
HAL Id: hal-03622967
https://hal.science/hal-03622967v1

Submitted on 29 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A DSL for requirements in the context of a seamless
approach

Florian Galinier

To cite this version:
Florian Galinier. A DSL for requirements in the context of a seamless approach. 33rd IEEE/ACM
International Conference on Automated Software Engineering (ASE 2018), Sep 2018, Montpellier,
France. pp.932-935. �hal-03622967�

https://hal.science/hal-03622967v1
https://hal.archives-ouvertes.fr

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/22640

Official URL

DOI : https://doi.org/10.1145/3238147.3241538

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Galinier, Florian A DSL for requirements in
the context of a seamless approach. (2018) In: 33rd IEEE/ACM
International Conference on Automated Software Engineering (ASE
2018), 3 September 2018 - 7 September 2018 (Montpellier, France).

A DSL for Requirements in the Context of a Seamless Approach

Florian Galinier
IRIT, Toulouse University

Toulouse, France
!orian.galinier@irit.fr

ABSTRACT

Reducing the lack of consistency between requirements and the
system that should satisfy these requirements is one of the ma-

jor issue in Requirement Engineering (RE). The objective of my
thesis work is to propose a seamless approach, allowing users to ex-
press requirements, specifications and the system itself in a unique
language.

The purpose of formal approaches is to reduce inconsistency.
However, most developers are not familiar with these approaches,
and they are not often used outside the critical systems domain.
Since we want that non-experts can also use our approach to vali-
date systems in the early stage of their development, we propose
a Domain Specific Language (DSL) that is: (i) close to natural lan-
guage, and (ii) based on a formal semantics. Using Model-Driven
Engineering (MDE), this language bridges the gap not only between
the several stakeholders that can be involved in a project, consider-
ing their different backgrounds, but also between the requirements
and the code.

KEYWORDS

Requirements engineering, DSL, Seamless development, Traceabil-
ity, Verification and Validation

1 RESEARCH PROBLEM
One of the main challenge in Requirements Engineering (RE) is to
introduce formality in the expression of requirements. If formal ap-
proaches are used in critical systems, most of the time requirements
are still expressed in Natural Language (NL). This can be explained
by the force of habits, by the lack of knowledge on formal methods,

https://doi.org/10.1145/3238147.3241538

or simply by the need to use a language understandable by all of

the stakeholders. However, the use of a formal approach to express

requirements shall lead to validate the systems in a rigorous way.

To overcome the di%culty of formal methods adoption, trace-

ability is often used. This can help to detect which requirements

are satis"ed – providing a coverage information –, but given that

traceability links are not semantically de"ned, these links cannot

be automatically analyzed.

There is so a main question to address: How to link requirements

and other artifacts (such as requirements or even system parts) to au-

tomatically validate a system? This question also raises the problem

that in complex systems, stakeholders with di#erent backgrounds

are involved and often use heterogeneous tools. INCOSE [1] em-

phasizes this need to conciliate the several views of a system, and

address it as a major challenge.

These questions are critical. Indeed, a lack of consistency be-

tween requirements and systems can lead to dramatic failures, such

as some of the one listed in [2].

2 PREVIOUS WORKS

As we stated in [3], two worlds can be distinguished in RE1. Formal

methods are, by de"nition, the more mathematically rigorous, and

approaches like Event-B [4] or VDM [5] have been successfully

used among years. As mentioned in section 1, the major issues

of these approaches is linked to their main advantage: there are

formal, and so, discouraging to non-experts.

That is why the most used tools, industrial ones, rely on Nat-

ural Language. IBM Rational Doors [6] or Reqtify [7] thus allow

to create traceability links between requirements, expressed in a

Microsoft Word document for example, with a part of the system –

e.g., some C code. SysML [8] also proposes a requirements diagram,

that allows users to link requirements to other parts of systems

(such as blocks). If SysML’s relationships own a type, contrary

to the previously mentioned industrial approaches, there are not

semantically de"ned.

Some approaches try to propose a bridge between the “formal

world" and the “NL world". For example, Relax [9] or Stimulus [10]

propose to express requirements in a constrained NL, allowing

users to express requirements as they usually do. Their approaches

are however semantically de"ned – in fuzzy branching temporal

logic [11] for Relax and on a programming language based on Lucid

Synchrone [12] and Lutin [13] for Stimulus. This helps the user to

check requirements, while using an easy-to-handle tool. However,

these approaches do not address the problem of linking require-

ments to the system, and are more speci"cally designed to ease and

strengthen the requirements elicitation (making it rigorous).

