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ABSTRACT

We introduce a new class of prophet inequalities—convex
prophet inequalities—where a gambler observes a sequence
of convex cost functions ¢;(x;) and is required to assign some
fraction 0 < x; < 1 to each, such that the sum of assigned
values is exactly 1. The goal of the gambler is to minimize
the sum of the costs. We provide an optimal algorithm for
this problem, a dynamic program, and show that it can be
implemented in polynomial time when the cost functions are
polynomial. We also precisely characterize the competitive
ratio of the optimal algorithm in the case where the gam-
bler has an outside option and there are polynomial costs,
showing that it grows as ©(nP~'/f), where n is the number
of stages, p is the degree of the polynomial costs and the
coefficients of the cost functions are bounded by [¢, u].

Keywords

Prophet inequality, online algorithms, resource allocation,
stochastic control

1. INTRODUCTION

Consider an online decision maker tasked with procuring
C > 0 units of a divisible commodity at minimal cost from n
suppliers that arrive online. Supplier ¢ arrives with a strictly
positive, real-valued, independent convex cost function ¢;
that is drawn from a known distribution that may be chosen
adversarially. The decision maker must decide on a contract
with supplier ¢ before supplier ¢ + 1 arrives. As a motivat-
ing example, consider electricity markets. When procuring
generation capacity in order to meet demand, load serving
entities (LSEs) make contracts with generators. Most of
these contracts are made months or even years in advance,
when future availability of other options for generation is
not known to the LSE [1, 2, 3, 4]. Thus, LSEs face an
online decision problem where, given a forecast for the ca-

*University of California, Berkeley, CA, USA. E-mail:
ginj@berkeley.edu.

TStanford University, CA, USA. E-mail:

ramr@stanford.edu.

iCalifornia Institute of Technology, Pasadena, CA, USA. E-
mail: svardi@caltech.edu.

§California Institute of Technology, Pasadena, CA, USA. E-
mail: adamw@caltech.edu.

Stanford,

Copyright is held by author/owner(s).

Performance Evaluation Review, Vol. 46, No. 2, September 2018

pacity needed, they must make contracts with generators
that arrive online over a span of years. Contracts with gen-
erators are typically strictly convex. While the precise form
of the cost functions may be complicated, it is often mod-
eled as quadratic in analytic work [5, 6, 7], which motivates
us to focus on quadratic (or more generally, polynomial)
cost functions. Beyond electricity markets, online packing
problems with convex cost functions are also highly relevant
for other procurement problems, e.g., optimal control [8, 9],
cloud computing [10, 11], and inventory management [12,
13].

If the cost functions are linear, the problem is a general-
ization of the minimization version of the classical prophet
inequalities setting. In the classical (maximization) setting,
a decision maker must choose one of n items that arrive on-
line and the reward of each item is drawn from a known,
non-negative, real-valued distribution that may be chosen
adversarially, with the goal of maximizing the reward. The
prophet inequality bounds the reward obtainable by the de-
cision maker as a function of the reward that can be obtained
by a prophet who can foresee the entire sequence and stop at
the maximal value. In the minimization version, the rewards
are replaced by costs, and the goal is to minimize the cost.
This problem and ours are analogous in the case of linear
costs: the optimal strategies of both the decision maker and
prophet in the setting above is to set xz; = 1 for some i and
x; = 0 for all j # 4, which correspond to the decision maker
and prophet choosing a single item. Classical prophet in-
equalities are stopping problems, as the decision maker sees
the items in sequence, and chooses when to stop and accept
the current item.

When the cost functions are strictly convex and positive,
this is not a stopping problem since the prophet always pro-
cures a strictly positive amount of the commodity at each
stage, and thus never “stops”. Instead, this problem is bet-
ter thought of as an online packing problem. More specif-
ically, this problem differs from the setting of the classical
prophet inequality in three ways: (i) the cost functions are
convex, (ii) the decision maker can make real-valued (non-
integral) decisions, and (iii) the decision maker seeks to min-
imize cost instead of maximize reward.

