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Abstract

We develop a model of social learning from overabundant information: Short-lived

agents sequentially choose from a large set of (flexibly correlated) information sources

for prediction of an unknown state. Signal realizations are public. We demonstrate

two starkly different long-run outcomes: (1) efficient information aggregation, where

the community eventually learns as fast as possible; (2) “learning traps,” where the

community gets stuck observing suboptimal sources and learns inefficiently. Our main

results identify a simple property of the signal correlation structure that separates these

outcomes. In both regimes, we characterize which sources are observed in the long run

and how often.

1 Introduction

In many learning problems, agents cannot design their information in a completely flexi-

ble way. Instead, they choose from a given, finite (though often large) set of information

sources. For instance, a researcher studying depression cannot access arbitrarily precise sig-

nals about the role of stress. He can however acquire many kinds of information related

to this question; for example, he might acquire neurochemical and genetic data from indi-

viduals undergoing stressful life changes, or collect observational data about simultaneous

occurrences of depression and stress.

The value to acquiring new information depends on how that information relates to what

is already known. Thus, past information acquisitions can shape the perception of which
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kinds of information are currently most useful. For example, a better understanding of the re-

lationship between serotonin and depression increases the value to comparing serotonin levels

across individuals (as opposed to other neurochemicals whose roles are less well-understood).

Models of information acquisition often avoid explicitly describing these informational com-

plementarities, as they complicate the analysis.1 But relationships across diverse sources can

have significant implications for behavior, in particular in dynamic learning environments

where information is passed down over time.

The main contribution of this paper is to identify a new externality driven by complemen-

tarities across sources, and to characterize the consequences of this externality for long-run

aggregation of information. We show that past information acquisitions have the potential

to shape future acquisitions in two starkly different ways.

• Efficient information aggregation: Past information helps agents to identify the “best”

kinds of information. At all sufficiently late periods, a social planner cannot improve

on the history of acquisitions.

• Learning traps: Past information pushes agents to acquire information that leads to

inefficiently slow learning. Early suboptimal choices propagate over time.

Relationships across the entire set of information sources are relevant to which of these

outcomes emerges, and our main results identify a key property that determines the outcome.

In our model, agents are indexed by (discrete) time and sequentially choose from a large

number of information sources, each associated with a signal about a payoff-relevant state.

We allow for flexible correlation across the sources by modeling each kind of information as a

(noisy) linear combination of the payoff-relevant state and a set of “confounding” variables.

After acquiring information, each agent predicts the payoff-relevant state.

In contrast to the classic sequential learning model (Bikhchandani, Hirshleifer and Welch,

1992; Banerjee, 1992; Smith and Sorenson, 2000), we suppose that signal realizations are

public, so that predictions are based on the history of realizations thus far. This departure

permits us to focus on the externalities created by agents’ choice of kind of information, as

opposed to the more frequently studied frictions that emerge from inference.

We are mainly interested in settings with many sources of information, including some

that are redundant. Formally, agents can completely learn the payoff-relevant state from

exclusive (repeated) observation of signals from each of several possible subsets. As a bench-

mark, we first derive the optimal long-run frequency of signal acquisitions. These correspond

to the choices that maximize information revelation about the payoff-relevant state, and also

to the choices that maximize a discounted sum of agent payoffs (in a patient limit).

1Exceptions include Borgers, Hernando-Veciana and Krahmer (2013), Chen and Waggoner (2016), and

Chade and Eeckhout (2018) among others.
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Our main results demonstrate that whether society’s acquisitions converge to this optimal

long-run frequency depends critically on how many signals are needed to identify the payoff-

relevant state. The key intuition refers back to an observation made in Sethi and Yildiz

(2016): An agent who repeatedly observes a source confounded by an unknown parameter

learns both about the payoff-relevant state and also about the confounding term, and hence

improves his interpretation of this source over time. In our setting, where a single con-

founding term can affect multiple sources, there is a further spillover effect: Learning from

one source helps agents to interpret information from all sources confounded by the same

parameters.

Suppose that in order to learn the payoff-relevant state, agents must observe a set of

sources that reveals all of the confounding terms as well. Then endogenously, agents will

acquire information that (collectively) reveals all of the unknowns. This will lead agents to

evaluate all sources by an “objective” asymptotic criterion, which then reveals the best set of

sources. More formally, we obtain the following result: If K sources are required to recover

the payoff-relevant state (where K is also the number of unknown states), then long-run

acquisitions are optimal starting from any prior belief.

In contrast, if it is possible to learn the payoff-relevant state without recovering all of the

confounding terms, then agents can persistently undervalue sources that provide information

confounded by these remaining variables. Thus, long-run learning may be inefficient. Our

second main result says that any set of fewer than K sources that recovers the payoff-relevant

state creates a “learning trap” under some set of prior beliefs. We further show that the long-

run inefficiency under a learning trap—measured as the ratio of optimal aggregated payoffs

and achieved aggregated payoffs (under a social planner criterion)—can be arbitrarily large.

The basic friction here is that investment in learning about confounding terms is socially

beneficial, but not necessarily optimal for individuals. Our main results show that this

wedge between individual incentives and social objectives does not preclude long-run efficient

learning. When the available kinds of information are related in certain ways, individual

incentives will nevertheless endogenously drive individuals to acquire information in a way

that is socially efficient.

In the remaining cases, interventions may be needed to transition agents towards better

sets of sources. In the final part of our paper, we study possible such interventions. We show

that policymakers can restore efficient information aggregation by providing certain kinds of

free information (that we characterize), or by reshaping the reward structure so that agents’

predictions are based on information that they acquire over many periods. The success of

these interventions depends on specific features of the informational environment, as we will

discuss.
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1.1 Related Literature

A recent literature considers choice from different kinds of information sources (Sethi and Yildiz,

2016; Che and Mierendorff, 2017; Fudenberg, Strack and Strzalecki, 2017; Mayskaya, 2017;

Liang, Mu and Syrgkanis, 2017; Sethi and Yildiz, 2017). We build upon Liang, Mu and Syrgkanis

(2017) in particular, which introduced the framework we use here (see Section 2) under the

restriction that all of the sources are required to learn the payoff-relevant state. This restric-

tion rules out the possibility of overabundant information, which is the focus of the present

paper.

Sethi and Yildiz (2016, 2017) study long-run (myopic) acquisitions from a large number

of Gaussian sources, as we do. Our model differs from this work in a few key ways: First,

Sethi and Yildiz (2016, 2017) consider stochastic error variances, so that the “best” sources

vary from period to period; in contrast, we fix error variances, so there is (generically) a

unique “best” asymptotic set. Second, Sethi and Yildiz (2016, 2017) focus on correlation

structures that fall under our “learning traps” result (part (a) of Theorem 2), while we

explore arbitrary correlation structures and show that many lead to optimal learning.

Our model builds on the social learning and herding literatures (Smith and Sorenson,

2000; Banerjee, 1992; Bikhchandani, Hirshleifer and Welch, 1992), which consider informa-

tion aggregation by short-lived agents who sequentially acquire information. At a high level,

the externality identified in our paper relates to the classic externality from this literature:

In both settings, the precision of public information can grow inefficiently slowly because of

endogenous information acquisitions driven by past choices. But in the present paper, all

signal realizations are publicly and perfectly observed, which turns off the inference problem

essential to the existence of cascades in standard herding models. Our focus is on a new

mechanism, in which externalities arise through choice of kind of information; as we will see,

this externality has a rather different structure.

Our setting with choice of information connects to the work by Burguet and Vives (2000),

Mueller-Frank and Pai (2016), and Ali (2018), which introduced endogenous information ac-

quisition to social learning models. Relative to this work, our paper considers choice from

a fixed set of information sources (with a capacity constraint), in contrast to choice from a

flexible set of information sources (with a cost on precision). Our results focus on the speed of

learning, as in Vives (1992), Golub and Jackson (2012), Hann-Caruthers, Martynov and Tamuz

(2017), and Harel et al. (2018) among others.

Our motivation of the optimal frequency in Section 4 is related to the experimental design

literature in statistics, and in particular to the notion of c-optimality (choice of t experiments

to minimize the posterior variance of an unknown state). Chaloner (1984) showed that a

c-optimal design exists on at most K points. Our Theorem 1 extends this result, supplying
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a characterization of the optimal design itself and demonstrating uniqueness.2 We further

show that the optimal frequency maximizes a discounted objective in the patient limit.

Finally, our main results admit a re-interpretation that connects to a literature on learning

convergence in potential games, with more detail given in Section 6.

2 Framework

There are K persistent unknown states: a payoff-relevant state ω and K − 1 confound-

ing states b1, . . . , bK−1. We assume that the state vector θ := (ω, b1, . . . , bK−1)
′ follows a

multivariate normal distribution N (µ0,Σ0),3 where the prior covariance matrix Σ0 has full

rank.4

Agents have access toN kinds or sources of information. Observation of source i produces

an independent realization of the random variable

Xi = 〈ci, θ〉+ ǫi, ǫi ∼ N (0, 1)

where ci = (ci1, . . . , ciK)
′ is a vector of constants, and the error terms ǫti are independent

from each other and over time. It is without loss to normalize the error terms as we do

above, since the coefficients ci are unrestricted (thus, signals can be of differing precision

levels). Throughout, we take C to be the N ×K coefficient matrix whose i-th row is c′i.

The payoff-irrelevant states produce correlations across the sources, and we can interpret

these states for example as:

• Confounding explanatory variables : Observation of signal i produces the (random)

outcome y = ωc1i + b1c
2
i + . . . bK−1c

K
i + ǫi, which depends linearly on an observable

characteristic vector ci. For example, y might be the average incidence of depression in

a group of individuals with characteristics ci. The state of interest ω is the coefficient on

a given characteristic c1i , and the payoff-irrelevant states are the unknown coefficients on

the auxiliary characteristics. Different sources represent subpopulations with different

characteristics.

• Knowledge and technologies that aid interpretation of information: Interpret each sig-

nal as a measurement. For example, researchers studying depression can acquire mea-

surements of various neurochemicals from lab subjects. Neurochemicals differ in how

2Another difference is that Chaloner (1984) studies the optimal continuous design, while we impose an

integer constraint on signal counts.
3All vectors in this paper are column vectors.
4The full rank assumption is without loss of generality: If there is linear dependence across the states, the

model can be mapped into an equivalent setting that has a lower dimensional state space and that satisfies

the full rank condition.
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precisely they can be measured (measurement error) and how well their role is un-

derstood (precision of interpretation). The confounding terms represent the quality of

these different measurement technologies, and also the degree of background contextual

knowledge.

Agents indexed by (discrete) time t ∈ N move sequentially. Each agent t chooses one of

theN signals and observes an independent realization. He then predicts the state ω, receiving

a payoff of −(a − ω)2. We assume throughout that all signal realizations are public; thus,

predictions are based on the entire history of signal acquisitions and realizations.

Throughout, the set of signals is indexed by [N ] = {1, . . . , N}. We call a subset of signals

S ⊂ [N ] spanning if the vectors {ci : i ∈ S} span the coordinate vector e1 = (1, 0, . . . , 0)′ ∈

R
K , so that it is possible to learn the payoff-relevant state ω by repeatedly observing signals

from only S. We call S minimally spanning if it is spanning, and no proper subset of S is

spanning.

We assume in this paper that the complete set of signals [N ] is spanning, so that the

payoff-relevant state can be recovered by observing all signals infinitely often.5 This as-

sumption nests two interesting cases. Say that the informational environment has exactly

sufficient information if [N ] is minimally spanning. Then, it is possible to recover ω by ob-

serving each information source infinitely often, but not by exclusively observing any proper

subset of sources.

We are primarily interested in settings of informational overabundance, where [N ] is

spanning but not minimally spanning. Multiple different subsets of signals allow for recovery

of ω, and a key point of our analysis is to compare the set of sources that “should” be

observed in the long run with the set of sources that is in fact observed in the long run.

Except for trivial cases, informational overabundance corresponds to N > K (more signals

than states).6

5This assumption is without loss, and our results do extend to situations where ω is not identified from

the available signals. To see this, we first take a linear transformation and work with the following equivalent

model: The state vector θ̃ is K-dimensional standard Gaussian, each signal Xi = 〈c̃i, θ̃〉+ ǫi, and the payoff-

relevant parameter is 〈u, θ̃〉 for some fixed vector u. Let R be the subspace of RK spanned by c̃1, . . . , c̃N .

Then project u onto R: u = r + w with r ∈ R and w orthogonal to R. Thus 〈u, θ̃〉 = 〈r, θ̃〉 + 〈w, θ̃〉. By

assumption, the random variable 〈w, θ̃〉 is independent from any random variable 〈c, θ̃〉 with c ∈ R (because

they have zero covariance). Thus the uncertainty about 〈w, θ̃〉 cannot be reduced upon any signal observation.

Consequently, agents only seek to learn about 〈r, θ̃〉, returning to the case where the payoff-relevant parameter

is identified.
6It is possible for ω to be “overidentified” from a set ofN ≤ K signals, e.g.X1 = ω+ǫ1, X2 = ω+b1+b2+ǫ2,

and X3 = b1+ b2+ ǫ3. In this case, the set {X1, X2, X3} is spanning, but not minimally spanning since both

of its subsets {X1} and {X2, X3} are also spanning. Although N = K = 3 in this example, it is equivalent

to a model in which there is a single confounding term b̃1 = b1 + b2, and the three signals are rewritten

X1 = ω + ǫ1, X2 = ω + b̃1 + ǫ2 and X3 = b̃1 + ǫ3. Then we do have N > K in this equivalent model.

6



3 Preliminaries

Each agent t faces a history ht−1 ∈ ([N ]× R)t−1 = H t−1 consisting of all past signal choices

and their realizations. Write θ ∼ N (µt−1,Σt−1) for the agent’s beliefs about the state vector,

prior to making his own signal choice. Given an observation of signal i, his posterior beliefs

become θ ∼ N (µt,Σt). The posterior covariance matrix Σt is a deterministic function of the

prior covariance matrix Σt−1 and the signal choice Xi, and the posterior mean is the random

vector µt ∼ N (µt−1,Σt−1 − Σt).

