
Spoke-Darts for High-Dimensional Blue-Noise Sampling

SCOTT A. MITCHELL, Sandia National Laboratories
MOHAMED S. EBEIDA, Sandia National Laboratories
MUHAMMAD A. AWAD, University of California at Davis
CHONHYON PARK, UNC Chapel Hill
ANJUL PATNEY, NVIDIA Research
AHMAD A. RUSHDI, University of California at Davis and Sandia National Laboratories
LAURA P. SWILER, Sandia National Laboratories
DINESH MANOCHA, UNC Chapel Hill
LI-YI WEI, University of Hong Kong and Adobe Research

(a) 8D Delaunay graph (b) 100D global optimization (c) 8D rendering (d) 23D motion planning

Fig. 1. Spoke-dart sampling for high-dimensional applications: Delaunay graph construction, optimization, rendering, and motion planning.

Blue noise sampling has proved useful for many graphics applications, but

remains under-explored in high-dimensional spaces due to the difficulty of

generating distributions and proving properties about them. We present a

blue noise sampling method with good quality and performance across dif-

ferent dimensions. The method, spoke-dart sampling, shoots rays from prior

samples and selects samples from these rays. It combines the advantages of

two major high-dimensional sampling methods: the locality of advancing

front with the dimensionality-reduction of hyperplanes, specifically line sam-

pling. We prove that the output sampling is saturated with high probability,

with bounds on distances between pairs of samples, and between any domain

point and its nearest sample. We demonstrate spoke-dart applications for

approximate Delaunay graph construction, global optimization, and robotic

motion planning. Both the blue-noise quality of the output distribution, and

the adaptability of the intermediate processes of our method, are useful in

these applications.

CCS Concepts: • Computing methodologies→ Antialiasing;

Additional Key Words and Phrases: line sampling, high dimension, blue

noise, Delaunay graph, global optimization, motion planning

ACM Reference format:
Scott A. Mitchell, Mohamed S. Ebeida, Muhammad A. Awad, Chonhyon Park,

Anjul Patney, Ahmad A. Rushdi, Laura P. Swiler, Dinesh Manocha, and Li-Yi

Wei. 2018. Spoke-Darts for High-Dimensional Blue-Noise Sampling. ACM
Trans. Graph. 37, 2, Article 22 (May 2018), 20 pages.

©2018 Copyright held by the owner/author(s). Publication rights licensed to Association

for Computing Machinery. Author email: samitch@sandia.gov.
This is the author’s version of the work. It is posted here for your personal use. Not for

redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3194657.

https://doi.org/10.1145/3194657

1 INTRODUCTION
Sampling is a core technique for various scientific and engineering

applications. Sampling allows us to approximate continuous quanti-

ties in tractable space and time via discrete samples. The samples

should be well-spaced for efficiency, and yet random enough to

avoid structural aliasing. Low-discrepancy sequences [Keller et al.

2012; Niederreiter 1992] are known for generating well-spaced sam-

ples, but their inherently deterministic nature is prone to produce

regular patterns, which can cause aliasing. Blue noise sampling

[Ebeida et al. 2012; Lagae and Dutré 2008; Mitchell 1987; Ulich-

ney 1988] can synthesize samples that are simultaneously random

and well-spaced, but it is computationally more expensive, espe-

cially as the dimension increases. Hyperplane sampling [Ebeida

et al. 2014] is a random approach that scales to any dimension, but

the output distribution is not guaranteed to be well-spaced. Thus,

high-dimensional (e.g. ≥ 6D) blue-noise sampling remains elusive,

even though high-dimensional spaces are common in geometry,

optimization, rendering, robotics and other applications.

Advancing front techniques [Bridson 2007; Dunbar andHumphreys

2006; Li et al. 2000; Liu 1991; Liu et al. 2008] are able to efficiently

sample from irregular domains; in contrast many other methods

are tailored to domains that are hyperrectangles. The ability to han-

dle irregular domains is an advantage in some contexts, but the

complexity of computing and storing the geometry of fronts grows

exponentially with dimension.

ACM Transactions on Graphics, Vol. 37, No. 2, Article 22. Publication date: May 2018.

ar
X

iv
:1

40
8.

11
18

v3
 [

cs
.G

R
]

 1
3

Ju
n

20
18

https://doi.org/10.1145/3194657
https://doi.org/10.1145/3194657

22:2 • Mitchell, Ebeida, Awad, Park, Patney, Rushdi, Swiler, Manocha, Wei

We present a new algorithm that has the advantages of both ad-

vancing front and hyperplane sampling. It scales to high dimensions

by avoiding computing the front geometry. It uses line sampling, se-

lecting the next sample from a line segment through a prior sample.

Its output has guaranteed blue noise properties. We provide

bounds on the spatial properties of our output, including saturation,

that apply to any dimension. We show algorithmic time and space

complexities that avoid the curse of dimensionality. We provide

experiments that confirm these theoretical bounds and trends, and

compare to related methods.

Traditional blue noise does well at avoiding low frequency arti-

facts. To avoid artifacts in high frequency areas, the community has

developed an interest in step blue noise [Heck et al. 2013], where

the frequency spectrum resembles a step function without oscilla-

tions. Until now, the only way to create these distributions was an

expensive post-processing optimization of an initial distribution.

Variations of our algorithm can create soft blue noise, potentially
avoiding high and low frequency artifacts.

Beyond blue noise, the adaptability and efficiency of our methods

facilitate diverse applications, as shown in Figure 1. For approximate
Delaunay graph construction and global optimization, the advancing-
front and radial exploration provide advantages when sampling

from the irregular shape of the local domains, even when the global

domain is a hyper-rectangle. Moreover, global optimization benefits

from the intermediate process of our sampling method, not just the

final output sample sets. For robotic motion planning, the ability to

do advancing front over irregular domains may prove useful for

adaptively exploring narrow regions of the configuration space.

The contributions of this paper include:

• The idea of spoke-dart sampling,which combines the advan-

tages of the locality of advancing-front with the dimension-

mitigation of hyperplane sampling, specifically line-sampling;

• Direct algorithms for blue noise in high dimensions;

• Proven and demonstrated time, memory, and saturation

bounds that scale well;

• Applications using spokes for high dimensional Delaunay

graphs, global optimization, and motion planning;

• Open source software [Awad et al. 2016].

To our knowledge, we provide the firstmethod for probabilistically-

guaranteed locally-saturated blue noise in high dimensions, and

the first direct method for soft blue noise in d > 2. By “direct” we

mean that samples are placed once, when they are generated, and

never moved. We demonstrate blue noise in dimensions 2–30, and

applications in dimensions up to 100.

2 RELATED WORK

(a) Point set (b) Periodogram

0 1 2 3 4

0

1

2

3

4

(c) RDF

0 2 4 6 8

0

1

2

(d) RP

Fig. 2. Randomness metrics from PSA [Schlömer and Deussen 2011].

Blue noise has many graphics applications [Chen et al. 2013]

in rendering [Cook 1986; Sun et al. 2013], texturing [Lagae and

Dutré 2005], stippling [Balzer et al. 2009; de Goes et al. 2012; Fattal

2011], geometry processing [Alliez et al. 2003; Öztireli et al. 2010],

animation [Schechter and Bridson 2012], visualization [Li et al. 2010],

and numerical computation [Ebeida et al. 2014]. Blue noise sampling

can be achieved by various methods, such as dart throwing (also

known as Poisson-disk sampling) [Cook 1986] and relaxation [Lloyd

1983].

Two main spatial properties are used to characterize blue noise

distributions: (1) randomness and (2) well-spaced-ness. Randomness

avoids aliasing while well-spaced-ness reduces noise and improves

efficiency.

Randomness is typically characterized by the frequency spectrum

of the sample distribution [Ulichney 1988], a feature of the output

of some process rather than the randomness of the process itself.

The spectral properties can be measured by the radial power (RP)

[Lagae and Dutré 2008] in the frequency domain, or equivalently in

the primary domain such as differential vectors (differential domain

analysis) [Wei and Wang 2011] and radial distance function (RDF)

[Öztireli and Gross 2012]. See Figure 2 for an example of these

measures. Many traditional algorithms for blue noise produce a step-

like RDF, but a RP spectrum with oscillations, and these can produce

visible artifacts in high frequency areas [Heck et al. 2013]. Step blue

noise has a RP resembling a step function, without oscillations. Stair

blue noise [Kailkhura et al. 2016] provides additional degrees of

freedom over step blue noise for tuning spectral characteristics. By

“soft blue noise” we loosely mean that both the RP and RDF are

steep but smooth ramps without oscillations. This can be preferred

because of lower aliasing, as demonstrated by recent results of using

this type of noise for the classical zone-plate pattern [Heck et al.

2013; Kopf et al. 2006; Subr and Kautz 2013]. Our prior two-radii

sampling directly produced soft blue noise in 2D, without post-

processing [Mitchell et al. 2012].

