−1);Ωm |∆m )

The claim follows from the induction hypothesis onJ(Tm−1).
We prove (10). The right inequality follows from the fact

that I (Ω
1:(i−1);Ωi |∆i ) ≤ I (Ω

1:(i−1);Ωi :m |∆i ) (which holds by

Eq. (8)). For the left inequality, we make the following obser-

vation. If T is any join tree and T ′ is obtained by mergining

two adjacent nodes (u,v) ∈ edges(T ), then J(T ) ≥ J(T ′).
This is because J(T ) = J(T ′) + H (χ (u)) + H (χ (v)) −
H (χ (u)∩χ (v))−H (χ (u)∪χ (v)) = J(T ′)+I (χ (u); χ (v)|χ (u)∩
χ (v)). To prove (10), we fix one edge (parent(ui ),ui ) and re-
peatedly merge all other edges, until we end with a tree T ′
with two bags, Ω

1:(i−1) and Ωi :m respectively. Then J(T ) ≥
J(T ′) = I (Ω

1:(i−1);Ωi :m |∆i ). The claim follows from the fact

that this holds for any i = 2,m. □

Example 5.3. We illustrate the first part of the theorem on

the running example in Fig. 2 and Example 3.4. Enumerating

the nodes depth-first (ABD,ACD,AF ,BDE), Eq. (9) and (10)

become:

J(T ) =I (C;B |AD) + I (F ;BCD |A) + I (ACF ;E |BD)
max(· · · ) ≤ J(T ) ≤I (CF ;BE |AD) + I (F ;BCDE |A) + I (ACF ;E |BD)

5.2 Full MVDs
The number of candidate MVD’s is very large: there are

2

(3n + 1)/2 − 2n = O(3n) standard MVD’s X ↠ Y |Z , which
is too large to consider for practical datasets. Here, and in

the next section, we describe two techniques that allow us

to restrict the search space. Consider a fixed key X . Beeri
at al. [4] noted that, in the exact case, if any MVD X ↠
. . . holds on the data, then there exists a “best” one. For

example if both X ↠ AB |C and X ↠ A|BC hold exactly,

then so does X ↠ A|B |C , and it suffices to discover only the

latter. Unfortunately, this fails for approximate MVDs, as we

explain here.

We say that ϕ = X ↠ A1 | . . . |Am refines ψ = X ↠
B1 | . . . |Bk , denoted by ϕ ⪰ ψ if they both have the same

key (i.e., key(ϕ) = key(ψ ) = X ) and for every Ai ∈ dep(ϕ)
there exists Bj ∈ dep(ψ ) such that Ai ⊆ Bj . For example,

X ↠ A|B |C refines X ↠ AB |C .
2
There are 3

n
ways to partition Ω into three sets X , Y , Z . We rule out the

2
n
partitions that have Y = ∅ and the 2

n
partitions that have Z = ∅, and

add back the 1 partition that has Y = Z = ∅, for a total of 3n − 2n+1 + 1.
Finally, we divide by 2 since X ↠ Y |Z and X ↠ Z |Y are the same MVD.

Proposition 5.2. If ϕ ⪰ ψ then J(ϕ) ≥ J(ψ ).

Proof. It suffices to consider the case when two depen-

dents in ϕ are replaced by their union in ψ , e.g. ϕ = X ↠
A|B | · · · and ψ = X ↠ AB | · · · , since any refinement is a

sequence of such steps. In that case, by inspecting Eq.(6) we

observe J(ϕ) = J(ψ )+H (XA)+H (XB)−H (XAB)−H (X ) =
J(ψ ) + I (A;B |X ) ≥ J(ψ ) proving the claim. □

We say that an MVDψ is ε-full, or simply full, if R |=ε ψ
and, for all strict refinements ϕ ≻ ψ , R ̸ |=ε ϕ. We denote

by FullMVDε (R,X ) the set of all full ε-MVDs with key X .
Thus, we only need to discover the sets FullMVDε (R,X ),
for all X ⊆ Ω, because all other MVDs can be derived using

Shannon inequalities.

Beeri proved that, in the exact case, FullMVD0(R,X ) has
at most one element. We next present Lemma 5.4 that shows

what happens in the approximate case, and allows us to

derive Beeri’s result as a special case. Given two MVDs ϕ =
X ↠ A1 | . . . |Am and ψ = X ↠ B1 | . . . |Bk , define their

join as ϕ ∨ ψ = X ↠ C11 |C12 | · · · |Cmk , where Ci j = Ai ∩
Bj . Clearly, ϕ ∨ ψ refines both ϕ and ψ , i.e. J(ϕ ∨ ψ ) ≥
max(J(ϕ),J(ψ )). We prove a weak form of converse:

Lemma 5.4. The following are Shannon inequalities: J(ϕ∨
ψ ) ≤ J(ϕ) +mJ(ψ ) and J(ϕ ∨ψ ) ≤ kJ(ϕ) + J(ψ ).

By this result, J(ϕ) = J(ψ ) = 0 implies J(ϕ ∨ψ ) = 0,

which proves Beeri’s theorem that FullMVDε (R,X ) has at
most one element, because if ϕ1,ϕ2, · · · are all MVD’s with

key X that hold exactly on R, then ϕ1 ∨ ϕ2 ∨ · · · refines
all of them and holds too. This property was also used by

Draeger [12] in his MVD discovery algorithm. When ε > 0

however, then this fails. For a very simple example, consider

a relation with two tuples,

X A B C
0 0 0 0

0 1 1 1

and fix ε = 1.

Then R |=ε X ↠ AB |C,X ↠ AC |B,X ↠ BC |A, but ̸ |=ε X ↠
A|B |C; indeed, H (∅) = H (X ) = 0 and H (W ) = 1 for all other

setsW , and the reader can check J(X ↠ AB |C) = J(X ↠
AC |B) = J(X ↠ BC |A) = 1 but J(X ↠ A|B |C) = 2.

In summary, our algorithm discovers FullMVDε (R,X ),
for every X . Unlike the exact case, FullMVDε (R,X ) may

contain more than one element.

5.3 Minimal Separators
We now show that it is not necessary to discover the sets

FullMVDε (R,X ) for all subset of attributes X ⊂ Ω, but only
those where X is a minimal separator.

Definition 5.5. Fix a relation R and ε ≥ 0. We say that

a set X separates two variables A,B < X if there exists an

ε-MVD X ↠ Y1 | · · · |Ym that separates A,B, i.e. A,B occur in

different sets Yi ,Yj . We say X is a minimal A,B-separator if
there is no X0 ⊊ X that separates A,B.
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For a pair A,B ∈ Ω, we denote by MinSepε (R,A,B) the
set of minimal A,B separators in R, and for a minimal AB
separator X we denote by FullMVDε (R,X ,A,B) the set of
full MVDs that separate A,B. Notice that:

FullMVDε (R,X ) =
⋃

A,B∈Ω\X
FullMVDε (R,X ,A,B).