Agent t’s posterior belief about the payoff-relevant state ω (after observing his signal) is

given by ω ∼ N (µt
1,Σ

t
11),

7 and his maximum expected payoff (corresponding to prediction

of his posterior mean) is −Σt
11. Thus, the signal acquisition that maximizes agent t’s payoffs

is the one that minimizes his posterior variance about ω.

We can track society’s acquisitions as a sequence of division vectors

m(t) = (m1(t), . . . , mN (t))

where mi(t) is the number of times that signal i has been observed up to and including time t.

Let V (q1, . . . , qN) denote posterior variance about ω, given the initial prior covariance matrix

Σ0 and qi observations of each signal i.8 Then, m(t) evolves deterministically according to

the following rule: m(0) is the zero vector, and for each time t ≥ 0 and signal i,

mi(t+ 1) =

{

mi(t) + 1 if V (mi(t) + 1, m−i(t)) ≤ V (mj(t) + 1, m−j(t)) ∀j.

mi(t) otherwise.

That is, in each period t the division vector increases by 1 in exactly one coordinate, corre-

sponding to the signal that allows for the greatest immediate reduction in posterior variance.

We allow ties to be broken arbitrarily, so there may be multiple possible paths m(t). We

are interested in the long-run frequencies of observation limt→∞ mi(t)/t for each signal i.

This describes the fraction of periods that is (eventually) devoted to each signal.9 Note the

possibility for some signals to have zero long-run frequency.

4 Optimal Benchmark

We begin by characterizing the optimal frequency with which each signal should be viewed in

the long run, both from a perspective of information revelation and also from the perspective

7Subscripts indicate particular entries of a vector or matrix.
8For a normal prior and normal signals, the posterior covariance matrix does not depend on signal

realizations. See Appendix A.1 for the complete (closed-form) expression for V .
9We show in Section 5 that the limit exists under a mild technical assumption.
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of a social planner aggregating agent payoffs. These frequencies will serve as a benchmark

against which to evaluate the actual social acquisitions.

4.1 Definition and Motivation

Consider the one-shot problem in which some t observations can be allocated across the

available signals, and the goal is to minimize posterior variance about ω. Call any solution

n(t) ∈ argmin
(q1,...,qK):qi∈Z+,

∑
i qi=t

V (q1, . . . , qK)

a t-optimal division vector. Signal acquisitions prior to time t maximize information revela-

tion about ω if and only if their composition is described by n(t). Thus, we will refer to n(t)

as the optimal count over signals.

Define λOPT = limt→∞ n(t)/t to be the limiting frequency over signals corresponding to

these t-optimal division vectors; that is, λOPT
i is the fraction of periods that is (asymptoti-

cally) optimally devoted to signal i. These frequencies are well-defined and unique under a

subsequent condition (Assumption 1), and we will refer to λOPT from here on as the optimal

(long-run) frequency vector.

The above justification for λOPT is purely in terms of information revelation. The fre-

quency vector λOPT also emerges, however, as an approximation of the (limiting patient)

solution to a social planner problem, in which signals and actions are chosen to maximize a

discounted aggregate of payoffs across individuals:

Uδ := E

[
∞∑

t=1

δt−1 · u(at, ω)

]

.

For fixed δ, let dδ(t) be the vector of signal counts (up to period t) associated with any strat-

egy that maximizes Uδ. The long-run frequency vector produced by this optimal sampling

procedure is limt→∞ dδ(t)/t, and the result below says that λOPT approximates this long-run

frequency vector in the patient limit δ → 1.

Proposition 1. Under the subsequent Assumption 1, for any ǫ > 0, there exists δ < 1 such

that for any δ ≥ δ it holds that

lim sup
t→∞

∥
∥
∥
∥

dδ(t)

t
− λOPT

∥
∥
∥
∥
≤ ǫ.

Here ||·|| represents the Euclidean norm.

This result further justifies our interest in λOPT .10 Throughout, we will say that efficient

information aggregation occurs if society’s frequency of observations tends to λOPT .

10It is clear that the strategy that samples signals (randomly) according to λOPT is best among stationary

information acquisition strategies as δ → 1. This is however weaker than our result, because the optimal

strategy for any fixed δ may be far from stationary.
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4.2 Characterization

The main difficulty in characterizing the optimal frequency vector λOPT is that we do not

know its support. Because ω is recoverable from different proper subsets of signals, there

are many signals that could conceivably receive zero frequency in the long-run.

As a first step, we thus consider a simpler version of the social planner problem in which

agents can acquire signals from (only) some minimal spanning set S. By definition, the

setting is one of exactly sufficient information, where all signals must be observed in order to

recover ω. It is straightforward to show that the first coordinate vector e1 can be decomposed

as a (unique) linear combination of signals in S:

e1 =
∑

i∈S

βS
i · ci,

where the coefficients βS
i are non-zero.

We showed in prior work that each signal i ∈ S should be observed (asymptotically) in

proportion to its coefficient βS
i :

Proposition 2 (Liang, Mu and Syrgkanis (2017)). Suppose agents are constrained to a min-

imal spanning set S. Then, for every signal i ∈ S, the optimal count satisfies

nS
i (t) =

|βS
i |

∑

j∈S |β
S
j |

· t +O(1) (1)

where O(1) represents a residual term that remains bounded as t → ∞.

Thus, the optimal long-run frequency with which signal i is viewed is |βS
i |/
(
∑

j∈S |β
S
j |
)

.

To understand these critical coefficients βS
i , consider (for simplicity) the case in which the

set S has size K. The coefficient vectors associated with signals in S have full rank,11 and

we let CS denote the matrix of these coefficient vectors. The (random) vector of realizations

corresponding to one observation of each signal in this set can be written as

Y = (y1, . . . , yK)
′ = CSθ + ε

where ε is a K × 1 vector of error terms. Given these realizations, the best linear unbiased

estimate for ω is ω̂ =
[
C−1

S Y
]

11
. Perturbing the realization of signal i by δi changes this

estimate by [C−1
S ]1i · δi. One can show that the coefficients βS

i = |[C−1
S ]1i|, so the larger βS

i

is, the more ω̂ responds to changes in the realization of signal i. Proposition 2 thus says

that agents should observe more frequently those signals whose realizations more strongly

influence the best linear estimate of ω.

This proposition additionally implies the following corollary regarding the speed of learn-

ing from S:

11Otherwise, S would not be a minimal spanning set.

9



Corollary 1. Under optimal sampling from any minimal spanning set S, the minimum

achievable posterior variance after t observations satisfies:

V
(
nS(t)

)
∼ φ(S)2/t :=

(
∑

i∈S

|βS
i |

)2

/t.

where the notation “F (t) ∼ G(t)” means limt→∞
F (t)
G(t)

= 1.

In what follows, we work with the simpler statistic φ(S) (roughly an asymptotic standard

deviation), noting that the smaller φ(S) is, the faster the community learns from S. We

assume throughout that there is a best minimal spanning set according to φ:

Assumption 1 (Unique Minimizer). φ(S) has a unique minimizer S∗ among minimal span-

ning sets S ⊂ [N ].

This assumption is a restriction on the coefficient matrix C, and it rules out examples such

as the following:

Example 1. The available signals are X1 = ω + b1 + ǫ1, X2 = b1 + ǫ2, X3 = ω + b2 + ǫ3,

and X4 = b2+ ǫ4. Assumption 1 fails, because learning occurs equally fast from either of the

minimal spanning sets {X1, X2} and {X3, X4}.

We note that Assumption 1 holds generically—for example, it holds given arbitrarily small

perturbations of the above environment.12

If we restrict agents to sample exclusively from a single minimal spanning set, then the

optimal sampling rule (under Assumption 1) is clearly the frequency vector λ∗ ∈ ∆N−1

satisfying

λ∗
i =







|βS
∗

i |
∑

j∈S∗ |βS∗

j |
∀ i ∈ S∗

0 ∀ i /∈ S∗
(2)

This sampling rule assigns zero frequency to signals outside of the set S∗, and samples signals

within S∗ according to the frequencies given in Proposition 2.

In principle, a social planner may improve on λ∗ by sampling from multiple spanning sets.

Our first theorem shows to the contrary that λ∗ remains optimal when arbitrary sampling

procedures are permitted. So long as C satisfies Unique Minimizer, the best long-run strategy

is to restrict to the best minimal spanning set and sample from that set as in Proposition 2.

12Throughout the paper, “generic” means with probability 1 for signal coefficients cij randomly drawn

from a full support distribution on R
NK .
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Theorem 1. Let λ∗ be given by (2). Under Unique Minimizer, the optimal long-run fre-

quency vector satisfies λOPT = λ∗.13

The conclusion can be loosely interpreted as stating that λ∗ is the “most efficient linear

representation” of the payoff-relevant state in terms of the signal coefficients.14

We show in Appendix B.1 that Assumption 1 is necessary for this result: In the environ-

ment described in Example 1, there are priors given which it is strictly optimal to observe

all four available signals with positive frequency.

5 Main Results

In general, we may expect a difference between the best one-shot allocation of t acquisitions,

described in the previous section, and the set of t acquisitions chosen by sequential (short-

lived) decision-makers. We turn now to characterizing the latter.

Sections 5.1 and 5.2 focus on welfare evaluation—that is, will society’s acquisitions m(t)

eventually approximate the optimal acquisitions n(t)? We show that signal correlation struc-

tures can be classified into two kinds—those for which efficient information aggregation is

guaranteed (starting from all prior beliefs), and those for which “learning traps” are possible

(depending on the prior belief). Separation of these two classes depends critically on how

many signals are required to identify ω.

For a given signal structure, the set of signals that are observed in the long run potentially

depends on the prior belief. A related question is then which long-run outcomes are possible

for a given signal structure, when we allow for arbitrary priors. We provide a complete

characterization in Section 5.3.

5.1 Learning Traps

The following simple example demonstrates that sequential information acquisition need not

lead to efficient information aggregation. Indeed, the set of signals that are observed in the

long run can be disjoint from the optimal set.

13This theorem equivalently states that ni(t) ∼ λ∗
i · t. In Appendix A.2.7, we show the stronger result that

ni(t) = λ∗
i · t+O(1).

14Specifically, consider the following constrained minimization problem: min
∑N

i=1|βi| subject to
∑N

i=1 βi ·

ci = e1. It can be shown by linear programming that the minimum is attained exactly when βi = βS∗

i (that

is, when focusing on a single minimal spanning set).

11



Example 2. There are three available signals:

X1 = ω + ǫ1

X2 = 3ω + b1 + ǫ2

X3 = b1 + ǫ3

Both {X1} and {X2, X3} are minimal spanning sets, but {X2, X3} is optimal.15

Consider a prior where ω and b1 are independent, and the prior variance of b1 is large

(exceeds 8). In the first period, observation of X1 is most informative about ω, since X2 is

perceived as a noisier signal about ω than X1, and observations of X3 provide information

only about the confounding term b1 (which is uncorrelated with ω). Thus the best choice

is to observe X1. This observation does not affect the variance of b1, so the same argument

shows that every agent observes signal X1.
16 We refer to {X1} in this example as a learning

trap.

Generalizing this example, the result below (stated as a corollary, since it will follow from

the subsequent Theorem 2) gives a sufficient condition for learning traps. We impose the

following (generic) assumption on the informational environment, which requires that every

set of k ≤ K signals is linearly independent:

Assumption 2 (Strong Linear Independence). N ≥ K and every K ×K submatrix of C is

of full rank.17

Corollary 2. Assume Strong Linear Independence. For every minimal spanning set S with

|S| < K, there exists an open set of prior beliefs given which agents exclusively observe

signals from S.

Thus, every small set (fewer than K signals) that identifies ω is a candidate learning trap.

In special environments, simple bounds on the extent of inefficiency are possible. For

example, if there is an unbiased signal cω + ǫ, then the posterior variance at each time t

cannot exceed 1/(c2t), and so aggregated payoffs must be at least −
∑

t≥1 δ
t−1/(c2t).18 The

15It is straightforward to verify that φ({X1}) = 1 > 2/3 = φ({X2, X3}). Note also that X2 + X3 is an

unbiased signal about ω, and it is more informative than two realizations of X1; this demonstrates that

{X2, X3} is the best minimal spanning set without direct computation of φ.
16Note that the existence of learning traps is not special to the assumption of normality. We report a

related example with non-normal signals in Appendix B.3.
17Besides trivial cases with redundant signals, Strong Linear Independence also rules out settings such as

the following: X1 = ω + b1 + ǫ1, X2 = b1 + ǫ2, X3 = 2ω + b2 + ǫ3, X4 = b2 + ǫ4, X5 = 3ω + b3 + ǫ5, and

X6 = b3 + ǫ6. Then K = 4 but the four signals X1, X2, X3, X4 are not linearly independent.
18This is because each agent can at least sample this unbiased signal and improve the posterior precision

(i.e., inverse of the posterior variance) by c2. We thank Andrzej Skrzypacz for this observation.
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size of inefficiency cannot be uniformly bounded across environments, however. Specifically,

for any positive number L, there exists a set of signals and a prior belief given which

φ(S)

φ(S∗)
> L

where S is the set of signals observed in the long run with positive frequency, and S∗ is the

optimal set. This can be shown by direct construction: Modify the example above so that

X2 = αω + b1 + ǫ2, with α sufficiently large. For every choice of α, there is a set of priors

given which X1 is again exclusively observed.19 Thus, society’s long-run speed of learning can

be arbitrarily slower than the optimal speed. This also implies that—from the perspective

of a social planner who maximizes δ-discounted payoffs—the payoff ratio between society’s

sequential acquisitions and optimal acquisitions can be arbitrarily large as δ → 1.20

Finally, note that learning traps can emerge even if the best spanning set has the smallest

size among all minimal spanning sets. We demonstrate this below.

Example 3. The available signals are:

X1 = 10ω + b1 + ǫ1

X2 = b1 + ǫ2

X3 = ω + b2 + ǫ3

X4 = b2 + b3 + ǫ4

X5 = b3 + ǫ5

Here, the best set is {X1, X2}, which is also the minimal spanning set of lowest cardinality.