1We are currently working on a survey of formal approaches for requirements.

The Single Model Principle proposed in [14] and adapted in [15]
recommends the use of an unique paradigm to express the several
artifacts of the system. This should help to avoid the gap introduced
by the use of several languages, allowing users to validate the
system while developing it. The proposed approach is based on this
seamless idea.

3 PROPOSED APPROACH
3.1 Seamless Requirements

In [16], a set of patterns are proposed to transform NL requirements
to a programmatic representation, based on Design by Contracts
[17]. These representations – named speci!cation drivers in [18] –
shall be used to validate that other parts of system, controlled by
these speci"cation drivers, are complying with the requirements.

By using a programming language that integrates Design by
Contracts (such as Ei#el or JML[19]), this approach is seamless. It
allows users to represent requirements (via speci!cation drivers) and
system implementation (via the code) in a same paradigm. Moreover,
the solver can be used to prove this validation (for example, the
Autoproof tool [20] for Ei#el), by calling it on speci"cation drivers.

−− R e q u i r e an ambulance t o be

m o b i l i z e d _ w i t h i n _ t w o _ t i m e _ u n i t s
l o ca l

o l d _ d i s t a n c e : INTEGER

do

from

o l d _ d i s t a n c e : = d i s t a n c e

o c c u r s _ a l l o c a t e

unt i l

mob i l i z e d = mob i l i z e or

(d i s t a n c e − o l d _ d i s t a n c e) >= 2

loop

mob i l i z e_ambu lance

end

ensure

i s _mo b i l i z e d : mob i l i z e d = mob i l i z e

d i s t a n c e _ l e s s _ t h a n _ two : d i s t a n c e −

o l d _ d i s t a n c e <= 2

end

Listing 1: Example of a functional requirement from the

London Ambulance Service (LAS) system [21] expressed

with speci!cation driver in Ei"el
Listing 1 is an example of a speci"cation driver. This driver

controls the validation of the requirement “After being allocated,

an ambulance shall be mobilized within two time units". The mo-

bilize_ambulance feature is the controlled one – i.e., the feature

that should satisfy the requirement.

3.2 Semantics of Relationships

Since it is possible in Ei#el to express requirements and other arti-

facts, we propose to explicit relationships between these artifacts.

We use for this purpose the Ei#el Information System (EIS) mecha-

nism. This mechanism exploits the Ei#el notion of note (equivalent

to Java annotations), that let developers put information in the form

of:

<Notes> ::= ‘note’ <Note>+

<Note> ::= <Tag> ‘:’ <String> <NEWLINE>

This mechanism allows the users of Ei#elStudio (the main IDE

for Ei#el) to create links between parts of code (features, classes

or clusters) and other documents (such as Microsoft Word, PDF,

website, . . .). If one of the endpoint of this link is modi"ed, the IDE

warn the user that a change occurred and he should probably take

care of it.

To make explicit the relationships linked to requirements ex-

pressed through speci"cation drivers, we modify this mechanism2.

More "ne grain are thus possible, allowing users to link parts of

features (such as assertions, used to express the speci"cations’ con-

straints). EIS links can also be used to link parts of code between

themselves (for example a speci"cation driver and the feature that

should satisfy this driver), and these relationships are now typed.

These add should lead to clarify the several relationships existing

between artifacts.

1 −− R e qu i r e an ambulance t o be

2 mob i l i z e d _w i t h i n _ two_ t ime_un i t s

3 note

4 EIS : " s r c = r equ i r emen t s . docx " , " r e f = 1 . 6 "

, " type= t r a c e "

5 EIS : " s r c =mob i l i z e_ambu lance " , " d e s t =

i s _mob i l i z e d ,

d i s t a n c e _ l e s s _ t h a n _ two " , " type=

v e r i f y "

6 l o ca l

7 o l d _ d i s t a n c e : INTEGER

8 do

9 from

10 o l d _ d i s t a n c e : = d i s t a n c e

11 o c c u r s _ a l l o c a t e

12 unt i l

13 mob i l i z e d = mob i l i z e or

14 (d i s t a n c e − o l d _ d i s t a n c e) >= 2

15 loop

16 mob i l i z e_ambu lance

17 end

18 ensure

19 i s _mo b i l i z e d : mob i l i z e d = mob i l i z e

20 d i s t a n c e _ l e s s _ t h a n _ two : d i s t a n c e −

o l d _ d i s t a n c e <= 2

21 end

Listing 2: Example of EIS links on speci!cation driver

of Listing 1

In Listing 2, we add EIS links to our previous example. Re-

lationships are thus clari"ed. Actually, example giving, the EIS

note line 4 links the speci"cation driver to a textual version of it,

in a Microsoft Word document, referenced by the bookmark 1.6.