Example 5.6. Let R be a relation over Ω = {A, . . . ,E}. Sup-
pose R |=ε CD ↠ A|BE. By (8) we also have R |=ε CDE ↠
A|B, which means that CDE cannot be a minimal separator

for A,B. To check that CD is a minimal A,B-separator, we
need to check that neither C nor D separates A,B

The main result in this section is that we only need to

compute the full MVDs with minimal separators, denoted

as:

Mε
def

=
⋃

A,B∈Ω

⋃
X ∈

MinSepε (R,A,B)

FullMVDε (R,X ,A,B) (11)

because, as we show, every ε-MVD can be derived from the

setMε by a Shannon inequality.

Theorem 5.7. Let X ↠ Y |Z be an ε-MVD for R. Then
there exist ϕ1, . . . ,ϕm ∈ Mε , wherem = |Y | · |Z |, such that

the following is a Shannon inequality: I (Y ;Z |X ) ≤ ∑
i J(ϕi ).

In summary, our algorithm will iterate over pairs of at-

tributes A,B, will compute MinSepε (R,A,B), then, for each
X in this set will compute FullMVDε (R,X ,A,B), and return
their union,Mε ; we describe it in the next section. We end

this section with the proof of Theorem 5.7.

Proof. Let Y = A1 . . .Am , and Z = B1 . . . Bk . By the

chain rule (4) it holds that:

I (Y ;Z |X ) =
m∑
i=1

k∑
j=1

I (Ai ;Bj |XA1 . . .Ai−1B1 . . . Bj−1)

It suffices to prove that, for each i, j, there exists an MVD

ϕ ∈ Mε such that the following is a Shannon inequality:

I (Ai ;Bj |XA1 · · ·Ai−1B1 · · ·Bj−1) ≤J(ϕ)
Since X ↠ Y |Z is a ε-MVD for the relation R, then X is an

Ai ,Bj separator. Let S ⊆ X be any minimal Ai ,Bj separator,
thus S ∈ MinSepε (R,Ai ,Bj ), and let ϕ = S ↠ U1 | · · · |Up
be a full MVD in FullMVDε (R, S,Ai ,Bj ) ⊆ Mε that sepa-

rates Ai ,Bj . Assume w.l.o.g. Ai ∈ U1, Bj ∈ U2, and let ψ
def

=

S ↠ W |V , whereW = U1, V = U2U3 · · ·Up . Thus, ϕ ⪰ ψ ,
and therefore by Prop. 5.2 the following Shannon inequality

holds: J(ϕ) ≥ J(ψ ). Writeψ asψ = S ↠W0W1 |V0V1, where
W0 =W ∩ (XA1 · · ·AiB1 · · ·Bj ),W1 =W −W0, and similarly

V0 = V ∩ (XA1 · · ·AiB1 · · ·Bj ), V1 = V −V0. By Prop. 5.1 (7)

we have the following Shannon inequality J(ψ ) = J(S ↠
W0W1 |V0V1) ≥ J(S ↠ W0 |V0). Finally, we notice that the

Algorithm MVDMiner(R, Ω, ε)

1: Mε ← ∅
2: for all pairs A,B ∈ Ω do
3: MinSepε (R,A,B) ← MineMinSeps(R,Ω, ε, (A,B))
4: for all X ∈ MinSepε (R,A,B) do
5: Mε ←Mε ∪ getFullMVDs(X , ε, (A,B),∞)
6: returnMε

Fig. 3 Discover the setMε = ∪S ∈MinSepR FullMVDε (S).

set SW0V0 is the same as XA1 · · ·AiB1 · · ·Bj and that Ai ∈
W0, Bj ∈ V0, therefore by Prop. 5.1, (8), J(S ↠ W0 |V0) ≥
J(XA1 · · ·Ai−1B1 · · ·Bj−1 ↠ Ai |Bj ), proving the claim. □

6 DISCOVERING ε-MVDS
In this section we present the first phase of Maimon: the

algorithm for the discovery of ε-MVDs in a relation R, called
MVDMiner, and shown in Figure 3. As explained, the algo-

rithm returns the setMε , defined in Eq.(11); this set is used

in the second phase of Maimon to compute ε-schemes.

MVDMiner iterates over all pairs of attributes A,B ∈ Ω.
It first computes the set MinSepε (R,A,B) of minimal A,B-
separators (line 3): we describe this step in Sec. 6.1. Then, for

eachX ∈ MinSepε (R,A,B), it computes FullMVDε (R,X ,A,B)
(line 5): we describe this step in Sec. 6.2. Finally, the algo-

rithm returns their union,Mε . Both steps require access to

an oracle getEntropyR(X ) for computing the entropy H (X ),
according to Eq. (5), where H is the entropy associated with

the empirical distribution over R. We describe the implemen-

tation and optimization of getEntropyR(X ) in Section 6.3.

6.1 Discovering the Minimal Separators
Wedescribe here howwe compute all minimalA,B-separators,
MinSepε (R,A,B) (line 3 of MVDMiner). One possible way
to do this could be to iterate over sets X top down, because it

enables pruning: if X is not an A,B-separator, then neither is

any subset ofX , by (8) in Prop. 5.1. This suggests a top-down

algorithm, which starts from the largest set X = Ω\{A,B},
and checks if it is an A,B-separator. If not, then none exists.

Otherwise it exhaustively searches over subsets of X , from
largest to smallest, returning the minimal (with regard to

inclusion) sets that separate A,B. Such an exhaustive search

will explore all separators, while we only want to find the

minimal ones. Our approach takes advantage of the fact that

we need to find only the minimal separators, and builds on

a result by Gunopulos et al. [20].



Batya Kenig1 Pranay Mundra2 Guna Prasad1 Babak Salimi1 Dan Suciu1

Let C = {C1, . . . ,Cm} be a set of distinct subsets of Ω. A
setD ⊂ Ω is a transversal ofC ifD∩Ci , ∅ for everyCi ∈ C.
For a set D ⊆ Ω, we denote by D the complement set Ω\D.

Theorem 6.1. Let C = {C1, . . . ,Cn} denote a set of min-

imal A,B separators in R. Then there exists a minimal A,B-
separator X < C iff there exists a minimal transversal D of C
such that D is an A,B-separator.

Proof. only if. Since D is a transversal of C then:

n∧
i=1

(Ci ∩ D , ∅) ⇐⇒
n∧
i=1

(D ⊉ Ci ) (12)

Since D is an A,B separator, there exists some minimal sep-

arator X ⊆ D. Assume, by contradiction, that X ⊇ Ci for

some Ci ∈ C. Then D ⊇ X ⊇ Ci , contradicting (12).

if. Since X is a minimal A,B separator that is not in C,
then

∧n
i=1(X ⊉ Ci ), meaning that X is a transveral of C.

Then any minimal transversal D ⊆ X satisfies the claim. □

Algorithm MineMinSeps (Fig. 5) for discovering all mini-

malA,B separators,MinSepε (R,A,B) is based on Theorem 6.1,

and proceeds as follows:

(1) InitializeCwith a singleminimalA,B-separator (Line 3-
5).