But suppose the prior belief is such that ω, b1, b2, b3 are independent, and there is initially

high uncertainty about b1 and low uncertainty about b2 and b3. Then, agents suboptimally

acquire only observations of X3, X4, and X5.

5.2 Efficient Information Aggregation

Suppose in contrast to the previous section that repeated observation of K sources is re-

quired to recover ω. Our next result shows that a very different long-run outcome obtains:

Starting from any prior, information acquisition eventually approximates the optimal fre-

quency. Thus, even though agents are short-lived (“myopic”), they will end up acquiring

information in a way that is socially best.

19The region of inefficient priors (that result in suboptimal learning) does decrease in size as the level of

inefficiency increases. As α increases, the prior variance of b1 has to increase correspondingly in order for

the first agent to choose X1.
20To derive this payoff comparison, note that φ(S)/φ(S∗) > L implies the ratio of flow payoffs in any late

period t is larger than L. Using the fact that the harmonic series diverges, we know that as δ → 1, these

(later) payoffs dominate the total payoffs from the initial periods.
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Corollary 3. Under Unique Minimizer, if every minimal spanning set has size K, then

starting from any prior belief, it holds that mi(t) ∼ λ∗
i · t for every signal i.21

A detailed intuition for this result appears in the subsequent Section 6.

The condition that all minimal spanning sets have size K is generically satisfied.22 How-

ever, if we expect that sources are endogenous to design or strategic motivations, the relevant

informational environments may not fall under this condition. For example, the existence

of an unbiased signal about ω (that is, X = cω + ǫ) is non-generic, but plausible in prac-

tice. Sets of signals that partition into different groups (with group-specific confounding

terms) are also economically interesting but non-generic. The previous Corollary 2 shows

that inefficiency is a possible outcome in these cases.

5.3 Characterization of Long-Run Outcomes

We now provide a complete characterization of the possible long-run observation sets for any

environment. Here we need to consider subspaces spanned by different signal sets. Formally,

for any spanning set of signals A, let A ⊆ [N ] be the set of available signals whose coefficient

vectors belong to the subspace spanned by signals in A. We say that a minimal spanning

set S is subspace-optimal if it uniquely maximizes the speed of learning among feasible sets

of signals within its subspace.

Definition 1. A minimal spanning set S is subspace-optimal if it uniquely minimizes φ

among all subsets of S that are minimally spanning.

Example 4. Suppose the available signals are X1 = ω + ǫ1 and X2 = 2ω + ǫ2, and define

S = {X1}. Then, S = {X1, X2}. Since {X2} permits faster speed of learning than {X1},

the set S is not subspace-optimal.

We introduce one final assumption, which strengthens Unique Minimizer to require the

existence of a best minimal spanning set S within every subspace.

Assumption 3 (Unique Minimizer in Every Subspace). For every A ⊂ [N ], there exists a

unique minimal spanning set S that minimizes φ among subsets of A.

21In Appendix B.2, we further show mi(t) = λ∗
i (t) + O(1) holds in this case. That result implies the

difference between society’s acquisitions m(t) and optimal acquisitions n(t) remains bounded as t increases.
22We point out that the set of coefficient matrices satisfying Unique Minimizer is “generic” in the following

stronger sense: Fix the directions of coefficient vectors, and suppose that the precisions are drawn at random;

then, generically different minimal spanning sets correspond to different speed of learning. In contrast,

whether every minimal spanning set has size K is a condition on the directions themselves.
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This assumption is guaranteed if different minimal spanning sets correspond to different

φ-values, and thus holds generically.

Our next result generalizes both the learning traps result and also the efficient information

aggregation result from the previous sections. Theorem 2 says that long-run information

acquisitions eventually concentrate on a set S (starting from some prior belief) if and only

if S is a subspace-optimal minimal spanning set.

Theorem 2. (a) Suppose S is a subspace-optimal minimal spanning set. Then, there exists

an open set of prior beliefs given which agents exclusively observe signals from S. Long-run

frequencies are positive precisely for those signals in S, and they are given by Proposition 2.

(b) Under Assumption 3, long-run frequencies exist given any prior belief. Moreover, if

S denotes the signals viewed with positive long-run frequency, then S is a minimal spanning

set that is subspace-optimal, and the long-run frequencies are given by Proposition 2.

This theorem directly implies our previous Corollaries 2 and 3. To see this, observe that

under Strong Linear Independence, S = S for every minimal spanning set S with fewer

than K signals.23 This implies that every minimal spanning set with fewer than K signals

is (trivially) optimal in its subspace, producing Corollary 2 from part (a) of the theorem.

On the other hand, if every minimal spanning set has size K, then all minimal spanning

sets belong to the same subspace. Under Unique Minimizer, there can only be one minimal

spanning set that is optimal in this subspace, and this must also be the best set overall (in

the sense of Section 4). This yields Corollary 3 from part (b) of the theorem above.

We collect below a few additional implications of Theorem 2:

Corollary 4. Under Unique Minimizer, if the best set S∗ is of size 1 (equivalently, if S∗

consists of a single unbiased signal αω + ǫ), then learning traps cannot emerge.24

Corollary 5. Under Unique Minimizer, learning traps of size K cannot emerge.25

6 Intuitions for Main Results

We provide intuitions for Corollaries 2-3 and Theorem 2 together in the sections below.

23Suppose |S| < K, then by assumption of Strong Linear Independence, every signal not in S is linearly

independent from the signals in S. Hence S cannot contain any other signal.
24This is because the unbiased signal belongs to every subspace spanned by a minimal spanning set.
25If S is a learning trap of size K, then it spans the whole space. But part (b) of Theorem 2 shows S must

be the best set, leading to a contradiction.
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6.1 High-Level Argument

Agents choose signals by comparing the marginal value of different observations. Thus, signal

acquisitions eventually concentrate on a set S if and only if the marginal values of signals in

that set become persistently higher than those of other signals.

In settings of exactly sufficient information, in which agents must observe all available

signals in order to learn ω, it can be shown that agents will eventually observe all signals and

learn all states (including all of the confounding terms). Thus, agents will come to evaluate

signals by a prior-independent “asymptotic” valuation, which also allows them to identify

the best set of signals and approximate the optimal frequency.

When information is overabundant, agents can learn ω from many different (proper)

subsets of signals, and there is no guarantee that agents will observe signals in the best set

at all. This complicates the analysis, since the marginal value of any given signal depends

critically on which signals have been observed previously. It is exactly this difference that

leads to our learning traps result (Corollary 2): Observation of different minimal spanning

sets in the long run can be sustained by prior beliefs (and resulting posterior beliefs) that

overvalue the signals within the set relative to signals outside of the set.

However, we show that our previous argument for the exactly sufficient information case

holds “subspace by subspace.” That is, as agents repeatedly acquire signals from any fixed

subspace of signals, they will eventually discover the asymptotic marginal values of each

signal in that subspace. In the long run, agents identify and choose from the best set of

signals within that subspace. Thus, only those sets of signals that are best in their subspace

are potentially “self-sustaining.” And if all sets of signals that reveal ω span the entire

space, agents will identify the best set of signals overall and achieve efficient information

aggregation.

6.2 Gradient Descent Dynamics

To provide further intuition, we introduce the following “normalized” asymptotic posterior

variance function V ∗ (which takes as input frequency vectors λ ∈ ∆N−1):

V ∗(λ) = lim
t→∞

t · V (λt).

We establish the following relationships between V ∗ and V . First, signal acquisitions chosen

according to a frequency vector that minimizes V ∗ will asymptotically also minimize the

posterior variance function V (Lemma 3); this justifies our interest in V ∗. Second, V ∗(λ) is

convex in λ and its unique minimum is the optimal frequency vector λ∗ (Lemma 5). So the

question of whether efficient information aggregation obtains is equivalent to the question of

whether the frequency vector m(t)/t comes to minimize V ∗.
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By construction, each agent chooses the signal that minimizes the value of V . Under

a certain condition, this is also the signal that roughly achieves the greatest reduction in

V ∗. Thus, we can think of society’s frequency vector λ(t) := m(t)/t as evolving according

to a gradient descent dynamic: At each (large) t, λ(t) moves in a direction that minimizes

V ∗. Since V ∗ is a convex function, we might expect gradient descent to be well-behaved,

eventually converging to the global minimizer λ∗.

While the above argument appears to be in conflict with our learning traps result, our

problem has the special feature that descent can only occur along N directions (indexed

by the available signals).26 This limitation is without loss whenever V ∗ is differentiable,

since all directional derivatives can then be rewritten as convex combinations of the partial

derivatives along basis vectors. The function V ∗, however, is not differentiable everywhere.

Consider our learning trap example with signals

X1 = ω + ǫ1

X2 = 3ω + b1 + ǫ2

X3 = b1 + ǫ3

and set the frequency vector to be λ = (1, 0, 0). It is easy to verify that beliefs are made less

precise if we re-assign weight from X1 to X2, or from X1 to X3. But beliefs are made more

precise if we simultaneously re-assign weight from X1 to both X2 and X3. This means that

the derivative of V ∗ in either direction (−1, 1, 0) or (−1, 0, 1) is positive, while its derivative

in the direction (−1, 1
2
, 1
2
) is in fact negative. Hence, V ∗ is not differentiable at λ.

Our constrained version of gradient descent can become stuck at vectors λ such as this, so

that agents repeatedly sustain the frequency vector λ instead of moving to another frequency

vector with smaller V ∗. This is reflected in our learning traps result (Corollary 2 and part (a)

of Theorem 2). On the other hand, it can be shown that V ∗ is differentiable at λ whenever λ

places nonzero weight on a spanning set of K signals. This explains why efficient information

aggregation occurs under the assumption of Corollary 3, where the need to recover ω requires

society to learn all the states (and hence to observe a set of signals that spans all of RK).

Repeating this argument for each subspace yields part (b) of Theorem 2.

Remark 1. The above intuition connects to a literature on learning convergence in po-

tential games (Monderer and Shapley, 1996; Sandholm, 2010). Define an N-player game

where each player i chooses a number λi ∈ R+ and receives payoff −
(
∑N

j=1 λj

)

· V ∗(λ) =

−V ∗
(

λ/
∑N

j=1 λj

)

.27 Then, we have a potential game with (exact) potential function −V ∗,

26This constraint corresponds to our assumption that each agent acquires a single, discrete, observation

of a chosen signal.
27Thus players’ actions are normalized to a frequency vector λ/

∑N
j=1 λj .
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and our long-run observation sets correspond to equilibria of this game. In finite potential

games and infinite games with a differentiable potential function, pure-strategy Nash equi-

libria can be related to the extreme points of the potential function. However, our game

described above is an infinite potential game with a non-differentiable potential function. It

is known that Nash equilibria in such games need not occur at extreme points, and this is

consistent with our result on learning traps.

We note that the connection to potential games is not sufficient to derive our main results,

since our agents receive payoff −V (λt) rather than its asymptotic variant V ∗. This difference

is nontrivial, because whether we can substitute analysis of V ∗ for analysis of V depends on

the prior belief as well as the endogenous path of signal acquisitions.28

7 Interventions

Section 5 demonstrated the possibility for sequential information acquisition to result in

inefficient learning. We ask now whether it is possible for a policymaker to influence agents

towards efficient learning. Naturally, this question applies only when agents would otherwise

potentially achieve a suboptimal speed of learning (with conditions given in part (a) of

Theorem 2).

We compare several possible policy interventions: Increasing the quality of information

acquisition (so that each signal acquisition is more informative); restructuring incentives so

that agents’ payoffs are based on information obtained over several periods (equivalent to

acquisition of multiple signals each period); and providing a one-shot release of free informa-

tion, which can then guide subsequent acquisitions. These interventions have different levels

of effectiveness, as we explain below.

7.1 More Precise Information

Consider first an intervention in which the precision of signal draws is increased uniformly

over signals. For example, if different signals correspond to measurement of different neu-

rochemicals in a group of lab subjects, a government agency can provide researchers with

funding that permits recruitment of more subjects. This improves the quality of the estimate

regardless of which neurochemical the researcher chooses to measure.

We model this intervention by supposing that each signal acquisition produces B inde-

pendent observations from that source (with the main model corresponding to B = 1). Our

result below, which follows from part (a) of Theorem 2, says that providing more informative

28Note that the prior belief—which is outside of the description of the asymptotic potential

game—influences which outcome agents will converge to. This is also a feature special to our setting.
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signals is of limited effectiveness: Any set of signals that is a potential learning trap given

B = 1 remains a potential learning trap under arbitrary improvements to signal precision.

Corollary 6. Suppose that for B = 1, there is a set of priors given which signals in S are

(exclusively) viewed in the long run. Then, for every B ∈ Z+, there is a set of priors given

which S is exclusively viewed in the long run.

However, the sets of prior beliefs corresponding to different values of B need not be

the same. For a fixed prior belief, subsidizing higher quality acquisitions may or may not

move the community out of a learning trap. To see this, consider first the informational

environment and prior belief from Example 2. Increasing the precision of signals is ineffective

here: The first agent chooses X1 regardless of the value of B, and our previous logic again

implies that each subsequent agent also chooses signal X1. Thus, the set {X1} remains a

learning trap. In Appendix B.4, we provide a contrasting example in which increasing the

precision of signals can indeed break agents out of a learning trap from a specified prior

belief. Which of these examples is relevant depends on fine details of the informational

environment as well as the prior, which the policymaker may not know in practice.

7.2 Batches of Signals

Another possibility is to restructure the incentive scheme so that agents’ payoffs are based on

information obtained over several periods, equivalent to acquisition of a batch of signals each

period. For example, evaluation of researchers can be based on a set of papers, or researchers

can be given labs and permitted to direct the work of multiple individuals simultaneously.

Both of these approaches for restructuring the environment can be modeled as permitting

each agent to allocate B observations across the sources (where B = 1 returns the main

model). Note the key difference from the previous intervention: Here it is possible for the B

observations to be allocated across different signals. We show that it is possible to guarantee

efficient information aggregation in this case:

Proposition 3. Under Unique Minimizer, there is a B such that given acquisition of B

signals every period, long-run frequency is λ∗ starting from every prior belief.