Well-spaced samples, on the other hand, mean that samples are

not too close to one another, yet no domain point is too far from a

sample. One way to measure well-spaced-ness is discrepancy [Keller

et al. 2012; Shirley 1991]. Another measure is saturation, which de-

pends on two radii: coverage radius rc for maximum domain to

sample distance, and conflict radius rf for minimum inter-sample

distance [Ebeida et al. 2014; Mitchell et al. 2012]. Saturation is then

quantified using their ratio β = rc/rf ; the lower the β , the higher
and better the saturation. Saturation is desired in many contexts,

as described in the extensive literature on maximal Poisson-disk

sampling (MPS) [Cline et al. 2009; Ebeida et al. 2011, 2012; Gamito

and Maddock 2009; Jones 2006; Yan and Wonka 2013] and low dis-

crepancy sampling [Ahmed et al. 2016]. For some applications, it is

unclear how important saturation is as the dimension increases.

Despite the potential applications for high dimensional sampling,

most sample-generation algorithms are low dimensional, in part

because of the curse of dimensionality — many blue noise algo-

rithms do not scale well to high dimensions (e.g. tiling [Ahmed et al.

2017, 2016; Kopf et al. 2006; Wang and Suda 2017]), especially when

seeking high saturation. The sampling methods that scale well with

dimension do not provide a guarantee of local saturation, while

those providing local saturation have exponential complexity. The

ACM Transactions on Graphics, Vol. 37, No. 2, Article 22. Publication date: May 2018.

Spoke-Darts for High-Dimensional Blue-Noise Sampling • 22:3

algorithms closest to obtaining both of these goals are based on

advancing-front [Bridson 2007; Liu 1991] or k-d darts [Ebeida et al.

2014], as detailed below.

2.1 Advancing front
Advancing front methods were initially proposed for meshing [Li

et al. 2000; Liu 1991; Liu et al. 2008] and later adopted for sampling in

graphics [Bridson 2007; Dunbar and Humphreys 2006; Jones 2006].

The basic idea is to draw new samples from regions around existing

samples (the front) and expand towards the rest of the domain.

Most methods build some form of the front boundaries explicitly,

and some construct the union of spheres [Li et al. 2000; Liu et al.

2008]. These methods are intractable in high dimensions because the

number of intermediate-dimensional faces grows factorially with

dimension. In practice, implementing the geometric primitives for

the constructions would be challenging as well.

In Point-Annulus [Bridson 2007], a key innovation is to represent

the front boundary implicitly, by a list of sample disks touching

the front. Point-Annulus does rejection sampling around a prior

sample, selecting a point uniformly by volume from the [rf , rc]
annulus around it. The sample is removed from the front after a

fixed number (30) of consecutive rejections. Its advantage is locality,

mitigating the effects of domain size. This enables tractable runtime

in high dimensions.
1
The single page sketch in Bridson [2007] does

not analyze saturation by dimension. We postulate that the method

guarantees that a large fraction of the annulus volume is saturated,

but does not bound the uncovered volume outside all annuli. More

significantly, we have discovered that its output has an undesirable

artifact, a sharp discontinuity in the density of points at the outer

boundary of annuli, as further demonstrated in Section 4.

2.2 Hyperplane sampling
k-d darts [Ebeida et al. 2014] uses hyperplanes for Poisson-disk sam-

pling: select a random axis-aligned hyperplane, find its uncovered

subset, and select a point from this subset. A rejection occurs only

when the entire hyperplane is covered. Its advantage is that hyper-

planes mitigate the effects of high dimensions. Its disadvantage is

that it does not guarantee local saturation, because hyperplanes

are selected globally from the entire domain. (Global dart throwing

[Cook 1986; Dippé and Wold 1985] has similar issues.)

In principle, using hyperplanes of any dimension is possible, up to

the dimension of the domain. However, the difficulty is actually per-

forming and representing the necessary geometric primitives over

this object. In k-d darts, only 1D lines and 2D planes were demon-

strated. In the present work, we merely use lines, 1D hyperplanes.

The method in Sun et al. [2013] samples lines and line-segments for

rendering applications, including 3D motion blur, 4D lens blur, and

5D temporal light fields. For determining sample positions it relies

on subroutines that do not scale well to high dimensions.

1
As published, step 0 constructs a background grid. Replacing it with ak -d tree improves

runtime from 2
O (d)O (n) toO (dn2), the same complexity as our spoke-dart sampling.

2.3 Combining advancing front with line search
Our key idea is to combine the advantages of advancing front and

hyperplane sampling. Specifically, spoke-darts replaces the point-

sampling of Bridson [2007] with line-sampling. A spoke is a line seg-
ment passing through a point, at a random orientation; see Figure 3.

We employ a constant number (12) of consecutive rejections be-

fore advancing the front, retaining good run-time scalability across

dimensions. However, 12 consecutive rejections provides a local sat-

uration guarantee that is the same in all dimensions. We can generate

different blue noise profiles. In particular, we can avoid the spike in

the distribution at the sampling radius by non-uniform sampling

from a spoke segment and by generating a second spoke through a

point on the first spoke. These two spokes mimic the two radii in

Mitchell et al. [2012], and produce a similar soft blue noise profile.

s

s a

(a) Random spoke direction

(b) Trim by sample disks

(c) Choose new sample
s’

e
a s’

s

(d) light-red S’ locations

Fig. 3. Line-spokes in 2D. (a) A (green) spoke is a randomly-oriented line
segment through a prior sample s . (b) It is trimmed by sample disks, keeping
the (solid) subsegment containing anchor point a. (c) The next sample s′

is chosen from the trimmed segment. (d) Because of the anchor point, the
next sample will be in the subset of the annulus that is light-red, not the
dark-red regions on the far side of other disks.

3 SPOKE-DART BLUE NOISE SAMPLING
Spoke-dart sampling generates new samples from the current sam-

ple set boundary and gradually expands towards the rest of the

domain. The key features distinguishing our algorithm from prior

methods are (1) how the front is described and advanced, and (2)

how new samples are drawn. The front is described by the bound-

ary of the union of disks around samples, but its geometry is not

explicitly constructed. New samples are selected by generating a

random spoke (radial line) through an existing sample, trimming

it by existing sample disks, and selecting an uncovered point from

the remaining sub-spoke.

Algorithm summary. Our top level algorithm follows. We initial-

ize the output set with one sample and put it into the active pool of

front points. When this pool becomes empty our algorithm termi-

nates. We remove a sample s from the pool and try to generate new

samples s ′ from random spokes ℓ through s . Accepted samples are

added to the pool. We keep throwing spokes from the same sample

untilm = 12 consecutive spokes failed to generate an acceptable

sample. Radius r is the minimum allowed distance between any two

samples. Our method is summarized in Algorithm 1.

ACM Transactions on Graphics, Vol. 37, No. 2, Article 22. Publication date: May 2018.

22:4 • Mitchell, Ebeida, Awad, Park, Patney, Rushdi, Swiler, Manocha, Wei

Input: sample domain Ω
Output: output sample set S
1: s ← RandomSample(Ω)
2: S ← {s} // all samples

3: P ← {s} // active pool, FIFO queue

4: while P not empty do
5: s ← PopFront(P)
6: N ← CollectNeighbors(s,S)
7: reject ← 0

8: while reject < m (=12) do
9: ℓ,a ← RandomSpoke(s, I)
10: ℓ ← TrimSpoke(ℓ,a,N)
11: if ℓ is empty then
12: reject ← reject + 1
13: else
14: s ′ ← RandomSample(ℓ)
15: if TwoSpokes then
16: s ′ ← SecondSpoke(s ′,N)

17: add s ′ to N , S, and the end of P
18: reject ← 0

19: return S
Algorithm 1. Spoke-darts for blue noise sampling.

3.1 Spokes
The line of a spoke passes through a sample s , and the spoke is the

interval I of distances from s . A spoke has a distinguished anchor
point a ∈ I used to select which segment to retain during trimming;

see Figure 3. For line-spokes, I = [r , 2r] and the anchor lies at r ,
because, as in Point-Annulus, the uncovered region starts at r and
the extent of the local front we wish to consider is 2r .

3.2 CollectNeighbors
For a sample on the front, for each spoke we trim it by iterating over

the nearby samples. For spoke-darts with spoke extent 2r , a sample

is a neighbor if its center distance is less than 3r , because that is
the farthest away a sample can lie and still have its disk overlap the

spoke. A key efficiency is to gather all neighbors once before any
trimming operations.

In our implementation, a k-d tree saves time over exhaustive

search for small d and large n. Figures 9a and 18a show a speedup

for d < 7 and n ≥ 200, 0000. We maintain a k-d tree of the entire

point set. We collect the subtree of neighbors, and update the tree

and subtree as we successfully add new samples.

3.3 RandomSpoke
A line-spoke is generated by selecting a line with random orienta-

tion, by choosing a point p from the surface of the disk around s ,
uniformly by area.

To pick p we use the classical method of Muller [1959], as follows.

Generate each of the vector’s d coordinates independently from a

normal (Gaussian) distribution. Then linearly scale the vector of

coordinates to the disk radius. The reason this works is because the

level sets of a d-dimensional Gaussian distribution are d-spheres.

s

s a

(a) First spoke direction

(b) Trim by large disks

(c) Choose new anchor
s’

(d) Second spoke direction

(e) Trim by small disks

(f) Choose new sample

s’

s
s’

s’’
s’a

s

s’’

Fig. 4. (a)–(c) Two-spokes starts much the same as line-spokes, only using
a longer spoke and trimming by 2r -disks. (d)–(f) A second spoke is trimmed
by r -disks, and the new sample s′′ is chosen from it.

