
Adaptive Processing of Spatial-Keyword Data Over a
Distributed Streaming Cluster

Ahmed R. Mahmood1, Anas Daghistani1, Ahmed M. Aly1, Walid G. Aref1,
Mingjie Tang1, Saleh Basalamah2, Sunil Prabhakar1

1Purdue University, West Lafayette, IN 2Umm Al-Qura University, Makkah, KSA
1{amahmoo, aaly, tang49, aref, sunil}@cs.purdue.edu, anas@purdue.edu 2smbasalamah@uqu.edu.sa

ABSTRACT
The widespread use of GPS-enabled smartphones along with the pop-
ularity of micro-blogging and social networking applications, e.g.,
Twitter and Facebook, has resulted in the generation of huge streams
of geo-tagged textual data. Many applications require real-time
processing of these streams. For example, location-based e-coupon
and ad-targeting systems enable advertisers to register millions of
ads to millions of users. The number of users is typically very high
and they are continuously moving, and the ads change frequently
as well. Hence sending the right ad to the matching users is very
challenging. Existing streaming systems are either centralized or
are not spatial-keyword aware, and cannot efficiently support the
processing of rapidly arriving spatial-keyword data streams. This
paper presents Tornado, a distributed spatial-keyword stream pro-
cessing system. Tornado features routing units to fairly distribute
the workload, and furthermore, co-locate the data objects and the
corresponding queries at the same processing units. The routing
units use the Augmented-Grid, a novel structure that is equipped
with an efficient search algorithm for distributing the data objects
and queries. Tornado uses evaluators to process the data objects
against the queries. The routing units minimize the redundant com-
munication by not sending data updates for processing when these
updates do not match any query. By applying dynamically evaluated
cost formulae that continuously represent the processing overhead
at each evaluator, Tornado is adaptive to changes in the workload.
Extensive experimental evaluation using spatio-textual range queries
over real Twitter data indicates that Tornado outperforms the non-
spatio-textually aware approaches by up to two orders of magnitude
in terms of the overall system throughput.

1 INTRODUCTION
Recently, there has been an unprecedented widespread of GPS-
enabled smartphones and an increased popularity of micro-blogging
and social networking applications, e.g., Twitter, Flickr, and Face-
book. In addition, the increased amount of time individuals spend
online motivates advertising agencies to keep online traces of the
internet users. These online traces include both spatial and textual
properties. For example, the online trace of a web search includes
both the geo-location and the keywords of each search query. This
results in the generation of large amounts of rapidly-arriving geo-
tagged textual streams, i.e., spatial-keyword data streams. For ex-
ample, about 4.4 million geo-tagged tweets and 5 billion Google
search queries are generated every day [2, 22]. These rapid spatial-
keyword streams call for efficient and distributed data processing
platforms. Several applications require continuous processing of

spatial-keyword data streams (in real-time). One example is location-
aware publish-subscribe systems [22], e.g., e-coupon systems. In
these systems, millions of users can subscribe for specific promo-
tions, i.e., continuous queries. For example, a user may subscribe for
promotions regarding nearby restaurants and cafes. Every subscrip-
tion has a specific spatial range and an associated set of keywords.
Each promotion has a spatial location and a textual profile that de-
scribes it. An e-coupon is qualified for a user when it is located
inside the spatial range of the user’s subscription and when the
keywords in its textual profile overlap the keywords of the user’s
subscription. In this application, the number of users and e-coupons
can be very high. Users and advertising campaigns can continuously
change their target regions and keywords. Another example is real-
time event detection and analytics of spatial-keyword data. Users of
micro-blogging applications can be viewed as social sensors, where
users talk about the events that are happening now. This can help in
the real-time detection of events, e.g., accidents, traffic jams, fires,
parties, games, etc.

Despite being in the era of big data, existing systems fall short
when processing rapid spatial-keyword streams. These systems
belong to one of three categories: (1) centralized spatio-textual
systems, e.g., [22], that cannot scale to high arrival rates of data,
(2) distributed batch-based spatial/spatio-textual systems, e.g., [7,
11, 25], that have high query-latency (where in some cases, it may
require several minutes or even hours to execute a single query),
and (3) non-spatio-textual streaming systems, e.g., [21, 24], that do
not have direct support for spatial-keyword queries. This calls for
distributed spatial-keyword streaming systems that are equipped with
efficient spatial-keyword query evaluation algorithms and structures.

In this paper, we address the limitations of exiting systems and we
describe Tornado [17] a distributed and real-time system for the pro-
cessing of spatio-textual data streams. Tornado extends Storm [21].
Storm is a distributed, fault-tolerant, and general-purpose streaming
system.

Tornado addresses the following challenges:
(1) Scalability with respect to data and query workload: Tornado
scales to process a large number of data objects per second against a
large number of spatio-textual queries with minimal latency.
(2) Skew and variability in workload distribution across time: It
is highly unlikely to have a uniform or a fixed distribution of the data
or the query workload. Tornado achieves load balancing, and adapts
according to changes in the workload (with minimal overhead).
(3) No downtime: As Tornado adapts to changes in the workload,
it is essential to ensure that Tornado is still functional during the
transitioning phase, and that the query results are correct, i.e., no
missing or duplicate results .
(4) Limited network bandwidth: The underlying network of the

ar
X

iv
:1

70
9.

02
53

3v
1

 [
cs

.D
C

]
 8

 S
ep

 2
01

7

computing cluster can easily become a bottleneck under high arrival
rates of the data and queries. Tornado minimizes network usage to
improve the overall system performance.

To address these challenges, Tornado introduces two main pro-
cessing layers, namely: 1) the evaluation layer, and 2) the routing
layer.
The Evaluation Layer is composed of multiple evaluators, where
each evaluator is assigned a spatial region, i.e., a Partition of the
space. The entire space is collectively covered by all the partitions
with each partition covering a non-overlapping rectangle. The rout-
ing layer assigns the data objects and the queries to the corresponding
spatial evaluator(s).
The Routing Layer distributes data and queries across the process-
ing units, i.e., evaluators. The distribution is location-based, where
each evaluator is assigned a spatial region, i.e., a partition of the
space. One can argue that the distribution of the data and queries
can alternatively be text-based. However, text-based distribution is
inefficient when compared to location-based distribution. The reason
is that a data object, e.g., tweet, has multiple keywords, but only one
point location. Text-based distribution may forward a data object
to multiple processing units (one per keyword), while space-based
distribution forwards a data object to one and only one evaluator.

Employing traditional spatial indexes to achieve location-based
distribution of the data is not efficient. For example, a grid index may
not be efficient in case of large spatial ranges, while hierarchical
spatial indexes, e.g, the quad-tree [12, 20] or the R-tree [8, 14]),
require logarithmic time in terms of the total number of processing
units. The number of processing units can be large for a large cluster.
Furthermore, using location-only distribution does not leverage the
textual properties of the data and queries.

The routing layer employs the Augmented-Grid (A-Grid, for
short), a novel spatial-keyword grid structure. The A-Grid adopts a
new algorithm that uses shortcuts to assign data and queries to eval-
uators. We analytically show that using the A-Grid, the routing time
of a query, say q, is O(Np), where Np is the number of processing
units that are relevant to q. To reduce the network communication
overhead, the A-Grid maintains a textual summary of all the query
keywords for every evaluator. Before transmitting a data object, say
O , to an evaluator, say A, the textual summary of A is checked. If
the keywords of A do not overlap the keywords of O , i.e., O does not
contribute to the answer of any query, then O is not transmitted.
Adaptivity. In Tornado, overloaded evaluators can delay the pro-
cessing and reduce the overall system throughput. Underutilized
evaluators waste processing resources. Hence, Tornado maintains a
balanced distribution of the workload across all the evaluators. It is
expected that the system workload will not be the same at all times,
and hence having a static routing layer can result in poor system
performance. Existing systems, e.g.,[6, 7], address the problem of
adaptive workload-aware processing of big data by providing mech-
anisms for updating the partitioning the data. These systems keep
centralized workload statistics, and halt the processing of the data
and queries during the re-partitioning phase. However, in distributed
real-time applications, workload statistics are distributed across eval-
uators and it is unacceptable to pause the query processing. This
calls for a real-time load-balancing technique that does not inter-
rupt the query processing. It is challenging to implement such a

distributed and real-time load-balancing mechanism in Tornado for
the following reasons:
• No Global System View: In Tornado, the workload statistics are

distributed across evaluators. Sending detailed workload statistics
from one process to another requires high network overhead. The
load-balancing protocol should minimize the overhead needed to
collect, transfer, and process the workload statistics.

• Correctness of Evaluation: during the re-partitioning phase, Tor-
nado redefines the boundaries of the evaluators. This requires
moving queries from one evaluator to another. Meanwhile, the
data objects continuously update their locations, and the answer
to each query needs to be continuously updated as well. Hence,
unless the incoming data objects are carefully directed, missing
(or duplicate) results can occur.