Thus, given sufficiently many observations each period, agents will allocate observations in

a way that eventually approximates the optimal frequency.

The number of observations needed, however, depends on subtle details of the informa-

tional environment. In particular, the required B cannot be uniformly bounded over all

environments of fixed size (number of states K and number of signals N). The required B

instead depends on two properties: First, it depends on how well the optimal frequency λ∗
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can be approximated via allocation of B observations.29 Second, it depends on the differ-

ence in learning speed between the best set and the next best minimal spanning set; this

difference determines the “slack” that is permitted in the approximation of λ∗. Thus, small

batch sizes B are sufficient when the optimal frequency λ∗ can be well-approximated using

a small number of observations, or when there are large efficiency gains from observing the

best set. See Appendix A.5 for further details.

7.3 Free Information

Finally, we consider provision of free information to the community. We can think of this

as releasing information that a policymaker knows, or as a reduced form for funding specific

kinds of research, the results of which are made public.

Formally, the policymaker chooses M signals 〈pj, θ〉+N (0, 1), where each ‖pj‖2 ≤ γ, so

that signal precisions are bounded by γ2. At time t = 0, independent realizations of these

signals are made public. All subsequent agents update their prior beliefs based on this free

information in addition to the history of signal acquisitions thus far.

We show that given a sufficient number of (kinds of) signals, of sufficiently high precision,

efficient learning can be guaranteed. Specifically, if k ≤ K is the size of the optimal set S∗,

then k − 1 precise signals are sufficient to guarantee efficient learning:

Proposition 4. Let k := |S∗|. Under Unique Minimizer, there exists a γ < ∞, and k − 1

signals with ‖pj‖2 ≤ γ, such that with these free signals provided at t = 0, society’s long-run

frequency is λ∗ starting from every prior belief.

The proof is by construction. We show that as long as agents understand those confound-

ing terms that appear in the best set of signals (these parameters have dimension k − 1),

they will come to evaluate the signals in the best set according to their asymptotic marginal

values.30

This intervention is most relevant in settings in which a technological advance could

greatly speed up progress, but development of the technology is slow and tedious. For

example, suppose that high-resolution brain scans would allow for rapid understanding of

depression, but the current imaging technology is very poor. Researchers working to un-

derstand depression may prefer to exploit existing technologies, rather than contribute to

development of this new technology. The government can intervene by funding preliminary

29For example, λ∗ = (1/2, 1/2) can be achieved exactly using two observations, while λ∗ = (3/8, 5/8)

cannot.
30This intervention requires knowledge of the full correlation structure, and also which set S∗ is best. An

alternative intervention, with higher demands on information provision but lower demands on knowledge of

the environment, is to provide K − 1 (sufficiently precise) signals about all of the confounding terms.
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development of brain imaging, which then encourages researchers to begin using brain scans.

Once low-resolution brain scans are common, the payoff to advancing the imaging technol-

ogy increases, and even short-sighted researchers may contribute to this agenda. In this way,

provision of free information can nudge agents onto the right path of learning.

8 Extensions

8.1 General Payoff Functions

All of our main results extend when each agent t chooses an action to maximize an arbitrary

individual payoff function ut(at, ω) (recall that previously we restricted to ut(at, ω) = −(at−

ω)2). We require only that these payoff functions are nontrivial in the following sense:

Assumption 4 (Payoff Sensitivity to Mean). For every t, any variance σ2 > 0 and any

action a∗ ∈ A, there exists a positive Lebesgue measure of µ for which a∗ does not maximize

E[ut(a, ω) | ω ∼ N (µ, σ2)].

That is, for every belief variance, the expected value of ω affects the optimal action to take.

This rules out cases with a “dominant” action and ensures that each agent strictly prefers

to choose the most informative signal. Since the signal that minimizes the posterior vari-

ance about ω Blackwell-dominates every other signal,31 each agent’s information acquisition

remains unchanged.

However, the interpretation of the optimal benchmark (that we defined in Section 4) is

more limited. Specifically, while the optimal frequency can still be interpreted as maximizing

information revelation, the relationship to the social planner problem (Proposition 1) may

fail. A detailed discussion is relegated to Appendix B.5.1.

8.2 Low Altruism

So far we have assumed that agents care only to maximize the accuracy of their own pre-

diction of the payoff-relevant state. Consider a generalization in which agents are slightly

altruistic; that is, each agent t chooses a signal as well as an action at to maximize discounted

payoffs E
[∑

t′≥t δ
t′−t · u(at, ω)

]
, assuming that future agents will behave similarly. Note that

δ = 0 returns our main model. We show in Appendix B.5.2 that for δ sufficiently small, part

(a) of Theorem 2 continues to hold (in every equilibrium of this game). So the existence of

learning traps is robust to a small degree of altruism.

31See, e.g., Hansen and Torgersen (1974).

21



8.3 Multiple Payoff-Relevant States

In our main model, only one of the K persistent states is payoff-relevant. Consider a gen-

eralization in which each agent predicts (the same) r ≤ K unknown states and his payoff

is determined via a weighted sum of quadratic losses. We show in Appendix B.5.3 that all

of our main results extend to this setting. The possibility for agents to have payoffs that

depend on heterogeneous states is also interesting, and we leave this for future work.

9 Conclusion

We study a model of sequential learning, where short-lived agents choose what kind of

information to acquire from a large set of available information sources. Because agents

do not internalize the impact of their information acquisitions on later decision-makers,

they may acquire information inefficiently (from a social perspective). Inefficiency is not

guaranteed, however: Depending on the informational environment, myopic concerns can

endogenously push agents to identify and observe only the most informative sources.

Our main results separate these possibilities, and reveal that the extent of learning

spillovers is essential to determining which outcome emerges. Specifically, does information

about unknowns of immediate societal interest (i.e., the payoff-relevant state) also teach

about unknowns that are only of indirect value (i.e., the confounding terms)?

When such spillovers are present, simple incentive schemes for information acquisition—in

which agents care only about immediate contributions to knowledge—are sufficient for ef-

ficient long-run learning. When these spillovers are not built into the environment, other

incentives are needed. For example, forward-looking funding agencies can encourage invest-

ment in the confounding terms (our “free information” intervention). Alternatively, agents

can be evaluated on the basis of a body of work (our “multiple signal” intervention). These

observations are consistent with practices that have arisen in academic research, including

the establishment of third-party funding agencies (e.g. the NSF) to support basic science and

methodological research, and the evaluation of researchers based on advancements developed

across several papers (e.g. tenure and various prizes).

We conclude below with brief mention of additional directions. So far we have considered

the demand for information given an exogenous set of information sources. In a complemen-

tary problem to ours, information sources choose the information they provide in order to

maximize demand. Our Theorem 1 implies the following comparative static: If signal i is

viewed with positive frequency in the optimal benchmark, then this frequency is (locally)

decreasing in its precision. Thus, if demand is interpreted as λ∗
i (the long-run frequency with

which source i is optimally viewed), sources face conflicting incentives: They want to provide

22



information sufficiently precise to be included in the best set and receive viewership at all,

but subject to this, they want to provide signals as imprecise as possible. These conflicting

forces suggest that characterization of the equilibrium provisions of information precision is

subtle.

Finally, while we have described our setting as choice between information sources, our

model may apply more generally to choice between actions with complementarities. For ex-

ample, suppose a sequence of managers take actions that have externalities for future man-

agers, and each manager seeks to maximize performance of the company during his tenure.

The concepts we have developed here of efficient information aggregation and learning traps

have natural analogues in that setting (actions that maximize the company’s long-term wel-

fare, versus those that do not). Relative to the general setting, we study here a class of

complementarities that are micro-founded in correlated signals. It is an interesting question

of whether and how the forces we find here generalize to other sorts of complementarities.
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A Appendix

The structure of the appendix follows that of the paper. We provide proofs for the results

listed in the main text, in the order in which they appeared; the only exception is that the

proof of Proposition 1 relies on tools we develop in the other proofs, and so it is given at the

end. Other results and examples are deferred to a separate Online Appendix.

A.1 Posterior Variance Function

A.1.1 Monotonicity and Convexity

Here we review and extend a basic result from Liang, Mu and Syrgkanis (2017). Specifically,

we show that the posterior variance about ω weakly decreases over time, and the marginal

value of any signal decreases in its signal count.
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Lemma 1. Given prior covariance matrix Σ0 and qi observations of each signal i, society’s

posterior variance about ω is

V (q1, . . . , qN) =
[
((Σ0)−1 + C ′QC)−1

]

11
(3)

where Q = diag(q1, . . . , qN). The function V is decreasing and convex in each qi whenever

these arguments take non-negative real values.

Proof. Note that (Σ0)−1 is the prior precision matrix and C ′QC =
∑N

i=1 qi · [cic
′
i] is the

total precision from the observed signals. Thus (3) simply represents the fact that for

Gaussian prior and signals, the posterior precision matrix is the sum of the prior and signal

precision matrices. To prove the monotonicity of V , consider the partial order � on positive

semi-definite matrices where A � B if and only if A − B is positive semi-definite. As qi

increases, the matrix Q and C ′QC increase in this order. Thus the posterior covariance

matrix ((Σ0)−1+C ′QC)−1 decreases in this order, which implies that the posterior variance

about ω decreases.

To prove that V is convex, it suffices to prove that V is midpoint-convex since the

function is clearly continuous.32 Take q1, . . . , qN , r1, . . . , rN ∈ R+ and let si =
qi+ri

2
. Define

the corresponding diagonal matrices to be Q, R, S. Observe that Q+R = 2S. Thus by the

AM-HM inequality for positive-definite matrices, we have

((Σ0)−1 + C ′QC)−1 + ((Σ0)−1 + C ′RC)−1 � 2((Σ0)−1 + C ′SC)−1.

Using (3), we conclude that

V (q1, . . . , qN) + V (r1, . . . , rN) ≥ 2V (s1, . . . , sN).

This proves the (midpoint) convexity of V .

A.1.2 Inverse of Positive Semi-definite Matrices

For future use, we provide a definition of [X−1]11 for positive semi-definite matrices X . When

X is positive definite, its eigenvalues are strictly positive, and its inverse matrix is defined

as usual. In general, we can apply the Spectral Theorem to write

X = UDU ′,

where U is a K × K orthogonal matrix whose columns are eigenvectors of X , and D =

diag(d1, . . . , dK) is a diagonal matrix consisting of non-negative eigenvalues. Even if some of

32A function V is midpoint-convex if the inequality V (a)+V (b) ≥ 2V (a+b
2 ) always holds. Every continuous

function that is midpoint-convex is also convex.
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these eigenvalues are zero, we can think of X−1 as

X−1 = (UDU ′)−1 = UD−1U ′ =

K∑

j=1

1

dj
· [uju

′
j]

where uj is the j-th column vector of U . We thus define

[X−1]11 :=

K∑

j=1

(〈uj, e1〉)2

dj
, (4)

with the convention that 0
0
= 0 and z

0
= ∞ for any z > 0. Note that by this definition,

[X−1]11 = lim
ǫ→0+

(
K∑

j=1

(〈uj, e1〉)2

dj + ǫ

)

= [(X + ǫIK)
−1]11,

since the matrix X + ǫIK has the same set of eigenvectors as X , with eigenvalues increased

by ǫ. Hence our definition of [X−1]11 is a continuous extension of the usual definition to

positive semi-definite matrices.

A.2 Proof of Theorem 1

A.2.1 Asymptotic Posterior Variance Function

We first approximate the posterior variance as a function of the frequencies with which each

signal is observed. Specifically, for any λ ∈ R
N
+ , define

V ∗(λ) := lim
t→∞

t · V (λt).

The following result shows V ∗ to be well-defined and computes its value:

Lemma 2. Let Λ = diag(λ1, . . . , λN). Then

V ∗(λ) = [(C ′ΛC)−1]11 (5)

The value of [(C ′ΛC)−1]11 is well-defined, see (4).

Proof. Recall that V (q1, . . . , qN) = [((Σ0)−1 + C ′QC)−1]11 with Q = diag(q1, . . . , qN). Thus

t · V (λ1t, . . . , λN t) =

[(
1

t
(Σ0)−1 + C ′ΛC

)−1
]

11

.

Hence the lemma follows from the continuity of [X−1]11 in the matrix X .

We note that C ′ΛC is the Fisher Information Matrix when signals are observed according

to frequencies λ. Thus the above lemma can also be seen as an application of the Bayesian

Central Limit Theorem.
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A.2.2 Reduction to the Study of V ∗

The development of the function V ∗ is useful for the following reason:

Lemma 3. Suppose λ̃ uniquely minimizes V ∗(·) subject to λ ∈ ∆N−1 (the (N−1)-dimensional

simplex). Then, the t-optimal divisions satisfy ni(t) ∼ λ̃i · t for all i.

Proof. Fix any increasing sequence of times t1, t2, . . . . It suffices to show that whenever the

limit λi := limm→∞
ni(tm)
tm

exists for each i, this limit λ must be λ̃. Suppose not, then by

assumption V ∗(λ) > V ∗(λ̃). For ǫ > 0, define another vector λ̂ ∈ R
N
+ with λ̂i = λi + ǫ, ∀i.

By the continuity of V ∗, it holds that V ∗(λ̂) > V ∗(λ̃) for sufficiently small ǫ.

Since λi = limm→∞
ni(tm)
tm

, there exists M sufficiently large such that ni(tm) ≤ (λi+ ǫ) · tm

for each i and m ≥ M . Hence, for m ≥ M ,

tm · V (n1(tm), . . . , nN(tm)) ≥ tm · V (λ̂1 · tm, . . . , λ̂N · tm) → V ∗(λ̂)

where the inequality uses the monotonicity of V . On the other hand,

tm · V (λ̃1 · tm, . . . , λ̃N · tm) → V ∗(λ̃).

Comparing the above two displays, we see that for sufficiently large m,

V (n1(tm), . . . , nK(tm)) > V (λ̃1 · tm, . . . , λ̃N · tm).

But this contradicts the t-optimality of the division n(tm), as society could do better by

following frequencies λ̃. The lemma is thus proved.

