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ABSTRACT
Hermite reduction is a classical algorithmic tool in symbolic in-

tegration. It is used to decompose a given rational function as a

sum of a function with simple poles and the derivative of another

rational function. We extend Hermite reduction to arbitrary linear

differential operators instead of the pure derivative, and develop

efficient algorithms for this reduction. We then apply the gener-

alized Hermite reduction to the computation of linear operators

satisfied by single definite integrals of D-finite functions of several

continuous or discrete parameters. The resulting algorithm is a

generalization of reduction-based methods for creative telescoping.
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1 INTRODUCTION
Ostrogradsky

1
[37] and Hermite [27] showed how to decompose

the indefinite integral

∫
R of a rational function R ∈ Q(x) asU +

∫
A,

where U ,A ∈ Q(x), and where A has only simple poles and van-

ishes at infinity. Their contributions consist in rational algorithms
to compute A and U , that is algorithms which do not require to

manipulate the roots in Q of the denominator of R, but merely

its (squarefree) factorization. The rational function A is classically

called the Hermite reduction of R. In other words, the Hermite re-

duction of R is a canonical form of R modulo the derivatives in Q(x):
it depends Q-linearly on R, it is equal to R modulo the derivatives

and it vanishes if and only ifU ′ = R for someU ∈ Q(x).
We call generalized Hermite problem the analogous question for

inhomogeneous linear differential equations of arbitrary order

cr (x)y
(r )(x) + · · · + c0(x)y(x) = R(x), (1)

where R and the ci are rational functions in K(x), over some field K
of characteristic zero. In operator notation, given L = cr ∂

r
x + · · · +
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c0 ∈ K(x)⟨∂x ⟩, the problem is to produce a rational function [R]
in K(x), that depends K-linearly on R, that is equal to R modulo

the image L(K(x)) and that vanishes if and only if R is in L(K(x)).
Equations like Eq. (1) occur in relation to integrating factors, and

ultimately to creative telescoping. If L∗ denotes the adjoint of L, de-
fined as L∗ =

∑r
i=0(−∂x )

ici (x), then for any function f , integration
by parts produces Lagrange’s identity [29, §5.3]

uL(f ) − L∗(u)f = ∂x (PL(f ,u)) , (2)

where PL depends linearly on f , . . . , f (r−1),u, . . . ,u(r−1). It follows
that if f is a solution of L, then any R ∈ L∗(K(x)) is an integrat-

ing factor of f , meaning that Rf is a derivative of a K(x)-linear
combination of f and its derivatives. The converse holds if L is an

operator of minimal order canceling f , see Proposition 4.2.

Contributions
We introduce a generalized Hermite reduction to compute such a [R].
Classical Hermite reduction addresses the case L = ∂x . The algo-
rithm operates locally at each singularity and it avoids algebraic

extensions, similarly to classical Hermite reduction.

Next, we improve Chyzak’s algorithm [19] for creative telescop-

ing with the use of generalized Hermite reduction. Recall that cre-

ative telescoping is an algorithmic way to compute integrals by

repeated differentiation under the integral sign and integration by

parts [7]. Chyzak’s algorithm repeatedly checks for the existence

of a rational solution to equations like (1). A lot of time is spent

checking that none exists. The use of generalized Hermite reduction

makes the computation incremental and less redundant.

As a simple instance of the creative telescoping problem, let f (t ,x)
be a function annihilated by a linear differential operator L ∈
Q(t ,x)⟨∂x ⟩ in the differentiation with respect to x only, and such

that ∂t (f ) = A(f ) for another operator A also in Q(t ,x)⟨∂x ⟩. We

look for the minimal relation of the form

λ0 f + · · · + λs ∂
s
t (f ) = ∂x (G), (3)

with λ0, . . . , λs ∈ Q(t) and G(t ,x) in the function space spanned

by f and its derivatives, with the motive that integrating both sides

with respect to x may lead to something useful: on the right-hand

side, the integral of the derivative simplifies, often to 0, and on the

left-hand side, the integration commutes with the λi∂
i
t , yielding a

differential equation for

∫
f (t ,x) dx . In Equation (3), the left-hand

side is called the telescoper and the function G(t ,x) the certificate.
The new algorithm constructs a sequence of rational functions

R0,R1, . . . in Q(t ,x) such that ∂it (f ) = Ri f + ∂x (. . . ). Equation (3)

holds if and only if λ0R0 + · · · + λsRs is an integrating factor of f ,
which in turn is equivalent to the relation

λ0[R0] + · · · + λs [Rs ] = 0, (4)
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where [ ] is the generalized Hermite reduction with respect to L∗.
Starting with s = 0, we search for solutions of the equation above

and increment s until one is found. Chyzak’s algorithm would solve

Equation (3) at each iteration mostly from scratch, whereas the

new algorithm retains the reduced forms [Ri ] from one iteration to

the next, computes [Rs ] from [Rs−1] and solves the straightforward
Equation (4). This approach to creative telescoping generalizes to

several parameters t1, . . . , te in the integrand and to different kinds

of operators acting on them, in the setting of Ore algebras.

The order of the telescopers and even the termination of the

creative telescoping process are related to the confinement proper-

ties of the generalized Hermite reduction. Assuming that the poles

of the rational functions R0,R1, . . . all lie in the same finite set,

we deduce from a result of Adolphson’s an upper bound on the

dimension of the subspace spanned by the reductions [Ri ], which
in turn bounds the order of the minimal telescoper.

Previous work
Extensions of Hermite reduction. Ostrogradsky [37] and Her-

mite [27] introduced a reduction for rational functions. A century

later, it was extended to larger and larger classes of functions: al-

gebraic [43], hypergeometric [3], hyperexponential [22, 26, 10, 11],

Fuchsian [16]. Van der Hoeven’s preprint [44] considers a reduction

w.r.t. the derivation operator on differential modules of finite type,

so as to address the general differentially finite case. Our general-

ized Hermite reduction is inspired by these works. It has the same

architecture as several previous ones [10, 16, 11, 44]: local reduc-

tions at finite places, followed by a reduction at infinity and the

computation of an exceptional set to obtain a canonical form. Our

first contribution in the present paper is to open a new direction

of generalization, namely by considering reductions with respect

to other operators in K(x)⟨∂x ⟩ than the derivation operator ∂x ,

acting on the space K(x) of rational functions. An extra benefit of

our method is to avoid algebraic extensions of K.