• Overhead of Re-partitioning: Moving the queries between the
evaluators incurs network overhead. The re-balancing algorithm
should be aware of the re-balancing overhead, and avoid unneces-
sary re-balancing.
Tornado employs a decentralized load-balancing mechanism,

where the choice of the new spatial boundaries of the evaluators
is delegated to the evaluators themselves. This reduces communi-
cation overhead needed to transfer detailed workload statistics and
distributes the computational overhead across the evaluators. The
load-balancing mechanism is incremental, i.e., rather than redefining
all the partitions, only a few partitions are updated using simple shift,
split, and merge operations. Furthermore, Tornado ensures the cor-
rectness of evaluation during the transient phase using a two-stage
re-partitioning protocol.
In summary, the contributions of this paper are as follows:
• We introduce Tornado, a scalable spatio-textual data streaming

system.
• We develop an Augmented-Grid structure and an optimal neighbor-

based routing algorithm that minimizes the overhead of routing the
data and queries. The routing layer is spatio-textual and prohibits
routing data objects with no matching queries and minimizes
network overhead.

• We present an incremental, adaptive, and decentralized load-
balancing mechanism that ensures fairness in the workload distri-
bution across the evaluators.

• Using real datasets from Twitter, we show that Tornado achieves
performance gains of up to two orders of magnitude in comparison
to a baseline approach.

The rest of this paper proceeds as follows. Section 2 presents the
notations used throughout the paper. Section 3 describes the structure
of Tornado. Section 4 describes the load balancing mechanism in
Tornado. Section 5 formally analyzes how to set Tornado’s system
parameters. The related work is presented in Section 7. Detailed
experimental evaluation is given in Section 6. Section 8 contains
concluding remarks.

2 PRELIMINARIES
In this section, we present the notations that are used throughout the
paper. A spatial-keyword data stream is an unbounded sequence of
spatial-keyword objects. A spatial-keyword object, say O , has the
following format: O = [oid, loc, text , ts], where oid is the object

2

identifier, loc is the geo-location of the object at Timestamp ts, and
text is the set of keywords associated with the object.

A continuous spatial-keyword filter query, say q, is defined as
q = [qid, MBR, text , t], where qid is the query identifier, MBR is
minimum bounding rectangle representing the spatial range of the
query, and text is the set of keywords of the query. The continuous
query q is registered, i.e., keeps running for a specific duration, say
t . During t , the query continuously reports the data objects that
satisfy the query’s spatial and textual predicates. To satisfy a query,
a data object needs to be located inside the spatial range of the query,
and needs to satisfy the textual predicate of the query. In general,
Tornado supports the following spatial-keyword constructs:
• INSIDE(MBR): This spatial predicate evaluates to True when the

location of the object is inside MBR, i.e., the area that represents
the minimum bounding rectangle of the spatial range of the query.

• OVERLAPS(text1, text2): This predicate evaluates to True when
there is an overlap between the keywords of text1 and the
keywords of text2, e.g., text1={“food”, “sale”, “coupon”} and
text2={“cafe”, “food”, “restaurant”}, because the keyword “food”
is shared between text1 and text2.

• CONTAINS(text1, text2): This predicate evaluates to True when
all the keywords of text2 are contained in the keywords of text1,
e.g., text1={“food”, “sale”,“coupon”} and text2={“sale”,“food”},
because the keywords “sale” and “food” of text2 exist in text1.
Figure 1 gives an example of multiple spatial-keyword filter

queries from a publish-subscribe e-coupon application. We use
this example throughout the rest of the paper. An e-coupon is qual-
ified for user’s subscription if it is located inside the spatial range
of the subscription and when the textual profile of the e-coupon
matches with the textual predicate of the subscription. In Figure 1,
three subscriptions, i.e., queries, q1,q2, and q3 are registered in the
system. E-coupon o1 qualifies for subscription q3 because it is lo-
cated inside the spatial range of q3 and the textual content of o1,
i.e., “free, coffee, sandwich” contains the keywords of q3, i.e., “free,
coffee”.

3 TORNADO SYSTEM ARCHITECTURE
In this section, we present the architecture of Tornado, and its main
processing units along side with query processing algorithms. Tor-
nado [17] extends Storm [21]. Storm is a cluster-based, distributed,
fault-tolerant, and general-purpose streaming system that achieves
real-time processing with high throughput and low latency. Storm
provides three abstractions, namely: spout, bolt, and topology. A
spout is a source of input data streams. A bolt is a data process-
ing unit. A topology is a directed graph of bolts and spouts that
resembles a pipeline of streamed data evaluation.

Storm is not optimized for the execution of spatial-keyword
queries, simply because it does not have built-in support for spatial
or textual primitives, e.g., points, rectangles, or overlap/containment
of keyword lists.

In order to efficiently support the evaluation of spatial-keyword
queries, we need to guarantee that relevant data and queries are
collocated in the same processing unit, i.e., a Storm bolt. This is
challenging because the system needs to distribute data and queries
across processing units in a way that achieves the following proper-
ties: (1) Optimize the network communication overhead within

q1:sandwich OR discount

q3:free AND coffee

q2:café OR

sale

o1: free, coffee,

sandwich

o2: phone, laptop

A B

C D

o3: watch

Figure 1: Assigning coupons to customers according to spatio-textual
overlap.
the cluster by not sending the same data object to multiple process-
ing units, (2) Optimize the memory usage across the machines by
not storing queries in multiple processing units, (3) Optimize the
CPU usage by checking each data object against as few queries as
possible, and (4) Maintain good load balancing as the workload
changes, and distribute the data and queries across the processing
units while guaranteeing the correctness of evaluation, i.e., without
missing output tuples and without producing duplicate results.

Tornado addresses the above challenges by co-locating the data
objects with the relevant queries. Tornado extends the bolt abstrac-
tion from Storm into routing units and evaluators. The routing units
are light-weight components that are responsible for co-locating the
queries and data objects together. The evaluators are processing
units that check the incoming data objects against the continuous
queries and produce query results.

Tornado makes use of the fact that a data object has a single point
location, but multiple keywords. This is typical in many location
services, e.g., as in tweets, where a tweet is associated with a single
location and multiple keywords. Accordingly, the routing layer in
Tornado partitions the space into non-overlapping MBRs. Every
evaluator is responsible for a single MBR. The benefit of having
non-overlapping MBRs is to optimize the network utilization by
forwarding each data object to a single evaluator.

To support high arrival rates of streamed data, the routing layer
applies replication, i.e., multiple identical routing units are employed.
The routing layer maintains a textual summary for every evaluator.
The textual summary of an evaluator, say E, contains all keywords
of queries stored in E. In the routing units, the textual summary
for an evaluator is stored as a hash table of keywords. Before
forwarding a data object, say O , to an evaluator, say E, the textual
summary of E is consulted to check if there are some queries in
E that have keywords that overlap the keywords of O . Figure 2(a)
illustrates how Tornado processes the queries of Figure 1. Once a
query is received, a routing unit is selected at random, and the query
is forwarded to that routing unit, where the latter sends the query to
the spatially relevant evaluator(s). Based on the textual summary of
the evaluators, stored on the routing layer, some data objects are not
forwarded to any evaluator, e.g., o3 in Figure 2(a).

3.1 The Routing Units: The Augmented-Grid
(A-Grid)

The routing layer is composed of multiple identical routing units.
An instance of the routing units maintains a spatial-keyword index
to properly route the data objects and the queries. In terms of spatial
indexing, a routing unit partitions the entire space into a virtual fine

3

Query

Source

Data

Source

Final

Output

q1 q2 q3

o1

o2

Query

Source

Data

Source

Final

Output

The routing

layer

A

q2
o2

q3q1,q3
A B C D

o1

o1

o3

o2

q1 q2 q3 q1 q2 q3 q1 q2 q3

B C D

o3

A B

C D

café, sale

café, sale

sandwich, discount, coffee

A B

C D

A B

C D

Worker

processes

The evaluation

layer

(a) The routing units and evaluators.

AB

DC

AB

DC

Routing Units

Evaluators

k1

k2

k3

q1

q2

q1

Inverted List

per grid cell

k4

k2

q3

q3

k1

k2

k3

k4
Keyword summery

(b) Spatio-textual indexing.

� �

� �

�

�

�

�

������

�	
��
�
����
����
�
����
���	
��

����
��
������������������
�����

� � � � 	
 �

�

	

�

�

�

�

�
������������
���

�� ������

�� ����������	�
�

�� ��������� ��	��������	�
�

	� ��
�������	�
�

� �
�������	�
�

�

��!����
���"�����"�

�� ����������

�� �	�	������

�� �	����	���

�� �
��������

 � �
��������

�� ����������

(c) Neighbor-based query routing in Tornado.

Figure 2: The architecture and system components of Tornado.

grid FG. Then, the space is partitioned into Ne non-overlapping
spatial partitions that are overlaid on top of the fine grid. Each
partition, say p, corresponds to one evaluator, and is defined as
follows: [pid,xcellmin,ycellmin,xcellmax ,ycellmax], where pid
is the identifier of the partition, xcellmin andycellmin define bottom
left grid cell of p, xcellmax and ycellmax define the top right grid
cell of p. Every routing unit maintains a summary of the query
keywords per evaluator.