A.2.3 Crucial Lemma

We pause to demonstrate the following technical lemma:

Lemma 4. Suppose S∗ = {1, . . . , K} uniquely minimizes φ(·) and let C∗ be the K × K

submatrix of C corresponding to the first K signals. Further suppose βS∗

j = [(C∗)−1]1j is

positive for 1 ≤ j ≤ K. Then for any signal i > K, if we write ci =
∑K

j=1 αj · cj (which is a

unique representation), then |
∑K

j=1 αj| < 1.

Proof. By assumption, we have the vector identity

e1 =
K∑

j=1

βj · cj with βj = [(C∗)−1]1j > 0.

Suppose for contradiction that
∑K

j=1 αj ≥ 1 (the opposite case where the sum is ≤ −1 can

be similarly treated). Then some αj must be positive. Without loss of generality, we assume
α1

β1
is the largest among such ratios. Then α1 > 0 and

e1 =

K∑

j=1

βj · cj =

(
K∑

j=2

(

βj −
β1

α1
· αj

)

· cj

)

+
β1

α1
·

(
K∑

j=1

αj · cj

)
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This represents e1 as a linear combination of the vectors c2, . . . , cK and ci, with coefficients

β2 −
β1

α1
· α2, . . . , βK − β1

α1
· αK and β1

α1
. Observe that these coefficients are non-negative: For

each 2 ≤ j ≤ K, βj −
β1

α1
· αj is clearly positive if αj ≤ 0 (since βj > 0). And if αj > 0, then

by assumption
αj

βj
≤ α1

β1
and βj −

β1

α1
· αj is again non-negative.

By definition, φ({2, . . . , K, i}) is the sum of the absolute value of these coefficients. This

sum is
K∑

j=2

(

βj −
β1

α1
· αj

)

+
β1

α1
=

K∑

j=1

βj +
β1

α1
·

(

1−
K∑

j=1

αj

)

≤
K∑

j=1

βj .

But then φ({2, . . . , K, i}) ≤ φ({1, 2, . . . , K}), leading to a contradiction. Hence the lemma

must be true.

A.2.4 Proof of Theorem 1 when |S∗| = K

Given Lemma 3, Theorem 1 will follow once we show that λ∗ uniquely minimizes V ∗(·) over

the simplex; recall that λ∗ denotes the optimal frequencies for the minimal spanning set S∗

that minimizes φ. In this section, we prove that λ∗ is indeed the unique minimizer whenever

this best subset S∗ contains exactly K signals. Later on we will prove the same result even

when |S∗| < K, but that proof will require additional techniques.

Lemma 5. For λ ∈ ∆N−1, the function V ∗(λ) is uniquely minimized at λ = λ∗.

Proof. First, we assume that [(C∗)−1]1i is positive for 1 ≤ i ≤ K. This is without loss

because we can always work with the “negative” of any signal (replace ci with −ci), which

does not affect agents’ behavior.

Since V (q1, . . . , qN) is convex in its arguments, V ∗(λ) = limt→∞ t · V (λ1t, . . . , λN t) is

also convex in λ. To show λ∗ uniquely minimizes V ∗, we only need to show λ∗ is a local

minimum. In other words, it suffices to show V ∗(λ∗) < V ∗(λ) for any λ that belongs to

an ǫ-neighborhood of λ∗. By assumption, S∗ is minimally-spanning and so its signals are

linearly independent. Thus its signals must span all of the K states. From this it follows

that the K×K matrix C ′Λ∗C is positive definite, and by (5) the function V ∗ is differentiable

near λ∗ (see Remark 2 below).

We claim that the partial derivatives of V ∗ satisfy the following inequality:

∂KV
∗(λ∗) < ∂iV

∗(λ∗) ≤ 0, ∀i > K. (*)

Once this is proved, we will have, for λ close to λ∗,

V ∗(λ1, . . . , λK , λK+1, . . . , λN) ≥ V ∗

(

λ1, . . . , λK−1,
N∑

k=K

λk, 0, . . . , 0

)

≥ V ∗(λ∗). (6)
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The first inequality is based on (*) and differentiability of V ∗, while the second inequality

is because λ∗ uniquely minimizes V ∗ when only the first K signals are observed. Moreover,

when λ 6= λ∗, one of these inequalities is strict so that V ∗(λ) > V ∗(λ∗) holds strictly.

To prove (*), we recall that

V ∗(λ) = e′1(C
′ΛC)−1e1.

Since Λ = diag(λ1, . . . , λN), its derivative is ∂iΛ = ∆ii, which is an N × N matrix whose

(i, i)-th entry is 1 with all other entries equal to zero. Using properties of matrix derivatives,

we obtain

∂iV
∗(λ) = −e′1(C

′ΛC)−1C ′∆iiC(C ′ΛC)−1e1.

As the i-th row vector of C is c′i, C
′∆iiC is the K ×K matrix cic

′
i. The above simplifies to

∂iV
∗(λ) = −[e′1(C

′ΛC)−1ci]
2.

At λ = λ∗, the matrix C ′ΛC further simplifies to (C∗)′ · diag(λ∗
1, . . . , λ

∗
K) · (C

∗), which is a

product of K ×K invertible matrices. We thus deduce that

∂iV
∗(λ∗) = −

[

e′1 · (C
∗)−1 · diag

(
1

λ∗
1

, . . . ,
1

λ∗
K

)

· ((C∗)′)−1 · ci

]2

.

Crucially, note that the term in the brackets is a linear function of ci. To ease notation, we

write v′ = e′1 · (C
∗)−1 · diag

(
1
λ∗
1

, . . . , 1
λ∗
K

)

· ((C∗)′)−1 and γi = 〈v, ci〉. Then

∂iV
∗(λ∗) = −γ2

i , 1 ≤ i ≤ N. (7)

For 1 ≤ i ≤ K, ((C∗)′)−1 · ci is just ei. Thus, using the assumption [(C∗)−1]1j > 0, ∀j, we

have

γi = e′1 · (C
∗)−1 · diag

(
1

λ∗
1

, . . . ,
1

λ∗
K

)

· ei =
[(C∗)−1]1i

λ∗
i

=

K∑

j=1

[(C∗)−1]1j = φ(S∗) (8)

On the other hand, choosing any i > K, we can uniquely write the vector ci as a linear

combination of c1, . . . , cK . By Lemma 4, for any i > K we have

γi = 〈v, ci〉 =
K∑

j=1

αj · 〈v, cj〉 =
K∑

j=1

αj · γj = φ(S∗) ·
K∑

j=1

αj , (9)

where the last equality uses (8). Since |
∑K

j=1 αj| < 1, the absolute value of γi for any i > K

is strictly smaller than the absolute value of γK . This together with (7) proves the desired

inequality (*), and Lemma 5 follows.
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Remark 2. The essence of this proof is the following nontrivial property: The subset

{1, . . . , K} uniquely minimizes φ among all subsets of size K if and only if

φ({1, . . . , K}) < φ({1, . . . , K} ∪ {i}\{j}), ∀1 ≤ j ≤ K < i ≤ N.

That is, if a set of K signals does not minimize φ, then we can improve the speed of learning

by adding one signal to replace one existing signal. This property enables us to reduce the

general problem with N signals to a much simpler problem with K + 1 signals. We are then

able to use calculus to resolve the latter problem, see (*).

This argument breaks down if we start with a set of less than K signals; see Section 6 of the

main text for an example in which the reduction above is not possible. In that example, even

though the partial derivatives satisfy (*), it does not hold that every directional derivative

similarly satisfies (*). Thus V ∗ can fail to be differentiable at the frequency vector of interest.

It is for this reason that we need a different proof of Lemma 5 when |S∗| < K, which we

present next.

A.2.5 A Perturbation Argument

To handle the case of |S∗| < K, we first extend the definition of φ(·) to arbitrary sets

of siganls (not necessarily minimally-spanning) as follows. For any set A that contains a

minimal spanning set, define φ(A) = minS⊂A φ(S), where the minimum is taken over all

minimal spanning sets S contained in A. If such S does not exist (i.e., A is not itself

spanning), we let φ(A) = ∞. In particular,

φ([N ]) = min
S⊂[N ]

φ(S)

represents the minimum asymptotic standard deviation achievable by only observing the

signals in some minimal spanning set.

Our previous analysis shows that whenever φ(S) is uniquely minimized by a set S con-

taining exactly K signals,

min
λ∈∆N−1

V ∗(λ) = V ∗(λ∗) = min
S⊂[N ]

φ(S)2 = φ([N ])2

We now show this equality holds more generally.

Lemma 6. For any coefficient matrix C,

min
λ∈∆N−1

V ∗(λ) = φ([N ])2. (10)

Proof. Because society can choose to focus on any minimal spanning set, it is clear that

minλ V
∗(λ) ≤ φ([N ])2 = minS(φ(S))

2. It remains to prove V ∗(λ) ≥ φ([N ])2 for any λ ∈

∆N−1. By Lemma 2, we need to show [(C ′ΛC)−1]11 ≥ φ([N ])2.
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This was already proved for generic coefficient matrices C (specifically, those for which

φ(S) is minimized by a set of K signals). But even if C is “non-generic”, we can approximate

it by a sequence of “generic” matrices Cm.
33 Along this sequence, we have

[(C ′
mΛCm)

−1]11 ≥ φm([N ])2

where φm is the speed of learning from the N signals given by coefficient matrix Cm. As

m → ∞, the LHS above approaches [(C ′ΛC)−1]11. Thus the lemma will follow once we show

that lim supm→∞ φm([N ]) ≥ φ([N ]).

For this we invoke the following characterization

φ([N ]) = min
β∈RN

N∑

i=1

|βi| s.t. e1 =
N∑

i=1

βi · ci.

If e1 =
∑

i β
(m)
i · c(m)

i along the convergent sequence, then e1 =
∑

i βi · ci for any limit point

β of β(m). This enables us to conclude lim infm→∞ φm([N ]) ≥ φ([N ]), which is more than

what we need.

A.2.6 Proof of Theorem 1 when |S∗| < K

Let S∗ = {1, . . . , k}. We will now show that even if k < K, λ∗ is still the unique minimizer

of V ∗(·). This will imply Theorem 1 via Lemma 3. Since V ∗(λ∗) = φ(S∗)2 = φ([N ])2 by

definition, we know from Lemma 6 that λ∗ does minimize V ∗. It remains to show that λ∗ is

the unique minimizer.

To do this, we will consider a perturbed informational environment in which signals

k + 1, . . . , N are made slightly more precise. Specifically, let η > 0 be a small positive

number. Consider an alternative signal coefficient matrix C̃ with c̃i = ci for i ≤ k and

c̃i = (1+η)ci for i > k. Let φ̃(S) represent the speed of learning function for this alternative

problem. Then, it is clear that φ̃(S∗) = φ(S∗), while φ̃(S) is slightly smaller than φ(S) for

S 6= S∗. Thus with sufficiently small η, the subset S∗ remains the best set in this perturbed

environment, and λ∗ remains the optimal frequency vector.

Let Ṽ ∗ be the asymptotic posterior variance function here, then our previous analysis

shows that Ṽ ∗ has minimum value φ(S∗)2 on the simplex. Taking advantage of the connection

33First, we may add repetitive signals to ensure N ≥ K. This does not affect the value of minV ∗(λ) or

φ([N ]). Whenever N ≥ K, it is generically true that every minimal spanning set contains exactly K signals.

Moreover, the equality φ(S) = φ(S̃) for S 6= S̃ induces a non-trivial polynomial equation over the entries

in C. This means we can always find C(m) close to C such that for each coefficient matrix C(m), different

subsets S (of size K) attain different values of φ.
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between V ∗ and Ṽ ∗, we thus have

V ∗(λ1, . . . , λN) = Ṽ ∗

(

λ1, . . . , λk,
λk+1

(1 + η)2
, . . . ,

λN

(1 + η)2

)

≥
φ(S∗)2

∑

i≤k λi +
1

(1+η)2

∑

i>k λi

.

The equality uses (5) and C ′ΛC =
∑

i λicic
′
i =

∑

i≤k λicic
′
i+
∑

i>k
λi

(1+η)2
c̃ic̃i

′. The inequality

follows from the homogeneity of Ṽ ∗.

The above display implies

∀λ ∈ ∆N−1, V ∗(λ) ≥
φ(S∗)2

1− 2η+η2

(1+η)2

∑

i>k λi

≥
φ(S∗)2

1− η
∑

i>k λi

for some η > 0. (11)

Hence V ∗(λ) > φ(S∗)2 = V ∗(λ∗) whenever λ puts positive weight outside of the best set.

But we already know that V ∗(λ) is uniquely minimized at λ∗ when λ is restricted to the

best set. Hence λ∗ is the unique minimizer of V ∗ over the whole simplex. This completes

the proof of Theorem 1.

A.2.7 Strengthening of Theorem 1

In this section we show ni(t) = λ∗
i · t + O(1), ∀i, which improves upon the conclusion of

Theorem 1. Note that for any (q1, . . . , qN ) to be a t-optimal division, it is necessary that

tV (q1, . . . , qN) ≤ tV (λ∗t). A straightforward refinement of Lemma 2 gives that whenever

V ∗(λ) is finite, t · V (λt) approaches V ∗(λ) at the rate of 1
t
. Thus we must have

V ∗
(q1
t
, . . . ,

qN
t

)

≤ V ∗(λ∗) +O

(
1

t

)

.

Together with (11), this implies
∑

i>k
qi
t
= O(1

t
), so that signals outside of the best set are

only observed finitely many times. Conditional on these signal counts, Proposition 2 shows

that society’s optimal allocation over the first k signals must satisfy ni(t) = λ∗
i ·t+O(1), ∀1 ≤

i ≤ k. This proves what we want.

A.3 Proof of Theorem 2 Part (a)

Let signals 1, . . . , k (with k ≤ K) be a minimally spanning set that is optimal in its subspace.

We will demonstrate an open set of prior beliefs given which all agents observe these k signals.