Index theorems. The finite-dimensionality of a function space

modulo the image of a differential operator is crucial to the termi-

nation of our reduction and creative-telescoping algorithms. This

finiteness, and even explicit bounds, are given by index theorems
for differential equations [35]. Rational versions appeared in work

by Monsky [36] related to the finiteness of de Rham cohomology,

and by Adolphson [6] in a p-adic context, see also [41, 45], and §3.6.

Creative telescoping by reduction. The use of Hermite-like reduc-

tions for computing definite integrals roots in works by Fuchs [25]

and Picard [38, 39]. In the realm of creative telescoping, this line

of research forms what is called the fourth generation of creative

telescoping algorithms. It was first introduced for bivariate ratio-

nal functions [9], and later extended to the multivariate rational

case [12, 32]. For bivariate functions/sequences, the approach was

also extended to larger classes: algebraic [15, 14], hyperexponen-

tial [10], hypergeometric [13,28], mixed [11], Fuchsian [16], differen-

tially finite [44]. Our second contribution is the first reduction-based

variant, for single integrals, of Chyzak’s algorithm [19] for D-finite

functions depending on several continuous or discrete parameters.

2 INTRODUCTORY EXAMPLE
2.1 Hermite Reduction
The equationM(y) = ax2 + bx + c , withM defined by

M(y) = (x2 − 1)y′′ + (x − 2p(x2 − 1))y′ + (p2(x2 − 1) − px − n2)y,

has a rational solution y ∈ Q(n,p,x) if and only if ax2 + bx + c is a
multiple of p2x2 − px − n2 − p2. This follows in two steps.

First, a local analysis reveals that if y has a pole at some α ∈ C,
then so doesM(y): for any α ∈ C \ {±1} and for any s > 0,

M
(
(x − α)−s

)
= (α2 − 1)s(s + 1)(x − α)−s−2 (1 +O(x − α))

andM
(
(x ± 1)−s

)
= ±s(2s + 1)(x ± 1)−s−1 (1 +O(x ± 1)) .

Therefore, ifM(y) is a polynomial then y is also a polynomial.

Next, for any s ≥ 0,M(xs ) = p2xs+2 +O(xs+1), as x →∞. It fol-
lows that if y ∈ Q(n,p)[x] thenM(y) ∈ Q(n,p)[x] and degx M(y) =
degx y+2. In particular, every polynomial of degree ≤ 2 inM(Q(n,p,x))

is a multiple ofM(1) = p2x2 − px − n2 − p2 over Q(n,p).
In §3, we define the Hermite reductions w.r.t.M of 1, x and x2:

[1] = 1, [x] = x , and [x2] =
x

p
+
n2 + p2

p2
,

showing that [p2x2 − px − n2 − p2] = 0. Similarly, the reduction of

any polynomial w.r.t.M is a Q(n,p)-linear combination of 1 and x .

2.2 Creative Telescoping
We consider the classical integral identity [40, §2.18.1, Eq. (10)]∫

1

−1

e−pxTn (x)
√
1 − x2

dx = (−1)nπ In (p),

where Tn denotes the nth Chebyshev polynomial of the first kind

and In the nth modified Bessel function of the first kind. The inte-

grand Fn (p,x) satisfies a system of linear differential and difference

equations, easily found from defining equations forTn (x) and e
−px

:

∂Fn
∂p
= −xFn, nFn+1 =

∂

∂x

(
(x 2 − 1)Fn

)
+ (px 2 + (n − 1)x − p)Fn,

(1 − x 2)
∂2Fn
∂x 2

= (2px 2 + 3x − 2p)
∂Fn
∂x
+ (p2x 2 + 3px − n2 − p2 + 1)Fn .

We aim at finding a similar set of linear differential-difference

operators in the variables n and p for the integral

∫
1

−1
Fn (p,x) dx .

Note that Fn and all its derivatives w.r.t. x and p and shifts w.r.t. n
are Q(n,p,x)-linear combinations of Fn and ∂Fn/∂x .

The adjoint of the last equation isM(y) = 0, with the operatorM
of §2.1. The reduction w.r.t.M described above makes the following

computation possible. First, Fn is not a derivative (of a Q(n,p,x)-
linear combination of Fn and ∂Fn/∂x). Indeed, Fn is a derivative

if and only if 1 ∈ M(Q(n,p)). Second, no Q(n,p)-linear relation
between Fn and ∂Fn/∂p is a derivative, because ∂Fn/∂p = −xFn
and [1] and [−x] are linearly independent over Q(n,p). Third, the
Q(n,p)-linear relation p2[x2]+p[−x] − (n2 +p2)[1] = 0 proves that

p2
∂2Fn
∂p2

+ p
∂Fn
∂p
− (n2 + p2)Fn =

∂G

∂x
(5)

for some Q(n,p,x)-linear combinationG of Fn and ∂Fn/∂x . Next,
the equation for nFn+1 and the equation [px2 + (n − 1)x − p] =
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nx + n2/p show that, for some G̃ as above,

Fn+1 +
∂Fn
∂p
−
n

p
Fn =

∂G̃

∂x
. (6)

Equations (5) and (6) can then be integrated from −1 to 1. The

contour can be deformed so that the right-hand sides vanish (re-

gardless of G and G̃) and the left-hand sides provide the desired

operators for the integral. These equations classically define, up to

a constant factor, the function (−1)n In (p).

3 GENERALIZED HERMITE REDUCTION
Throughout this section, M ∈ K[x]⟨∂x ⟩ denotes a linear differ-

ential operator with polynomial coefficients. We are interested in

finding K-linear dependency relations in K(x) modulo the rational

imageM(K(x)) by means of a canonical form with respect toM .