2. MODEL AND PRELIMINARIES

We consider an online decision maker (gambler) tasked
with procuring a single unit of a divisible commodity at
minimal cost from n suppliers that are arriving online. Sup-
plier i arrives with a non-negative, real-valued convex cost
function ¢;, which is drawn from a known distribution D;.
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The distributions D1, ..., D, are independent and possibly
chosen adversarially. The gambler must decide on a contract
with supplier ¢ before supplier ¢ + 1 arrives.

We compare the cost of the gambler to the cost of a
prophet, who can foresee the sequence of realized cost func-
tions. Since the prophet knows the cost functions, it can
simply solve the following convex program to identify the
optimal allocation

OPT =min > ci(x:)

i=1

n
st. > m=1 0<a <l i=1...,n
=1

Since the cost functions are random, we are interested in the
expected performance, E[OPT].

Without the ability to foresee the future, the gambler has
to base decisions on the information that is available at stage
i, denoted by H,;. This information includes all the distribu-
tions, the realized cost functions up to ¢;, and the amount of
commodity that has already been obtained (denoted by s;).
That is, the decision of the gambler has to be causal, i.e.,
z; = mi(Hs), i = 1,...,n, where 7; is the gambler’s policy
for determining the amount to procure from supplier ¢ given
the information at stage .

Let m = (m1,...,mn) be the sequence of policies the gam-
bler may use and let IT be the set of admissible policies that
includes all the policies generating x;’s such that z; > 0 and
>, @i = 1. Then, the expected cost of the gambler using an
admissible policy 7 € ITis E[ALG™] = E [}_7, ¢i(mi(Hi))] -

For convenience, we write E[ALG] when the policy used is
clear from context. The gambler’s problem is then to design
an admissible policy 7 that minimizes his expected cost:

inf E[ALGT]. (1)

For deriving convex prophet inequalities, we are interested
in obtaining the exact competitive ratio

. E[ALGT]
sup b FopT) @

where the maximization is over the space of all sequences of
independent distributions D = (D1,..., Dy).

Our goals are (i) to obtain explicit expressions of (2) for
a wide class of cost functions which are useful for bound-
ing the algorithm performance for suboptimal policy or for
arbitrary distributions, and (ii) to identify simple and ef-
ficient algorithms for solving the online allocation problem
with provably good competitive ratios.

2.1 An optimal algorithm

We formulate the optimal policy for the gambler using
dynamic programming. This policy is the admissible policy
that minimizes the expected cost, i.e., the solution of (1). In
particular, (1) is a stochastic control problem, and so the op-
timal policy can be characterized via dynamic programming
(DP) using the backward recursion described below. First,
define the cost-to-go functions J; on s; € [0, 1] as follows:

Jn(sn) = Cn(l - 5’n)7
Ji(si) = min  ci(z) + E[Jiga(si +x3)],i=1,...

0<z;<1—s;

Equipped with these cost-to-go functions, the optimal causal
policy is a mapping from the state s; € [0, 1] to the action
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,n—1.

z; € [0,1] that takes the form

Zn(sn) =1— sn,

zi(s;) € argmin c;(x;) + E[Jix1(si +x:)], 1 =1,...
0<z;<1—s;

,n—1.

When the cost function is polynomial ¢; (x;) = aimf, recur-
sions above admit explicit solutions and can be implemented
in polynomial time.

3. POLYNOMIAL PROPHET INEQUALITIES

In this section, we show that we can obtain precise prophet
inequalities for polynomial cost functions ¢;(z;) = a;a? when
there is an outside option. The existence of an outside op-
tion is common in real world applications, as it is typically
possible to procure part of the desired quantity of the com-
modity through channels outside of the online procurement
process. In our model, an outside option corresponds to a
normalization® of the model where a; = 1.

Our main results are given below.

THEOREM 1. Consider polynomial cost functions of the
form ci(z) = a; 2P, p > 1, with £ < a1 = 1 < u. For
any independent distributions D = (Da,...,Dy) with D;
supported on [€,u],

™ _ p—1
EALG < (1 n—1 )

inf -1

meil  EOPT

An interesting feature of the upper bound is that it is
achieved with a non-adaptive algorithm which only uses Ea;,
i =1,...,n, not their realized values.

P
THEOREM 2. The bound (1 + M%l)) in Theorem 1

is tight.