Since these signals are minimally spanning, they must be linearly independent. Thus we can

consider linearly transformed states θ̃1, . . . , θ̃K such that these k signals are simply θ̃1, . . . , θ̃k

plus standard Gaussian noise. This linear transformation is invertible, so any prior over the
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original states is bijectively mapped to a prior over the transformed states. Thus it is without

loss to work with the transformed model and look for prior beliefs over the transformed states.

The payoff-relevant state ω becomes a linear combination λ∗
1θ̃1+ · · ·+λ∗

kθ̃k (after scaling).

Since the first k signals are optimal in their subspace, Lemma 4 implies that any other signal

that belongs to this subspace can be written as

k∑

i=1

αiθ̃i + N (0, 1)

with |
∑k

i=1 αi| < 1. On the other hand, if a signal does not belong to this subspace, it must

take the form of
K∑

i=1

βiθ̃i + N (0, 1)

with βk+1, . . . , βK not all equal to zero.

Now consider a prior belief such that θ̃1, . . . , θ̃K are independent from each other. Given

prior variances v1, . . . , vK , the reduction in the variance of λ∗
1θ̃1 + · · · + λ∗

kθ̃k by any signal
∑k

i=1 αiθ̃i +N (0, 1) is

(
∑k

i=1 αiλ
∗
i vi)

2

1 +
∑k

i=1 α
2
i vi

If v1, . . . , vk are small positive numbers and if the product λ∗
i vi is approximately constant

across 1 ≤ i ≤ k, then the above is approximately (
∑k

i=1 αi)
2(λ∗

1v1)
2. Since |

∑k
i=1 αi| < 1,

we deduce that any other signal belonging to the subspace of the first k signals is worse than

signal 1 (in the first period), whose variance reduction is
(λ∗

1
v1)2

1+v1
.

Meanwhile, take any signal that does not belong to the subspace. The variance reduction

by such a signal
∑K

i=1 βiθ̃i +N (0, 1) is

(
∑k

i=1 βiλ
∗
i vi)

2

1 +
∑K

i=1 β
2
i vi

As βk+1, . . . , βK are not all zero, the denominator above is arbitrarily large if vk+1, . . . , vK

are chosen to be large. Then, this signal is again worse than signal 1 for the first agent,

similar to the situation in Example 2.

To summarize, we have shown that whenever the prior variances v1, . . . , vK satisfy the

following three conditions, the first agent chooses among the first k signals:

1. v1, . . . , vk are close to 0;

2. λ∗
1v1, . . . , λ

∗
kvk have pairwise ratios close to 1;
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3. vk+1, . . . , vK are large.34

To show every agent chooses among the first k signals, it suffices to check that starting

from any prior belief satisfying the above conditions, the posterior beliefs after observing

a signal continue to satisfy these conditions. Since variances decrease over time, the first

condition is obviously satisfied. By independence, learning about θ̃1, . . . , θ̃k does not affect

the variances of the remaining states. So vk+1, . . . , vK are unchanged, and the third condition

is verified. Finally, the second condition holds by Proposition 2: Since each signal i ≤ k is

sampled according to λ∗
i , the variance vi after t periods is approximately 1

λ∗
i t
. Hence part (a)

of Theorem 2 is proved.35

A.4 Proof of Theorem 2 Part (b)

A.4.1 Preliminary Steps

Given any prior, let A ⊂ [N ] be the set of all signals that are observed by infinitely many

agents. We first show that A is a spanning set.

Indeed, by definition we can find some period t after which agents only observe signals

in A. Note that the variance reduction of any signal approaches zero as its signal count gets

large. Thus, along society’s signal path, the variance reduction is close to zero at sufficiently

late periods.

If A is not spanning, society’s posterior variance remains bounded away from zero. Thus

in the limit where each signal in A has infinite signal counts, there still exists some signal j

outside of A whose variance reduction is strictly positive.36 By continuity, we deduce that

at any sufficiently late period, observing signal j is better than observing any signal in A.

This contradicts our assumption that later agents only observe signals in A.

Now that A is spanning, we can take S to be the optimal minimal spanning set in the

subspace spanned by A. To prove Theorem 2 part (b), we will show that long-run frequencies

are positive precisely for the signals in S. By ignoring the initial periods, we assume without

34Formally, we require that for some fixed constant ǫ > 0, it holds that v1, . . . , vk < ǫ; max1≤i≤k λ
∗
i vi ≤

(1 + ǫ) ·min1≤i≤k λ
∗
i vi; and vk+1, . . . , vK > 1

ǫ .
35Strictly speaking, the above construction does not provide an open set of prior beliefs given which agents

always observe the first k signals. This is because we restricted attention to priors that are independent over

θ̃1, . . . , θ̃K . But it can be shown that the argument extends to mild prior correlation across the transformed

states. We omit the somewhat cumbersome details, which do not add further intuition.
36To see this, let s1, . . . , sN denote the limit signal counts, where si = ∞ if and only if i ∈ A. We need

to find some signal j such that V (sj + 1, s−j) < V (sj , s−j). If such a signal does not exist, then all partial

derivatives of V at s are zero. Since V is differentiable, this would imply that all directional derivatives of

V are also zero. By the convexity of V , V must be minimized at s. However, the minimum value of V is

zero because there exists a spanning set. This contradicts V (s) > 0.
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loss that only signals in A are available. It suffices to show that whenever the signals

observed infinitely often span a subspace, agents eventually sample from the optimal subset

S in that subspace. To ease notation, we assume this subspace is the entire R
K , and prove

the following result:

Theorem 2 part (b) Restated. Suppose that the signals observed infinitely often span

R
K. Then society eventually observes signals in S∗ with frequencies λ∗.

The next sections are devoted to the proof of this restatement.

A.4.2 Estimates of Derivatives

We introduce a few technical lemmata:

Lemma 7. For any q1, . . . , qN , we have
∣
∣
∣
∣

∂jjV (q1, . . . , qN)

∂jV (q1, . . . , qN)

∣
∣
∣
∣
≤

2

qj
.

Proof. Recall that V (q1, . . . , qN) = e′1 · [(Σ
0)−1 + C ′QC]−1 · e1. Thus

∂jV = −e′1 · [(Σ
0)−1 + C ′QC]−1 · cj · c

′
j · [(Σ

0)−1 + C ′QC]−1 · e1,

and

∂jjV = 2e′1 · [(Σ
0)−1 + C ′QC]−1 · cj · c

′
j · [(Σ

0)−1 + C ′QC]−1 · cj · c
′
j · [(Σ

0)−1 + C ′QC]−1 · e1.

Let γj = e′1 · [(Σ
0)−1 + C ′QC]−1 · cj , which is a number. Then the above becomes

∂jf = −γ2
j ; ∂jjf = 2γ2

j · c
′
j · [(Σ

0)−1 + C ′QC]−1 · cj .

Note that (Σ0)−1+C ′QC � qj ·cjc′j in matrix norm. Thus the number c′j ·[(Σ
0)−1+C ′QC]−1·cj

is bounded above by 1
qj
.37 This proves the lemma.

Since the second derivative is small compared to the first derivative, we deduce that the

variance reduction of any discrete signal can be approximated by the partial derivative of f .

This property is summarized in the following lemma:

37Formally, we need to show that for any ǫ > 0, the number c′j [cjc
′
j + ǫIK ]−1cj is at most 1. Using the

identify Trace(AB) = Trace(BA), we can rewrite this number as

Trace([cjc
′
j + ǫIK ]−1cjc

′
j) = Trace(IK − [cjc

′
j + ǫIK ]−1ǫIK) = K − ǫ · Trace([cjc

′
j + ǫIK ]−1).

The matrix cjc
′
j has rank 1, soK−1 of its eigenvalues are zero. Thus the matrix [cjc

′
j+ǫIK ]−1 has eigenvalue

1/ǫ with multiplicity K−1, and the remaining eigenvalue is positive. This implies ǫ ·Trace([cjc′j+ǫIK ]−1) >

K − 1, and then the above display yields c′j · [(Σ
0)−1 + C′QC]−1 · cj < 1 as desired.

35



Lemma 8. For any q1, . . . , qN , we have38

V (q)− V (qj + 1, q−j) ≥
qj

qj + 1
|∂jV (q)|.

Proof. We will show the more general result:

V (q)− V (qj + x, q−j) ≥
qjx

qj + x
· |∂jV (q)|, ∀x ≥ 0.

This clearly holds at x = 0. Differentiating with respect to x, we only need to show

−∂jV (qj + x, q−j) ≥
q2j

(qj + x)2
|∂jV (q)|, ∀x ≥ 0.

Equivalently, we need to show

−(qj + x)2 · ∂jV (qj + x, q−j) ≥ −q2j · ∂jV (q), ∀x ≥ 0.

Again, this inequality holds at x = 0. Differentiating with respect to x, it becomes

−2(qj + x) · ∂jV (qj + x, q−j)− (qj + x)2 · ∂jjV (qj + x, q−j) ≥ 0.

This is exactly the result of Lemma 7.

A.4.3 Lower Bound on Variance Reduction

Our next result gives a lower bound on the directional derivative of V along the “optimal”

direction λ∗:

Lemma 9. For any q1, . . . , qN , we have

|∂λ∗V (q)| ≥
V (q)2

φ(S∗)2
.

Proof. To compute this directional derivative, we think of agents acquiring signals in frac-

tional amounts, where a fraction of a signal is just the same signal with precision multiplied

by that fraction. Consider an agent who draws λ∗
i realizations of each signal i. Then he

essentially obtains the following signals:

Yi = 〈ci, θ〉+N

(

0,
1

λ∗
i

)

, ∀i.

This is equivalent to

λ∗
iYi = 〈λ∗

i ci, θ〉+N (0, λ∗
i ), ∀i.

38Note that the convexity of V gives V (q) − V (qj + 1, q−j) ≤ |∂jV (q)|. This lemma provides a converse

that we need for the subsequent analysis.
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Such an agent receives at least as much information as the sum of these signals:

∑

i

λ∗
iYi =

∑

i

〈λ∗
i ci, θ〉+

∑

i

N (0, λ∗
i ) =

ω

φ(S∗)
+N (0, 1).

Hence the agent’s posterior precision about ω (which is the inverse of his posterior variance

V ) must increase by at least 1
φ(S∗)2

along the direction λ∗. The chain rule of differentiation

yields the lemma.

We can now bound the variance reduction at late periods:

Lemma 10. Fix any q1, . . . , qN . Suppose M is a positive real number such that (Σ0)−1 +

C ′QC � Mcjc
′
j holds for each signal j ∈ S∗. Then we have

min
j∈S∗

V (qj + 1, q−j) ≤ V (q)−
M

M + 1
·
V (q)2

φ(S∗)2
.

Proof. Fix any signal j ∈ S∗. Using the condition (Σ0)−1 + C ′QC � Mcjc
′
j, we can deduce

the following variant of Lemma 8:39

V (q)− V (qj + 1, q−j) ≥
M

M + 1
|∂jV (q)|.

Since V is always differentiable, ∂λ∗V (q) is a convex combination of the partial derivatives

of V .40 Thus

max
j∈S∗

|∂jV (q)| ≥ |∂λ∗V (q)|

These inequalities together with Lemma 9 complete the proof.

A.4.4 Proof of the Restatement of Theorem 2 Part (b)

We will show V (m(t)) ∼ φ(S∗)2

t
, so that society eventually approximates the optimal speed

of learning. Since λ∗ is the unique minimizer of V ∗, this will imply the desired conclusion

m(t)/t → λ∗.

To estimate V (m(t)), we note that for any fixed M , society’s acquisitions m(t) eventually

satisfy the condition (Σ0)−1+C ′QC � Mcjc
′
j . This is due to our assumption that the signals

39Even though we are not guaranteed qj ≥ M , we can modify the prior and signal counts such that the

precision matrix (Σ0)−1 + C′QC is unchanged, and signal j has been observed at least M times. This is

possible thanks to the condition (Σ0)−1+C′QC � Mcjc
′
j . Then, applying Lemma 8 to this modified problem

yields the result here.
40While this may be a surprising contrast with V ∗, the difference arises because the formula for V always

involves a full-rank prior covariance matrix, whereas its asymptotic variant V ∗ corresponds to a flat prior.
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observed infinitely often span R
K , which implies that C ′QC becomes arbitrarily large in

matrix norm. Hence, we can apply Lemma 10 to find that

V (m(t + 1)) ≤ V (m(t))−
M

M + 1
·
V (m(t))2

φ(S∗)2

for all t ≥ t0, where t0 depends only on M .

We introduce the auxiliary function g(t) = V (m(t)) · M
(M+1)φ(S∗)2

. Then the above simpli-

fies to

g(t+ 1) ≤ g(t)− g(t)2.

Inverting both sides, we have

1

g(t+ 1)
≥

1

g(t)(1− g(t))
=

1

g(t)
+

1

1− g(t)
≥

1

g(t)
+ 1. (12)

This holds for all t ≥ t0. Thus by induction, 1
g(t)

≥ t− t0 and so g(t) ≤ 1
t−t0

. Going back to

the posterior variance function V , this implies

V (m(t)) ≤
M + 1

M
·
φ(S∗)2

t− t0
. (13)

Hence, by choosing M sufficiently large in the first place and then considering large t, we

find that society’s speed of learning is arbitrarily close to the optimal speed φ(S∗)2. This

completes the proof.

We comment that the above argument leaves open the possibility that some signals

outside of S∗ are observed infinitely often, yet with zero long-run frequency. Similar to

Appendix A.2.7, we can show this does not happen. The proof is involved, and we defer it

to Appendix B.2.

A.5 Proof of Proposition 3

Given any history of observations, an agent can always allocate his B observations as follows:

He draws ⌊B ·λ∗
i ⌋ realizations of each signal i, and samples arbitrarily if there is any capacity

remaining. Here ⌊ ⌋ denotes the floor function.