Definition 3.1. A canonical form with respect to M is a K-linear
map [ ] : K(x) → K(x) such that for any R ∈ K(x):

(i) [M(R)] = 0; (ii) R − [R] ∈ M(K(x)).

Applying [ ] to R − [R] before using (ii) and (i) results in [[R]] = [R].
As can be seen from Eq. (1), computing such canonical forms

is tightly related to the computation of rational solutions of linear

differential equations. In classical solving algorithms [2,33], bounds

on the order of poles of meromorphic solutions are given by indicial

equations. Next, in order to factor the computation for different

inhomogeneous parts, instead of using a “universal denominator”,

one could at each singularity identify the polar behaviour of po-

tential meromorphic solutions, so as to reduce rational solving

to polynomial solving. This idea is what inspired the reduction

algorithm for computing canonical forms in the present section
2
.

We begin in §3.1 with a local analysis of M(K(x)). Then we

describe in §3.2 a projection map H : K(x) → K(x) that we call
weak Hermite reduction. It is not quite a canonical form. It misses

an exceptional set described in §3.3, from which a canonical form

is deduced. For simplicity, this is first described in the algebraic

closure of the base field K, and in §3.4 we show how to perform the

computations in a rational way, i.e., without algebraic extensions.

Finally, in §3.6, we bound the dimension of the quotient E/M(E),
for a ring E of rational functions with prescribed poles. This is rele-

vant to getting size and complexity bounds for creative telescoping.

3.1 Local Study
LetK be an algebraic closure ofK. For R ∈ K(x) and α ∈ K, let R(α )
denote the polar part of R at α . This is the unique polynomial

in (x − α)−1 with constant term zero such that R − R(α ) has no
pole at α . Similarly, the polynomial part R(∞) of R is the unique

polynomial such thatR−R(∞) vanishes at infinity. By partial fraction
decomposition,

R = R(∞) +
∑
α ∈K

R(α ). (7)

Let also ordα R denote the valuation of R as a Laurent series in x−α .
For any α ∈ K, there exists a non-zero polynomial indα ∈ K[s]

and an integer σα such that for any s ∈ Z,

M
(
(x − α)−s

)
= indα (−s)(x −α)

−s+σα (1+o(1)), as x → α . (8)

2
In the case of systems, analogues of indicial equations are more complicated; several

alternatives for rational solving exist [1, 8], that resemble the reduction in [44].

The polynomial indα is classically called the indicial polynomial
of M at α [46, 29]; we call the integer σα the shift of M at α . The
indicial polynomial and its integer roots give a detailed understand-

ing of the image ofM . We similarly define the shift and the indicial

polynomial at∞ by the equation

M(xs ) = ind∞(−s)x
s−σ∞ (1 + o(1)), as x →∞.

IfM =
∑r
i=0 pi (x)∂

i
x , then

σα = min

0≤i≤r
(ordα pi − i) and σ∞ = max

0≤i≤r
(i − degpi ).

For any α ∈ K that is not a root of the leading coefficient pr
ofM , we have indα (s) = pr (α) · s(s − 1) · · · (s − r + 1) and σα = −r .

3.2 Weak Hermite Reduction
Let imM = M(K(x)). Let Hα : K(x) → K(x) be the local reduction
map at α defined by Hα (R) = R if ordα R ≥ 0 (α is not a pole of R)
and by induction on ordα R,

Hα (R) =

{
Hα

(
R − cM ((x−α )−s−σα )

indα (−σα−s)

)
if indα (−σα − s) , 0,

c(x − α)−s + Hα (R − c(x − α)
−s ) otherwise,

where R = c(x − α)−s (1 + o(1)) as x → α , with c ∈ K \ {0}
and s > 0. The induction is well-founded because in either case

of the definition, the argument of Hα in the right-hand side has a

valuation at α that is larger than ordα R. By construction, we check

that R − Hα (R) ∈ imM for any R ∈ K(x).
Similarly, let H∞ : K(x) → K(x) be the local reduction map at∞

defined by H∞(R) = R if ord∞ R > 0 (that is R(∞) = 0) and by

induction on ord∞(R) by

H∞(R) =


H∞

(
R − cM (x s+σ∞ )

ind∞(−s−σ∞)

)
if ind∞(−s − σ∞) , 0

and s + σ∞ ≥ 0,

cxs + H∞(R − cx
s ) otherwise,

where R = cxs (1 + o(1)) as x →∞. By construction, we check that
R − H∞(R) ∈ imM for any R ∈ K(x). The condition s + σ∞ ≥ 0

ensures thatM(xs+σ∞ ) is a polynomial.

Definition 3.2. The weak Hermite reduction is the linear mapH , seen

either as H : K(x) → K(x) or as H : K(x) → K(x), and defined by

H (R) = H∞

(
R(∞) +

∑
α ∈{poles of R }

Hα
(
R(α )

) )
.

Proposition 3.3. For any R ∈ K(x):
(i) H (R) = H∞ ◦ Hα1

◦ · · · ◦ Hαn (R), where α1, . . . ,αn ∈ K are
the poles of R;

(ii) R − H (R) ∈ imM and H (M(R)) ∈ imM ;
(iii) H (H (R)) = H (R).

Moreover:
(iv) for any α ∈ K and for any s > 0,

indα (s) , 0 and σα − s > 0⇒ H
(
M((x − α)−s )

)
= 0;

(v) for any s ≥ 0, ind∞(s) , 0⇒ H
(
M(xs )

)
= 0.

Proof. By linearity and Equation (7), Property (i) follows from

the formulas H (R(∞)) = H∞(R(∞)) and H (R(α )) = H∞(Hα (R(α )))
derived from the definition of H . The first part of Property (ii)

follows from corresponding properties for Hα and H∞; the second
part is a consequence of applying the first toM(R).
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As for the idempotence, we observe, first, that every H (R) is a
linear combination of some (x − α)−s , with indα (−s − σα ) = 0,

and xs , with s +σ∞ ≥ 0 and ind∞(−s −σ∞) = 0; and second, thatH
is the identity on such monomials.