3.4 TrimSpoke
Trimming subtracts out the portion of a segment that is covered by

a neighbor disk, leaving just its uncovered subset. For efficiency, we

just keep the one subsegment that contains a distinguished anchor
point; this is considerably faster than finding all uncovered segments.

Further, we do a prepass and discard the entire spoke if the anchor

is covered. These primitives are efficient, linear in dimension, and

the prepass avoids square roots. In Figure 3, these shortcuts mean

that the next sample will be chosen from the light red part of the

annulus only, and not the dark red portions. This potentially affects

the output distribution characteristics, but the saturation proof takes

it into account.

3.5 RandomSample
For blue noise, it is sufficient to pick a sample uniformly by length
from an uncovered spoke segment.

One might assume that picking a point uniformly by the swept

volume, dependent on the dimension, would generate better quality

blue noise. However, we found this detrimental for our algorithms,

and also for the prior work of Point-Annulus [Bridson 2007]. It

generates worse blue noise than traditional MPS algorithms; see

Section 5.1. Exploring more sophisticated selection criteria led us to

our two-spokes algorithm.

3.6 Two-spokes
Two-spokes is an algorithm variation that further randomizes the

placement of samples; see Figure 4. Its output distribution avoids

the traditional spike at the sampling radius, and mitigates other

artifacts. We make the first spoke longer, and shoot a second spoke

from an uncovered point on the first spoke. The first spoke has

I = [2r , 4r] with anchor at 2r and is trimmed by radius-2r sample

disks. The second spoke has I = [−2r , 2r] with anchor at s ′ and is

trimmed by radius-r sample disks. RandomSample is approximately

uniform by swept volume from the nearer spoke end.

Two-spokes shares the following propertieswith two-radii Poisson-

disk sampling [Mitchell et al. 2012]. Their spectra are similar, and

the distance between samples is at least r . A new sample’s large

2r -disk covers s ′, and no other large disk covers it so far, ensuring

progress and algorithm termination. There is a simple parameteriza-

tion of the two spoke lengths that starts at line-spokes, then trades

away saturation to gain randomness; see Appendix A.

ACM Transactions on Graphics, Vol. 37, No. 2, Article 22. Publication date: May 2018.

Spoke-Darts for High-Dimensional Blue-Noise Sampling • 22:5

4 ANALYSIS AND GUARANTEES

4.1 Probability of achieved saturation
Our measure of saturation is β = rc/rf , where rc is the maximum

distance from a domain point to its nearest sample, and rf is the

minimum guaranteed distance between a sample and its nearest

sample, the Poisson-disk radius. Also, β∗ is the desired upper limit

on β . Besides spoke length, the main control parameter ism, the

number of successively-failed spokes before removing a sample

from the front. The higher them, the more spokes we generate and

the longer the run-time, but the more saturated the output. Note

(1 − ϵ) quantifies the probability that β∗ is achieved. The structure
of our guarantee is that, for a givenm, with high probability (1 − ϵ)
the achieved β at a sample is less than β∗. Equation (1) quantifies

the relationship betweenm, ϵ , β∗, and d for line-spokes.

m =
⌈
(− ln ϵ)(β∗ − 1)1−d

⌉
⇔ β∗ = 1 +

(
− ln ϵ
m

)
1/(d−1)

(1)

Our main result is that if m = 12, then with probability 1 −
10
−5

we will get local β < 2 = β∗ in any dimension, avoiding

the curse of dimensionality. In general, one can pick any three of

{m, ϵ, β∗,d} and the fourth is determined. For example, one can

pickm and β∗ and bound the probability ϵ that β∗ was exceeded:
ϵ < exp (−m(β∗ − 1)d−1), where β∗ > 1, and − ln ϵ > 0, andm ≥ 1.

• Line-spokes produces β < 2 with high probability.

• Two-spokes produces β < 4 with high probability.

(The price of a more uniform spectrum is lower saturation.)

We provide some intuition for Equation (1) here; the derivations

are in Section 4.2. Let us suppose that the algorithm has terminated

and a sample has a far Voronoi vertex. Consider the empty ball

centered at this vertex and tangent to the sample’s disk; it lies

outside all other samples’ disks. We may expand this ball into a

“void,” a larger connected region bounded by sample disks. We have

thrown at leastm spokes from each of the void’s bounding disks.

Each of these spokes must have missed this void; otherwise we

would have inserted a sample into the void, a contradiction. Since

the void was not hit, if we add up its surface area across all bounding

disks, its surface area is probabilistically-guaranteed to be small

compared to the surface area of a single bounding disk. Thus the

surface area of the Voronoi-vertex ball inside the void is also small,

which bounds its radius. The exponential-in-(d − 1) dependence on
β∗ in Equation (1) is precisely the dependence of the surface area

of a d-ball on its radius. Selecting β∗ = 2 says we only care about

voids with at least the surface area of a single sample disk. The

exponential dependencies on surface areas cancel, and we are left

with a Voronoi ball radius at most our sampling radius, meaning

β ≤ 2.

In practice, we achieve a much better saturation than the guar-

antee, β ≪ β∗ for allm. This is expected because the proof is not

tight: e.g., the void surface area might be much larger than that of

an empty ball inside it, and we ignored chains of misses less thanm.

While the bound on the probability of achieving β < 2 is dimen-

sion independent, the probability of achieving other β does depend
on the dimension. Re-arranging Equation (1), we see (β∗ − 1)d−1 =

void
Areashared co Do

(a) shared area of a void and a disk

void

rvoid
rc

rf

(b) a ball with less surface area
than its enclosing void

Fig. 5. Hitting a void from a neighboring disk.

(− ln ϵ)/m. For example, the probability of achieving β < 1.5 de-
creases rapidly with dimension, and the probability of achieving

β < 2.5 increaseswith dimension. Thus, asd increases, we should ex-

pect the distribution of local betas to narrow and converge towards

2, or perhaps to some lesser constant due to the slack in the proof.

This is what we observe in practice; see Figure 6 in Section 5.1, and

also Figure 15 in Appendix B.

4.2 Bound proofs
Here we prove the bounds onm, β , and ϵ in terms of d from Equa-

tion (1). A void is an uncovered region. It is bounded by some

disks. The chance of hitting a void will depend on its surface area
Area(void), the d-1 dimensional volume of its boundary. It will also

depend on the surface area of any disk on its boundary, Area(D).

Chance of missing the void from one disk. Let us quantify the

chance p1(miss) that a line-spoke from disk D1 missed a void. See

Figure 5a. Let R1 = Area(void ∩ D1)/Area(D1). Since line-spokes
are chosen uniformly from the surface area of the disk, p1(hit) = R1,
and p1(miss) = 1−R1. The chance of missingm times consecutively

is thenpm
1
(miss) =∏m

j=1(1−R1) = (1−R1)m . Using the well-known
inequality e−x = exp(−x) > 1−x ,we have pm

1
(miss) < exp(−mR1).

Chance of missing the void from all disks. The chance of missingm
times consecutively from all N bounding disks is then pm

all
(miss) =∏N

i=1 p
m
i (miss) < exp

(
−m∑N

i=1 Ri
)
= exp(−mR),where all sample

disks have the same radius so we can drop their subscripts and

R = Area(void)/Area(D).
If we wish this miss chance to be less than ϵ, then it is sufficient

to have exp(−mR) < ϵ, meaningmR > − ln(ϵ) > 0.

Bound in terms of β . Now we bound R in terms of β . Suppose
there is a domain point v in the void at distance rc from all samples.

Then a ball at v of radius r
void
= rc − rf is strictly inside the void,

and Area(void) > Area(D(r
void
)); see Figure 5b. Since we are in d

dimensions and β = rc/rf ,

R =
Area(void)
Area(D) >

rd−1
void

rd−1f

= (β − 1)d−1

Hence a sufficient condition ism(β − 1)d−1 > − ln ϵ, or

m =
⌈
(− ln ϵ)(β − 1)1−d

⌉
⇔ β = 1 +

(
− ln ϵ
m

)
1/(d−1)

ACM Transactions on Graphics, Vol. 37, No. 2, Article 22. Publication date: May 2018.

22:6 • Mitchell, Ebeida, Awad, Park, Patney, Rushdi, Swiler, Manocha, Wei

Two-spokes. If the first spoke finds an uncovered point, the second
spoke always places a sample, so we need only consider the chance

of the first spoke missing the void. The first spoke extends from

2r to 4r . If we consider the subset of a void that is at least 2r from
any disk, then propagating these values through the prior analysis

shows β < 4 within that subset. The uncovered regions between r
and 2r have local β < 2 and are subsumed, so the bound holds for

the entire void. Hencem = 12 gives β < 4 with probability 1− 10−5.

Subtleties. The reader may have noticed that we made no mention

of the domain boundary. For bounded domains, we assumed that

the void was bounded by disks only. For periodic domains, several

analysis steps are only guaranteed to hold when the Voronoi-vertex

ball spans less than the domain period. These issues may be finessed,

e.g. by initializing with a few well-spaced samples.

There is another statistical subtly concerning the order of spokes.