(2) Iterate over all minimal transversals D of C (Line 8):

(3) If D separates A,B (Line 11), then:

(a) Find any minimal A,B separator X ⊆ D (Line 12).

(b) C← C ∪ {X }.
The function ReduceMinSep called in lines 4 and 12 takes

a separator (Ω\{A,B} or D respectively) and finds any sub-

set that is a minimal separator; this is done greedily in

ReduceMinSep (Fig. 4). The function getFullMVDs called
in line 10 ofMineMinSeps, and in line 4 of ReduceMinSep,
takes as input an attribute setX , a pair of attributesA,B, and
a threshold ε , and computes full ε-MVDs with key X that

separate A,B; a parameter K > 0 is used to limit the num-

ber of full MVDs returned, and here we set K = 1 because

we only check if one exists; in line 5 of the main algorithm

(Fig. 3) we set K = ∞.
The only sets of attributes returned inMineMinSeps are

minimalAB-separators returned by ReduceMinSep in lines 4
and 12. The proof of completeness (i.e., the algorithm returns

all minimal AB-separators) follows techniques similar to

those by Gunopulos et al. [20], and is given in the full version

of the paper:

Theorem 6.2. Algorithm MineMinSeps in Figure 5 enu-

merates all minimal A,B-separators in R.

We now analyze the runtime between consecutive dis-

coveries of minimal A,B-separators in MineMinSeps. We

let Ω be a finite set of cardinality n, and let C ⊆ 2
Ω
be a

Algorithm ReduceMinSep(ε , X , (A,B))

1: Let p = X1, . . . ,Xm be a predefined ordering of X .

2: S ← X
3: for all i = 1 tom do
4: Mi ← getFullMVDs(S\{Xi }, ε, (A,B), 1)
5: if Mi , ∅ then
6: S ← S\{Xi }
7: return S

Fig. 4 Given a set X ⊂ Ω, and a pair (A,B) ∈ Ω\X , find a

subset S ⊆ X s.t. S is a minimal A,B-separator in R.

AlgorithmMineMinSeps(R, Ω, ε , (A,B))

1: C← ∅
2: X ← nil
3: if I (A;B |Ω\{A,B}) ≤ ε {by getEntropyR} then
4: X ← ReduceMinSep(ε,Ω\{A,B}, (A,B))
5: C← C ∪ {X }
6: else
7: Return ∅
8: while

(
D ← nextMinTransversal(C)

)
, nil do

9: D ← Ω\D
10: ϕ ← getFullMVDs(D, ε, (A,B), 1)
11: if ϕ , ∅ then
12: X ← ReduceMinSep(ε,D, (A,B))
13: C← C ∪ {X }
14: return C

Fig. 5 Given a relation R with schema Ω, two attributes

A,B ∈ Ω, and a threshold ε enumerate all minimal A,B-
separators in R.

finite set of sets. The problem of discovering all minimal

transversals of C is called the hypergraph transversal prob-

lem [23]. The theoretically best known algorithm for solv-

ing the hypergraph transversal problem is due to Fredman

and Khachiyan [16] and has a quasi incremental-polynomial

delay of poly(n) +mO (log2m)
where m = |C| + n. Note the

dependence on the size of the discovered minimal separators

|C|. We denote by TminT rans (n,C) the delay of the minimal

transversal algorithm. However, not every minimal transver-

sal D leads to the discovery of a minimal separator if D does

not separate A and B (i.e., ϕ = ∅ in line 11 of MineMinSeps).
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In the full version of this paper we show that the number of

minimal transversals processed in lines 9-13 before a new

minimal separator is discovered (e.g., in line 12), or before the

loop exists, is bounded by n · |C|. This allows us to formalize

the delay between the discovery of minimal A,B-separators.
We denote byT (getFullMVDs) the runtime of getFullMVDs,
which we analyze in the next section.

Corollary 6.3. Algorithm MineAllMinseps enumerates

the minimal A,B-separators in R with a delay of O(n · |C| ·
TminT rans (n,C) ·T (getFullMVDs)), where n = |Ω |.

6.2 Discovering the Full MVDs
Returning to ourmain algorithm,MVDMiner, we have shown
how to compute MinSepε (R,A,B), the set of minimal A,B
separators in R. Next, for each minimal A,B separator X ∈
MinSepε (R,A,B), we compute all full MVDs with key X that

separate A and B, i.e. the set FullMVDε (R,X ,A,B); this is
line 5 of MVDMiner. Recall that full means that the MVD

cannot be further refined.

The algorithm getFullMVDs starts by checking the most

refined MVD with key X , namely φ = X ↠ Y1 | . . . |Yn
where Y1, . . . ,Yn are all attributes not in X (including A,B).
If J(φ) ≤ ε then we are done. Otherwise, the algorithm

considers all possible ways to merge two dependents, while

keeping A and B in different dependents; i.e. it tries X ↠
Y1Y2 | . . . |Yn ,X ↠ Y1Y3 |Y2 | . . . |Yn , etc. We denote the MVD

that results from merging dependents Yi and Yj in dep(φ)
by mergei j (φ). Since φ refines mergei j (φ) then, by Proposi-

tion 5.2, it holds that J(mergei j (φ)) ≤ J(φ). This procedure
for searching for a full ε-MVD can be viewed as a graph tra-

versal algorithm where every node ϕ is an ε-MVD candidate

with keyX , dependents Z1, . . . ,Zk , and its neighbors Nbr(ϕ)
are the ε-MVD candidates:

Nbr(ϕ) def
= {mergei j (ϕ) : Zi ,Z j ∈ dep(ϕ),A,B < ZiZ j } (13)

Clearly, if A,B were separated in ϕ, then they remain sepa-

rated in every MVD in Nbr(ϕ). We present the algorithm as

a depth-first traversal, which is how we implemented it. The

pseudocode is presented in Figure 6.

6.2.1 An Optimization to getFullMVDs. In the worst case,

Algorithm getFullMVDswill traverse the search space of pos-
sible ways to partition n attributes into k ∈ {2, . . . ,n − 1}
sets, and there can be O(knk ! ) such such partitions

3
. While,

in general, this is unavoidable, we implemented an optimiza-

tion, described in the complete version of this paper, that

leads to a significant reduction in the search space.

3
These are Stirling numbers of the second kind:

https://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind

Algorithm getFullMVDs(S , ε , (A,B), K)

1: P ← ∅ {Output set}
2: Q ← ∅ {Q is a stack}

3: ϕ0 = S ↠ X1 | . . . |Xn where Xi are singletons.

4: Q.push(ϕ0)
5: while Q , ∅ |P| < K do
6: φ ← Q.pop()
7: Compute J(φ) {using getEntropyR}
8: if J(φ) ≤ ε then
9: P ← P ∪ {φ}
10: else
11: for all ϕ ∈ Nbr(φ) do
12: Q.push(ϕ) {See (13)}
13: return P

Fig. 6 Returns a set of at most K full MVDs with key S that

approximately hold in R (w.r.t ε) in which A and B are in dis-

tinct components.