Tornado employs the fine grid partitioning for two reasons: (1) To
speed-up the routing time, and (2) To support the rearrangement of
the boundaries of the evaluators during the load-balancing procedure
(that is explained in Section 4).

An incoming data object or query goes to a random instance of
the routing units to be assigned to the corresponding evaluator(s).
The smaller the routing time, the higher the throughput of the entire
system. Moreover, having light-weight routing units can save more
resources that can be used for query evaluation rather than for routing.
In Tornado, the location of a data object is represented as a single
point in space. Because the partitions are non-overlapping, a data
object is routed to a single evaluator. This routing is achieved in
O(1) using uniform grid partitioning. However, a query has a spatial
range, that can overlap multiple partitions, and hence a query needs
to be routed to multiple evaluators.

To find the evaluators, a data object or a query belongs to, one
can index the partitions using a traditional structure, e.g., a grid or
an R-tree. However, these structures are not efficient when adopted
in the routing layer of Tornado. For instance, using a spatial grid
to index the spatial partitions of the evaluators is not efficient for
queries with large spatial ranges. The reason is that in order to
identify all the partitions to which a spatial range belongs, we need
to traverse all the grid cells that overlap the spatial range of the query.
This may require visiting many redundant grid-cells that belong to
the same partition. This process takes O(n ×m) time, where n ×m
is the total number of grid cells to be touched in the worst case.
The finer the granularity of the grid, the higher the search overhead.
Furthermore, using a hierarchical index, e.g., an R-tree, requires
O(logNe +Np) [9, 14] routing time, where Ne is the overall number
of evaluators in the system, and Np is the number of evaluators that
match an incoming data object or a query.

DEFINITION 1. The Routing Problem Given a rectangular query-
range, say r , and a set, say S , of Ne non-overlapping rectangular

partitions that cover the entire space, find the partitions that overlap
r .

We propose Neighbor-Based Routing, a novel and optimal routing
technique that requires O(Np) operations to route a spatial range,
where Np is the number of evaluators that overlap the spatial range.
This is lower than the time needed in both the traditional grid, i.e.,
O(m × n) and hierarchical structures, i.e., O(logNe + Np).

The main idea of neighbor-based search algorithm is to follow
shortcuts to jump directly from dominant cells belonging neighbor-
ing partition.

DEFINITION 2. Dominant cell A dominant cell of a partition,
say A, with respect to a spatial range, say R, is the top left cell of A
that is inside R.

For example in Figure 2(c), the dominant cell of the Partition A
with respect the spatial range R is (2,5). Observe that each grid cell
is spatially contained inside the spatial range of a single evaluator.
Boundaries of partitions are maintained an a hash table termed the
Partitions Map, PM for short as illustrated in Figure 2(c).

Each grid cell, say c, maintains the identifier of the partition that
contains c. To find the right dominant cell with respect to a range
R we follow the following steps:(1) find the right cell RC belonging
to a different partition, and (2) find the dominant cell of RC that
is the top-left of RC belonging to the same partition and inside the
spatial range R. Refer to Figure 2(c) for illustration. Assume that
we need to identify the right dominant cell, say RC of Cell (2, 5)
within Partition A. From the PM we know that the partition A spans
cells [(0, 5), (3, 6)]. The right cell RC of the cell (2, 5) is of the form
(xp,yp), where xp is the index on the horizontal coordinate that is
to the right of cell (2, 5). The yp is 5 because the Cell RC is to the
right of Partition A and has the same position on the vertical axis.
From the PM, the partition A ranges from 2 to 3 on the horizontal
coordinate, where 2 and 3 are xmin and xmax of the Partition A
respectively, the value xp is equal to 4 that is 1 + xmax . This means
that the Cell RC is (4, 5) that is covered by Partition B. The dominant
cell of (4, 5) is also (4, 5) as this is the top-left cell within R. The
same logic applies when finding the bottom dominant cell.

To route a spatial range, say R, we start from the upper-left corner
of R. We find the partition that is covered by that corner (this is trivial
because the partition identifier is stored in the cell corresponding
to that corner). Then, we follow the right and bottom dominant
shortcuts of that corner. We recursively apply this procedure until
we reach a cell from which the pointers lead to a cell that is outside

4

R or to a previously visited partition. We use a Boolean array to
mark the visited partitions and avoid visiting the same partition more
than once. Refer to Figure 2(c) for illustration. To route the red
rectangle, we start from Cell (2, 5) covered by Partitions A. Then,
we follow the pointers to Cells (4, 5) and (2, 1), covering Partitions F
and B, respectively. Then, we follow the bottom pointer of Cell (2, 1)
to reach Cell (4, 1) inside Partition C. From the PM, we identify
that Cell (4, 3) is the dominant cell of the Partition C with respect to
R. We follow dominant cell shortcuts visiting the following cells:
Cell (5, 3) within Partition D, Cell (5, 2) within Partition E, and Cell
(4, 5) within Partition B. The Pseudocode of the algorithm is given
in Algorithm 1.

Algorithm 1: neiдhborSearch(MBR r)

1 Stack S
2 Cell c(x,y)← TopLeft corner of r
3 S.push(c)
4 while S not empty do
5 c←S.pop
6 if c overlaps r and c.partition is not visited then
7 add c.partition to result
8 mark c.partition as visited
9 rightCell = getDom(getRightCell(c.y))

10 bottomCell = getDom(getBottomCell(c.x))
11 S.push(bottomCell),S.push(rightCell)
12 end
13 end

One can think of the A-Grid as a hypothetical directed-acyclic-
graph (DAG), where nodes of the graph are A-Grid cells and edges
are the right and bottom shortcuts to neighbour dominant cells be-
longing to different partitions. The neighbor-based search can be
seen as performing a special type of traversal on the cells of the A-
Grid where only the dominant cells inside the partitions overlapping
the spatial range of the query are visited.

LEMMA 1. The neighbor-based routing requires O(Np) and
does not depend on the granularity of the grid
For the traversal performed by the neighbor-based search algorithm,
the number of nodes V in the hypothetical DAG is NP . The number
of the edges E visited is 2NP because for every node, we follow at
most two pointers. The total traversal time is O(V + E) = O(Np).
The run time of the algorithm cannot be less than O(Np) as this is
the size of the output.

The initialization phase requires O(n × m) to assign partition
identifiers to all cells with the A-Grid, where n × m is the total
number of A-Grid cells, and n andm are the number of cells in the
x and y axes, respectively.

For an incoming data object, say O , after the relevant evaluator,
say E, is determined, Tornado considers the textual contents of E. If
none of the queries that are registered at E share any keywords with
O , thenO is not routed to E. To achieve this, Tornado maintains in the
routing units, a summary of query keywords within each evaluator.
As described in Section 2, given a query say q, Tornado supports

two types of textual predicates, namely OVERLAPS and CONTAINS.
On the one hand, a data object satisfies an OVERLAPS predicate
if that object has any of the keywords of q. This requires that all
the keywords of q exist in the textual summary of the evaluator
corresponding to q. On the other hand, a data object satisfies a
CONTAINS predicate if that object has all of the keywords of the
query q. Tornado reduces the size of the textual summary and the
communication needed for the CONTAINS textual predicate. In
this case, as a filtering step, Tornado stores only a single keyword
from q in the textual summary of the evaluator corresponding to q.
This approach achieves up to 5 times higher query throughput, as
illustrated in Section 6.

Observe that Tornado maintains multiple identical routing units.
One way to keep track of the query keywords within each evaluator is
to broadcast each query to all the routing units. To avoid unnecessary
communication, an incoming query, say q, goes to an arbitrary
instance of the routing units, say U . If q adds new keywords to any
evaluator, say E, then U forwards the added keywords to the other
replicas of the routing units. As queries expire, the textual summary
of the evaluators may contain redundant keywords. We describe how
to update the textual summary in Section 4.6.

3.2 Evaluators
To improve the overall system performance, each evaluator main-
tains a spatio-textual index. In particular, each cell in the fine grid
maintains an inverted list with the keywords of the registered contin-
uous queries. Figure 2(b) describes the indexes adopted within each
evaluator. The main responsibilities of an evaluator are as follows:
(1) Store and index continuous queries and drop expired queries.
(2) Process incoming data objects against stored queries.
(3) Keep track of usage and workload statistics.

To register a continuous query into an evaluator, first, we find the
grid cell(s) that overlap the spatial range of the query. Then, at each
overlapping cell, we attach the query to the inverted list. To process
an incoming data object, say O , we find the grid cell, say C, that
contains O’s location. Then, using O’s keywords and C’s inverted
list of queries, we retrieve a list of candidate queries that have O’s
keywords. Finally, we verify if O belongs to the answer of each of
these candidate queries. The final verification phase is both spatial
and textual. For every query, in the candidate query list, we fist check
if it contains the data object, then we check the textual predicate of
the query. If the textual predicate of the query is OVERLAPS , then
there is no need to further verify the textual predicate. If the textual
predicate is CONTAINS , then we must verify that the data object
fully contains all keywords in the query.