The consecutive misses from one bounding disk are not guaran-

teed to be consecutive with the misses from another disk. But this

does not matter, because the misses for each disk is independent

of whether the void was hit and reduced by some spokes from a

later front disk. The important thing is that no spoke ever hit the

boundary of the void that remains after the algorithm terminated.

5 EXPERIMENTAL RESULTS

5.1 Distribution comparisons
We compare the distributions of our methods and Point-Annulus

experimentally. We provide open source software on the github

repository SpokeDartsPublic [Awad et al. 2016], which may be used

to verify the results. The original version of Point-Annulus [Bridson

2007] does not support periodic domains, so we re-implemented it

as Point-Annulus*p for periodic domains in our framework.

Figure 7 shows the spectra, radial distance function (RDF), and

radial power (RP) for Point-Annulus*p, line-spokes, and two-spokes,

over 2–10 dimensional periodic domains.We conducted experiments

in dimensions up to 30, but the figures for higher dimensions reveal

no new structure or trends. Anisotropy is negligible because the

algorithms do not depend on the choice of axes, e.g. all spoke direc-

tions are random, and sample neighborhoods are spheres. The only

possible contribution to anisotropy is the fact that the domain’s

periodicity is axis aligned.

Many blue noise methods produce an RDF spike at r . However,
for Point-Annulus, we were surprised to discover a discontinuity in

the RDF at the outer annulus radius, 2r , regardless of periodicity or

implementation. For our methods, we notice a slight rise in RDF at

2r for line-spokes and some non-constantness even for two-spokes.

These artifacts tend to decrease with dimension.

By design, the RDF and spectra of line- and two-spokes differ

significantly. However, they have similar β distributions, after scal-

ing by βtwo ≈ 2βl ine , as described in Section 4. Figure 6 shows the

median β by method and dimension.

• Line-spokes has median β ≈ 0.9–1.2 as d = 2–5.

• Two-spokes has median β ≈ 1.8–2.4 as d = 2–5.

The median β rises with dimension in part because of the increase

in the number of Voronoi vertices around each sample, so the prob-

ability of at least one being far increases. However, recall from

Section 4.1 that the distribution of achieved β narrows as the dimen-

sion increases, and should stay below a fixed value (< 2) as d →∞.
Additional data presented in Figure 15 in Appendix B bear this out.

Point&A*p

Line

0.
9

1
1.
1

1.
2

2 3 4 5

Be
ta

Dimension

Median3max3Beta3per3Sample
Two

Point(A*p

Line

0.
9

1.
3

1.
7

2.
1

2 3 4 5

Be
ta

Dimension

Median5max5Beta5per5Sample

0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5

d = 2 d = 3 d = 4 d = 5

Fig. 6. Trends in β in practice. Top, line-spokes gives about the same satu-
ration as Point-Annulus*p in one dimension lower. Two-spokes has about
twice the β of Line-spokes by design. Bottom, the distribution of β (Voronoi-
vertex to nearest-sample distances) narrows by dimension, and converges
around a fixed value. We only show dimensions 2–5 because the available
tools for computing Voronoi vertices, e.g. Qhull, run out of time and memory
in higher dimensions.

5.2 Output size
We describe the relationship between the output number of samples

n and the sampling radius r to allow the user to select the necessary

r to achieve the desired n, for example. A sample point inhibits the

introduction of nearby samples in a neighborhood related to distance

r , so the volume of this neighborhood is roughly proportional to rd .

n ≈ k(d)/rd

As d varies, the constant of proportionality k will vary, depending

on the inherent packing density of the dimension [Weisstein 1999],

and also because of our achieved β . Experimentally, for line-spokes,

k(d) = (0.46d + 1.8)1.04dVd ,

where Vd is the volume of a unit d-sphere.
For two-spokes, the neighborhood around a point is roughly twice

as large as line-spokes for the same r , so we expect n to be a factor of

about 1/2d smaller. In practice, ktwo(d) = (0.45d + 2.5)(1.04/2)dVd .
See Appendix B.1 for additional details.

5.3 Runtime scaling
We have three main observations:

• Runtime is linear ind for high dimensions, using exhaustive

neighbor search. Albeit runtime is quadratic in n: O(dn2).
• Runtime is ≈ O(n logn) for fixed d , using k-d trees.

• The crossover is about d = 7 for n = 200, 000, meaning

k-d trees are faster than exhaustive search for d < 7. The

crossover dimension increases as n increases.

ACM Transactions on Graphics, Vol. 37, No. 2, Article 22. Publication date: May 2018.

Spoke-Darts for High-Dimensional Blue-Noise Sampling • 22:7

dimension 2 3 4 6 8 10

Po
in
t-
A
nn

ul
us
∗ p

s
p
e
c
t
r
a

R
D
F

0 2 4
0

1

2

3

0 2 4
0

1

2

3

0 2 4
0

1

2

3

0 1 2 3
0

1

2

3

0 0.5 1 1.5
0

1

2

3

0 0.5 1
0

1

2

3

R
P

0 200 400
0

0.5

1

0 200 400
0

0.5

1

0 200 400
0

0.5

1

0 200 400
0

0.5

1

0 200 400
0

0.5

1

0 200 400
0

0.5

1

Li
ne

-S
po

ke
s

s
p
e
c
t
r
a

R
D
F

0 2 4
0

2

4

6

0 2 4
0

2

4

6

0 2 4
0

2

4

6

0 1 2 3
0

2

4

6

0 0.5 1 1.5
0

2

4

6

0 0.5 1
0

2

4

6

R
P

0 200 400
0

0.5

1

0 200 400
0

0.5

1

0 200 400
0

0.5

1

0 200 400
0

0.5

1

0 200 400
0

0.5

1

0 200 400
0

0.5

1

Tw
o-
Sp

ok
es

s
p
e
c
t
r
a

R
D
F

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 2 4 6
0

0.5

1

0 1 2 3
0

0.5

1

0 1 2 3
0

0.5

1

R
P

0 200 400
0

0.5

1

0 200 400
0

0.5

1

0 200 400
0

0.5

1

0 200 400
0

0.5

1

0 200 400
0

0.5

1

0 200 400
0

0.5

1

Fig. 7. Spectra, RDF, and RP for dimensions 2–10. Spectra for d = 11–30 are similar to d = 10. To keep the memory requirements tractable, spectral slices are
computed directly in 2D using the Project-Slice Theorem (see, e.g. [Mersereau and Oppenheim 1974]). All plots use n ≈ 32,000, except d = 2 uses more for
smoother figures. RDF and RP were produced using the TargetRDF software [Heck et al. 2013]. For RP the DC component was filtered. Both RP and RDF were
selectively smoothed and scaled. In RDF, “1” is scaled to r , the minimum distance between samples, and plots are truncated at absolute distance 0.5, to avoid
the complication of the domain periodicity. For Point-Annulus and especially line-spokes, the RDF spike at r is sharp, and the plotted heights depend on the
width and alignment of histogram bins, so exercise caution in drawing conclusions.

ACM Transactions on Graphics, Vol. 37, No. 2, Article 22. Publication date: May 2018.

22:8 • Mitchell, Ebeida, Awad, Park, Patney, Rushdi, Swiler, Manocha, Wei

Complexity analysis. The runtime is T = O(nF + dmNn), where
n is the number of samples generated, and F is the time to find

the N neighbors of a single sample. The dmNn term represents the

time to throw and trim spokes, including those that miss the void.

Short sequences (< m) of miss spokes are charged to the next spoke

that hits, just as in Bridson [2007]. For large d , we have N ≤ n and

exhaustive search has F = O(dn); thus T = O(dn2). For small fixed

d , with n ≫ 2
d
and n ≫ N , using k-d trees F ≈ O(logn + N) and

N = O(1); thus T ≈ O(n logn).

Experiments. We verified these complexities experimentally. Fig-

ure 8 shows the predicted O(n2) and O(n logn) runtimes. Figure 9

demonstrates linear runtime in d using exhaustive search. Exper-

imentally, the line-spokes runtime T using exhaustive search (ar-

ray) over aperiodic domains is about 2.0 × 10−9(1 + 0.81d)n2 +
5.5 × 10−8(1 + 0.05d)Nn + 2.4 × 10−4(1 + 0.05d)n. Experimentally,

the runtime for k-d tree search over periodic domains is about

7.8 × 10−7dn(0.12 log
10
n+N). See Appendix B.3 for additional anal-

ysis and experiments, including higher dimensions, periodic vs.

aperiodic domains, and the number of neighbors by d .

12

2

6

17

0

20

40

60

0 1 2 3 4

sq
rt
(&t
im

e&
in
&se

c)

outputsize&n&x&100,000

Scaling&by&n:&array,&aperiodic

(a) exhaustive array search

2

4

5
6

0
10
00

0 5 10

tim
e%
in
%se

c

outputsize%n%log10 n%x%1,000,000

Scaling%by%n:%k9d%tree,%aperiodic

(b) k -d tree neighbor search

Fig. 8. Line-spokes scaling by n for an aperiodic domain. Each trendline is
labeled by the fixed dimension of the domain in that study. Left, straight
trendlines illustrate O(n2) runtime for fixed d using exhaustive “array”
search. Right, straight trendlines would illustrate perfect O(n logn) scaling
for k -d trees.

tree

array

0

10

20

2 4 6 8

tim
e%
in
%m

in
ut
es

dimension

Scaling%by%d%for%n=200,000:
by%search,%aperiodic%

(a) Runtime cross-over

line

two

1

2

3

4

5

2 7 12 17 22

re
la
tiv

e(
tim

e

dimension

Scaling(by(d(for(n=32,000:((
array,(large(r,(periodic

(b) Linear runtime in d

Fig. 9. Fixed-n scaling by d . Left shows that k -d trees save time in moderate
dimensions. Right illustrates that runtime is linear in d for exhaustive
array search. The right graphs are not smooth because we used only a few
trials, and perhaps because of dimensional-dependent memory layout and
machine issues, e.g. d = 8 appears particularly efficient.