As for (iv), the condition indα (s) , 0 together with (8) imply

that ordα M((x − α)−s ) = −s − σα , and then by definition of Hα ,

Hα
(
M((x − α)−s )

)
= Hα

(
M((x − α)−s ) −M((x − α)−s )

)
= 0.

The last property is proved similarly. □

3.3 Canonical Form
If H were a canonical form, H (M(R)) would be 0 for any R ∈ K(x).
But this property fails, and more work is required to refine H into

a canonical form.

Definition 3.4. The space ExcM of exceptional functions is the K-
linear subspace of K(x) defined by ExcM = H (imM).

Lemma 3.5. For any R ∈ K(x), R ∈ imM if and only ifH (R) ∈ ExcM .

Proof. The direct implication is the definition of ExcM . For the

converse, assume H (R) = H (M(U )) for some U . As (R −M(U )) −
H (R−M(U )) = M(V ) for someV by Prop. 3.3 (ii), R = M(U +V ). □

The generalized Hermite reduction is not a canonical form, but it

is strong enough to ensure that ExcM is finite-dimensional over K.

Proposition 3.6. Over K, the vector space ExcM is generated by the
finite family

(a) H (M((x − α)−s )) with α ∈ Sing(M), s > 0 and indα (−s) = 0,
(b) H (M((x − α)−s )) with α ∈ Sing(M), 0 < s ≤ σα ,
(c) H (M(xs )) with s ≥ 0 and ind∞(−s) = 0,

where Sing(M) ⊂ K is the set of singularities ofM (the zeroes of its
leading coefficient).

Proof. The elements (x − α)−s (α ∈ K, s > 0) and xs (s ≥ 0)

form a basis of K(x). In particular, ExcM , by definition, is generated

by the H ((x − α)−s ) and H (xs ). By Proposition 3.3 (iv) and (v),

H (M((x − α)−s )) = 0 when indα (−s) , 0 and s < σα . Similarly,

H (M(xs )) = 0 when ind∞(−s) , 0. Moreover, any α ∈ K such

that indα has a negative root or σα > 0 is a singularity of M .

Therefore, the only nonzero generators of ExcM belong to the set

given in the statement. □

Example 3.7. Let M = x10∂x . We compute indα (s) = −α
10s for

any α ∈ K and ind∞(s) = s . Moreover σα = −1 for α < {0,∞},
σ0 = 9 and σ∞ = −9. It follows that

ExcM = Vect

{
H (M(x−9)), . . . ,H (M(x−1))

}
= Vect

{
1,x , . . . ,x8

}
.

Lemma 3.8. Given a finite-dimensional K-linear subspaceW ⊂ K(x),
there is a unique idempotent linear map ρW : K(x) → K(x) such that:
(i)W = ker ρW ; (ii) for any R ∈ K(x), the degree of the numerator
of ρW (R) is minimal among all S ∈ K(x) with R − S ∈W .

The following proof gives an algorithm for computing ρW .

Proof. WhenW ⊂ K[x], the value ρW (R) is the result of Gaussian
elimination applied in the monomial basis to the polynomial part

of R with the elements ofW .

In the general case, we writeW = Q−1V , for some subspaceV ⊂
K[x] and Q ∈ K[x], and define ρW (R) = Q−1ρV (QR). The two

properties are easily checked. □

Algorithm 1 Rational weak Hermite reduction.

Input R ∈ K(x);M a linear differential operator.

Output The rational weak Hermite reduction of R.

functionWHermiteRed(R,M)
if R = 0 then return 0

else if R is a polynomial then
write R as cxs + (lower degree terms)
if ind∞(−s − σ∞) , 0 and s + σ∞ ≥ 0 then

returnWHermiteRed
(
R − cM (x s+σ∞ )

ind∞(−s−σ∞)
,M

)
else return cxs +WHermiteRed(R − cxs ,M)

else
P ← an irreducible factor of the denominator of R.
write R as A

P sQ , with A,Q ∈ K[x] and s maximal.
if indP (−s − σP ) = 0 then
U ← A/Q mod P .
returnU /Ps +WHermiteRed(R −U /Ps ,M)

else
R ← A/Q/indP (−s − σP ) mod P
returnWHermiteRed

(
R −M(R/Ps+σP ),M

)
Definition 3.9. The generalized Hermite reduction with respect toM
is the map [ ] : K(x) → K(x) defined by [R] = ρ ExcM (H (R)).

Theorem 3.10. The map [ ] is a canonical form with respect toM .

Proof. We check the properties of Definition 3.1. Let R ∈ K(x).
First, [M(R)] = 0 because H (M(R)) ∈ ExcM (Lemma 3.5) and then

ρExcM (H (M(R))) = 0, by Proposition 3.3 (ii) and the construction

of ρExcM . Second, R − [R] ∈ imM because R −H (R) ∈ imM (Propo-

sition 3.3) and H (R) − ρExcM (H (R)) ∈ ExcM ⊂ imM . □

3.4 Rational Generalized Hermite Reduction
In most cases, computing Hermite reduction as it is defined above

would require to work with algebraic extensions of the base field.

If P ∈ K[x] is a monic irreducible polynomial and α a root of P ,
the reduction can be performed simultaneously at all roots of P
without introducing algebraic extensions.

The indicial equation is obtained by considering the leading coef-

ficient of the P-adic expansion ofM(P−s ), see [46, §4.1, p. 107]. More

precisely, there is a unique polynomial indP (s) with coefficients

in K[x]/(P) and a unique integer σP such that for any s > 0,

M
(
P−s

)
= indP (−s)P

−s+σP +O
(
P−s+σP+1

)
,

as P-adic expansions. Since P is irreducible, indP (s), for a given s ,
is either 0 or invertible modulo P . For an irreducible polynomial

P ∈ K[x], and for R = UP−s +O(P−s+1), we define

HP (R) =

{
UP−s + HP (R −UP−s ) if indP (−σP − s) = 0,

HP
(
R −M(U indα (−σP − s)

−1P−s−σP )
)

otherwise,

where indα (−σP − s)
−1

is computed mod P . This is the part of our
reduction which most closely resembles the original Hermite reduc-

tion, with successive coefficients obtained by modular inversions.