The note line 5 details the role of assertions is_mobilized and

2https://github.com/fgalinier/Ei#elStudio

A DSL for Requirements in the Context of a Seamless Approach ASE ’18, September 3–7, 2018, Montpellier, France

distance_less_than_two that are used to verify the validation

of the speci"cation driver by the feature mobilize_ambulance.

Moreover, we add semantics to these links, de"ned in Table 1. The

notation used in the following is:

• Ri is a requirement;

• ri is the speci"cation driver of the requirement Ri ;

• f is an Ei#el feature (a method or an attribute);

• a is an assertion in Ei#el (a pre or postcondition, or an in-

variant)

Table 1: Types of EIS relationships and their semantics.

Relationships Semantics

Trace Link with no semantics

Re"ne R1 re"nes R2
∆
= r1 rede"ne r2

Contains
R1 contains R2

∆
=

r2 is called in r1 ∧(� r3 : R3 | r2 is called in r3)

Copy

R1 copies R2
∆
=

r1 body is a unique call to r2

Derive
R1 derives from R2

∆
=

r1 is called in r2

Satisfy f contributes to satisfy R1
∆
= f is called in r1

Verify a veri"es R1
∆
= a is an assertion of r1

These semantics can be used in two di#erent ways:

• it should lead to a complete requirements validation – e.g., a

requirement R1 that contains requirements R2 and R3 will

be validate thanks to this semantics only if both contained

requirements are validate;

• by checking if the semantics of the relationships is respected,

users can have feedback on the matching of what they in-

tended to express and these relationships.

Thus, by adding semantics on links between requirements and

artifacts, we get a more precise information on the validity of the

system. Besides, we plan to explore the inverse relationships, to

detect patterns that can be used to generate relationships between

requirements. This can also help to detect relationships between

requirements coming from several stakeholders.

3.3 Addressing the Several Stakeholders

Addressing the several stakeholders is a quite di%cult problem,

since they used several kinds of representations.

This problem is a well-known problem on Model Driven Engi-

neering (MDE), and models transformations can be used to over-

come these gaps between languages. Instead of de"ning one-to-one

transformations between several languages, we propose to de"ne a

modeling language, that can be used as a pivot.

We called this language Requirement Speci"c Modeling Lan-

guage (RSML)3. It is a DSL with a concrete syntax in a NL style

(such as Stimulus or Relax), semantically de"ned in Ei#el.

In Fig. 1, is an example of a functional requirement expressed in

RSML. Using patterns mentioned in section 3.1, this requirement

3https://gitlab.com/fgalinier/RSML

Figure 1: Example of a requirement from the LAS expressed

in RSML

is transformed in an Ei#el representation (given Listing 3). Links

between the speci"cation driver and the automatically generated

feature that should satisfy this requirement, are also added. In a

similar way than Behavior Driven Development (BDD) [22], RSML

should allow engineers to verify that the system speci"cation is cor-

rect regarding to the requirements. However, contrary to BDD tools

such as Cucumber[23], RSML provide a a formal representation of

requirements, that can be used for static analysis of speci"cation.

This feature will be an entry point used by the engineer that will

write the speci"cation, allowing him to control that the code is

correct.

−− 1 . 1

a n _ i n c i d e n t _ s h a l l _ b e _ r e s o l v e d

note

EIS : " s r c = r equ i r emen t s . r sml " , " r e f = 1 . 1 " ,

" d e s t = even t_an_ inc iden t_happened ,

a n _ i n c i d e n t _ i s _ r e s o l v e d " , " type=

v e r i f y "

E IS : " s r c = r e s o l v e _ i n c i d e n t " , " type=

s a t i s f y "

D e s c r i p t i o n : " [

[1 . 1] An i n c i d e n t s h a l l be r e s o l v e d

when an i n c i d e n t happened .

] "

require

even t_an_ inc i d en t_happened :

an_ inc i den t_happened

do

r e s o l v e _ i n c i d e n t

ensure

a n _ i n c i d e n t _ i s _ r e s o l v e d : a n _ i n c i d e n t =

r e s o l v e d

end

Listing 3: RSML requirement from Fig. 1 translated in Ei"el

We plan to propose drivers from RSML to other used notation for

requirements, such as SysML, KAOS[24] or even Microsoft Word

documents. This should lead to reduce the gap between require-

ments, speci"cations and implementation. We also expect to use

Autoproof to "nd some inconsistencies between requirements in an

early stage, in a complementary way to model-checking approaches

such as Stimulus.