4 REAL-TIME LOAD BALANCING
In Tornado, each evaluator is responsible for a certain spatial range
that covers a partition in the fine grid FG. To achieve high throughput,
Tornado keeps a balanced distribution of the workload across the
evaluators. To compute the workload corresponding to an evaluator,
Tornado keeps workload statistics at the grid cells of FG. For each
data object, sayOl , that is received by FG[i][j], where i and j are the
horizontal and vertical coordinates of the Cell FG[i][j], respectively,
let ql be the number of queries that contain any of the keywords ofOl .
Observe that the number of queries that contain a certain keyword

5

Usage Statistics

Boundary Update

Aux

Bolt

Merge Data

Transfer data

X

Y Z

X1

Y Z

X2

X2X1

Y

Aux

Bolt

A

Z

X A

X A

Worker

Processes

Usage Statistics

Boundary Update

Evaluators

S
p

lit
 d

a
ta

X

Y Z

X1

Y Z

X2

X1

Y Z

X

X

Evaluators

Evaluators
Routing

Units

X2

A

B

A

B

A B B

A B

A

B
(a) Horizontal shift

(b) Vertical shift

(c) Corner shift

Routing

Units

Routing

Units

Routing

Units

Routing

Units

Routing

Units

A

Worker

Processes

Worker

Processes

(a) Before split/merge.

Usage Statistics

Boundary Update

Aux

Bolt

Merge Data

Transfer data

X

Y Z

X1

Y Z

X2

X2X1

Y

Aux

Bolt

A

Z

X A

X A

Worker

Processes

Usage Statistics

Boundary Update

Evaluators

S
p

lit
 d

a
ta

X

Y Z

X1

Y Z

X2

X1

Y Z

X

X

Evaluators

Evaluators
Routing

Units

X2

A

B

A

B

A B B

A B

A

B
(a) Horizontal shift

(b) Vertical shift

(c) Corner shift

Routing

Units

Routing

Units

Routing

Units

Routing

Units

Routing

Units

A

Worker

Processes

Worker

Processes

(b) Transient phase.

Usage Statistics

Boundary Update

Aux

Bolt

Merge Data

Transfer data

X

Y Z

X1

Y Z

X2

X2X1

Y

Aux

Bolt

A

Z

X A

X A

Worker

Processes

Usage Statistics

Boundary Update

Evaluators

S
p

lit
 d

a
ta

X

Y Z

X1

Y Z

X2

X1

Y Z

X

X

Evaluators

Evaluators
Routing

Units

X2

A

B

A

B

A B B

A B

A

B
(a) Horizontal shift

(b) Vertical shift

(c) Corner shift

Routing

Units

Routing

Units

Routing

Units

Routing

Units

Routing

Units

A

Worker

Processes

Worker

Processes

(c) After split/merge.

Figure 3: The split/merge operation.

Usage Statistics

Boundary Update

Evaluators

Aux

Bolt

Merge Data

Transfer data

X

Y Z

X1

Y Z

X2

X2X1

Y

Aux

Bolt

A

Z

X A

X A

Evaluators

Evaluators

Usage Statistics

Boundary Update

Evaluators

S
p

lit
 d

a
ta

X

Y Z

X1

Y Z

X2

X1

Y Z

X

X

Evaluators

Evaluators
Routing

Units

X2

A

B

A

B

A B B

A B

A

B
(a) Horizontal shift

(b) Vertical shift

(c) Corner shift

Routing

Units

Routing

Units

Routing

Units

Routing

Units

Routing

Units

Figure 4: Shift variations.

can be easily retrieved from the inverted list within each grid cell.
For each grid cell FG[i][j], we define the workload overhead, i.e.,
the computational cost, as the sum of ql over all the data objects Ol
received by that cell:

cost(FG[i][j]) =
∑
l

ql (1)

Given a partition, say Pw , that is bounded by
[(xmin, ymin), (xmax , ymax)], the overall computational
cost is the sum of the costs of all the grid cells in P , i.e.,

cost(Pw) =
∑

cost(FG[i][j]) (2)

where xmin ≤ i ≤ xmax and ymin ≤ j ≤ ymax . Below, we
describe the load-balancing protocol in Tornado.

4.1 Initialization
Tornado partitions the entire space into Ne partitions, where Ne is
the number of evaluators. To choose the initial boundaries of the
partitions, Tornado uses a sample of the data and query workload,
and calculates the computational cost of each fine grid cell. Let α be
the maximum computational cost of the partition Pw , i.e.,

α = max
Pw
(cost(Pw)) (3)

In the initialization phase, the objective is to minimize α across all
the Ne partitions. The best-case distribution is to have all evaluators
process equal portions of the workload. The problem of finding
the optimal rectangular partitioning that minimizes α is NP-Hard
(see [13]). Tornado employs a hierarchical recursive space decompo-
sition similar to that of a k-d tree decomposition [7, 19]. In particular,
Tornado maintains a priority queue of the partitions to be split, where
the partitions are sorted according to their cost. First, the entire space
represents a single partition that is inserted into the priority queue.
Then, the top partition from the queue, i.e, the one with the highest
cost, is retrieved, and then is split into two partitions. The split is
chosen in a way that minimizes the maximum cost of the resulting
two sub-partitions. Then, the resulting sub-partitions are inserted
into the priority queue. This process is repeated until a single grid
cell is reached (that cannot be split), or the maximum allowed num-
ber of evaluators in the system is reached. The maximum number
of evaluators is a system parameter that affects the performance of
Tornado. As illustarted in Section 6, having few evaluators results
in an under-utilized cluster. Also, having more evaluators than the
cluster resources results in contention among the evaluators, which
degrades the performance.

4.2 Adaptivity in Tornado
To preserve fairness in workload distribution while keeping the
number of evaluators fixed, Tornado uses two incremental load-
balancing operations, namely: (1) split/merge, and (2) shift.
A split/merge operation involves a split of an overloaded evalua-
tor into two evaluators, followed by a merge of two neighboring
underutilized evaluators into a single evaluator. The split is either
horizontal or vertical. The split position is chosen to minimize the
difference in cost between the resulting two partitions. The details
of finding the best point to split in an evaluator are given in Sec-
tion 4.3. During a split, Tornado transfers some grid cells from an
overloaded evaluator to an auxiliary evaluator. Refer to Figure 3 for
illustration. Figure 3(a) illustrates an overloaded evaluator X before
a split/merge operation. An instance of the routing units makes a de-
cision to split/merge and initiates a split of Evaluator X into X1 and
X2, and a merge of Evaluators Y and Z , as in Figure 3(b). Observe
that, according to the new boundaries, some of the fine grid cells are
being transmitted from evaluator X to an auxiliary evaluator A. All
the fine grid cells that are stored in Evaluator Z are transferred to
Evaluator Y . Figure 3(c) gives the state at the end of the split/merge
operation.

A shift operation involves a transfer of the workload, i.e., fine
grid cells, from an overloaded evaluator to an underutilized spatially
adjacent evaluator. The shift operation is useful when no merge
of two lightly loaded evaluators is possible. Tornado uses three
variants of the shift operation, namely: horizontal, vertical and
corner shifts. Refer to Figure 4 for illustration. The red circle in
the figure represents an area with high workload. A horizontal shift
is applicable to two evaluators that share a horizontal boundary,
e.g., see Figure 4(a). Similarly, a vertical shift is applicable to two
evaluators that share a vertical boundary, e.g., see Figure 4(b). A
corner shift is applicable when two neighboring evaluators form a
corner shape, e.g., see Figure 4(c). The corner shift allows a transfer
of workload between two non-mergeable evaluators, i.e., ones that
do not share an entire horizonal or vertical boundary. The details for
finding the best point to shift are described in Section 4.3.

The neighborhood information among the evaluators is deter-
mined during the initialization phase of augmenting the grid as
described in Section 4.1. After rebalancing, the neighborhood infor-
mation is updated as described in Section 4.4.

The decision of whether to initiate a rebalancing operation or not
depends on two factors, namely, the cost reductionCr resulting from
the re-balance operation, and the cell transfer overheadCt involved
in the re-balance operation. The cost reduction Cr of a re-balance
operation is the difference between the maximum partition cost
before and after the re-balance operation. Consider the split/merge
operation in Figure 3, and assume that Evaluator X has the highest

6

0 0 0 000 0

0

0

0

0

0

Column cost aggregates

Overall

cost

R
o

w
 c

o
s
t
a

g
g

re
g

a
te

s
1

2

3

4

1 2 3 654 7

0 1 0 012 0

0

2

1

1

4

Column cost aggregates

Overall

cost

R
o

w
 c

o
s
t
a

g
g

re
g

a
te

s

1

2

3

4

1 2 3 654 7

q1<k1>

q2 <k2>

q1<k1>

q2 <k2>

O1<k1,k3,k4>

O2<k1,k2,k3>

O3<k1,k5>

(a) Initial evaluator statistics.