Fix any ǫ > 0. If B is sufficiently large, then the above strategy acquires at least

(1 − ǫ) · B · λ∗
i observations of each signal i. Adapting the proof of Lemma 9, we see that

the agent’s posterior precision about ω must increase by (1−ǫ)B
φ(S∗)2

under this strategy. Thus

the same must hold for his optimal strategy, so that society’s posterior precision at time t is

at least (1−ǫ)Bt
φ(S∗)2

. This implies that society’s speed of learning (per signal) is at least φ(S∗)2

(1−ǫ)
,

which can be arbitrarily close to the optimal speed φ(S∗)2 with appropriate choice of ǫ.
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Since λ∗ is the unique minimizer of V ∗, society’s long-run frequencies must be close to

λ∗. In particular, with ǫ sufficiently small, we can ensure that each signal in S∗ are observed

with positive frequencies. The restated Theorem 2 part (b) extends to the current setting

and implies that society eventually samples from S∗. This yields the proposition.41

A.6 Proof of Proposition 4

Suppose without loss that the best set is {1, . . . , k}. By taking a linear transformation,

we can further assume each signal i with 1 ≤ i ≤ k only involves ω and the first k − 1

confounding terms b1, . . . , bk−1. We claim that whenever k− 1 sufficiently precise signals are

provided about each of these confounding terms, long-run frequencies must converge to λ∗.

Fix any positive real number M . Since the k − 1 free signals are very precise, it is as if

the prior precision matrix satisfies

(Σ0)−1 � M2

k∑

i=2

∆ii

where ∆ii be the K ×K matrix that has one at the (i, i) entry and zero otherwise. Recall

also that society eventually learns ω. Thus at some late period t0, society’s acquisitions must

satisfy

C ′QC � M2∆11.

Adding up the above two displays, we have

(Σ0)−1 + C ′QC � M2
k∑

i=1

∆ii � Mcjc
′
j, ∀1 ≤ j ≤ k.

The last inequality uses the fact that each cj only involves the first k coordinates.

Now this is exactly the condition we need in order to apply Lemma 10: Whether or not

the condition is met for j /∈ S∗ does not affect the argument. Thus we can follow the proof of

the restated Theorem 2 part (b) to deduce (13). That is, for fixed M and corresponding free

information, society’s long-run speed of learning cannot be slower than (1 + 1/M) · φ(S∗)2.

This can be made arbitrarily close to the optimal speed, in which case we use Theorem 2

part (b) to conclude that society eventually samples according to λ∗.

41This proof also suggests that how small ǫ (and how large B) need to be depends on the distance between

the optimal speed of learning and the “second-best” speed of learning from any other minimal spanning set.

Intuitively, in order to achieve long-run efficient learning, agents need to allocate B observations in the best

set to approximate the optimal frequencies. If another set of signals offers a speed of learning that is only

slightly worse, we will need B sufficiently large for the approximately optimal frequencies in the best set to

beat this other set.
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A.7 Proof of Proposition 1

Recall that λ∗ uniquely minimizes the function V ∗. Thus the proposition is equivalent to

the following: Fix ǫ > 0, then for any δ close to 1, V (dδ(t)) ≤
(1+ǫ)φ(S∗)2

t
holds for sufficiently

large t. That is, we only need to show that as δ → 1, the achieved speed of learning is close

to the optimal speed.

Suppose for contradiction that V (dδ(t)) >
(1+ǫ)φ(S∗)2

t
at some large t. Let τ < t be the

last period with V (dδ(τ)) ≤
(1+ǫ/2)φ(S∗)2

τ
. Below we first assume such a period τ exists; later

we will show how to modify the proof when it does not. Consider the following deviation:

1. Agents i ≤ τ choose signals according to dδ (i.e., they do not deviate);

2. Starting in period τ +1, the next Mk agents sample each signal in the best set (of size

k) exactly M times, in an arbitrary order;

3. Starting in period τ +Mk+1, each future agent chooses the signal that maximizes his

own expected payoff, as in our main model.

In what follows we will show that for appropriately chosen M as well as sufficiently large δ

and t, this deviation yields a higher δ-discounted payoff than the original strategy dδ.

By construction, the deviation strategy achieves the same payoff as the original strategy

in the first τ periods. Next we consider those periods τ +1 through t. For 1 ≤ j ≤ t− τ , let

Ṽ (τ + j) denote the posterior variance at time τ + j under the deviation strategy. We can

bound it from above as follows: Our previous analysis in Appendix A.6 (specifically (12))

gives that for j > Mk,

(M + 1)φ(S∗)2

M · Ṽ (τ + j)
≥

(M + 1)φ(S∗)2

M · Ṽ (τ +Mk)
+ j −Mk, (14)

Using Ṽ (τ +Mk) ≤ Ṽ (τ) ≤ (1+ǫ/2)φ(S∗)2

τ
, the above inequality further yields

(M + 1)φ(S∗)2

M · Ṽ (τ + j)
≥

(M + 1)τ

M(1 + ǫ/2)
+ j −Mk. (15)

With slight algebra, we obtain from the above

Ṽ (τ + j)

φ(S∗)2
≤

1
τ

1+ǫ/2
+ j−Mk

1+1/M

. (16)

Fixing ǫ, we now choose M so that 1
M

< ǫ
4
. Then there exists j (depending only on ǫ,M

and K) such that for j > j, it holds that

j −Mk

1 + 1/M
≥

j + 1

1 + ǫ/2
.
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Thus, (16) implies

Ṽ (τ + j) ≤
(1 + ǫ/2)φ(S∗)2

τ + j + 1
, ∀j + 1 ≤ j ≤ t− τ. (17)

On the other hand, for small j we have the following crude estimate:

Ṽ (τ + j) ≤ Ṽ (τ) ≤
(1 + ǫ/2)φ(S∗)2

τ
, ∀1 ≤ j ≤ j. (18)

Now we go back to the original strategy and make payoff comparisons. Our choice of

τ ensures that posterior variance under the original strategy is at least (1+ǫ/2)φ(S∗)2

τ+j
, for

1 ≤ j ≤ t− τ . Hence by deviating, the payoff gain in periods τ + 1 ∼ t is at least42

δτ ·





t−τ∑

j=j+1

δj−1

[
(1 + ǫ/2)φ(S∗)2

(τ + j)(τ + j + 1)

]

−

j
∑

j=1

δj−1

[
(1 + ǫ/2)φ(S∗)2j

τ(τ + j)

]




︸ ︷︷ ︸

(∗∗)

.

Note that j has already been fixed. So as δ → 1 and t − τ → ∞,43 the term (∗∗) above

converges to

(1 + ǫ/2)φ(S∗)2 ·




1

τ + j + 1
−

j
∑

j=1

j

τ(τ + j)



 .

For large τ , the above expression is larger than φ(S∗)2/τ .

Summarizing the above, we have shown that whenever τ > τ , the deviation strategy

achieves payoff gain in periods τ + 1 through t of at least δτφ(S∗)2/τ (for δ close to 1).

Although the deviation strategy might do worse in periods t+1 onwards, the potential payoff

loss is at most O( δt

1−δ
), which is smaller than the aforementioned payoff gain δτφ(S∗)2/τ as

t − τ → ∞ (since τ ≤ 1+ǫ/2
1+ǫ

t). Hence whenever τ > τ , the deviation we constructed is a

profitable deviation, and the proposition holds in these situations.

Finally, we need to address the case where the previously-defined τ is weakly less than

τ . This covers the case in which τ does not exist according to our earlier definition (simply

let τ = 0). Instead of (15), we use the following weaker inequality

(M + 1)φ(S∗)2

M · Ṽ (τ + j)
≥ j −Mk.

42In this derivation we use (17), (18) as well as the identities 1
τ+j −

1
τ+j+1 = 1

(τ+j)(τ+j+1) and 1
τ − 1

τ+j =
j

τ(τ+j) .

43Since (1+ǫ)φ(S∗)2

t ≤ V (dδ(t)) ≤ V (dδ(τ)) ≤
(1+ǫ/2)φ(S∗)2

τ , we have τ ≤ 1+ǫ/2
1+ǫ t. So as t becomes large, the

difference t− τ also necessarily becomes large.
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That is, Ṽ (τ + j) ≤
(1+ 1

M
)φ(S∗)2

j−Mk
. Recall that 1

M
< ǫ

4
and τ ≤ τ is now bounded. Thus for

j > j (where j may need to be larger than j), we would have

Ṽ (τ + j) ≤
(1 + ǫ/4)φ(S∗)2

τ + j
, ∀j + 1 ≤ j ≤ t− τ. (19)

And for small j we can simply bound the posterior variance by the prior:

Ṽ (τ + j) ≤ c, ∀1 ≤ j ≤ j. (20)

Using the estimates (19) and (20) in place of (17) and (18), we find that the deviation

strategy achieves payoff gain in periods τ + 1 through t of at least

δτ ·





t−τ∑

j=j+1

δj−1

[
ǫ/4 · φ(S∗)2

τ + j

]

−

j
∑

j=1

δj−1c



 .

Importantly, because (19) improves upon (17), we now have a harmonic sum in (the first

part of) the parenthesis, which becomes arbitrarily large for δ close to 1. Hence the above

payoff gain is at least δτ as δ → 1 and t → ∞. Once again, this payoff gain dominates any

potential loss after period t, showing that the deviation strategy is profitable. The proof of

Proposition 1 is complete.
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For Online Publication

B Online Appendix

B.1 Example Failing Unique Minimizer

There are K = 3 states ω, b1, b2 independently drawn with prior variances 1
α
, 1
β
, 1
γ
. N = 4

signals are available, and they are respectively

X1 = ω + b1 + ǫ1

X2 = b1 + ǫ2

X3 = ω + b2 + ǫ3

X4 = b2 + ǫ4

with standard normal errors. Note that the former two signals and the latter two signals are

both spanning, and these two sets generate the same asymptotic variance. Thus Assumption

1 is not satisfied.

The posterior variance about ω as a function of the number of observations q1, q2, q3, q4

of each signal type can be derived as follows. First, given q2 observations of signal X2

and q4 observations of signal X4, posterior variance about θ2 and θ3 are 1/(q2 + β) and

1/(q4 + γ) respectively. Consider now q1 additional observations of X1; this provides the

same information about the payoff-relevant state ω as the signal ω + ǫ′, where ǫ′ is an

independent noise term with variance 1
q1
+ 1

q2+β
. Similarly, q3 additional observations of X3

are equivalent to the signal ω + ǫ′′, where ǫ′′ is an independent noise term with variance
1
q3
+ 1

q4+γ
. From this we deduce that posterior variance about ω is

V (q1, q2, q3, q4) = 1

/(

α +
1

1
q1
+ 1

q2+β

+
1

1
q3
+ 1

q4+γ

)

.

The optimal division vector thus seeks to maximize

1
1
q1
+ 1

q2+β

+
1

1
q3
+ 1

q4+γ

(21)

It is useful to rewrite (21) in the following way:

1

4

(

q1 + q2 + β + q3 + q4 + γ −
(q1 − q2 − β)2

q1 + q2 + β
−

(q3 − q4 − γ)2

q3 + q4 + γ

)

.

Then, since q1 + q2 + β + q3 + q4 + γ = t + β + γ is fixed at any time t, it is equivalent to

choose q1, q2, q3, q4 to minimize the sum of ratios

(q1 − q2 − β)2

q1 + q2 + β
+

(q3 − q4 − γ)2

q3 + q4 + γ
.
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Ideally, if signals were perfectly divisible, the optimum would be to choose q1 = q2 + β and

q3 = q4 + γ. But as each qi is restricted to integer values, this continuous optimum is not

feasible whenever β and γ are not integers.

The solution to this integer optimization problem is involved, and we need some additional

notation. Let r be the integer that minimizes |r − β| (the distance to β) and let s be the

integer that minimizes |s − γ|. Further, let 〈β〉 and 〈γ〉 be the value of these absolute

differences.

Claim 1. When the period t has the same parity as r+ s, the t-optimal (q1, q2, q3, q4) satisfy

q1, q2 ≈
〈β〉

2〈β〉+ 2〈γ〉
· t; q3, q4 ≈

〈γ〉

2〈β〉+ 2〈γ〉
· t.

Otherwise the t-optimal (q1, q2, q3, q4) satisfy

q1, q2 ≈
〈β〉

2〈β〉+ 2− 2〈γ〉
· t; q3, q4 ≈

1− 〈γ〉

2〈β〉+ 2− 2〈γ〉
· t.

Thus, all four signals are observed with positive frequency in the long run according to the

optimal criterion.

Proof. To solve the integer maximization problem (21), let r be the integer that minimizes

|r − β| (the distance to β) and let s be the integer that minimizes |s− γ|. Further, let 〈β〉

and 〈γ〉 be the value of these absolute differences. We assume 2β, 2γ are not integers, so

that 0 < 〈β〉, 〈γ〉 < 1
2
. We also assume 〈β〉 6= 〈γ〉, and by symmetry focus on the case of

〈β〉 < 〈γ〉.

With these assumptions, it is clear that when q1, q2 are integers, the minimum value of

|q1 − q2 − β| is 〈β〉, achieved if and only if q1 = q2 + r. Similarly the minimum value of

|q3 − q4 − γ| is 〈γ〉, achieved when q3 = q4 + s. Now if the total number of observations t

has the same parity as r + s, it is possible to choose q1, q2, q3, q4 such that their sum is t

and q1 = q2 + r, q3 = q4 + s—any pair q2, q4 with sum t−r−s
2

leads to such a solution. Given

these constraints, then, the optimum is to choose q2, q4 to minimize 〈β〉2

2q2+r+β
+ 〈γ〉2

2q4+s+γ
. The

optimal q2 and q4 satisfy q2/q4 ≈ 〈β〉/〈γ〉, which together with q2 + q4 =
t−r−s

2
implies

q1, q2 ≈
〈β〉

2〈β〉+ 2〈γ〉
· t; q3, q4 ≈

〈γ〉

2〈β〉+ 2〈γ〉
· t.

On the other hand, suppose t has the opposite parity to r + s. In this case q1 = q2 + r

and q3 = q4 + s cannot both hold, thus |q1 − q2 − β| and |q3 − q4 − γ| cannot both take their

minimum values 〈β〉 and 〈γ〉. It turns out that the best one can do is choose q1 = q2+ r and
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q3 = q4 + s ± 1 so that |q1 − q2 − β| = 〈β〉 and |q3 − q4 − γ| = 1 − 〈γ〉. Then, the optimal

choice of q2, q4 with sum t−r−s∓1
2

to minimize 〈β〉2

2q2+r+β
+ (1−〈γ〉)2

2q4+s+γ±1
. This yields

q1, q2 ≈
〈β〉

2〈β〉+ 2− 2〈γ〉
· t; q3, q4 ≈

1− 〈γ〉

2〈β〉+ 2− 2〈γ〉
· t

as desired.