6 APPLICATIONS
We demonstrate the versatility of the spoke-dart sampling approach,

and the utility of its blue noise output. We briefly summarize each

application below; additional details are in the Appendices. Delau-

nay graphs span d = 6–14, optimization d = 6–100, rendering d =
4–8, and motion planning d = 6–23.

The advancing-front spoke-dart sampling process provides new

algorithms for approximate Delaunay graphs and global optimiza-

tion. Our algorithm for approximate Delaunay graphs is significant

because it avoids the curse of dimensionality and is dynamic. (By

dynamic, we mean it can be updated quickly when inserting points,

in contrast to some other known fast algorithms [Dwyer 1989].) We

propose Opt-darts, a modification of the DIRECT global optimiza-

tion algorithm [Jones et al. 1993; Shubert 1972]. Opt-darts uses the

dynamic approximate Delaunay graph, and produces a well-spaced

random output distribution of samples. For two standard test func-

tions, we show that Opt-darts needs fewer function evaluations, and

this speedup increases as the dimension increases.

Rendering and motion planning use our high-dimensional blue

noise output directly as input. We show that high-dimensional

rendering is possible, but using blue noise provides no apparent

improvement over standard inputs. Being able to produce high-

dimensional blue noise makes it feasible to run motion planning in

high dimensions.

6.1 Approximate Delaunay graph
A Delaunay graph is just the edges in the Delaunay complex of a set

of vertices (samples). These edges are dual to the (d−1)-dimensional

facets of the Voronoi diagram. We find some of these facets, along

with a point inside the facet. We shoot a spoke from a vertex, and

trim it by each hyperplane separating the vertex from another vertex,

retaining the hyperplane that trimmed it the most. The final spoke

endpoint is a point inside a Voronoi facet, a witness to the fact that

the facet exists in the Voronoi diagram. We tend to find the facets

that subtend a large solid angle at the vertex, but miss some small

facets. See Appendix C.1 for details.

6.2 Global optimization
The global-optimization algorithm DIRECT [Jones et al. 1993; Shu-

bert 1972] is a classical and still-used method for optimizing expen-

sive black-box functions, such as finite element simulation runs.

It evaluates the objective function at each sample, and partitions

the domain into hyperrectangles around each sample. A rectangle

is recursively chosen for refinement if it is possible for the global

minimum to lie inside it, assuming a fixed but unknown Lipschitz

constant. Our variant, Opt-darts, partitions by Voronoi cells around

each sample, instead of rectangles; these cells are implicit and only

approximations are constructed. Opt-darts refines by adding new

samples and updating nearby cell approximations. The new sam-

ples are chosen from among the spoke endpoints produced during

the approximate Delaunay graph construction. Thus opt-darts uses

both an approximate Delaunay graph, and generates an adaptive

advancing-front random sampling.

In our tests, Opt-darts more accurately represents sample neigh-

borhoods, and new samples are more well-spaced, so fewer of them

ACM Transactions on Graphics, Vol. 37, No. 2, Article 22. Publication date: May 2018.

Spoke-Darts for High-Dimensional Blue-Noise Sampling • 22:9

are needed. This advantage becomes more pronounced as the di-

mension increases. The disadvantage of Opt-darts is the higher

computational cost in managing cells, but in the applications of in-

terest the cost of the function evaluation at each sample dominates.

In Table 1, we evaluate our method using community-standard

high-dimensional test functions [Jamil and Yang 2013]. These were

designed to be challenging for global optimization by having many

local minima or a small gradient over most of the domain. Most

difficult global optimization problems have some combination of

these two features. For the Easom test function, in 6–10D speedups

are 4–25×. For the Bohachevsky test function, in 20–100D speedups

are 5–27×. See Appendix D for details.

Benchmark f dimension DIRECT Opt-darts Speedup

E
a
s
o
m

6 5657 1320 4.3 ×
7 20987 3276 6.4 ×
8 71677 4814 14.9 ×
9 257539 14258 18.1 ×
10 837203 33852 24.7 ×

B
o
h
a
c
h
e
v
s
k
y

20 5689 1269 4.5 ×
40 25807 2633 9.8 ×
60 63765 4345 14.7 ×
80 122503 6246 19.6 ×
100 208185 7802 26.7 ×

Table 1. Speedup of Opt-darts over DIRECT, measured by the number of
function evaluations needed to find an approximation f ∗ close to the true
global minimum ˆf . That is: |f ∗ − ˆf | < 10

−4 where f ∈ [0, 20]. Since
Opt-darts is random, results are averages over 20 runs.

6.3 Rendering
We integrated spoke-dart sampling into the Mitsuba renderer [Jakob

2010]. The torus-in-glass image (Figure 1c) demonstrates a bidirec-

tional path tracer using 8D samples corresponding to 2D for the sky

emitter, 2D for the camera screen, and 2D for each bounce along

each camera and light path. Spoke-dart sampling, stratified sam-

pling, and low-discrepancy sequences all produced images of similar

quality. See Appendix E for details.

6.4 Motion planning
Motion planning explores the high-dimensional configuration space

of robots to find collision-free paths between the given starting and

desired ending configurations. In the “parallel RRT” algorithm [Park

et al. 2016], this space is pre-sampled by blue noise, and multi-

ple threads explore connect-the-dots paths. Sometimes, because

the configuration space has narrow regions and fine features, the

pre-sampling is too coarse to determine if the path between two

nearby points is collision-free. In that case, fine blue-noise samples

are adaptively added. We did motion planning for a challenging

23D problem (Figure 1d), and a well-known suite of 6D benchmark

scenarios [Şucan et al. 2012]. See Appendix F for details.

7 CONCLUSIONS AND FUTURE WORK
We present spoke-dart sampling as a new framework for high dimen-

sional sampling. The method combines the advantages of state-of-

the-art methods: the locality of advancing-front and the dimension-

mitigation of k-d darts, specifically line-samples. We provide spoke-

dart sampling as open-source software [Awad et al. 2016]. To our

knowledge, we provide the first algorithm for high dimensional

blue noise with provable guarantees of local saturation. Line-spokes

uses the same advancing front approach as Point-Annulus, but, by

using line samples, it produces a median saturation about the same

as Point-Annulus in one dimension lower. We also produce blue

noise with less significant artifacts. We have the option to avoid the

traditional distribution spike at the disk radius and corresponding

oscillations in the spectra. We demonstrate spoke-dart sampling’s

generality by adapting it for a variety of applications, including

generating high-dimensional adaptive blue noise for global opti-

mization. Our algorithm uses linear memory, and is computationally

efficient in high dimensions, up to the efficiency of finding nearby

neighbors. We speculate that approximate nearest neighbors may

improve scalability in moderate dimensions, but not high dimen-

sions.

A potential future work is a universal algorithm that can auto-

matically tune for a continuum of properties, analogous to Jiang

et al. [2015]. It may be possible to produce a closer approxima-

tion to the true Delaunay graph by searching in a blue noise set of

spoke directions. This could be generated by point-sampling the

surface of a unit sphere, using spokes that are great-circle arcs. We

speculate that approximate Delaunay graphs may be better than

k-nearest neighbors for some computational topology and mani-

fold learning problems, especially when data are non-uniformly

spaced. High-dimensional global optimization is challenging, and

Opt-darts demonstrates an improvement over DIRECT for two well-

known test problems. Future research directions include cell se-

lection criteria and parallelization. We briefly touched on using

high-dimensional blue noise for rendering; there is the potential for

future work in Monte Carlo integration [Pilleboue et al. 2015] and

low discrepancy sequences [Keller et al. 2012]. In our current imple-

mentation for motion planning we precompute all samples. We are

investigating the possibility of adaptive sampling by exploiting the

similarity between our method and tree growth.

ACKNOWLEDGEMENTS
We thank the authors of Point-Annulus [Bridson 2007], TargetRDF

[Heck et al. 2013], and PSA [Schlömer and Deussen 2011] for making

their software available, and the reviewers for their helpful feedback

and suggestions.

This material is based upon work supported by the U.S. Department of Energy, Office of Science,

Office of Advanced Scientific Computing Research (ASCR), Applied Mathematics Program. Sandia

National Laboratories is a multi-mission laboratory managed and operated by National Technology

and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International,

Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract

DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views

or opinions that might be expressed in the paper do not necessarily represent the views of the U.S.

Department of Energy or the United States Government.

REFERENCES
Ahmed, A. G. M., Niese, T., Huang, H., and Deussen, O. 2017. An adaptive point

sampler on a regular lattice. ACM Trans. Graph. 36, 4 (July), 138:1–138:13.
Ahmed, A. G. M., Perrier, H., Coeurjolly, D., Ostromoukhov, V., Guo, J., Yan, D.-M.,

Huang, H., and Deussen, O. 2016. Low-discrepancy blue noise sampling. ACM
Trans. Graph. 35, 6 (Nov.), 247:1–247:13.

Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B., and Desbrun, M. 2003.

Anisotropic polygonal remeshing. ACM Trans. Graph. 22, 3 (July), 485–493.
Awad, M. A., Ebeida, M. S., Mitchell, S. A., Patney, A., Rushdi, A. A., and Swiler,

L. P. 2016. SpokeDartsPublic open-source software. v. 1.0, https://github.com/

ACM Transactions on Graphics, Vol. 37, No. 2, Article 22. Publication date: May 2018.

https://github.com/samitch/SpokeDartsPublic
https://github.com/samitch/SpokeDartsPublic

22:10 • Mitchell, Ebeida, Awad, Park, Patney, Rushdi, Swiler, Manocha, Wei

samitch/SpokeDartsPublic.

Balzer, M., Schlömer, T., and Deussen, O. 2009. Capacity-constrained point distribu-

tions: A variant of Lloyd’s method. ACM Trans. Graph. 28, 3 (July), 86:1–86:8.
Barber, C. B., Dobkin, D. P., and Huhdanpaa, H. 1996. The quickhull algorithm for

convex hulls. ACM Trans. Math. Softw. 22, 4 (Dec.), 469–483.
Bossek, J. 2017. smoof: Single- and multi-objective optimization test functions. The R

Journal.
Bridson, R. 2007. Fast Poisson disk sampling in arbitrary dimensions. In SIGGRAPH

’07: ACM SIGGRAPH 2007 Sketches & Applications. 5.
Burkardt, J. 2011. TEST OPT: Optimization of a scalar function test problems.

Chen, J., Ge, X., Wei, L.-Y., Wang, B., Wang, Y., Wang, H., Fei, Y., Qian, K.-L., Yong,

J.-H., and Wang, W. 2013. Bilateral blue noise sampling. ACM Trans. Graph. 32, 6
(Nov.), 216:1–216:11.

Cline, D., Jeschke, S., Razdan, A., White, K., and Wonka, P. 2009. Dart throwing on

surfaces. In EGSR ’09. 1217–1226.
Cook, R. L. 1986. Stochastic sampling in computer graphics. ACM Trans. Graph. 5, 1,

51–72.

Şucan, I. A., Moll, M., and Kavraki, L. E. 2012. The open motion planning library.

IEEE Robotics & Automation Magazine 19, 4, 72–82. http://ompl.kavrakilab.org.

de Goes, F., Breeden, K., Ostromoukhov, V., and Desbrun, M. 2012. Blue noise

through optimal transport. ACM Trans. Graph. 31, 6 (Nov.), 171:1–171:11.
Dippé, M. A. Z. and Wold, E. H. 1985. Antialiasing through stochastic sampling. In

SIGGRAPH ’85. 69–78.
Dunbar, D. and Humphreys, G. 2006. A spatial data structure for fast Poisson-disk

sample generation. ACM Trans. Graph. 25, 3 (July), 503–508.
Dwyer, R. A. 1989. Higher-dimensional Voronoi diagrams in linear expected time.

In Proceedings of the fifth annual Symposium on Computational Geometry. SCG ’89.

ACM, New York, NY, USA, 326–333.

Ebeida, M. S., Awad, M. A., Ge, X., Mahmoud, A. H., Mitchell, S. A., Knupp, P. M.,

and Wei, L.-Y. 2014. Improving spatial coverage while preserving blue noise of

point sets. Computer-Aided Design 46, 25–36.
Ebeida, M. S., Davidson, A. A., Patney, A., Knupp, P. M., Mitchell, S. A., and Owens,

J. D. 2011. Efficient maximal Poisson-disk sampling. ACM Trans. Graph. 30, 4 (July),
49:1–49:12.

Ebeida, M. S., Mitchell, S. A., Patney, A., Davidson, A. A., and Owens, J. D. 2012. A

simple algorithm for maximal Poisson-disk sampling in high dimensions. Comp.
Graph. Forum 31, 2pt4, 785–794.

Ebeida, M. S., Patney, A., Mitchell, S. A., Dalbey, K. R., Davidson, A. A., and

Owens, J. D. 2014. k -d darts: Sampling by k -dimensional flat searches. ACM Trans.
Graph. 33, 1 (Feb.), 3:1–3:16.

Fattal, R. 2011. Blue-noise point sampling using kernel density model. ACM Trans.
Graph. 30, 4 (July), 48:1–48:12.

Gamito, M. N. and Maddock, S. C. 2009. Accurate multidimensional Poisson-disk

sampling. ACM Trans. Graph. 29, 1, 1–19.
Gerber, S., Bremer, P., Pascucci, V., and Whitaker, R. 2010. Visual exploration

of high dimensional scalar functions. Visualization and Computer Graphics, IEEE
Transactions on 16, 6, 1271–1280.

Heck, D., Schlömer, T., and Deussen, O. 2013. Blue noise sampling with controlled

aliasing. ACM Trans. Graph. 32, 3 (July), 25:1–25:12.
Horst, R., Pardalos, P. M., and Romeijn, H. E. 2002. Handbook of Global Optimization.

Vol. 2. Springer.

Jakob, W. 2010. Mitsuba renderer. http://www.mitsuba-renderer.org.

Jamil, M. and Yang, X.-S. 2013. A literature survey of benchmark functions for global

optimization problems. Intl. Journal of Mathematical Modelling and Numerical
Optimization 4, 2, 150–194.

Jiang, M., Zhou, Y., Wang, R., Southern, R., and Zhang, J. J. 2015. Blue noise sampling

using an SPH-based method. ACM Trans. Graph. 34, 6 (Oct.), 211:1–211:11.
Jones, D. R., Perttunen, C. D., and Stuckman, B. E. 1993. Lipschitzian optimization

without the Lipschitz constant. Journal of Optimization Theory and Applications 79, 1,
157–181.

Jones, T. R. 2006. Efficient generation of Poisson-disk sampling patterns. Journal of
graphics tools 11, 2, 27–36.

Kailkhura, B., Thiagarajan, J. J., Bremer, P.-T., and Varshney, P. K. 2016. Stair blue

noise sampling. ACM Trans. Graph. 35, 6 (Nov.), 248:1–248:10.
Keller, A., Premoze, S., and Raab, M. 2012. Advanced (quasi) Monte Carlo methods

for image synthesis. In ACM SIGGRAPH 2012 Courses. SIGGRAPH ’12. 21:1–21:46.

Kollig, T. and Keller, A. 2003. Efficient illumination by high dynamic range images.

In EGRW ’03. 45–50.
Kopf, J., Cohen-Or, D., Deussen, O., and Lischinski, D. 2006. Recursive Wang tiles

for real-time blue noise. ACM Trans. Graph. 25, 3 (July), 509–518.
Kuffner, J. J. and Lavalle, S. M. 2000. RRT-Connect: An efficient approach to single-

query path planning. In Proc. IEEE Conf. on Robotics and Automation. 995–1001.
Lagae, A. and Dutré, P. 2005. A procedural object distribution function. ACM Trans.

Graph. 24, 4, 1442–1461.
Lagae, A. and Dutré, P. 2008. A comparison of methods for generating Poisson disk

distributions. Computer Graphics Forum 21, 1, 114–129.

LaValle, S. and Kuffner, J. 2001. Randomized kinodynamic planning. International
Journal of Robotics Research 20, 5, 378–400.

Leong, K. Y. 2016. Test functions for optimization.

Li, H., Wei, L.-Y., Sander, P. V., and Fu, C.-W. 2010. Anisotropic blue noise sampling.

ACM Trans. Graph. 29, 6 (Dec.), 167:1–167:12.
Li, X.-Y., Teng, S.-H., and Üngör, A. 2000. Biting: advancing front meets sphere

packing. International Journal for Numerical Methods in Engineering 49, 1-2, 61–81.
Liu, J. 1991. Automatic triangulation of N-dimensional Euclidean domains. In Proceed-

ings of CAD/Graphics ’91. 238–241.
Liu, J., Li, S., and Chen, Y. 2008. A fast and practical method to pack spheres for mesh

generation. Acta Mechanica Sinica 24, 4, 439–447.
Lloyd, S. 1983. An optimization approach to relaxation labeling algorithms. Image and

Vision Computing 1, 2.
Mersereau, R. M. and Oppenheim, A. V. 1974. Digital reconstruction of multidimen-

sional signals from their projections. Proceedings of the IEEE 62, 10 (Oct), 1319–1338.
Miller, G. L. and Sheehy, D. R. 2013. A new approach to output-sensitive voronoi

diagrams and delaunay triangulations. In SoCG ’13. 281–288.
Miller, G. L., Sheehy, D. R., and Velingker, A. 2013. A fast algorithm for well-spaced

points and approximate delaunay graphs. In SoCG ’13. 289–298.
Mitchell, D. P. 1987. Generating antialiased images at low sampling densities. In

SIGGRAPH ’87. 65–72.
Mitchell, S. A., Rand, A., Ebeida, M. S., and Bajaj, C. 2012. Variable radii Poisson-

disk sampling, extended version. In Proceedings of the 24th Canadian Conference on
Computational Geometry. 1–9.