Definition 3.11. The rational weak Hermite reduction is the linear

map Hrat : K(x) → K(x), defined by

Hrat(R) = H∞
(
R(∞) +

∑
P
HP

(
R(P )

) )
,
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where the summation runs over the irreducible factors of the de-

nominator of R and R(P ) ∈ K[x , P
−1] denotes the polar part of the

P-adic expansion of R.

The maps H and Hrat satisfy the same properties, mutatis mu-
tandis. In particular, the latter can be used to compute a canonical

form in the same way as H . Yet, both reductions are not equal

(see also §3.5.1). For example, over Q with M = (x2 + 1)∂x + 10x ,
R = (x2 + 1)−5 and i2 + 1 = 0,

H (R) = i
32

(
(x + i)−5 − (x − i)−5

)
whereas Hrat(R) = R.

Partial fraction decomposition and actual Hermite reduction can

be performed together. This is described in Algorithm 1. Together

with the algorithm for the map ρExcM , described in the proof of

Lemma 3.8, we obtain an algorithm, denoted CanonicalForm, to

compute the map ρ ◦ Hrat that is a canonical form moduloM .

3.5 Variants and Improvements
3.5.1 Absolute Hermite reduction. A notion of Hermite reduc-

tion that is independent from the base field is obtained by replac-

ingU ·P−s with d
s−1

dx s−1
U
P in the definition of HP . Another benefit of

this choice is that it is not necessary that P is irreducible to perform

the reduction, but simply that indP (s) is either 0 or invertible. The
denominators that appear in the computation can be factored on

the fly into factors with the required property: when some indP (s)
is neither 0 nor invertible modulo P , a gcd computation gives a

non-trivial divisor of P .

3.5.2 Reduction to the polynomial case. The hypothesis that the
differential operator M has polynomial coefficients is important

for the correctness of Algorithm 1. To compute canonical forms

modulo an operatorM with rational coefficients, it is sufficient to

find a polynomial Q such thatMQ has polynomial coefficients and

then, to compute canonical forms moduloMQ with the algorithms

above. Indeed, the image of K(x) byMQ andM are the same. The

smallest such Q is the gcd of the denominators of the coefficients

of the adjoint ofM .

3.5.3 Rational factors. The following observation can be used

to speed up the computation.

Lemma 3.12. Let L,M ∈ K[x]⟨∂x ⟩ and A,B in K(x) such thatMA =
BL. If [ ]L is a canonical form w.r.t. L, then [ ]M : R ∈ K(x) 7→
B [R/B]L is a canonical form w.r.t.M .

Proof. We check the properties of Def. 3.1: [M(y)]M = B [L(A−1y)]L
is 0 and R − [R]M = B (R/B − [R/B]L) is in B(imL) = imM . □

Lemma 3.12 may be used withA = B =
∏

α (x−α)
mα

, wheremα
is the smallest negative integer root of the indicial polynomial ofM
at α , and 0 if none exists. This is mostly useful for equations of

order 1, since the corresponding α is not a singularity of the new

operator, which becomes smaller. The rational function A plays the

role of the shell in previous reduction-based algorithms [10, 11].

3.6 Dimension of the Quotient with Fixed Poles
Let P ∈ K[x] be a squarefree polynomial and let EP = K

[
x , P−1

]
.

Let kerM ⊂ K(x) be the space of rational solutions ofM . Let r be
the order ofM and d the maximal degree of its coefficients.

Proposition 3.13 (Adolphson [6, Sec. 5, Prop. 1]).

dimK EP /M(EP ) = dimK (EP ∩ kerM) − σ∞ −
∑

P (α )=0

σα

≤ (deg P + 1) · r + d .

Sketch of the proof. Let Z = {α ∈ K | P(α) = 0}. Given deg P +
1 positive integers s∞ and sα (α ∈ Z ), let EP (s) denote the subspace
of all R ∈ EP such that the pole order at α is at most sα for α ∈
Z ∪ {∞}, that is all elements R ∈ EP (s) of the form

R =
∑
α ∈Z

∑sα
s=1

cα ,s
(x−α )s +

∑s∞
s=0 c∞,sx

s .

We choose sα and s∞ large enough so that kerM ⊂ EP (s). Let tα =
sα −σα (α ∈ Z ∪{∞}). We checkM(EP (s)) ⊆ EP (t) and that a basis
of EP (t)/M(EP (s)) induces a basis of EP /M(EP ). The bounds−σα ≤
r , −σ∞ ≤ d and dim kerM ≤ r give the inequality. □

4 CREATIVE TELESCOPING
The method of creative telescoping is an approach to the compu-

tation of definite sums and integrals of objects characterized by

linear functional equations. The notion of linear functional equa-

tion is formalized by Ore algebras. In this part, we consider the Ore

algebra A = K(x)⟨∂x , ∂1, . . . , ∂e ⟩, where ∂x is the differentiation

with respect to x and ∂1, . . . , ∂e are arbitrary Ore operators. In

the most typical case, K = Q(t1, . . . , te ) and each ∂i is either the

differentiation with respect to ti or the shift ti 7→ ti + 1.
For a given function f in a function space on which A acts, the

annihilating ideal of f is the left ideal ann f ⊆ A of all operators

that annihilate f . For example, the annihilating ideal in K(x)⟨∂x ⟩
of f = sin(x) is generated by ∂2x + 1 because sin

′′(x) = − sin(x).
A left idealI isD-finite if the quotientA/I is a finite-dimensional

vector space over K(x). A function is called D-finite if its annihilat-
ing ideal is D-finite. We refer to [18, 20, 21] for an introduction to

Ore algebras, creative telescoping and their applications.