The intuition for the conclusion above is simple: We would most prefer to set q1 = q2+β

and q3 = q4 + γ, but this is not feasible when β and γ are not integers. Thus, there is

inevitably some loss from the ideal case where signals are perfectly divisible. This loss turns

out to be convex in signal counts, so both groups of signals are observed infinitely often to

minimize total loss.

B.2 Strengthening of Theorem 2 part (b)

Here we show the following result, which strengthens the restated Theorem 2 part (b) (see

Appendix A.4). It implies that under Assumption 3, any signal that is observed with zero

long-run frequency must in fact be observed only finitely often.

Stronger Version of Theorem 2 part (b). Suppose that the signals observed infinitely

often span R
K. Then mi(t) = λ∗

i · t+O(1), ∀i.

The proof is divided into two subsections below.

B.2.1 A Weaker Result

Recall that we have previously shown mi(t) ∼ λ∗
i · t. We can first improve the estimate of

the residual term to mi(t) = λ∗
i · t+O(ln t). Indeed, Lemma 10 yields that for some constant

L and every t ≥ L,

V (m(t+ 1)) ≤ V (m(t))−

(

1−
L

t

)

·
V (m(t))2

φ(S∗)2
. (22)

This is because we may apply Lemma 10 with M = minj∈S∗ mj(t), which is at least t
L
.

Let g(t) = V (m(t))
φ(S∗)2

. Then the above simplifies to

g(t+ 1) ≤ g(t)−

(

1−
L

t

)

g(t)2.

Inverting both sides, we have

1

g(t+ 1)
≥

1

g(t)
+

1− L/t

1− (1− L/t)g(t)
≥

1

g(t)
+ 1−

L

t
. (23)
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This enables us to deduce

1

g(t)
≥

1

g(L)
+

t−1∑

x=L

(

1−
L

x

)

≥ t− O(ln t).

Thus g(t) ≤ 1
t−O(ln t)

≤ 1
t
+O( ln t

t2
). That is,

V (m(t)) ≤
φ(S∗)2

t
+O

(
ln t

t2

)

.

Since t · V (λt) approaches V ∗(λ) at the rate of 1
t
, we have

V ∗

(
m(t)

t

)

≤ t · V (m(t)) +O

(
1

t

)

≤ φ(S∗)2 +O

(
ln t

t

)

. (24)

Suppose S∗ = {1, . . . , k}. Then the above estimate together with (11) implies
∑

j>k
mj(t)

t
=

O( ln t
t
). Hence mj(t) = O(ln t) for each signal j outside of the best set.

Now we turn attention to those signals in the best set. If these were the only available

signals, then the analysis in Liang, Mu and Syrgkanis (2017) gives ∂iV (m(t)) = −
(

βS
∗

i

mi(t)

)2

.

In our current setting, signals j > k affect this marginal value of signal i, but the influence

is limited because mj(t) = O(ln t). Specifically, we can show that

∂iV (m(t)) = −

(
βS∗

i

mi(t)

)2

·

(

1 +O

(
ln t

t

))

.

This then implies mi(t) ≤ λ∗
i · t+O(ln t).44 Using

∑

i≤k mi(t) = t−O(ln t), we deduce that

mi(t) ≥ λ∗
i · t− O(ln t) must also hold. Hence mi(t) = λ∗

i · t+O(ln t) for each signal i.

B.2.2 Getting Rid of the Log

In order to remove the ln t residual term, we need a refined analysis. The reason we ended up

with ln t is because we used (22) and (23) at each period t; the “L
t
” term in those equations

adds up to ln t. In what follows, instead of quantifying the variance reduction in each period

(as we did), we will lower-bound the variance reduction over multiple periods. This will lead

to better estimates and enable us to prove mi(t) = λ∗
i · t+O(1).

To give more detail, let t1 < t2 < . . . denote the periods in which some signal j > k is

chosen. Since mj(t) = O(ln t) for each such signal j, tl ≥ 2ǫ·l holds for some positive constant

ǫ and each positive integer l. Continuing to let g(t) = V (m(t))
φ(S∗)2

, our goal is to estimate the

difference between 1
g(tl+1)

and 1
g(tl)

.

44Otherwise, consider τ +1 ≤ t to be the last period in which signal i was observed. Then mi(τ) is larger

than λ∗
i · τ by several ln(τ), while there exists some other signal î in the best set with mî(τ) < λ∗

i · τ . But

then |∂iV (m(τ))| < |∂îV (m(τ))|, meaning that the agent in period τ + 1 should not have chosen signal i.
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Ignoring period tl+1 for the moment, we are interested in φ(S∗)2

V (m(tl+1−1))
− φ(S∗)2

V (m(tl))
, which is

just the difference in the precision about ω when the division vector changes from m(tl) to

m(tl+1 − 1). From the proof of Lemma 9, we can estimate this difference if the change were

along the direction λ∗:

φ(S∗)2

V (m(tl) + λ∗(tl+1 − 1− tl))
−

φ(S∗)2

V (m(tl))
≥ tl+1 − 1− tl. (25)

Now, the vector m(tl+1 − 1) is not exactly equal to m(tl) + λ∗(tl+1 − 1 − tl), so the above

estimate is not directly applicable. However, by our definition of tl and tl+1, any difference

between these vectors must be in the first k signals. In addition, the difference is bounded

by O(ln tl+1) by what we have shown. This implies45

V (m(tl+1 − 1))− V (m(tl) + λ∗(tl+1 − 1− tl)) = O

(
ln2 tl+1

t3l+1

)

.

Since V (m(tl+1 − 1)) is on the oder of 1
tl+1

, we thus have (if the constant L is large)

φ(S∗)2

V (m(tl+1 − 1))
−

φ(S∗)2

V (m(tl) + λ∗(tl+1 − 1− tl))
≥ −

L ln2 tl+1

tl+1

. (26)

(25) and (26) together imply

1

g(tl+1 − 1)
≥

1

g(tl)
+ (tl+1 − 1− tl)−

L ln2 tl+1

tl+1

.

Finally, we can apply (23) to t = tl+1 − 1. Altogether we deduce

1

g(tl+1)
≥

1

g(tl)
+ (tl+1 − tl)−

2L ln2 tl+1

tl+1

.

Now observe that
∑

l
2L ln2 tl+1

tl+1
converges (this is the sense in which our estimates here

improve upon (23), where L
t
leads to a divergent sum). Thus we are able to conclude

1

g(tl)
≥ tl −O(1), ∀l.

In fact, this holds also at periods t 6= tl. Therefore V (m(t)) ≤ φ(S∗)2

t
+O( 1

t2
), and

V ∗

(
m(t)

t

)

≤ t · V (m(t)) +O

(
1

t

)

≤ φ (S∗)2 +O

(
1

t

)

. (27)

This equation (27) improves upon the previously-derived (24). Hence by (11) again, mj(t) =

O(1) for each signal j > k. And once these signal counts are fixed, Proposition 2 implies

mi(t) = λ∗
i · t+O(1) also holds for signal i ≤ k. This completes the proof.

45By the mean-value theorem, the difference can be written as O(ln tl+1) multiplied by a certain directional

derivative. Since the coordinates of m(tl+1 − 1) and of m(tl) + λ∗(tl+1 − 1 − tl) both sum to tl+1 − 1, this

directional derivative has a direction vector whose coordinates sum to zero. Combined with ∂iV (m(t)) =

−(φ(S
∗)2

t ) · (1 +O( ln t
t )) (which we showed before), this directional derivative has size O( ln t

t3 ).
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B.3 Example of a Learning Trap with Non-Normal Signals

The payoff-relevant state θ ∈ {θ1, θ2} is binary and agents have a uniform prior. There are

three available information sources. The first, X1, is described by the information structure

θ1 θ2

s1 p 1− p

s2 1− p p

with p > 1/2. Information sources 2 and 3 provide perfectly correlated signals (conditional

on θ) taking values in {a, b}: In state θ1, there is an equal probability that X2 = a and

X3 = b or X2 = b and X3 = a. In state θ2, there is an equal probability that X2 = X3 = a

and X2 = X3 = b.

In this environment, every agent chooses to acquire the noisy signal X1, even though one

observation of each of X2 and X3 would perfectly reveal the state.46

B.4 Example Mentioned in Section 7.1

Suppose the available signals are

X1 = 10x+ ǫ1

X2 = 10y + ǫ2

X3 = 4x+ 5y + 10b

X4 = 8x+ 6y − 20b

where ω = x+ y and b is a payoff-irrelevant unknown. Set the prior to be

(x, y, b)′ ∼ N











0

0

0




 ,






0.1 0 0

0 0.1 0

0 0 0.039









 .

It can be computed that agents observe only the signals X1 and X2, although the set

{X3, X4} is optimal with φ({X1, X2}) = 1/5 > 3/16 = φ({X3, X4}). Thus, the set {X1, X2}

constitutes a learning trap for this problem. But if each signal choice were to produce ten

independent realizations, agents starting from the above prior would observe only the signals

X3 and X4. This breaks the learning trap.

46We thank Andrew Postlewaite for this example.
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B.5 Supplementary Material to Section 8

B.5.1 General Payoff Functions

We comment here on the possibilities for (and limitations to) generalizing Proposition 1

beyond the quadratic loss payoff function. Proposition 1 does extend to some other “pre-

diction problems,” in which every agent’s payoff function u(a, ω) is the same and depends

only on |a−ω|. For example, the proposition holds for u(a, ω) = |a−ω|γ with any exponent

γ ∈ (0, 2]; such an extension only requires minor changes to our proof in Appendix A.7.

Nonetheless, even restricting to prediction problems, Proposition 1 does not hold in

general. For a counterexample, consider u(a, ω) = −1{|a−ω|>1}, which punishes the agent

for any prediction that differs from the true state by more than 1.47 Intuitively, the payoff

gain from further information decreases sharply (indeed, exponentially) with the amount of

information that has already been acquired. Thus, even with a forward-looking objective

function, the range of future payoffs is limited and each agent cares mostly to maximize

his own payoff. This results in an optimal procedure that resembles myopic behavior (and

differs from the procedure that would maximize speed of learning).

The above counterexample illustrates the difficulty in estimating the value of informa-

tion when working with an arbitrary payoff function. In order to make intertemporal payoff

comparisons, we need to know how much payoff is gained/lost when the posterior vari-

ance is decreased/increased by a certain amount.48 This can be challenging in general, see

Chade and Schlee (2002) for a related discussion.

Finally, while it is more than necessary to assume that agents have the same payoff

function, the truth of Proposition 1 does require some restrictions on how the payoff functions

differ. Otherwise, suppose for example that payoffs take the form −αt(at − ω)2, where αt

decreases exponentially fast. Then even with the δ-discounted objective, the social planner

puts most of the weight on earlier agents, resembling the myopic behavior of individual

agents.

B.5.2 Low Altruism

Here we argue that part (a) of Theorem 2 generalizes to agents who are not completely

myopic, but are sufficiently impatient. That is, we will show that if signals 1, . . . , k are

subspace-optimal, then there exist priors given which agents with low δ always observe these

signals in equilibrium.

47We thank Alex Wolitzky for this example.
48This difficulty becomes more salient if we try to go beyond prediction problems: The value of information

in that case will depend on signal realizations, which brings another challenge of stochasticity.
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We follow the construction in Appendix A.3. The added difficulty here is to show that if

any agent ever chooses a signal j > k, the payoff loss in that period (relative to myopically

choosing among the first k signals) is of the same magnitude as possible payoff gains in future

periods. Then, for sufficiently small δ, such a deviation is not profitable.

Suppose that agents sample only from the first k signals in the first t − 1 periods, with

frequencies close to λ∗. Then, the posterior variances v1, . . . , vk (which are also the prior for

period t) are on the order of 1
t
. Thus any signal acquisition in period t leads to a variance

reduction on the order of 1
t2
. However, using the computation in Appendix A.3, we can show

that for some positive constant ξ (independent of t), the variance reduction of any signal

j > k is smaller than the variance reduction of any of the first k signals by ξ
t2
. This is the

amount of payoff loss in period t under a deviation to signal j.

Of course, this deviation could improve the posterior variance in future periods. But

even for the best continuation strategy, the posterior variance in period t +m can at most

be reduced by O(m
t2
).49 Thus if we choose ξ to be small enough, the payoff gain in period

t+m is bounded above by m
ξt2

. Note that for δ sufficiently small,

−
ξ

t2
+
∑

m≥1

δm ·
m

ξt2
< 0.

Hence the deviation is not profitable and the proof is complete.

B.5.3 Multiple Payoff-Relevant States

Let V (q1, . . . , qN ) be a weighted sum of posterior variances about the r payoff-relevant states.

As before, define V ∗ to be a normalized, asymptotic version of V . Let n(t) continue to

represent any allocation of t observations that minimizes V . Then, under a modification of

the Unique Minimizer assumption—we require V ∗ to be uniquely minimized—the optimal

frequency vector λOPT := limt→∞ n(t)/t is well-defined. Nonetheless, we emphasize that

with r > 1, these optimal allocations generally involve more than K signals. A theorem of

Chaloner (1984) shows that λOPT is supported on at most r(2K+1−r)
2

signals.

We can generalize the notion of “minimal spanning sets” as follows: A set of signals S

is minimally-spanning if optimal sampling from S puts positive frequency on every signal in

S. When r = 1, this definition agrees with the definition in our main model. But for r > 1,

we no longer know of a simple method for checking whether a set is minimally-spanning.

Similarly, we say that a minimal spanning set S is “subspace-optimal” if, when agents

are constrained to choose from S, the optimal frequency vector is supported on S. With

these definitions, Theorem 2 and its proof generalize without change.

49This is because over m periods, the increase in the precision matrix is O(m).
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