6.3 Computing Entropies Efficiently
We describe the procedure getEntropyR for calculating the

joint entropy of a set of attributes. The efficiency of this pro-

cedure is crucial to the performance of MVDMiner, which
needs to repeatedly compute mutual information values

I (Y ;Z |X ), and each such computation requires four entropic

values H (XY ), H (XZ ), H (XYZ ), and H (X ). Repeatedly com-

puting values of the form H (Xα ), for α ⊆ [n] requires multi-

ple scans over the data that resides in external memory.

We build on ideas introduced in the PLI cache data struc-

ture [21, 27], and reduce the problem of computing H (Xα )
to a main memory join-group-by query. To describe the

algorithm, we repeat here the entropy formula (5) for conve-

nience:

H (Xα )
def
= logN − 1

N

∑
xα ∈Dα

|R(Xα=xα ) log |R(Xα=xα )| (14)

The algorithm uses two ideas: (1) if xα is a singleton (i.,e., its

frequency |R(Xα=xα )|=1) then it can be ignored because its con-

tribution to the total entropy in (14) is 0 (due to the logarithm),

and (2) given two relations mapping the distinct values of attribute

sets Xα , and Xβ , respectively, to the tuple ids in the relation R that

contain them, then we can derive this mapping for Xα ∪ Xβ by

simply joining the two mappings on the tuple IDs. Ignoring single-

ton valuations makes these mappings highly compressed, enabling

us to store them in main memory and perform the join using a

main memory database system. We used the in-memory database

H2 [44]. We describe the details next. We let Hash denote a hash

function. In our implementation we use the hash function provided

by the database system.
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Alg. getEntropyR maintains two sets of relations indexed by

α⊆[n]: CNTα (val, cnt) and TIDα (val, tid) defined as:

CNTα={(Hash(xα ), cnt) | cnt = |R(Xα = xα )|, cnt > 1}
TIDα={(Hash(xα ), t[tid]) | t∈R, t[Xα ]=xα ,Hash(xα )∈Πval(CNTα )}

We computeH (Xα ) by scanning table CNTα . The algorithm

starts by computing two sets of relations: (1) {CNT{i }} and
(2) {TID{i }} for every i ∈ [n]. Assume that we have com-

puted the relations CNTα , CNTβ and TIDα , TIDβ for some

subsets α , β ⊂ [n] such that α ∩ β = ∅. We first compute

CNTα∪β as:

Select Hash(A.val,B.val) as val, count(∗) as cnt

From TIDα A,TIDβ B

Where A.tid = B.tid

Group By Hash(A.val,B.val) Having count(∗) > 1

Next, we compute TIDα∪β as:

Select Hash(A.val,B.val) as val,A.tid as tid
From TIDα A,TIDβ B,CNTα∪β Z

Where A.tid = B.tid and Hash(A.val,B.val) = Z .val

Pruning the singleton values makes this technique very ef-

fective, because as we move up the lattice from smaller α ’s
to larger α ’s, many more tuples xα are unique in the data,

and the tables CNTα and TIDα become smaller.

Example 6.4. For a simple illustration, Fig. 7 shows the

tables generated for a 3-attribute relation R. Both types of

relations only contain values corresponding to non-singleton

valuations in R.

However, even with our compression, generating and stor-

ing all 2
n − 1 tables CNTα , and TIDα is intractable. Instead,

we perform the following optimization. Fix a parameter L (in

our implementation we chose L = 10), and partition the set

Ω into

⌈n
L

⌉
disjoint subsets Ω1,Ω2, . . . each of size at most

L. For each i , compute the tables TIDα and CNTα for all

subsets α ⊆ Ωi ; thus the total number of tables precom-

puted is 2

⌈n
L

⌉
· 2L . In order to compute H (Xα ), we express

α = (α ∩ Ω1) ∪ (α ∩ Ω2) ∪ . . ., where each union is treated

as explained above for α ∪ β .

7 ENUMERATING ACYCLIC SCHEMAS
In this section we present the second phase of Maimon:
given the setMε of full ε-MVDs (Eq. (11)), generate acyclic

ε-schemes. The algorithm ASMiner is shown in Fig. 8. It

searches for subsets of MVDs Q ⊆ Mε , and reconstructs a

schema from that set. The key to the algorithm’s efficiency

is our new definition of compatibility:

R
tid A B C

t1 a1 b2 c3
t2 a2 b1 c1
t3 a2 b2 c2
t4 a3 b3 c3
t5 a3 b3 c4
CNTAB

val CNT
Hash(a3,b3) 2

TIDAB
val tid

Hash(a3,b3) t4
Hash(a3,b3) t5

CNTA
val CNT
a2 2

a3 2

CNTB
val CNT
b2 2

b3 2

CNTC
val CNT
c3 2

TIDA
val tid
a2 t2
a2 t3
a3 t4
a3 t5

TIDB
val tid
b2 t1
b2 t3
b3 t4
b3 t5

TIDC
val tid
c3 t4
c3 t4

Fig. 7 getEntropyR example.

Algorithm ASMiner(Mε )

1: schemes = ∅
2: Construct the graph G = {(ϕ,ψ ) | ϕ,ψ ∈ Mε ,ϕ♯ψ }
3: for all Q ∈ MaxIndependentSet(G) do
4: schemes← schemes ∪ {BuildAcyclicSchema(Q)}
5: return schemas

Fig. 8 Generate Acyclic Schemas fromMε .

Algorithm BuildAcyclicSchema(Q)

1: S← {Ω}
2: Sort Q by ascending order of key cardinality {e.g.,X ↠

A|B before XY ↠ C |D}
3: for all ϕ ∈ Q do
4: Let ϕ = X ↠ C1 | . . . |Cm
5: Let Ωi ∈ S s.t. X ⊆ Ωi
6: Dϕ ← {CjX ∩ Ωi | j ∈ [i,m]}\{X }
7: if |Dϕ | ≥ 2 then
8: Replace Ωi ∈ S with Dϕ {ϕ is non-redundant}

9: return S

Fig. 9 Gets a set Q of pairwise compatible MVDs, and re-

turns an acyclic schema.

Definition 7.1. Let ϕ1 = X ↠ A1 | . . . |Am and ϕ2 = Y ↠
B1 | . . . |Bk be two ε-MVDs. We say that ϕ1 and ϕ2 are com-

patible if there exist an i ∈ {1, . . . ,m}, and j ∈ {1, . . . ,k}
such that:
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(1) Y ⊆ XAi , and X ⊆ YBj . In this case we say that the

two MVDs are split-free [6, 15, 19, 28].

(2) There exist two distinct indexes j1, j2 ∈ {1, . . .k} such
that XAi ∩Bj1 , ∅, and XAi ∩Bj2 , ∅. Likewise, there
exist two distinct indexes i1, i2 ∈ {1, . . .m} such that

YBj ∩Ai1 , ∅, and YBj ∩Ai2 , ∅.
Wewriteϕ1♯ϕ2 to denote the fact thatϕ1,ϕ2 are incompatible.