0 0 0 000 0

0

0

0

0

0

Column cost aggregates

Overall

cost

R
o

w
 c

o
s
t
a

g
g

re
g

a
te

s

1

2

3

4

1 2 3 654 7

0 1 0 012 0

0

2

1

1

4

Column cost aggregates

Overall

cost

R
o

w
 c

o
s
t
a

g
g

re
g

a
te

s

1

2

3

4

1 2 3 654 7

q1<k1>

q2 <k2>

q1<k1>

q2 <k2>

O1<k1,k3,k4>

O2<k1,k2,k3>

O3<k1,k5>

(b) After data objects arrive.

Figure 5: Cost aggregation within an evaluator.
cost. The cost before split/merge=cost(X). The cost after split/merge
is max(cost(X1), cost(X2), (cost(Y) + cost(Z))). The cost reduction
of the split/merge operation is:

Cr (split/merдe,X ,X1,X2,Y ,Z) =
cost(X) −max(cost(X1), cost(X2), (cost(Y) + cost(Z)))

(4)

The above idea applies to the shift operation, where the cost reduc-
tion is computed as the difference between the maximum cost before
and after the shift operation. The cell transfer overhead Ct is an
estimate of the overhead of transferring cells during the re-balance
operation. Ct (p) = β × queryCount(p), where queryCount(p) is the
number of queries in Partition p, and β is the average time needed
to transfer a query. queryCount(p) is incremented whenever a query
is registered at p, and is decremented whenever a query in p ex-
pires. For example, for the split/merge operation in Figure 3, the
cell transfer overhead of the split/merge operation is calculated as
follows:

Ct (split/merдe,X ,X1,X2,Y ,Z) =
β × (queryCount(X2) + queryCount(Z))

(5)

Tornado chooses the operation that maximize that value of Cr while
having Cr > Ct .

4.3 Decentralized Load-Balancing
Existing load-balancing approaches are centralized [6, 7], i.e., re-
quire having a single unit that receives all the workload statistics.
In contrast, in Tornado, the computation of the costs of the fine
grid cells is distributed across the evaluators. The evaluators keep
detailed workload statistics and choose the split coordinates that are
needed to perform the shift and split/merge operations. The routing
layer periodically receives a summary of the workload statistics from
the evaluators, and then makes a decision as to whether to change the
partitioning or not. Also, the routing layer decides which operation
to perform.

For the routing layer to make a decision whether to re-balance
or not, it does not need the detailed costs of every grid cell. The
decision to rebalance can be made using the overall evaluator costs
from Equation 2. The rebalancing approach adopted in Tornado
is decentralized for the following reasons: 1) Accurate workload
statistics are distributed across evaluators, 2) Each evaluator inde-
pendently chooses the optimal set of grid cells to be transferred to
improve throughput, and 3) The routing layer only makes a decision
whether to change the partitioning or not.

Tornado keeps three aggregates at each evaluator, namely, row,
column, and overall aggregates. Refer to Figure 5 for illustration.

Figure 5(a) gives the initial values of these aggregates. Figure 5(b)
gives the values after processing three data objects O1, O2, and O3.
O1 satisfies one query at Cell (2, 3), and hence the aggregates of
Row 3 and Column 2 are incremented. O2 satisfies two queries at
Cell (4, 2), and hence the aggregates of Row 2 and Column 4 increase
by 2. O3, satisfies one query at Cell (4, 4), and hence the aggregates
of Row 4 and Column 4 are incremented. The overall cost of the
evaluator gets the value of 4. Maintaining these aggregates requires
O(1) processing time per data object. Tornado maintains similar row,
column and overall aggregates for the number of queries within grid
cells.

To maximize the cost reduction resulting from splitting a parti-
tion, say X , into X1 and X2, Tornado tries to minimize the value
of |cost(X1) − cost(X2)| by trying all possible vertical and horizon-
tal splits. If Equation 2 is applied directly, it requires O(m × n)
to find the best split. Instead, Tornado uses the row and column
aggregates to find the best split in O(m + n). In particular, Tornado
scans the column aggregates and keeps a sum of the scanned ag-
gregates, say Sa . Initially, Sa = 0, and keeps accumulating values
from the column aggregates as long as Sa is less than half the overall
cost of the evaluator, say (Ohal f). If Sa is equal to (Ohal f), no
more aggregates are scanned. If Sa is greater than (Ohal f), then the
split position is marked, and the same process is repeated, but with
the row aggregates. The split position that minimizes the value of
|cost(X1) − cost(X2)| is chosen.

For example, in Figure 5(b), the best vertical split is between
Columns 3 and 4, with a difference of 3 in cost. However, the best
horizontal split is between Rows 2 and 3, with a difference of 0 in
cost. Hence, the horizontal split is chosen.

For the shift operation, we need to distinguish between a corner
shift and a horizontal/vertical shift. In the corner shift in Figure 4(c),
there are no multiple choices for the shift coordinate in A. The
corner shift coordinate depends on the position of B relative to A.
This allows A to identify the cost of the cells involved in any shift
operation as well as the cell transfer overhead. Notice that there are
at most 8 possible corner shifts for any given evaluator. However,
there is no fixed coordinate for the horizontal/vertical shift in A. The
reason is that the optimal coordinate for a horizontal/vertical shift
depends on the cost of B that is unknown to A. To address this issue,
Tornado delays the choice of the best shift coordinate in A until the
routing unit makes a decision to perform a horizontal/vertical shift.

At the time when the routing unit makes a decision as to whether
to re-balance or not, it has accurate statistics for both the split/merge
and the corner shift operations. The routing unit does not know the
exact cost reduction and cell transfer overhead of horizontal/vertical
shift operations. The routing unit estimates that an optimal hori-
zontal/vertical shift from evaluator A to evaluator B results in an
optimal division of workload between A and B. Thus, the estimated
cost reduction is computed as cost(A) − cost (A)+cost (B)

2 . Assuming
uniform query distribution in A, the routing unit estimates the cell
transfer overhead to be proportional to the amount of workload trans-

ferred, i.e., β × queryCount(A) × cost (A)− cost (A)+cost (B)2
cost (A) . Then, the

routing unit chooses the re-balancing operation if necessary. If the
re-balancing operation is a horizontal/vertical shift, then the routing
unit informs the evaluators involved in this horizontal/vertical shift

7

operation with the costs necessary to make an optimal shift operation
similar to finding the optimal split described previously.

4.4 Updating the Data Structures
Updates to the A-Grid Upon a split/merge or a shift operation,
Tornado incrementally updates the A-Grid structure described in
Section 3. In this updates, the boundaries of partition in the partitions
map (PM) is updated according to the changes in partitioning. Also,
A-Grid cells belonging to new partitions, have their partition ids
updated.
Updates to the Textual Summaries Upon a split/merge or a shift
operation, some queries are transferred from one evaluator to an-
other. For example, consider a shift operation from Evaluator X to
another one say, Evaluator Z . The routing units are not aware of
which queries are transferred. To ensure correct execution and to
avoid missing output results, in the routing units, the entire textual
summary of X is copied to the textual summary of Z . This may
result in having keywords in the textual summary of Z that do not
correspond to any query in Z . We discuss how to remove those extra
keywords in Section 4.6.
Updates to Statistics within Evaluators Upon a split/merge or a
shift operation, some grid cells move from one evaluator to another.
This affects the row, column, and overall aggregates stored at the
evaluators. For example, consider a shift operation from Evaluator
X to Evaluator Y . For each grid cell, say Cx , in Evaluator X , we
subtract the value cost(Cx) from the overall cost of Evaluator X ,
and from the row and column aggregates containing Cell C. For
each grid cell, say Cy , in Evaluator Y , we add the value of cost(Cy)
to the overall cost of Evaluator Y , and to the row and the column
aggregates containing Cell C.

4.5 Correctness during Load-balancing
A rebalancing operation affects both the routing and the evaluation
layers. In the routing layer, the partitioning of the evaluators changes
according to the rebalancing operation. In the evaluators, grid cells
move from one evaluator, say E1, to another evaluator, say E2. It
is challenging to guarantee the correctness during the re-balancing
process because data objects and queries arrive during re-balancing,
and Tornado cannot afford to halt the processing until the entire
re-balancing is done.

An important question to address is Which evaluator should re-
ceive the incoming data objects and queries during the transient
phase? E1, or E2, or both? Tornado splits the transient phase into
two steps. In every step, we define a set of rules that guarantee
correct processing in that phase. The steps of the transient phase are:
(1) Cell transfer phase during which index cells are moved across
evaluators, and (2) Routing unit update phase during which routing
units update their partitioning.
Figure 6 gives an example of a shift rebalancing operation from
Evaluator E1 to Evaluator E2. Figure 6(a) gives the partitioning
within routing units and index cells within evaluators before the
shift operation. Figure 6(b) illustrates the cell transfer phase from
Evaluator E1 to Evaluator E2. During this phase, index cells to be
shifted can be in any of two states, namely: transmitted and untrans-
mitted. A transmitted index cell has been moved from Evaluator
E1 to Evaluator E2. An untransmitted cell is a cell belonging to

(a) Before re-balancing. (b) Cell transfer phase.