Muja, M. and Lowe, D. G. 2009. Fast approximate nearest neighbors with automatic

algorithm configuration. In VISAPP (1). 331–340.
Muller, M. E. 1959. A note on a method for generating points uniformly on n-

dimensional spheres. Communications of the ACM 2, 4 (Apr.), 19–20.
Niederreiter, H. 1992. Random number generation and quasi-Monte Carlo methods.

SIAM.

Overmars, M. H. 2005. Path planning for games. In Proc. 3rd Int. Game Design and
Technology Workshop. 29–33.

Öztireli, A. C., Alexa, M., and Gross, M. 2010. Spectral sampling of manifolds. ACM
Trans. Graph. 29, 6 (Dec.), 168:1–168:8.

Öztireli, A. C. and Gross, M. 2012. Analysis and synthesis of point distributions

based on pair correlation. ACM Trans. Graph. 31, 6 (Nov.), 170:1–170:10.
Pan, J., Zhang, L., Lin, M. C., andManocha, D. 2010. A hybrid approach for simulating

human motion in constrained environments. Computer Animation and Virtual
Worlds 21, 3-4, 137–149.

Park, C., Pan, J., and Manocha, D. 2016. Parallel motion planning using Poisson-disk

sampling. IEEE Transactions on Robotics.
Pilleboue, A., Singh, G., Coeurjolly, D., Kazhdan, M., and Ostromoukhov, V. 2015.

Variance analysis for Monte Carlo integration. ACM Trans. Graph. 34, 4 (July),

124:1–124:14.

Reinert, B., Ritschel, T., Seidel, H.-P., and Georgiev, I. 2016. Projective blue-noise

sampling. Computer Graphics Forum 35, 1, 285–295.
Schechter, H. and Bridson, R. 2012. Ghost SPH for animating water. ACM Trans.

Graph. 31, 4, 61:1–61:8.
Schlömer, T. and Deussen, O. 2011. Accurate spectral analysis of two-dimensional

point sets. Journal of Graphics, GPU, and Game Tools 15, 3, 152–160.
Shirley, P. 1991. Discrepancy as a quality measure for sample distributions. In

Eurographics ’91. 183–194.
Shubert, B. O. 1972. A sequential method seeking the global maximum of a function.

SIAM Journal on Numerical Analysis 9, 3, 379–388.
Subr, K. and Kautz, J. 2013. Fourier analysis of stochastic sampling strategies for

assessing bias and variance in integration. ACM Trans. Graph. 32, 4 (July), 128:1–
128:12.

Sun, X., Zhou, K., Guo, J., Xie, G., Pan, J., Wang, W., and Guo, B. 2013. Line segment

sampling with blue-noise properties. ACM Trans. Graph. 32, 4 (July), 127:1–127:14.
Ulichney, R. A. 1988. Dithering with blue noise. Proceedings of the IEEE 76, 1, 56–79.
Wang, T. and Suda, R. 2017. Fast maximal poisson-disk sampling by randomized tiling.

In HPG ’17. 16:1–16:10.
Wei, L.-Y. and Wang, R. 2011. Differential domain analysis for non-uniform sampling.

ACM Trans. Graph. 30, 4 (July), 50:1–50:10.
Weisstein, E. W. 1999. Hypersphere packing. http://mathworld.wolfram.com/

HyperspherePacking.html.

Witteveen, J. A. and Iaccarino, G. 2012. Simplex stochastic collocation with random

sampling and extrapolation for nonhypercube probability spaces. SIAM Journal on
Scientific Computing 34, 2, A814–A838.

Yamane, K., Kuffner, J. J., and Hodgins, J. K. 2004. Synthesizing animations of human

manipulation tasks. ACM Trans. Graph. 23, 3, 532–539.
Yan, D.-M. and Wonka, P. 2013. Gap processing for adaptive maximal Poisson-disk

sampling. ACM Trans. Graph. 32, 5 (Oct.), 148:1–148:15.
Yang, X.-S. 2010. Appendix A: Test Problems in Optimization. John Wiley and Sons, Inc.,

261–266.

ACM Transactions on Graphics, Vol. 37, No. 2, Article 22. Publication date: May 2018.

https://github.com/samitch/SpokeDartsPublic
http://ompl.kavrakilab.org
http://www.mitsuba-renderer.org
http://mathworld.wolfram.com/HyperspherePacking.html
http://mathworld.wolfram.com/HyperspherePacking.html

Spoke-Darts for High-Dimensional Blue-Noise Sampling • 22:11

A SOFT BLUE NOISE
We seek a better blue noise spectrum than line-spokes or Point-

Annulus produces, where “better” is defined in the following sense.

The main drawbacks of those distributions is a large spike in the

inter-sample distances near r , and corresponding oscillations in

the radial power. To remove this, we first consider changing the

distribution for choosing a random sample from a spoke to be more

uniform by volume. This, by itself, proved insufficient to remove the

spike. We experimented with additional rules such as skipping short

spokes; see favored-spokes Appendix A.1. Although this algorithm

has a unique advantage of a median saturation that is invariant by

dimension, it should mostly be considered a stepping-stone towards

two-spokes in Appendix A.2. We found that taking a second spoke

was simpler and more intuitive than the skip rules, and generally

produced a distribution with a flatter spectrum.

A.1 Favored-Spokes
To generate step blue noise, we use the same top level algorithm:

Algorithm 1. However, we seek to avoid the spike in the RDF dis-

tribution at r . We use different rules to accept and sample from

spokes:

• place samples on short trimmed spokes less often,

• place samples nearer the center of uncovered intervals.

This reduces the number of disks nearly-r apart, but does not elimi-

nate them because a spoke might be close to a disk without intersect-

ing it. We must avoid any sharp cut-off values in the rules, because

these would create new discontinuities in the RDF. We arrived at

the following ranges experimentally.

Skip short spokes. We use spoke interval I = [1, 3.8]r . We never

place a sample point farther than 3.4r , but the spoke extends to 3.8r
so we can detect if a sample point would be near an extant disk.

We have two skip rules. The first rule is if a spoke is trimmed

by any disk, then we discard it and treat it as a miss. We do this

until we have 6 successive misses. After this we reset the miss count

to zero and apply the second rule until we again get 6 successive

misses. See the open and closed sectors in Figure 10.

The second rule is spokes are discarded if they are short. Spokes
are discarded if their extent is less than 3.2r (length < 2.2r), and
randomly discarded with decreasing probability if their extent is

in [3.2, 3.5]r ; i.e. always discarded if within the dark blue ring, and

sometimes discarded if in the light ring, in Figure 10. The discard

probability is zero at 3.5 and grows cubically to 1 at 3.2. Exper-

imentally, a cubic rate produced better output than a linear or

dimensional-dependent rate. Algorithm 2 describes TrimSpoke with

these rules in place.

Randomize spoke endpoints. We shorten the ends of a spoke by a

random amount in [0.3, 0.8]r to avoid sharp cutoff values.

RandomSample for favored-spokes and two-spokes. A spoke actu-

ally trimmed by a neighbor is closed; one with no disk intersections

is open. For closed intervals, we place the sample point approxi-

mately uniformly by volume by the distance to the nearer spoke
end. This underweights the volume near the front sphere. For open

segments, we place the sample approximately uniform by volume

Input: line spoke ℓ1 anchored at a for sample s
Output: uncovered segment of trimmed spoke ℓ′

1

1: if TrimAnchor(a) = empty then
2: return empty

3: ℓ′
1
← TrimInterval(ℓ1) // not empty

4: if SkipTrimmedSpoke and WasTrimmed(ℓ′
1
) then

5: if reject = 6 then
6: SkipTrimmedSpoke← false

7: reject ← 0

8: return empty

9: if IsShort(ℓ′
1
) then

10: return empty

11: return ℓ′
1

Algorithm 2. TrimFavoredSpoke, for step blue noise.

O
C

S
S?

Fig. 10. Favored-spokes ranges. Spokes in the “O” sector are open and “C”
are closed; “S” are short, and “S?” are considered short with some probability.
The following are the outer ring radii as a factor of r : white = 1, magenta =
1.3, red = 2.8, blue = 3.2, light blue = 3.5, brown = 3.8.

by distance to the end near the anchor, then flatten off and ramp

down; see Figure 11.

s

z 0 a m1 top m2

(a) Open spokes

S
z 0 a

S2

m z2

(b) Closed spokes

Fig. 11. Non-uniform sampling for favored-spokes and two-spokes. The
sample is chosen uniformly by volume under the red curves. In 2d, from
z the curve is linear with slope 1 untilm. In general, y = (x − z)d−1. (b)
For closed spokes, the midpointm is 0.6 of the way from z to z2 . (a) For
open spokes,m1 = 0.54 andm2 = 0.7 . For two-spokes the z and top are
the spoke endpoints. For favored-spokes the z are chosen uniformly to be
distance [0.3, 0.8]r from the end of the spoke, on the green segments, and
the top at distance 3.4r rather than 3.8r .

A.2 Two-Spokes for soft blue noise
Two-spokes also uses the same top level algorithm: Algorithm 1.