We say that a set Q of ε-MVDs is pairwise compatible if

every pair of ε-MVDs in Q is compatible. Recall that every

join tree T withm nodes defines a set ofm − 1 MVDs called

its support and denoted by MVD(T ).

Theorem 7.2. Let S be an acyclic schema with join tree

(T , χ ). Then the setMVD(T ) is pairwise compatible.

Thus, it suffices to iterate over sets of pairwise compatible

ε-MVDs. Specifically, our algorithm enumerates themaximal

sets of pairwise compatible ε-MVDs, and for this task we

use a graph algorithm from the literature. Define the graph

G(Mε ,E) as follows:

E = {(ϕ1,ϕ2) : ϕ1,ϕ2 ∈ Mε and ϕ1♯ϕ2} (15)

By this definition every maximal independent set in G cor-

responds to a maximal set of pairwise compatible ε-MVDs.

We apply the following result.

Theorem 7.3. ([11, 22]) LetG(V ,E) be a graph. The max-

imal independent sets of G can be enumerated such that the

delay between consecutive outputs is in O(|V |3).

In summary, algorithm ASMiner in Fig. 8 enumerates all

maximal independent sets Q, then for each of them con-

structs one acyclic schema S, by calling BuildAcyclicSchema
shown in Fig. 9, and described next.

Algorithm BuildAcyclicSchema starts with a schema that

contains a single relation with all attributes (i.e., S = {Ω}). It
then builds the acyclic schema for R by repeatedly using an

ε-MVD from Q to decompose one of the relations in S. The
MVDs are processed in ascending order of the cardinality of

their keys. Therefore, when an MVD S ↠ C1 | . . . |Cm is pro-

cessed, then we know that S is contained in exactly one of the
relations in S (e.g., otherwise, S must be contained in a key of

a previously processed ε-MVD). The algorithm then applies

this ε-MVD to the single relation that contains it, and contin-

ues until all ε-MVDs in Q have been processed. An MVD is

said to be redundant [18] if it does not split the single relation

that contains it (i.e., condition of line 7 does not hold). Re-

dundant MVDs are simply ignored in BuildAcyclicSchema.

Theorem 7.4. Algorithm BuildAcyclicSchema generates

an acyclic schema Swith join tree (T , χ ) such thatMVD(T ) ⊆
Q. If Q is a non-redundant set of ε-MVDs thenMVD(T ) = Q.
The algorithm runs in time O(n3).

Dataset

Full MVDs

threshold=0.0

Dataset Cols. Rows
Runtime

[sec]
Full MVDs

Ditag Feature 13 3960124 TL NA

Four Square (Spots) 15 973516 17017 105

Image 12 777676 3747 151

FD_Reduced_30 30 250000 8024 21

FD_Reduced_15 15 250000 1006 21

Census 42 199524 TL NA

SG_Bioentry 7 184292 101 3

Atom Sites 26 160000 TL 242

Classification 12 70859 1327 27

Adult 15 32561 1083 58

Entity Source 33 26139 14155 153

Reflns 27 24769 TL 543

Letter 17 20000 605 44

School Results 27 14384 7202 2394

Voter State 45 10000 TL 262

Abalone 9 4177 602 36

Breast-Cancer 11 699 5 30

Hepatitis 20 155 479 2953

Echocardiogram 13 132 6 104

Bridges 13 108 3.8 60

Table 2:Datasets used in the experiments.We show the run-
times (in seconds) for mining full MVDs with threshold 0.0,
with a time limit (TL) of 5 hours.

The novel insight of our algorithm is the characterization

of (in)compatibility in Definition 7.1, which depends only on

the pairwise relationship between the MVDs, and therefore

enables the reduction to enumerating maximal independent

sets in graphs. Previous characterizations [6, 15, 19, 28] are

for entire sets of MVDs, and are not pairwise (more precisely,

they have a different second condition called intersection

which relies on the existence of a third MVD in the set).

Goodman and Tay [18] present an algorithm for synthesiz-

ing an acyclic schema from a set Q of MVDs that satisfy the

subset property. As in Theorem 7.4, they show that if the set

Q is non-redundant then the synthesized acyclic schema has

a join tree whose support is precisely the set Q. However,
we are not aware of any characterization of non-redundant

MVDs. While the subset property is pairwise, it is applicable

only to binaryMVDs, while ourMVDsmay have any number

of dependents. Algorithms for constructing a (single) acyclic

schema from data dependencies have been previously devel-

oped by Bernstein [7] where the input is a set of functional

dependencies, and by Beeri et al. and Lien whose algorithms

work by combining conflict-free MVDs [6, 32].
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8 EVALUATION
In this section we conduct an experimental evaluation of Mai-
mon. We start with an end-to-end evaluation of its usefulness

in Section 8.1, then evaluate the accuracy of the approximate

schemas in terms of the relationship between the J -measure

and number of spurious tuples in Section 8.2. Next, we eval-

uate the efficiency and scalability of Maimon, measuring the

time to find the minimal separators in Section 8.3. Finally,

we report the rate of enumeration, and some quality metrics

of the generated acyclic schemes in Section 8.4.

We used 20 real-world datsets [43] that are part of the

Metanome data profiling project [34], shown in Table 2 (we

discuss the runtimes in Sec. 8.3). Maimon was implemented

in Java 1.8 and all experiments are conducted on a 64bit

Linux machine with 120 CPUs and 1 TB of memory, running

Ubuntu 5.4.0; our algorithm is single-threaded and runs on a

single core.

8.1 A Use Case: Nursery
To evaluate the usefulness of Maimon we applied it to the

Nursery dataset
4
, a training data for classifying and rank-

ing applications for nursery schools. The dataset contains

eight attributes describing occupational, financial, social and

health conditions of the family, and a classification attribute

that indicates the priority of the application; we renamed the

attributes A . . . I for brevity. The data has 12960 tuples and
a total of 12960 ∗ 9 = 116640 cells. By increasing the thresh-

old J from 0 to 0.5, we found 415 acyclic schemes (Fig 11),

and show ten of them in detail in Fig. 10. As one can see in

Fig. 10(a), when J = 0, no exact decomposition is possible; a

traditional (exact) decomposition of this data is not possible.

As we increase J , however, we find better and better schemas

in Fig. 10 (b)-(j), in the sense that it decomposes into more re-

lations, each with fewer attributes. For example, the schema

in (h) (J = 0.277) has 4 relations, BEGI ,ABDEHI ,CDE, DEF .
For each scheme we report the percentage cell savings, S , and
the percentage of spurious tuples, E. There is a good tradeoff
between space savings and error rate: several schemes have

under 10% spurious tuples yet achieve over 80% space sav-

ing. The space savings are very high (e.g. over 90%), because

the Nursery data is dense: the attribute domains have sizes

3, 5, 4, 4, 3, 2, 3, 3, 5. For example, the extreme schema where

each attribute is a separate relation (not shown in the Figure)

has 3+ 5+ 4+ 4+ 3+ 2+ 3+ 3+ 5 = 32 cells and a savings of

(116640 − 32)/116640 i.e. S = 99.9725%; however, its fraction
of spurious tuples is (3∗5∗4∗4∗3∗2∗3∗3∗5−12960)/12960 = 4,

i.e. E = 400%. Fig. 11 shows the values S,E for all 415 schemes.