Given a D-finite function f , the problem of creative telescoping
is the computation of a generating set of the telescoping ideal of f
w.r.t. x , or of its residue class in A/ann f . This is by definition the

left ideal Tf ⊂ K⟨∂1, . . . , ∂e ⟩ of all operatorsT such thatT + ∂xG ∈
ann f for some G ∈ A; equivalently,

Tf = (ann f + ∂xA) ∩ K⟨∂1, . . . , ∂e ⟩.

Example 4.1. In §2.2, we use the Ore algebra K(x)⟨∂x , ∂1, ∂2⟩, with
∂1 = d/dp and ∂2 = Sn the shift w.r.t. n. The annihilating ideal I

of Fn (p,x) is generated by three operators, one for each functional

equation. It is D-finite and the quotient A/I has dimension 2, with

basis 1 and ∂x . The telescoping ideal of Fn (p,x) (or, equivalently,
of 1 ∈ A/I) is generated by p2∂2p +p∂p −(n

2+p2) and pSn +p∂p −n.

4.1 Cyclic Vector
Let I ⊆ A be a D-finite ideal and let r be the dimension of A/I
over K(x). We denote L(γ ) the multiplication of an operator L ∈ A
and a residue class γ ∈ A/I.

Let γ ∈ A/I be a cyclic vector with respect to ∂x . This means

that Γ =
{
γ , ∂x (γ ), . . . , ∂

r−1
x (γ )

}
is a basis of A/I; or, equivalently,

that every f ∈ A/I can be written Af (γ ) for some Af ∈ K(x)⟨∂x ⟩.
Let L ∈ K[x]⟨∂x ⟩ be a minimal annihilating operator of γ , that

is L(γ ) = 0 and L has order r (because Γ is a basis, there is no

non-zero lower order annihilating operator for γ ). A cyclic vector
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always exists when I is D-finite [17,5]. It plays a role analogous to
that of primitive elements for 0-dimensional polynomial systems.

For 1 ≤ i ≤ e , we define a K-linear map λi : K(x) → K(x)
as follows. First, we can write ∂i (γ ) = Bi (γ ) for some operator

Bi ∈ K(x)⟨∂x ⟩. Next, let σi and δi be the maps
3
such that ∂iR =

σi (R)∂i + δi (R) for any R ∈ K(x). Finally, we define for R ∈ K(x)

λi (R) = B∗i (σi (R)) + δi (R),

where B∗i (σi (R)) ∈ K(x) is the result of applying the adjoint opera-

tor B∗i to σi (R), not the operator B
∗
i σi (R).

Proposition 4.2. With the notation above:
(i) f = A∗f (1)γ + ∂x (Q), for some Q ∈ A/I.

Moreover, for any R ∈ K(x):
(ii) ∂i (Rγ ) = λi (R)γ + ∂x (Q), for some Q ∈ A/I.
(iii) Rγ ∈ ∂x (A/I) if and only if R ∈ L∗(K(x)).

Proof. Using that f = Af (γ ), Lagrange’s identity (2) shows that

1Af (γ )−A
∗
f (1)γ = ∂x (Q) for someQ . This gives (i). Similarly, using

the commutation rule for ∂i and the definition of Bi yields (ii).
Property (iii) is shown by Abramov and van Hoeij [4, Prop. 3]. □

Example 4.3 (Continuing Example 4.1). The element 1 ∈ A/I is a

cyclic vector since {1, ∂x } is a basis of the quotient.

Actual computations are performed using a Gröbner basis of I

and linear algebra in the finite-dimensional K(x)-vector space A/I.

4.2 Creative Telescoping by Reduction
We now present our algorithm (Algorithm 2) based on generalized

Hermite reduction for the computation of the telescoping ideal Tf
for an element f of some D-finite quotient A/I. The element f is

often 1, as in Example 4.1.

In the same way as Chyzak’s algorithm [19], ours iterates over

monomials in ∂1, . . . , ∂e by a strategy reminiscent of the FGLM

algorithm [24]. Each iteration finds either a new generator of

K⟨∂1, . . . , ∂e ⟩/Tf or a new element in Tf . Let [ ] be the generalized

Hermite reduction with respect to L∗, the adjoint of the minimal

annihilating operator of the cyclic vector γ . Since every visited

monomial µ (but the first) can be written ∂iν for a previously visited
monomial ν , we define F inductively by the formula Fµ = [λi (Fν )]
and the base case F1 = A∗f (f ). With Prop. 4.2 and Theorem 3.10,

we check that µ(f ) = Fµγ + ∂x (Qµ ), for some Qµ ∈ A/I and that

a1µ1 + · · · + as µs ∈ Tf ⇔ a1Fµ1 + · · · + asFµs = 0. (9)

Theorem 4.4. On input I, Algorithm 2 terminates if and only if the
telescoping ideal Tf is D-finite. It outputs a Gröbner basis of Tf for
the grevlex monomial ordering.

Proof. By construction, when amonomial is added to the setR, it is
not a multiple of another monomial in R. By Dickson’s lemma [23],

this may happen only finitely many times.

The way L is filled ensures that when a monomial µ is visited,

every smaller monomial has been visited or is a multiple of a re-

ducible monomial. This implies, by induction, thatQ is the set of all

non-reducible monomials that are smaller than µ, when µ is visited.

3
If ∂i is the differentiation w.r.t. ti , then σi (R) = R and δi (R) = ∂R/∂ti .
If ∂i is the shift ti 7→ ti + 1, then σi (R) = R |ti←ti +1 and δi (R) = 0.