(c) Routing update phase. (d) After re-balancing.

Figure 6: Correctness during adaptivity.

the partition being shifted and yet to be moved to the destination
evaluator. Figure 6(b) gives the marked transmitted cells.
Processing during the cell transfer phase During the cell transfer
phase, all incoming data and queries will be routed to E1 because
all routing units use the partitioning before re-balancing. Incoming
queries to the area to be shifted are processed according to the
following steps:
(1) All incoming queries are processed and indexed in E1
(2) If a query arrives to a transmitted cell, forward the query to E2
Incoming data objects are processed in Evaluator E1.

For example, in Figure 6(b), Evaluator E1 receives Query q2
and stores q2 in the transmitted cells. Then, E1 forwards q2 to E2.
However, query q1 is not forwarded as it arrives to an untrasmitted
cell. Notice that, in Figure 6(b), all routing units have the old
partitioning of evaluators. Queries that overlap untransmitted cells
in E1 will be indexed only in E1, as these cells will shortly be
transmitted to E2. This guarantees that E2 will eventually receive all
queries that arrive during the cell transfer phase. Also, since all data
objects that arrive to the shifted cells are evaluated only in E1, then
there are no duplicate results.
Processing during the routing update phase, Due to network

delays, it is not possible that all routing units update their partitioning
instantaneously. This means that even after the cell transfer phase,
some routing units may send data and queries to E1 while others
send data and queries to E2.

To address this issue, we adopt the following approach during
the routing update phase: any data object or query that is routed to
a shifted area in E1 is neither processed nor indexed in E1 and is
instantaneously forwarded to E2. In Evaluator E1, shifted cells are
marked as transmitted.

Figure 6(c) gives an example to the processing during the routing
update phase. Notice that, in Figure 6(c), the Routing unit R1 has
the old partitioning and the Routing unit R2 has the new partitioning.
If the Routing unit R1 sends data objects or queries to the shifted
cells in E1, then E1 forwards these data objects and queries to E2.
This guarantees that there will be no duplicates or missing results
as all output during the routing update phase comes from Evaluator

8

E2. Figure 6(d) gives the routing units and evaluators after the
re-balancing shift operation.

4.6 Lazy Cleaning
Queries get dropped and evaluators change boundaries during re-
balancing operations. The textual summary at evaluator units needs
to be updated to reflect the changes in the keywords of queries within
evaluators. Having an outdated textual summary will result in many
false positives, and hence affecting the overall system performance.
Instead of eagerly updating the textual summary whenever a query
is removed, we use a lazy textual summary update approach. In
this approach, evaluators periodically send textual summaries to
routing units. Evaluators calculate their textual summary in a lazy
manner. A background garbage cleaning process visits all fine grid
cells, builds the textual summary as cells get visited. It also removes
all expired queries with the cell being visited. When a complete
cleaning cycle has visited all cells, the textual summary is sent to the
evaluators. This approach reduces the overall overhead for textual
summary update overhead.

5 ANALYSIS
In this section, we formally analyze how to set the granularity of
the A-Grid. When setting the granularity of the grid, we need to
consider both the query registration overhead and the data processing
overhead within evaluators. Let λd , λq be the arrivals rates of data
and queries, respectively. Assume that the average number of queries
registered in the system is fixed. That is on average, the rate of query
arrival is equal to the rate of query expiration. For example, assume
that, on average, at any point in time, there are k continuous queries
registered in the system. To simplify the analysis, assume that we
have square queries. Let rq be the average query side-length. Let
rc be the grid cell side length. Assume further that we have a unit
side-length for the entire space. The total number of evaluators ρe
can be calculated as follows:

ρe = λd × F (δ) + λq × γ (6)

where δ is the average number of queries per grid cell, γ is the
average number of cells a single query overlaps, and F is a function
defining the average number of queries relevant to a data object
within a grid cell. F (δ) represents the average processing time of a
data object within an evaluator. We aim to minimize the total number
of evaluators needed, i.e., ρe .

When the average query side-length is less than the grid cell
side-length, i.e., rq < rc , a single query can overlap at most four
grid cells. That is γ=c, where c is a constant less than 4. Assuming
uniform data and query distribution across the space, the number of
queries per cell δ can be calculated as follows:

δ = c × k

total number o f дrid cells

= c × k
entir e space

space of a sinдle cell

Assuminд unit space

= c × k
1
(rc)2

= c × k × (rc)2

(7)

Table 1: The values of the parameters used in the experimental evalua-
tion.

Parameter Value
Number of evaluators 4, 9, 16, 25, 36, 64, 100
Number of routing units 1, 3, 5, 7, 10, 12
Number of queries (million) 1, 2.5, 4, 5
Number of query keywords 1, 2, 3, 5, 7
Spatial side length of a query .01%,.05%,.1%,.5%,1%,1.5%

Hence, the total computational overhead when rq < rc is:

ρe = λd × F (c × k × (rc)2) + λq ∗ c (8)

The smaller the grid cell side-length, i.e., rc , the smaller the number
of evaluators needed. This can be tempting to use a very small grid
cell side-length. However, the smaller the grid cell side-length, the
higher the number of cells overlapping a query.

In other words, when the average query side-length is longer than
the grid cell side-length, i.e., when rq ≥ rc , the average number of
cells per query γ can be calculated as follows:

γ =
ave space o f a query

space o f a cell
=
(rq)2

(rc)2
(9)

and the average number of queries per cell is

δ = γ × k

total number o f дrid cells
= γ × k × (rc)2

= (
rq

rc
)2 × k × (rc)2 = k × (rq)2

(10)

Hence, the total computational overhead when rq ≥ rc is:

ρe = λd × F (k × (rq)2) + λq × (
rq

rc
)2 (11)

In Equation 8, when rq < rc , ρe decreases as rc decreases. In Equa-
tion 11, when rq ≥ rc , ρe decreases as rc increases. In conclusion, in
order to minimize the number of evaluators needed, we set rc = rq ,
i.e., set the side-length of the grid cell to be equal to the average
query side-length.

6 EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of Tornado. Our exper-

iments are conducted on a 6-node cluster, where each node is a Dell
r720xd server that has 16 Intel E5-2650v2 cores, 64 GB of memory,
48 TB of local storage, and a 40 Gigabit Ethernet interconnect. The
cluster runs 20 virtual machines where each virtual machine has
4 cores and 10 GB of memory. Each virtual machine runs Storm
1.0.0 over Centos Linux 6.5. We evaluate the performance of Tor-
nado using real datasets and a synthetic query workload. We use a
real dataset from Twitter that is composed of 1 billion tweets with
geo-locations inside the US and of size 140 GB. These tweets are
collected from January 2014 to March 2015. The format of the tweet,
is ”id, geo-location, text”. We use these tweets to simulate a con-
tinuous and infinite stream of spatio-textual objects such that when
all the tweets are streamed, we restart streaming the tweets from the
beginning. We use three query datasets each of 5 million tweets,
namely; (1) normal tweets, (2) spatially skewed, and (3) textually
selective. The normal tweets dataset uses the locations and keywords
of the tweets as the locations and the keywords of the query. The
spatially-skewed dataset uses a skewed spatial distribution of tweets.
We use the spatially-skewed dataset to study the effectiveness of

9

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

.1 1T
h
ro

u
g

h
p

u
t

 (
th

o
u
sa

n
d

 o
b

je
ct

s/
se

c)

Num of queries (millions)

Non-spatial-keyword
Two-layered

(a) Throughput.

 1

 10

 100

 1000

 10000

 100000

 1e+06

.1 1

E
v
a
la

u
ti

o
n
 t

im
e
 (

µ
se

c)
Number of queries (millions)

NativeStorm
Tornado

(b) Evaluation latency.

Figure 7: Storm native Vs. Tornado.

 0

 100

 200

 300

 400

 500

 600

 700

 800

A-Grid

Textual

Uniform
-Spatial

T
h
ro

u
g

h
p

u
t

 (
th

o
u
sa

n
d

 o
b

je
ct

s/
se

c)

(a) Throughput.

 20
 40
 60
 80

 100
 120
 140
 160
 180

A-Grid

Textual

Uniform
-Spatial

E
v
a
la

u
ti

o
n
 t

im
e
 (

µ
se

c)

(b) Evaluation latency.

 400

 600

 800

 1000

 1200

 1400

0 30 90 100T
h
ro

u
g

h
p

u
t

 (
th

o
u
sa

n
d

 o
b

je
ct

s/
se

c)

keyword frequency

Spatial-keyword
Spatial-Only

(c) Effect of keyword frequency.

Figure 8: The performance of routing alternatives.

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000

36 64 100 250 500 1000

P
o
in

t
R

o
u
ti

n
g

 t
im

e
(n

a
n
o
 s

e
c)

Num of partitions

R-tree
A-Grid

Grid

(a) Point routing time

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

.05% .1% .5% 1% 1.5%

R
a
n
g

e
 R

o
u
ti

n
g

 t
im

e
(n

a
n
o
 s

e
c)

Spatial range

A-Grid
Grid

(b) Range routing time

Figure 9: Spatial routing time for points and ranges.
load-balancing techniques. The textually-selective dataset sorts key-
words of tweets based on their frequencies. Using the frequencies of
keywords, we set the textual selectivity of queries.