4 EVALUATIONS

To evaluate the proposed approach, we are currently exploring

di#erent ways of implementation.

First we want to consider di#erent activity domains. So, we

applied the approach on two case studies, one is the embedded

system of the LGS ([25]), and the other one is the reactive system

LAS ([21]), already seen in this paper. We intend to apply it also on

an Information System, a banking system for example. It will so be
clear that RSML can apply on a large panel of activity domains.

Secondly, through these applications, we will consider several
types of requirements (e.g., timing constraints, temporal require-
ments, . . .). For now, the enactment of this approach on the LGS
and the LAS allowed us twice to highlight issues. In the "rst case
we identi"ed it in a set of LTL rules formalizing the LGS’ temporal
requirements ([16]). In the second case, the failure of the Auto-
proof session was linked to a misinterpretation of one of the timing
LAS requirements. Supporting all these types of requirements, our
approach could prove e%cient to express reactive systems require-
ments.

Thirdly, we are currently implementing the approach on a pro-
totype that will be test in the scope of a process involving several
stakeholders. At "rst, we intend to propose a subject of practical
classes to students, in the framework of RE course. The main idea is
to split the class in three groups. We shall supply three case studies.
Each of the groups will have a speci"c case study to be handled
and so a set of requirements, expressed in a MSWord document.
Every group will "rst supply its own RSML code, then propose the
corresponding Ei#el code with the traceability links to the reference
document and endly run it with Autoproof to check the validity
of its system. We will so prove the usefulness of the approach for
both novices and advanced stakeholders alike.

Finally and border line, we would also like to make an experi-
mentation to see if from the RSML code of the LGS we can deduce
a valid set of LTL constraints. Actually, we believe that if from an
RSML system we can not only deduce Ei#el systems, bene"ting
from its powerful environment (EIS, Autoproof, . . .), but also LTL
formulae, there would be possible to obtain Event-B systems, and
so on. We will so enforce the usefulness of RSML, being able to use
it to exploit others formal veri"cation languages and tools.

5 CONCLUSION AND PERSPECTIVE
We present in this paper some solutions to lead the users to formally
express requirements without any speci"c knowledge while being
able to validate them.

We propose for this purpose a seamless approach of development.
It will reduce the gap between requirements and system, using
a unique language to express both of them, Ei#el. To e ase the
analysis of the whole requirements, we de"ne the semantics of
relationships that exist between requirements and other artifacts.
We also present RSML, a modeling language providing a canvas to
express requirements in a syntax that is near from natural language
and so, easy to handle. Since we automatically translate RSML
requirements in Ei#el code, we are able to use an Ei#el solver to
validate the provided system. This should also help users to detect
errors in requirements or in the system that have to meet these
requirements as early as possible. This is an ongoing work, and
proposed solutions are still to improve – e.g., we are extending the
syntax of RSML and adding new relationships.

The "rst experiments give us some encouraging results, and we
plan to apply our approach to more complex case study (with more
requirements), coming from diverse domains.

One of the major remaining work is the creation of bridges with
other formalisms of requirements’ modeling (e.g., SysML, KAOS,

. . .) to inscribe our approach in a model globalization context. This

should allow the users to use their usual tools while bene"ting from

the advantages of our approach.

REFERENCES
[1] INCOSE. SE Vision 2025. 2014. http://www.incose.org/docs/default-source/

aboutse/se-vision-2025.pdf.
[2] Matt Lake. Epic failures: 11 infamous software bugs | Computerworld, 2010.
[3] Florian Galinier, Jean-Michel Bruel, Sophie Ebersold, and Bertrand Meyer. Seam-

less integration of multirequirements in complex systems. In 2017 IEEE 25th
International Requirements Engineering Conference Workshops (REW), pages 21–
25. IEEE, 2017.

[4] Jean-Raymond Abrial. Modeling in Event-B: System and Software Engineering.
Cambridge University Press, New York, NY, USA, 1st edition, 2010.

[5] Dines Bjørner and Cli# B. Jones, editors. The Vienna Development Method: The
Meta-Language, volume 61 of LNCS. Springer-Verlag, 1978.

[6] IBM Rational Doors. https://www.ibm.com/us-en/marketplace/
requirements-management. Accessed: 2018-05-23.