Algorithm 2 Reduction-based creative telescoping algorithm

Input I a D-finite ideal of A and f ∈ A/I
Output Generators of the telescoping ideal Tf

function CreativeTelescoping(I, f )
γ ← a cyclic vector of A/I with respect to ∂x
L← the minimal operator annihilating γ
λ1, . . . , λe ← maps as in Prop. 4.2
F1 ← CanonicalForm(A∗f (1),L

∗)

L ← [1] ▷ list of monomials in ∂1, . . . , ∂e
G ← {} ▷ Gröbner basis being computed
Q ← {} ▷ Generators of the quotient
R ← {} ▷ Set of reducible monomials
while L , ∅ do

Remove the first element µ of L
if µ is a not multiple of an element of R then

if µ , 1 then
Pick i such that µ/∂i ∈ Q
Fµ ← CanonicalForm(λi (Fµ/∂i ),L

∗)

if ∃ a K-linear rel. between Fµ and {Fν | ν ∈ Q} then
(aν )ν ∈Q ← coeff. of the relation Fµ =

∑
ν ∈Q aν Fν

Add µ −
∑
ν ∈Q aνν to G; Add µ to R

else
Add µ to Q
for 1 ≤ i ≤ e do Append the monomial ∂i µ to L

return G

If Tf is not D-finite, then there are infinitely many non-reducible

monomials and the algorithm does not terminate. Otherwise, the

algorithm terminates, since neither Q nor R may grow indefinitely.

To check that G is a Gröbner basis, we note that: G ⊂ Tf , by the

equivalence (9); the leading monomials of the elements ofG are the

elements of R; and every leading monomial of an element Tf (that

is a reducible monomial) is a multiple of an element of R. □

4.3 Variants and Improvements
4.3.1 Different term order. As stated, Algorithm 2 computes

relations by increasing total degree in (∂1, . . . , ∂e ). To choose a

different term order, it is sufficient to change the selection of the

monomial µ at the beginning of the loop and select the smallest

one for the given order instead.

4.3.2 Different termination rule. Instead of waiting for the listL
to be empty, one can stop as soon as a relation is found, and then

it is the minimal one for the chosen term order. This variant does

not require a D-finite ideal to terminate. Another possibility is to

stop as soon as the degree of µ is larger than a predefined bound,

returning all the relations that exist below this bound.

4.3.3 Certificates. While an important point of the reduction-

based approaches to creative telescoping is to avoid the compu-

tation of certificates (in contrast with Chyzak’s and Koutschan’s

algorithms that require their computation), it is also possible to

modify the algorithm so that it returns a certificate for each ele-

ment of the basis. Indeed, a certificate of the generalized Hermite

reduction of §3 can be propagated through the algorithms.
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4.4 D-finiteness of the Telescoping Ideal
In the general case, the telescoping ideal Tf of a D-finite func-

tion f need not be D-finite. However, when the auxiliary opera-

tors ∂1, . . . , ∂e are differentiation operators (as opposed to shift

operators for example), then Tf is always D-finite if f is; this is a

well-known result in the theory of D-finiteness and holonomy [42].

We give here a new proof of this fact, as a corollary of a more

general sufficient condition for general Ore operators.

Definition 4.5. AD-finite function f is singular (w.r.t. ∂x ) at α ∈ K if

every nonzero operator L ∈ K(x)⟨∂x ⟩ such that L(f ) = 0 is singular

at α . The singular set (w.r.t. ∂x ) of f , denoted Sing(f ), is the set of
all singular points of f .

Let Θ = {1, ∂1, ∂2, . . . , ∂
2

1
, ∂1∂2, . . . } be the set of all monomials

in the variables ∂1, . . . , ∂e .

Theorem 4.6. For any D-finite function f , if
⋃

µ ∈Θ Sing(µ(f )) is
finite, then Tf is D-finite.

Proof. Let γ be a cyclic vector of A/ann f w.r.t. ∂x with mini-

mal annihilating operator L ∈ K(x)⟨∂x ⟩ of order r . For µ ∈ Θ,
let Aµ(f ) ∈ K(x)⟨∂x ⟩ of order < r be such that µ(f ) = Aµ(f )(γ ), as
in §4.1, and let Rµ = A∗µ(f )(1) ∈ K(x), so that µ(f ) = Rµγ + ∂x (Gµ ),

for some Gµ ∈ A/ann f . By Proposition 4.2, the K-linear map

ϕ : K⟨∂1, . . . , ∂n⟩ → K(x) defined by ϕ(µ) = Rµ induces an injec-

tivemapK⟨∂1, . . . , ∂n⟩/Tf → K(x)/imL∗. The telescoping idealTf
is D-finite if and only if the image of this map is finite-dimensional.

In view of Proposition 3.13, it suffices to show that the poles of all

the Rµ lie in a finite subset of K. This is obtained by proving that⋃
µ ∈Θ

poles(Rµ ) ⊆ Sing(L) ∪
⋃
µ ∈Θ

Sing(µ(f )), (10)

where Sing(L) is the set of zeroes of the leading coefficient of L.
Indeed, let µ ∈ Θ and α ∈ K that is not in the right-hand side. We

now prove that no coefficient of Aµ(f ) has a pole at α , from where

it follows that neither has Rµ = A∗µ(f )(1). By the hypothesis on α ,

there exists M ∈ K(x)⟨∂x ⟩ an annihilating operator of µ(f ) regu-
lar at α . It satisfies MAµ(f )(γ ) = M(µ(f )) = 0 and by minimality

of L it follows thatMAµ(f ) = BL for some operator B. As a conse-
quence, 0, 1, . . . , r−1 are roots of the indicial polynomial ofMAµ(f ).

Write Aµ(f ) =
∑r−1
i=0 ai∂

i
x , for some ai ∈ K(x) and let j be the max-

imal index with ordα aj = mini ordα ai . Then j ∈ {0, . . . , r − 1}

and ordα Aµ(f )
(
(x − α)j

)
= mini ordα ai . Then this last quantity

is a zero of the indicial polynomial of M , which implies that it is

nonnegative and thus that none of the ai has a pole at α . □

Recall that for 1 ≤ i ≤ e , the Ore operator ∂i satisfies a commu-

tation relation ∂ia = σi (a)∂i + δi (a) for any a ∈ K, where σi is an
endomorphism of K and δi is a σi -derivation of it. When ∂i is a

differentiation operator, σi = idK.