Table 1 summarizes the values of the parameters we use. We set
the default number of query keywords to 3, which resembles the
average number of keywords in web searches [3]. The default spatial
range of queries is .1% of the entire spatial range. Following the
analysis in Section 5, we use a 1000×1000 grid. Each experiment
runs for 20 minutes to accurately measure the throughput of the
system and to avoid any transient behavior.

6.1 Tornado vs. Native Storm
In Tornado, the execution is divided between the routing units and
the evaluators. However, in a native storm implementation, there is
no such distinction. For fairness of evaluation, we set the number of
evaluators in the native implementation to be equal to the number
of evaluators and routing units in Tornado. In the native storm im-
plementation, all queries are sent to all evaluators, and data objects
are randomly distributed across evaluators. In the native approach, a
data object needs to be checked against all queries with in an evalua-
tor. This creates a substantial overhead. Figure 7 demonstrates that
Tornado achieves more than two orders of magnitude improvement
in the overall system throughput and query latency.

6.2 Performance of the Routing Layer
In this experiment, we measure the performance of the following
routing alternatives: (1) the spatial-keyword A-Grid, (2) Textual
routing where the keywords of data objects and queries are used to
hash and route data objects and queries to evaluators, and (3) Uni-
form spatial partitioning is used in the routing units, where evalua-
tors span equal and non-overlapping spatial ranges regardless of the
distribution of workload.

Figures 8 (a) and (b) show that using the A-Grid in the routing
layer achieves the highest throughput and the least processing la-
tency. Using uniform spatial partitioning in the routing layer results
in a throughput that is 2 times lower than that of A-Grid. The rea-
son is that using uniform spatial partitioning does not account for
the skewed nature of data objects and queries and results in unfair
workload distribution across evaluators. Figures 8 (a) and (b) also
illustrate that using textual partitioning of data and queries results
in a throughput that is 2 times lower than that of the A-Grid. The
reason is that data objects typically have multiple keywords. Textual
partitioning replicates data objects to multiple evaluators. This cre-
ates a bottleneck in the network bandwidth and reduces the overall
throughput and results in having an evaluator processing more data
objects.

Figure 8(c) demonstrates the effectiveness of spatial-keyword
routing against spatial-only routing. In this experiment, we vary the
frequency of query keywords from 0%, i.e., least frequent keywords
that do not match the keywords of data objects, to 100%, i.e., most
frequent keywords. Figure 8(c) illustrates that, as the frequency of
query keywords decreases, the overall system throughput increases.
The reason is that, as the frequency of query keyword decreases, the
number of data objects with keywords overlapping with the textual
summaries in the A-Grid decreases. This results in having fewer data
objects being forwarded to evaluators and hence a reduction of both
the computational overhead in the evaluators and the communication
overhead between the routing units and the evaluators.

In Figure 9, we contrast the performance of the A-Grid against
the performance of traditional spatial indexes in the routing layer.
We study the following alternatives:1) Standard R-tree, 2) A-Grid,
and 3) Uniform Grid. Figure 9(a) gives the routing times for data
points while increasing the number of partitions. As the number of
partitions increases, the routing time of the data points increases for
the R-tree, and remains constant for both the Grid and the A-Grid.
Hence using the R-tree as the routing index is inefficient especially
with a high number of evaluators. Although the Grid and the A-Grid
have similar performance for point routing, Figure 9(b) shows that
the A-Grid outperforms the Grid for range routing. We increase
the spatial range of queries from .05% to 1.5% of the entire spatial
range. This is due to the effectiveness of the neighbor-based routing
algorithm used in the A-Grid. We conclude that the A-Grid achieves
the least routing time for both points and ranges.

In Figure 10, we study the effect of the number of routing units
on the overall system throughput. Figure 10(a) gives the throughput
when increasing the number of routing units. If there is only one

10

 0

 200

 400

 600

 800

 1000

 1200

1 3 5 7 10 12T
h
ro

u
g

h
p

u
t

 (
th

o
u
sa

n
d

 o
b

je
ct

s/
se

c)

Num of routing units

Tornado

(a) Data objects throughput

 0

 50

 100

 150

 200

 250

 300

1 3 5 7 10 12T
h
ro

u
g

h
p

u
t

 (
th

o
u
sa

n
d

 q
u
e
ri

e
s/

se
c)

Num of routing units

Forward
BroadCast

(b) Query throughput.

Figure 10: Number of routing units effect.

 0

 200

 400

 600

 800

 1000

 1200

 1400

.01 .05 .1 1.5T
h
ro

u
g
h
p
u
t

 (
th

o
u
sa

n
d
 o

b
je

ct
s/

se
c)

Spatial range of query

A-Grid
Baseline
Uniform

(a) Spatial range effect.

 0

 200

 400

 600

 800

 1000

 1200

 1400

1 3 5 7T
h
ro

u
g
h
p
u
t

 (
th

o
u
sa

n
d
 o

b
je

ct
s/

se
c)

Number of query keywords

A-Grid
Baseline
Uniform

(b) Number of query keywords.

Figure 11: Performance under various query workloads.

 300
 400
 500
 600
 700
 800
 900

 1000
 1100
 1200

4/1 9/2.5 16/4 25/5T
h
ro

u
g
h
p
u
t

 (
th

o
u
sa

n
d
 o

b
je

ct
s/

se
c)

Num of evaluators/ Queries(millions)

(a) Scalability.

 300
 400
 500
 600
 700
 800
 900

 1000
 1100
 1200

16 25 36 64 100

T
h
ro

u
g
h
p
u
t

 (
th

o
u
sa

n
d
 t

u
p
le

s/
se

c)

Num of evaluators

(b) Exceeding cluster resources.

Figure 12: Scalability against the number of evaluators.

routing instance, then the routing layer becomes a bottleneck. As
we increase the number of routing instances, the system through-
put increases. The increase in throughput saturates after 7 routing
instances. After that, the bottleneck moves from the routing layer
to the evaluation layer. This demonstrates that the routing layer is
light-weight, and that we do not need many routing units to forward
data objects to evaluators.

In Figure 10(b), we contrast two approaches for textual summary
distribution across routing units, namely broadcast that sends an
incoming query to all the routing units, and forward that broadcasts
the query keywords only when they do not exist in the textual sum-
mary of an evaluator. As the figure illustrates, using the forward
improves the query throughput by up to five times. Observe that
in Figure 10, the data object throughput is higher than the query
throughput. This is both expected and acceptable. Typically, in
real-life applications that data object updates arrive at a much higher
rate than that of queries. The reason for the lower throughput of
queries is that, in contrast to data objects, queries can be forwarded
to multiple evaluators. Also, queries need to be stored and indexed
within evaluators.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

.4 .5 .6 .7

T
h
ro

u
g
h
p
u
t

 (
th

o
u
sa

n
d
 t

u
p
le

s/
se

c)

Scale factor

Static
Adapative

(a) Adaptivity.

 1

 10

 100

 1000

 10000

9 16 25 36

O
v
e
rh

e
a
d
 o

f
st

a
ti

st
ic

s
 (

K
B

)

Num of evaluators

Centralized
Decentralized

(b) Statistics overhead.

Figure 13: Adaptivity.
6.3 Scalability
In this experiment, we study the scalability of Tornado under var-
ious query workloads. In Figure 11(a), we vary the spatial range
of the queries from .01% to 1.5% of the maximum spatial range.
Figure 11(a) illustrates that Tornado is scalable and that the system
throughput is not significantly affected by the increase in the spatial
extent of the query. In Figure 11(b), we increase the number of
query keywords from 1 to 7. Figure 11(b) illustrates that Tornado
is scalable and that the system throughput is not significantly affect
by the increase in the number of query keywords. We study the
scalability of Tornado while increasing the number of queries and
evaluators. In Figure 11(c), we increase the number of queries and
evaluators from 4 evaluators and 1 million queries to 25 evaluators
and 5 million queries. Figure 12(c) illustrates that Tornado scales
well when adding more evaluators and queries. However, it is may
be tempting to increase the number of evaluators indefinitely. Fig-
ure 12(b) gives the effect of increasing the number of evaluators
under a fixed query workload of 5 million queries. Initially, the
system throughput increases as we add evaluators. However, given
that we only have 20 machines in the cluster, after 25 evaluators, the
overall throughput starts to decline due to the contention among the
evaluators over the machine resources.

6.4 Adaptivity
In this experiment, we compare adaptive partitioning against static
partitioning in Tornado. To simulate a change in the workload, we
multiply the spatial coordinates, i.e., x , and y coordinates, of data
objects and queries by a scale factor, say s f . This scaling results in
directing data objects and queries to only a subset of evaluators. We
vary the scale factor s f from .4 to .7. Figure 13(a) illustrates that
the adaptive partitioning is able to maintain a stable throughput in
contrast to the static partitioning. The smaller the scale factor, the
lower the throughput for static partitioning. The reason is that, in
the static partitioning, fewer evaluators handle the entire workload.
This results in a bottleneck in the evaluation layer. However, in the
adaptive partitioning, the routing layer redistributes the workload
across evaluators to avoid bottlenecks in the system.