Users are likely to select the pareto optimal schemes, i.e.

whose S,E values are not dominated by any other schemes:

the ten pareto optimal schemes in this graph are connected

4
https://archive.ics.uci.edu/ml/datasets/nursery

by a line, and are precisely those we have selected to show

in detail in Fig. 10. In addition to savings S and spurious

tuples E, applications are likely to define their own domain

specific quality measure and choose the optimal schema for

that application.

8.2 Accuracy
Next, we analyzed the relationship between the J -measure

of the acyclic schemes, and the percentage of spurious tuples.

There is no tight theoretical connection between these two

measures, except that J=0 iff there are no spurious tuples,

hence the need for an empirical evaluation. The results are

presented in Figure 12.We generated all acyclic schemes with

a threshold ε ∈ [0, 0.5], partitioned the schemes into buckets

according to their J -measure, and report the quantiles of the

number of spurious tuples in each bucket. The experiments

confirm a consistent relationship between the J -measure and

the percentage of spurious tuples. Assuming wewant to have

no more than 20% spurious tuples, then we can increase J up
to 0.1−0.3, depending on the dataset. The width of the boxes

represent the number of acyclic schemes in that bucket. In

general, as J increases, the number of acyclic schemes will

eventually decrease: this is particularly visible in Fig. 12

(d). The explanation lies in the fact that larger J ’s reduce
the size (and, hence, the number) of minimum separators.

If we allowed J to increase further, eventually we find a

single schema, where each attribute is a separate relation,

and where the sole minimal separator is the empty set.

8.3 Scalability
Next, we evaluated the scalability of Maimon. We started

by computing all exact MVDs (ε = 0) on all 20 datasets and

report the runtimes in Table 2. On five of the datasets, our

system timed out after 5h: for Atom Sites, REFLNS, and
Voter State, it did report a large number of full MVDs, while

for DITAG Feature and Census it did not find any within

this limit, but it terminated on subsets, as we report below.

The discovery of acyclic schemes has three parts: com-

puting all minimal separators (Sec. 6.1), discovering all full

MVDs (Sec. 6.2), and enumerating the acyclic schemes (Sec. 7).

We found that the first step by far dominates the total run-

time, and we report it here; we report the other two runtimes

in the technical report.We report here the time to compute all

minimal separators as a function of #rows, and of #columns.

8.3.1 Row Scalability. We evaluated the algorithm over

three large datsets: Image, foursquare, and Ditag Feature.
We included all columns, and a subset of 10% to 100% of the

tuples. The results are in Figure 13. In general, we found that

the runtime increases mostly linearly with the size of the

data even when the number of minimal separators is mostly

constant, e.g. for Image and Ditag Feature.
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(a) (b) (c) (d) (e) (f)

J=0,S=0,
E=0%,m=1

J=0.009,S=28%,
E=1.08%,m=2

J=0.021,S=46%,
E=3.42%,m=2

J=0.044,S=65%,
E=7.62%,m=3

J=0.062,S=78%,
E=8.61%,m=3

J=0.097,S=89%,
E=16.48%,m=3

(g) (h) (i) (j)

J=0.17,S=94%,
E=26.6%,m=3

J=0.277,S=95.7%,
E=26.8%,m=4

J=0.33,S=92.6%,
E=51.4%,m=3

J=0.345,S=97.4%,
E=45.2%,m=4

Fig. 10 The Nursery use case, showing the 10 pareto optimal schemes (out of 415). We encode the 9 attributes as A,B, · · · , I (top). The data
does not admit a exact decomposition (a), but we obtain increasingly better schemes (b)-(j) as we increase the J -measure, with increased space

savings S , at the cost of increased rate of spurious tuples E; for example, for J = 0.277 the data decomposes into 4 relations, S = 95.7% (see text

for the explanation of why it is so high) and E = 26.8%.
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Fig. 11 All 415 schemes discovered for Nursery. The plot shows
the savings S v.s. the spurious tuples E. The line connects the ten

pareto-optimal schemes further detailed in Fig. 10. .
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(c) Nursery
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(d) Echocardiogram
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Fig. 12 Spurious Tuples (%) vs. J-measure (see Sec. 8.2).

8.3.2 Column Scalability. Next, we varied the number of

columns. Here we kept all rows of the datasets, and included

between 10% to 100% of the columns. The results are pre-

sented in Figure 14. We let the algorithm run for 5 hours

and measured the resulting number of minimal separators.

For example, in the Voter State dataset with 32 columns

Maimon discovered 682, 306 and 242 minimal separators for

thresholds 0,0.01, and 0.1 respectively, within the 5h time

limit. We found that the runtime is affected both by the

number of attributes, and, quite significantly, by the num-

ber of minimal separators. This is explained by considering

Corollary 6.3 that analyzes the delay between the output of

minimal separators. First, we note that the delay depends

exponentially on the number of attributes (via getFullMVDs,
see Sec. 6.2.1) which explains why the delay significantly

increases with the number of attributes, leading to an over-

all reduction in the number of minimal separators returned.

Second, the delay also depends on the number of minimal

separators generated up to that point, which explains the

high runtime in cases where the data contains a large number

of minimal separators.

8.4 Quality
We conducted an empirical evaluation of the quality of the

schemes generated by Maimon, and report the results in Fig-

ure 15. Per threshold, we ran the enumeration algorithm for

half an hour and measured the number of schemes gener-

ated (i.e., #schemes), and the following quality measures, for

which we report on their aggregate values.

(1) The number of relations in any scheme S generated,
denoted #relations(S).

(2) The width attained by any generated scheme, where

width refers to the largest number of attributes in any

relation of S. Formally
5
, width(S) def

= maxi ∈[1,m] |Ωi |.
(3) The intersection width attained by any scheme gener-

ated, where intersection width refers to the the largest

5width(S) is precisely the treewidth plus one.
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(a) Image (b) Spots (c) Ditag Feature

Fig. 13 Row scalability experiments, for ε ∈ {0., 0.01, 0.1} (Sec 8.3.1).
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Fig. 14 Column scalability experimentsfor ε ∈ {0, 0.01, 0.1} (Sec 8.3.1). We timed out at five hours (red clock).

(a) IMAGE (b) Abalone (c) Adult (d) BreastCancer

(e) Bridges (f) Echocardiogram (g) FD_Reduced_15 (h) Hepatitis

Fig. 15 Quality of approximate schemas (Sec. 8.4)

size of any separator of S. Formally, intWidth(S) def
=

maxi, j ∈[1,m] |Ωi∩Ωj |.