Note that Theorem 1 and Theorem 2 also hold for the
linear case, p = 1. In this case, the gambler will take 1 =1
and the prophet will pick any a; = £ for ¢ > 1 in the worst
case distribution where a; = ¢ with probability 1 — e with
€ — 0. The competitive ratio is

sup inf wflim 1+n7—1 p7171
» sen E[OPT]  po1 D =

4. ASIMPLE THRESHOLDING ALGORITHM

Motivated by the complexity of the dynamic program, we
propose the following threshold-based algorithm, which we
denote by BALANCED THRESHOLD: choose some threshold
that strikes a balance between being low enough so that we
can allocate a reasonable share to any producer whose cost is
below it, and high enough so that sufficiently many produc-
ers’ cost is below the threshold. Then, allocate 1/k to the
first k producers whose cost is below the threshold, where &k
is chosen to minimize the cost. Intuitively, we would like k
to be such that, with high probability, at least £ producers

"Without outside option (see Section 5), the competitive
ratio scales with y/u/¢ even for 2 stages which grows un-
bounded for u — co. This is because the first stage worst
case distribution for this case is a point mass at vVuf — oo
for u — oo, resulting in an infinite cost for the gambler.
Normalizing a1 = 1 removes this effect and guarantees a
finite cost for the gambler.
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have costs below the threshold; but not many more than k
producers do. More concretely, the algorithm is parameter-
ized by a threshold 6 € [/,u] and an integer k € [n]. Let
i be the current stage, and let s be the number of produc-
ers that have been allocated a non-zero share thus far (i.e.,
s=Hj:x; #0,j <i}|). Set zi = 1 if s < k and either (1)
a; < Bor (2) i >n—k+s. Otherwise, set z; = 0. Note
that there are always exactly k producers from which the
consumer buys 1/k.

It is not clear how to choose “good” 6 and k for general
convex functions, however in the case of quadratic i.i.d. cost
functions, the following intuition guides us. Let pg i be the
probability that the realization of at least k coefficients is
at most 6. Then w is an upper bound on the
expected cost for k and 6. To see this, note that, with
probability pg r we expect to have k coefficients at most 6,
and so the cost is at most Zl 1 kQ = %. Otherwise, with
probability (1 — pe.x), there is no non-trivial bound on the
cost, and the best bound we can prove is u/k. This gives
the following optimization for determining 6 and k:

po.kd + (1 — po)u
n b
k,0 k
The following theorem bounds the asymptotic competitive

ratio of BALANCED THRESHOLD policies that are parameter-
ized by the probability py that a; < 0.

THEOREM 3. Consider i.i.d. quadratic cost functions of
the form c;(x) = a;z? and BALANCED THRESHOLD param-
eterized by pe € (0,1) such that 0 satisfies Prla; < 0] = pg

and k = npy — /nlog (2"“). Then, the asymptotic compet-
itive ratio of BALANCED THRESHOLD (i.e., for n — 00) is

0
at most 7 + o(1).

S. NO OUTSIDE OPTION

Without outside option (relaxing the normalization that
a1 = 1), characterizing the prophet inequalities for general
n stages and polynomial costs becomes much more compli-
cated. To gain insight, we consider the two-stage quadratic
setting.

We show that, similarly to the classical case, the worst
case distributions are either a point mass (concentrated at
a single point) or a long-shot distribution, which takes val-
ues only at the extreme points of the support. Specifically,
we give an exact characterization of the worst case distribu-

tions: a; is point mass taking the value Vuf, as follows a
u—+/ul

—= and

long-shot distribution, taking the value ¢ w.p.
U W.p. %. This characterization yields the following
bound on the competitive ratio:

THEOREM 4. The competitive ratio for the two-stage con-
vex prophet problem with quadratic cost functions is

¢ EIALGT] _ vff 1
Suwp b wopm o

This bound highlights the improvement of the dynamic
program over the proportionate partition scheme described

earlier: % improves to O (\/u/é). However, unlike in the

classical prophet inequality setting, the two-stage convex
prophet inequality is not rich enough to provide a worst
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case example for convex prophet inequalities. More gener-
ally, we provide a bound on the competitive ratio in the
n-stage setting.

THEOREM 5. The competitive ratio for n-stage convex prophet

problem with i.i.d. quadratic cost functions satisfies

n_1<\[ \f) n—l (n-1P+1
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sup inf
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