In Figure 13(b), we compare the communication overhead be-
tween the decentralized load balancing and a centralized approach.
In a centralized load-balancing approach detailed workload statistics
need to transmitted to the routing layer. However, in the decen-
tralized load-balancing approach only summaries of statistics are
transmitted to the routing layer. Figure 13(b) illustrates that the
communication overhead of decentralized load-balancing is much
less than the overhead of the centralized load-balancing approach.

11

7 RELATED WORK
Work related to Tornado can be categorized into four main cate-
gories: 1) distributed query-processing, 2) spatial and spatio-textual
query-processing, 3) spatio-textual access methods, and 4) adaptive
query-processing.
Distributed Query-Processing: Many systems have been devel-
oped to process large-scale datasets. Batch-based systems, e.g.,
Apache Hadoop [1], are designed to process large amounts of data
in an offline manner (i.e., on disk). In these systems, a single job can
take several minutes or even hours to complete. Apache Spark [23]
has been introduced to improve the latency of Hadoop. Streaming
systems, e.g., Storm[21], process data streams of high arrival rates
in real-time. However, none of the aforementioned systems is opti-
mized for processing spatial-keyword queries.
Spatial and Spatio-textual Systems: Several centralized systems,
e.g., [18] and distributed e.g., [5, 11] have been proposed to pro-
cess spatial queries. However, these systems do not support the
execution of spatial-keyword queries. ST-HBase [16] is a distributed
spatio-textual processing system that is based on HBase. However,
ST-HBase is batch-based, i.e., cannot support real-time execution
of spatial-keyword queries. The general range search problem, i.e.,
the problem of finding the data points and rectangles that overlap a
rectangle has been extensively studied in the literature, e.g., [4, 14].
Tornado’s neighbor-based routing algorithm does not violate the
logarithmic lower-bounds described by Agrawal et al. [4] as spatial
ranges indexed do not overlap and cover the entire space.
Spatio-Textual Access Methods: Many indexes have been pro-
posed to process spatial-keyword queries e.g., [10, 15, 22]. These
access methods integrate a spatial index, e.g., the R-tree [14] or the
Quad-tree [20] with a keyword index, e.g., Inverted lists [26]. These
access methods are centralized and do not scale across multiple
machines.
Adaptive Query-Processing: AQWA [7] is an adaptive spatial pro-
cessing system that is based on Hadoop. AQWA executes snapshot
queries over static data. AQWA reacts to workload changes by in-
crementally splitting the data partitions. Unlike Tornado, AQWA
requires centralized statistics, and halts the processing of queries
until rebalancing is completed. Moreover, AQWA does not consider
the textual aspects of the data and the routing cost of the data ob-
jects. Moreover, AQWA uses only split operations to redistribute the
workload.

8 CONCLUSIONS
In this paper, we introduce Tornado, an adaptive, distributed, and
real-time system for the processing spatial-keyword data streams.
Tornado uses several optimizations, e.g., spatio-textual global rout-
ing, neighbor-based spatial routing, to alleviate performance bot-
tlenecks in the system. Tornado is adaptive to changes in data
distribution and query workload and is able to preserve the system
throughput under varying workloads. Tornado achieves two orders
of magnitude improvements over the performance of the baseline.

REFERENCES
[1] 2017. Hadoop. http://hadoop.apache.org/. (2017).
[2] 2017. Internet live stats. https://internetlivestats.com/. (2017).

[3] 2017. Keyword search statistics. http://www.keyworddiscovery.com/
keyword-stats.html. (2017).

[4] Pankaj K Agarwal, Jeff Erickson, and others. 1999. Geometric range searching
and its relatives. Contemp. Math. 223 (1999), 1–56.

[5] Ablimit Aji, Fusheng Wang, Hoang Vo, Rubao Lee, Qiaoling Liu, Xiaodong
Zhang, and Joel Saltz. 2013. Hadoop GIS: a high performance spatial data
warehousing system over mapreduce. PVLDB 6, 11 (2013), 1009–1020.

[6] Ahmed M Aly, Hazem Elmeleegy, Yan Qi, and Walid Aref. 2016. Kangaroo:
Workload-Aware Processing of Range Data and Range Queries in Hadoop. In
WSDM. 397–406.

[7] Ahmed M Aly, Ahmed R Mahmood, Mohamed S Hassan, Walid G Aref, Mourad
Ouzzani, Hazem Elmeleegy, and Thamir Qadah. 2015. AQWA: adaptive query
workload aware partitioning of big spatial data. Proceedings of the VLDB Endow-
ment 8, 13 (2015), 2062–2073.

[8] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger.
1990. The R*-tree: an efficient and robust access method for points and rectangles.
Vol. 19. ACM.

[9] Mark De Berg, Marc Van Kreveld, Mark Overmars, and Otfried Cheong
Schwarzkopf. 2000. Computational geometry. Springer.

[10] Ian De Felipe, Vagelis Hristidis, and Naphtali Rishe. 2008. Keyword search on
spatial databases. In ICDE. 656–665.

[11] Ahmed Eldawy and Mohamed F Mokbel. SpatialHadoop: A MapReduce frame-
work for spatial data. In ICDE, year=2015.

[12] Raphael A. Finkel and Jon Louis Bentley. 1974. Quad trees a data structure for
retrieval on composite keys. Acta informatica 4, 1 (1974), 1–9.

[13] Michelangelo Grigni and Fredrik Manne. 1996. On the complexity of the gen-
eralized block distribution. In Parallel Algorithms for Irregularly Structured
Problems. Springer, 319–326.

[14] Antonin Guttman. 1984. R-trees: a dynamic index structure for spatial searching.
Vol. 14. ACM.

[15] Zhisheng Li, Ken CK Lee, Baihua Zheng, Wang-Chien Lee, Dik Lee, and Xufa
Wang. 2011. Ir-tree: An efficient index for geographic document search. TKDE
23, 4 (2011), 585–599.

[16] Youzhong Ma, Yu Zhang, and Xiaofeng Meng. 2013. ST-HBase: a scalable data
management system for massive geo-tagged objects. In Web-Age Information
Management. Springer.

[17] Ahmed R Mahmood, Ahmed M Aly, Thamir Qadah, El Kindi Rezig, Anas Daghis-
tani, Amgad Madkour, Ahmed S Abdelhamid, Mohamed S Hassan, Walid G Aref,
and Saleh Basalamah. 2015. Tornado: A distributed spatio-textual stream process-
ing system. PVLDB 8, 12 (2015), 2020–2023.

[18] Mohamed F Mokbel and Walid G Aref. 2008. SOLE: scalable on-line execution
of continuous queries on spatio-temporal data streams. The VLDB Journal 17, 5
(2008), 971–995.

[19] Beng Chin Ooi, Ken J McDonell, and Ron Sacks-Davis. 1987. Spatial kd-tree:
An indexing mechanism for spatial databases. In IEEE COMPSAC, Vol. 87. 85.

[20] Hanan Samet. 1990. The design and analysis of spatial data structures. Vol. 85.
Addison-Wesley Reading, MA.

[21] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M
Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham,
and others. 2014. Storm@ twitter. In SIGMOD. ACM, 147–156.

[22] Xiang Wang, Ying Zhang, Wenjie Zhang, Xuemin Lin, and Wei Wang. 2015.
Ap-tree: Efficiently support continuous spatial-keyword queries over stream. In
ICDE. 1107–1118.

[23] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion
Stoica. 2010. Spark: cluster computing with working sets. (2010).

[24] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and
Ion Stoica. 2013. Discretized streams: Fault-tolerant streaming computation at
scale. (2013).

[25] Yu Zhang, Youzhong Ma, and Xiaofeng Meng. 2014. Efficient Spatio-textual
Similarity Join Using MapReduce. In IAT, Vol. 1. 52–59.

[26] Justin Zobel and Alistair Moffat. 2006. Inverted files for text search engines. ACM
computing surveys (CSUR) 38, 2 (2006), 6.

12

http://hadoop.apache.org/
https://internetlivestats.com/
http://www.keyworddiscovery.com/keyword-stats.html
http://www.keyworddiscovery.com/keyword-stats.html

	Abstract
	1 Introduction
	2 Preliminaries
	3 Tornado System Architecture
	3.1 The Routing Units: The Augmented-Grid (A-Grid)
	3.2 Evaluators

	4 Real-time Load Balancing
	4.1 Initialization
	4.2 Adaptivity in Tornado
	4.3 Decentralized Load-Balancing
	4.4 Updating the Data Structures
	4.5 Correctness during Load-balancing
	4.6 Lazy Cleaning

	5 Analysis
	6 Experimental Evaluation
	6.1 Tornado vs. Native Storm
	6.2 Performance of the Routing Layer
	6.3 Scalability
	6.4 Adaptivity

	7 Related Work
	8 Conclusions
	References