In Figure 15 we increased the threshold ε , and report for each
threshold the maximum #relations(S), and the minimum

width(S), intWidth(S) for all schemas at that threshold. In

general, we observed that, as we increase the threshold,

the system can find more interesting schemes. For example,

for Image and Abalone, width (blue bar) decreases, which
means that the number of attributes in the widest relation

decreases. For Adult and BreastCancer the number of rela-

tions (#relations – gray bar) increases, another indicator

of the quality of the schema.
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9 CONCLUSIONS
We present Maimon, the first system for the discovery of

approximate acyclic schemes and approximate MVDs from

data. To define “approximate”, we used concepts from infor-

mation theory, where each MVD or acyclic schema is defined

by an expression over entropic terms; when the expression

is 0, then the MVD or acyclic schema holds exactly. We then

presented the twomain algorithms inMaimon, mining all full

ε-MVDs with minimal separators, and discovering acyclic

schemes from a set of ε-MVDs. Both algorithms improve over

prior work in the literature. We conducted an experimental

evaluation of Maimon on over 20 real-world data sets.

Our approach of using information theory to define ap-

proximate data dependencies differs from the previous defi-

nitions that rely mostly on counting the number of offending

tuples. On one hand, our definitions provide us with more

powerful mathematical tools, on the other hand the connec-

tion to the actual data quality is less intuitive. We leave it up

to future work to explore the connection between informa-

tion theory and data quality.

Depending on the dataset, Maimon generates hundreds

and even thousands of acyclic ε-schemas in as little as 30

minutes. As part of future work we intend to investigate

acyclic schema generation in ranked order. The categories to

rank on may be the extent of decomposition (e.g., width of
the schema), or other measures indicative of how well the

schema meets the requirements of the application.
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10 APPENDIX
11 PROOFS FROM SECTION 5
Given two MVDs ϕ = S ↠ X1 | . . . |Xm and ψ = S ↠ Y1 | . . . |Yk , define their join as ϕ ∨ψ = S ↠ Z11 |Z12 | · · · |Zmk , where

Zi j = Xi ∩ Yj . Clearly, ϕ ∨ψ refines both ϕ andψ , i.e. J(ϕ ∨ψ ) ≥ max(J(ϕ),J(ψ )). We prove a weak form of converse:

Lemma 5.4. The following are Shannon inequalities: J(ϕ ∨ψ ) ≤ J(ϕ) +mJ(ψ ) and J(ϕ ∨ψ ) ≤ kJ(ϕ) + J(ψ ).

Proof. We prove the first inequality (the second is similar), and for that we need to show:

(∑m
i=1H (SXi ) − (m − 1)H (S) − H (Ω)

)
+

m
(∑k

j=1H (SYj ) − (k − 1)H (S) − H (Ω)
)
≥ ∑

i j H (SZi j ) − (mk − 1)H (S) − H (Ω), or, equivalently:

m∑
i=1

H (SXi ) +m
k∑
j=1

H (SYj ) ≥
∑
i j

H (SZi j ) +mH (Ω) (16)

For that we prove by induction on ℓ:

H (SXi ) +
ℓ∑
j=1

H (SYj ) ≥
ℓ∑
j=1

H (SZi j ) + H (SXiY1 . . .Yℓ) (17)

Indeed, assuming the statement for ℓ − 1 holds, then the statement for ℓ follows from:

H (SYℓ) + H (SXiY1 . . .Yℓ−1) ≥ H (SZiℓ) + H (SXiY1 . . .Yℓ)

which is the submodularity inequality, since SYℓ ∩ (SXiY1 . . .Yℓ−1) = SYℓ ∩ SXi = SZiℓ . Setting ℓ = k in (17) and summing

over i = 1,m we obtain

∑m
i=1H (SXi ) +m

∑k
j=1H (SYj ) ≥

∑
i j H (SZi j ) +

∑m
i=1H (SXiY1 · · ·Yk ) =

∑
i j H (SZi j ) +mH (Ω), proving

(16). □

12 PROOFS AND DETAILS FROM SECTION 6
12.1 Correctness of AlgorithmMineAllMinSeps

Theorem 3.3. Algorithm MineMinSeps in Figure 5 enumerates all minimal A,B-separators in R.

Proof. We first note that every set of attributes S that is added to S in lines 5 and 13 is a minimal AB separator. Therefore,

we proceed by showing that all minimal AB separators are mined by MVDMiner.
Let Ω = X1 . . .Xn , and let p = X1, . . . ,Xn be some predefined order over the attributes that is used in algorithm

ReduceMinSep (Figure 4). We view every minimal AB-separator as a subsequence of p, whose letters (i.e., attributes) are
ordered according to p. That is, the permutation p induces a lexicographic ordering over the subsets of Ω. For example,

X3X4X9X15 ≻ X3X4X7X100. We prove the claim by backwards induction on the lexicographic ordering of the subsets of Ω. That
is, for every subsequence pS of p, over attributes S , we show that if S is a minimal AB separator, then S is discovered by the

algorithm. The induction follows reverse lexicographic order of the sequences (e.g., X3X4X9X15 before X3X4X7X100 ).

Base case. : pS is the lexicographically largest subsequence: pS = Xn , or S = Xn . By Theorem 6.1, if S is a minimal AB

separator that is not in S, then there exists a minimal transversal D of S such that S ⊆ D. By Proposition 5.1 if Xn separates A
and B, then so does each one of its supersets. Therefore, algorithm ReduceMinSep (Figure 4) that uses the attribute sequence

p, will return the minimal AB separator S = Xn when provided with input D ⊇ {Xn} = S .

Step. : Let pS denote the subsequence corresponding to the set S ⊂ Ω. By the induction hypothesis, we assume that all

minimal AB separators that are lexicographically larger than S have been mined and are in S. By Theorem 6.1, there exists

a minimal transversal D of S such that S ⊆ D. Now, let pS = Xi1 , . . . ,Xim denote the subsequence associated with S (i.e.,

S = {Xi1 , . . . ,Xim }). Now, consider how algorithm ReduceMinSep handles the input D (line 12). Clearly, it will remove all

attributes X j ∈ D such that Xi1 ≻ X j because the resulting set contains the minimal separator S (line 6 in ReduceMinSep).
Now, suppose, by contradiction, that Xik ∈ S is removed in line 6 of ReduceMinSep. This means that D contains a minimal AB
separator C that is lexicographically larger than S . But by the induction hypothesis, such a minimal separator C is already in S.
Since C ⊆ D, it means that C ∩ D = ∅, contradicting the fact that D is a minimal transversal of S. □
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12.2 Runtime Analysis of MineAllMinSeps
Definition 12.1. Let S be a (not necessarily complete) set of minimal AB separators. We define the negative border of S to be:

BD
−(S) = {U ⊂ Ω |U < S, there exists a Xi ∈ Ω s.t.U ∪ {Xi } ∈ S} (18)

Since every minimal separator in S contains at most n attributes then |BD−(S)| ≤ |S| · n.