Corollary 4.7. If ∂1, . . . , ∂e are differentiation operators, then Tf
is D-finite for any D-finite function f .

Proof. It is sufficient to check that Sing(µ(f )) ⊂ Sing(f ) for any
monomial µ ∈ Θ and then conclude by Theorem 4.6.

Integral (11) (12) (13) (14) (15) (16) (17)

redct 13 s > 1h > 1h 1.5 s 1.5 s 165 s 53 s

HF-CT 19 s 253 s 45 s 232 s 516 s >1h >1h

HF-FCT 1.9 s* 2.3 s 5.3 s >1h 2.3 s* 5.4 s 2.2 s*

Table 1 Comparative timings on several instances of creative telescoping.

Rows are redct (new algorithm); Koutschan’s HolonomicFunctions, using
functions Annihilator and CreativeTelescoping (HF-CT); idem, using

FindCreativeTelescoping (HF-FCT), a heuristic that does not necessarily
find the minimal operators (indicated by *). All examples were run on the

same machine, with the latest versions of Maple and Mathematica.

LetM ∈ K[x]⟨∂x ⟩ be an annihilating operator of д = µ(f ) regu-
lar at α ∈ K\Sing(f ). The commutation rules for the differential op-

erators imply that ∂iM = M∂i +R, for some R ∈ K[x]⟨∂x ⟩. In partic-
ular, we obtain the inhomogeneous differential equationM(∂i (д)) =
R(д) for ∂i (д). Since α is neither a singularity of M nor of R(д), it
follows that it is not a singularity of ∂i (д). □

For the case of general Ore operators, we obtain with a similar

proof the following result.

Corollary 4.8. For any D-finite function f , if there is a finite set
S ⊂ K such that: (i) σi (S) ⊆ S for any 1 ≤ i ≤ e and (ii) Sing(f ) ⊆ S ,
then Tf is D-finite.

5 EXPERIMENTS
Wepresent the results of a preliminaryMaple implementation called

redct4. Comparison is done with Koutschan’s HolonomicFunctions
package [31], the best available code for creative telescoping. Tim-

ings are given in Table 1
5
.

Koutschan’s examples. Koutschan’s example session [30] con-

tains 40 integrals on which we tested our code. In most cases, our

code compares well with HolonomicFunctions. There are 37 easy
cases, all of whose telescopers are found in 3.5 sec. by redct, while
16 sec. are needed by HolonomicFunctions (but that includes certifi-
cates). The three other examples are (the nature of the parameters

is indicated in the brackets, C
(α )
n denotes Gegenbauer polynomials,

and J1, I1, etc. Bessel functions):∫
2Jm+n (2tx )Tm−n (x )

√
1 − x 2

dx [diff. t , shift n andm], (11)∫
1

0

C (λ)n (x )C
(λ)
m (x )C

(λ)
ℓ
(x )(1 − x 2)λ−

1

2 dx [shift n,m, ℓ], (12)∫ ∞
0

x J1(ax )I1(ax )Y0(x )K0(x ) dx [diff. a]. (13)

Longer examples. We mention a few examples, some involving

Gegenbauer polynomials [40, 2.21.18.2, 2.21.18.4], that take more

time. The advantage of a reduction-based approach becomes visible.∫
n2+x+1
n2+1

(
(x+1)2

(x−4)(x−3)2(x 2−5)3

)n√
x 2 − 5 e

x3+1
x (x−3)(x−4)2

dx [shift n], (14)∫
C (µ )m (x )C

(ν )
n (x )(1 − x

2)ν−1/2 dx [shift n,m, µ , ν ], (15)

4
Available with example sessions at https://specfun.inria.fr/chyzak/redct/.

5
When our code does not terminate, time is spent computing the exceptional set.

This seems to be due to apparent singularities of the operators, that become true

singularities of their adjoint. Ways of circumventing this issue are under study.

https://specfun.inria.fr/chyzak/redct/
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x ℓC (µ )m (x )C

(ν )
n (x )(1 − x

2)ν−1/2 dx [shift ℓ,m, n, µ , ν ], (16)∫
(x + a)γ +λ−1(a − x )β−1C (γ )m (x/a)C

(λ)
n (x/a) dx,

[diff. a, shift n,m, β, γ , λ].
(17)

6 CONCLUSION
A closer look at our algorithm reveals several aspects of the complex-

ity of creative telescoping. To simplify the discussion, we restrict to

the bivariate case and measure the arithmetic complexity, obtained
by counting arithmetic operations in Q. We look for bounds in

terms of the input size (order and degree of the operators at hand).

In this setting, the complexity of computing Tf is not bounded
polynomially (whatever the algorithm). Consider for instance, the

integral representation of Hermite polynomials

Hn (t) =
2
n

i
√
π

∫ i∞

−i∞
(t + x)nex

2

dx .

If one computes a telescoper over Q(n, t), then our algorithm pro-

duces the classical differential equation y′′ + 2ny = 2ty′. However,
if n is a given positive integer then the minimal telescoper is the

first-order factor Hn (t)∂t − H
′
n (t), with coefficients of degree n. Its

size is exponential in the bit size of the input. Thus, no algorithm
computing the minimal telescoper can run in polynomial complexity.

However, in the frequent cases like this one where the set S of

singularities discussed in Corollary 4.8 is bounded polynomially in

terms of the size of the input, then the dimension of the quotient

and therefore the order of the telescopers is bounded polynomially as

a consequence of Adolphson’s result (Proposition 3.13). The non-

polynomial cost of minimality thus resides only in the degree of

the coefficients. Note that in the differential case, polynomial time

computation of non-minimal telescopers is also achieved by well-

known methods in holonomy theory, e.g., [34, proof of Lemma 3].

In our algorithm, the non-polynomial complexity arises first

in the computation of the exceptional set ExcM and next in the

reductions by the elements of this set. Removing this part of the

computation and using the weak Hermite reduction yields a weak

form of the algorithm that does not find minimal telescopers but

runs in polynomial complexity, if the set S has polynomial size.
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