[7] Dassault Systems Catia Reqtify. https://www.3ds.com/products-services/catia/
products/reqtify. Accessed: 2018-05-23.

[8] Object Management Group (OMG). OMG Systems Modeling Language (OMG
SysML™), V1.0. 2007. OMG Document Number: formal/2007-09-01 Standard doc-
ument URL: http://www.omg.org/spec/SysML/1.0/PDF.

[9] Jon Whittle, Pete Sawyer, Nelly Bencomo, Betty H. C. Cheng, and Jean-Michel
Bruel. RELAX: Incorporating Uncertainty into the Speci"cation of Self-Adaptive
Systems. In 2009 17th IEEE International Requirements Engineering Conference,
pages 79–88, 2009.

[10] Bertrand Jeannet and Fabien Gaucher. Debugging real-time systems requirements:
simulate the “what” before the “how”. In Embedded World Conference, Nürnberg,
Germany, 2015.

[11] Seong-ick Moon, Kwang H. Lee, and Doheon Lee. Fuzzy branching temporal
logic. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
34(2):1045–1055, April 2004.

[12] Jean-Louis Colaço, Bruno Pagano, and Marc Pouzet. A Conservative Extension
of Synchronous Data-!ow with State Machines. In Proceedings of the 5th ACM
International Conference on Embedded Software, EMSOFT ’05, pages 173–182, New
York, NY, USA, 2005. ACM.

[13] Pascal Raymond, Yvan Roux, and Erwan Jahier. Specifying and Executing Reactive
Scenarios With Lutin. Electronic Notes in Theoretical Computer Science, 203(4):19–
34, June 2008.

[14] Richard Paige and Jonathan Ostro#. The Single Model Principle. In Proceedings
of the Fifth IEEE International Symposium on Requirements Engineering, RE ’01,
pages 292–, Washington, DC, USA, 2001. IEEE Computer Society.

[15] Bertrand Meyer. Multirequirements. Modelling and Quality in Requirements Engi-
neering (Martin Glinz Festscrhift), 2013.

[16] Alexandr Naumchev, Bertrand Meyer, Manuel Mazzara, Florian Galinier, Jean-
Michel Bruel, and Sophie Ebersold. Expressing and verifying embedded software
requirements. arXiv preprint arXiv:1710.02801, 2017.

[17] Bertrand Meyer. Applying ’design by contract’. Computer, 25(10):40–51, October
1992.

[18] Alexandr Naumchev and Bertrand Meyer. Complete contracts through speci"ca-
tion drivers. arXiv:1602.04007 [cs], February 2016. arXiv: 1602.04007.

[19] Gary T Leavens, Albert L Baker, and Clyde Ruby. Preliminary design of jml:
A behavioral interface speci"cation language for java. ACM SIGSOFT Software
Engineering Notes, 31(3):1–38, 2006.

[20] Julian Tschannen, Carlo A. Furia, Martin Nordio, and Nadia Polikarpova. Au-
toProof: Auto-Active Functional Veri"cation of Object-Oriented Programs. In
Christel Baier and Cesare Tinelli, editors, Tools and Algorithms for the Construc-
tion and Analysis of Systems, number 9035 in Lecture Notes in Computer Science,
pages 566–580. Springer Berlin Heidelberg, April 2015. DOI: 10.1007/978-3-662-
46681-0_53.

[21] Emmanuel Letier. Reasoning about agents in goal-oriented requirements engineering.
PhD thesis, PhD thesis, Université catholique de Louvain, 2001.

[22] Carlos Solis and Xiaofeng Wang. A study of the characteristics of behaviour
driven development. In Software Engineering and Advanced Applications (SEAA),
2011 37th EUROMICRO Conference on, pages 383–387. IEEE, 2011.

[23] Matt Wynne, Aslak Hellesoy, and Steve Tooke. The cucumber book: behaviour-
driven development for testers and developers. Pragmatic Bookshelf, 2017.

[24] Axel van Lamsweerde. Goal-oriented requirements engineering: a guided tour.
In Proceedings Fifth IEEE International Symposium on Requirements Engineering,
pages 249–262, 2001.

[25] Frédéric Boniol and Virginie Wiels. The Landing Gear System Case Study. In
Frédéric Boniol, Virginie Wiels, Yamine Ait Ameur, and Klaus-Dieter Schewe,
editors, ABZ 2014: The Landing Gear Case Study, number 433 in Communica-
tions in Computer and Information Science, pages 1–18. Springer International
Publishing, June 2014. DOI: 10.1007/978-3-319-07512-9_1.