Theorem 12.2. The number of minimal transversals processed in lines 9-13 of algorithm MineAllMinseps is at most |BD−(S)|.

Proof. Let D be a minimal transversal of S processed by in lines 9-13. It cannot be the case that D ⊇ C for any C ∈ S,
and in particular D < S. Since D is a minimal transversal, then for every attribute Y ∈ D it holds that D\{Y } is no longer a

transversal for S. That is, there is an AB minimal separatorC ∈ S such thatC ∩ (D\{Y }) = ∅, or thatC ⊆ (D\{Y }). Noting that
(D\{Y }) = D ∪ {Y }, we get that C ⊆ D ∪ {Y }, or that C\{Y } ⊆ D. So we get that C\{Y } ⊆ D, and that C ⊈ D. In other words,

every minimal transversal D processed corresponds to a set in BD
−(S). □

12.3 An Optimization to getFullMVDs
In the worst case, if S is not an AB separator then Algorithm getFullMVDs will traverse the complete search space of size

O(2n). While, in general, this is unavoidable, we implemented an optimization, described in the complete version of this paper,

that leads to a significant reduction in the search space.

By (7) in Proposition 5.1 it holds that if I (A;B |S) > ε for a pair of attributes A,B ∈ Ω, then for any MVD ϕ = S ↠ C1 | . . . |Cm
in which A and B are in distinct components it holds that JH (ϕ) > ε .

We say that anMVDϕ = S ↠ C1 | . . . |Cm is pairwise consistent if I (Ci ;Cj |S) ≤ ε for every pair of distinct componentsCi ,Cj ∈
dep(ϕ). Since I (Ci ;Cj |S) ≤ J(S ↠ C1 | . . . |Cm), then we can prune an MVD S ↠ C1 | . . . |Cm if it is not pairwise consistent,

and avoid traversing its neighbors and descendants. In Figure 16 we present the algorithm getPairwiseConsistentMVD that

receives an MVD ϕ = S ↠ C1 | . . . |Cm whereA and B are in distinct components, and returns a pairwise consistent MVD where

A and B are in distinct components, if one exists. In Figure 17 we present the optimized getFullMVDs that prunes MVDs that

cannot lead (via merges to components) to an MVD in which A and B are in distinct components.

Algorithm getPairwiseConsistentMVD(ε , ϕ, (A,B))

1: whileA and B are in distinct components ofϕ ANDϕ is not pairwise

consistent do
2: Let Ci ,Cj ∈ dep(ϕ) s.t. I (Ci ;Cj |S) > ε
3: ϕ ← mergei j (ϕ)
4: if A and B are in distinct components of ϕ then
5: return ϕ
6: return nil

Fig. 16 Return an MVD S ↠ C1 | . . . |Cm s.t. I (Ci ;Cj |S) ≤ ε for every pairCi ,Cj , and A and B are in distinct components or nil
if no such MVD exists.
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Algorithm getFullMVDsOpt(S , ε , (A,B), K)

1: P ← ∅ {Output set}
2: Q ← ∅ {Q is a stack}

3: ϕ0 = S ↠ X1 | . . . |Xn where Xi are singletons.

4: ϕ ′
0
← getPairwiseConsistentMVD(ε,ϕ, (A,B))

5: if ϕ ′
0
= nil then

6: return ∅
7: Q.push(ϕ ′

0
)

8: while Q , ∅ and |P | < K do
9: φ ← Q.pop()
10: Computed JH (φ) {using getEntropyR}
11: if JH (φ) ≤ ε then
12: P ← P ∪ {φ}
13: else
14: for all ϕ ∈ Nbr(φ) do
15: ϕ ′← getPairwiseConsistentMVD(ε,ϕ, (A,B))
16: if ϕ ′ , nil then
17: Q.push(ϕ ′) {See (13)}
18: return P

Fig. 17 Returns a set of at mostK full MVDswith key S that approximately hold inR in whichA andB are in distinct components.

13 PROOFS FROM SECTION 7

Theorem 7.2. Let S be an acyclic schema with join tree (T , χ ). Then the set MVD(T ) is pairwise compatible.

Proof. Every key of MVD(T ) is the label on an edge of T , and thus contained in a bag of T . Hence, the set MVD(T ) is
split-free and satisfies the first condition of definition 7.1.

Let ϕ1,ϕ2 ∈ MVD(T ) corresponding to edges e1, e2 ∈ edges(T ). Let T1, T2, and T3 be the three connected subtrees resulting

from removing e1, e2 from T . W.l.o.g, any path from a node in nodes(T1) to a node in nodes(T3) must pass through a node in

nodes(T2). Therefore, dep(ϕ1) = {χ (T1)\key(ϕ1), χ (T2)∪χ (T3)\key(ϕ1)}, and dep(ϕ2) = {χ (T3)\key(ϕ2), χ (T1)∪χ (T2)\key(ϕ2)}.
In particular, ϕ2 splits the set χ (T2) ∪ χ (T3), and ϕ1 splits the set χ (T2) ∪ χ (T1). Hence, MVD(T ) satisfies the second condition

of definition 7.1. □

14 FURTHER EXPERIMENTS

(a) Classification (b) BreastCancer (c) Adult (d) Bridges

Fig. 18 Full MVDs Experiments. Red stopwatch indicates that the algorithm stopped after 30 minutes.
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14.1 From minimal separators to full MVDs
We now experiment with the transition from minimal separators to full MVDs. We recall that an MVD ϕ is full with regard to

ε if R |=ε ϕ and for all MVDsψ ≻ ϕ that strictly refine ϕ then R ̸ |=ε ψ .
In this set of experiments we have, for every pair of attributes A,B ∈ Ω, the set MinSepε,A,B (R) of minimal AB-separators

that hold in R w.r.t. ε , and we apply the algorithm for generating the set FullMVDε,A,B by calling getFullMVDs (Fig. 6) with
the pair (A,B), and an unlimited number of MVDs to return (i.e., K = ∞). 6 In particular, the runtimes presented here do not

include the time taken to mine the minimal separators. The performance of this phase is analyzed in Section 8.3 and Table 2.

We conduct the experiment as follows. For every dataset we vary the threshold in the range [0, 0.5], and for every threshold

execute the procedure getFullMVDsOpt for a total of 30 minutes. The results are presented in Figure 18. When the threshold

is ε = 0 then the number of full MVDs is identical to the number of minimal separators as expected by Lemma 5.4. In practice,

when the threshold is 0, our algorithm for mining all minimal separators also discovers all full MVDs. As the threshold

increases so does the difference between the number of minimal separators and the number of full MVDs. Overall, Algorithm

getFullMVDsOpt for generating full MVDs is capable of reaching a rate of about 55 full MVDs per second for thresholds larger

than 0.1 (see Figures 18(a), 18(b), and 18(d)).

6
We actually call the optimized version of this algorithm, getFullMVDsOpt described in the full version of this paper.
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