We generate an uncovered point as with line-spokes, without the

skip rules of favored-spokes. We pick the final sample by taking

a second spoke through this uncovered point; see Figure 4. This

mimics our prior Two Radii [Mitchell et al. 2012] sampling: the first

spoke mimics finding a point uncovered by prior 2r disks, and the

second spoke mimics the larger admissible region for centers of

disks that can cover it.

ACM Transactions on Graphics, Vol. 37, No. 2, Article 22. Publication date: May 2018.

22:12 • Mitchell, Ebeida, Awad, Park, Patney, Rushdi, Swiler, Manocha, Wei

First spoke. The first spoke extends from 2r to 4r , with anchor

at 2r , and is trimmed by 2r disks. We select the uncovered point s ′

from it using the RandomSample of favored-spokes.

Second spoke. The second spoke is centered on, and anchored by,

s ′ from the first spoke, with I = [−2, 2]r . After it is trimmed by 1r
disks, we split it by s ′ into two sides. We pick one side uniformly by

length, and select the final sample from that side’s segment using

RandomSample from favored-spokes. See Algorithm 3.

Input: uncovered point s ′

Output: output nearby uncovered point s ′′

1: ℓ ← RandomSpoke(s ′, I = [−2, 2]r)
2: ℓ ← TrimSpoke(ℓ,a = s ′,N (s ′)) // never empty

3: return s ′′ ← RandomSample(ℓ)
Algorithm 3. SecondSpoke, generating a random uncovered point near the
input uncovered point.

Generalization. Two-spokes may be generalized to give the op-

tion to soften the step in the RDF distribution by different amounts,

by parameterizing by α ∈ [0, inf) and γ ∈ [0, 1]. Line-spokes corre-
sponds to α = 0 and γ = 0, and two-spokes as previously described

corresponds to α = 1 andγ = 1. The first spoke has I = (1+α)r [1, 2]
and a = (1 + α)r and is trimmed by radius (1 + α)r sample disks.

The second spoke has I = γ (1+α)r [−1, 1] and a = 0 and is trimmed

by radius r sample disks. This will ensure that the first spoke finds

an uncovered point, at least (1 + α)r away from all prior samples,

and the chosen sample will cover it by its (1 + α)r disk. The chosen
sample will be at least rf ≥ r away from any other sample. For

small γ , the intersample distance will be even larger, by the triangle

inequality: rf ≥ (1 − γ)(1 + α). Thus rf ≥ max(r , (1 − γ)(1 + α)).
The form of the β∗ guarantee is that rc is likely at most twice the

anchor distance of the first spoke: rc ≤ 2(1 + α)r . Thus form = 12,

with probability 1 − 10−5 we have

β < β∗ = 2min

(
(1 + α), 1

1 − γ

)
(2)

B ADDITIONAL EXPERIMENTAL RESULTS
In this appendix, we show further comparisons between Point-

Annulus, line-spokes, favored-spokes, and two-spokes.

B.1 Output size data
Section 5.2 gave approximate formulas for the number of output

samples n by radius r and dimension d for line-spokes and two-

spokes for periodic domains. Recall n ≈ k(d)/rd with a different

k(d) for each algorithm. For line-spokes over periodic domains of

dimensions 2–22, we have k
l,p
(d) = (0.46d + 1.8)1.04dVd , whereVd

is the volume of a unit d-sphere. For two-spokes we have ktwo(d) =
(0.45d + 2.5)(1.04/2)dVd .
For bounded domains, part of a sample’s neighborhood falls

outside the domain, so we expect the same r to produce a larger

n. In practice, for line-spokes over dimensions 2–30, we observe

k
l,b
(d) ≈ (0.0004d4 − 0.027d3 + 0.52d2 − 2.5d + 6.2)Vd .
The output size trends for favored-spokes are similar to line-

spokes, but with the constant of proportionality k(d) having less

dimensional dependence. Experimentally, we observe

k
fav
(d) = (0.035d + 1.15)1.04dVd ,

See Figure 12 for a summary. In addition, Figure 18d shows how

the radius varies across dimensions for fixed n for our algorithm

variants.

0.1

1

10

100

1000

10000

100000

0 5 10 15 20 25 30

k	vs.	d

k	line,	bounded	 domain

k	line,	periodic	domain

2^d	k_two,	periodic

k	favored,	periodic

Fig. 12. Output size constants of proportionality. Number of samples n ≈
k (d)/rd where k (d) is plotted vs. d .

B.2 Distribution
Figure 13 shows how increasingm affects the output saturation. As

the dimension increases the distributions tend to resemble a Gauss-

ian and become more sharply peaked. While the theory guarantees

are invariant in dimension, in practice line-spokes and two-spokes

produce slightly larger β in higher dimensions.

Figure 14 shows how the median beta varies by dimension, for

m = 12 and all methods. Figure 15 provides distribution details

beyond the median. Specifically, it shows the distribution of the

distance from each sample to its farthest Voronoi vertex and the

distribution of distances from each Voronoi vertex to its nearest

samples, using our algorithm’s variations as well as Bridson’s for

d = 2, 3, 4, 5.

For aperiodic domains the boundary significantly affects the dis-

tribution characteristics, especially for coarse samplings, so these

results are mostly omitted. The exception is Figure 16, which shows

the spectra for Bridson’s implementation run over aperiodic do-

mains.

Besides supporting periodic domains and k-d tree search, the

implementations differ in the order in which the front is advanced.

In our implementation samples become the active front disk in the

order in which they were created. We continue to sample around the

active disk until 30 consecutive misses, then remove the disk from

the front. In contrast, Point-Annulus visits front disks in random

order: remove a random point from the queue as the active front disk,

throw exactly 30 darts, then reinsert the front disk into the queue if

any new sample was accepted. In our comparisons, this algorithmic

difference does not affect the output distribution significantly.

Although we can create blue noise distributions in higher dimen-

sions, our ability to analyze their β is limited by the challenge of

computing Voronoi vertices. We use QHull, and for large d and

reasonable n, QHull runs out of memory (and time).

ACM Transactions on Graphics, Vol. 37, No. 2, Article 22. Publication date: May 2018.

Spoke-Darts for High-Dimensional Blue-Noise Sampling • 22:13

1	
 100	
 10000	

N
um

be
r	
 o

f	
 p
oi
nt
s

Number	
 of	
 successive	
 misses	
 (m)

d	
 =	
 4	

Line	
 Spokes	

(a) Total inserted points bym .

1	

2	

4	

8	

0	
 200	
 400	
 600	
 800	
 1000	

β	

m	

(βguaranteed-­‐1)	
 /	
 (βachieved-­‐1)	

d	
 =	
 4	

ϵ	
 =	
 1E-­‐5	

βguaranteed	

βachieved	

(b) β for differentm

Fig. 13. Local saturation for line-spokes in theory and practice bym. Here
βдuaranteed = β ∗, the probabilistically-guaranteed saturation upper-
bound in theory. And βachieved is the β observed in experiments. In prac-
tice β is about 7× closer to 1 than the theory guarantee: e.g. β ≈ 1.15 for
m = 12.

Two

Favored

Point-­‐A*p

Line

0.
9

1.
3

1.
7

2.
1

2 3 4 5

Be
ta

Dimension

Median	
 max	
 Beta	
 per	
 Sample

Fig. 14. Trends in median β form = 12 by d .

B.3 Runtime scaling details
Complexity analysis details. The runtime complexity is O(nF +

dmNn), where n is the number of samples generated, and F is the

time to find N neighbors. All primitives such as computing dis-

tances and trimming spokes are linear in d . Note N has dimensional

dependence, but this is bounded by observing N < n. Also F has

additional dimensional dependence if one uses k-d trees or other

techniques, but this is bounded by brute force searching F = O(dn).
Hence runtime is O(dmn2). The O(dmNn) term arises from gener-

ating spokes and trimming. For each sample we have one chain of

m consecutive “miss” spokes that do not generate a new sample,

plus some shorter miss chains that end with a spoke that generates

a sample. To bound the overall run-time, we must account for these

small chains. We assign the cost of a small chain to the sample disk

insertion following it, not the front disk generating the chain. Thus

each sample accounts for the (< m − 1) misses preceding it, the

spoke that created it, plus its ownm final successive misses, for a

total of at most 2m spokes. Thus in the entire algorithm we throw

at most 2mn spokes, each of which takes O(dN) to trim.

Experiments set up. We verified this complexity experimentally.

Calculations were performed on a mid-2010 Mac, with 3.33 GHz

6-Core Intel Xeon processor, and 16 GB RAM.

Experiments by output size. Figure 17 shows the scaling of line-
spokes by n. Experimentally, the line-spokes runtime using exhaus-

tive search (array) over aperiodic domains is about 2.0 × 10−9(1 +

0.81d)n2 + 5.5 × 10−8(1+ 0.05d)Nn + 2.4 × 10−4(1+ 0.05d)n. Exper-
imentally, the runtime for k-d tree search over periodic domains is

about 7.8 × 10−7dn(0.12 log
10
n + N).

Experiments across search type. Figure 18a compares the runtime

of all the line-spoke variations in small dimensions. Dimension 3

is close to as fast as dimension 2, because in all cases neighbor

searching is a small fraction of the total time. The advantages of

a tree vs. exhaustive search disappear at dimension 6 or 7 for n =
200, 000. For smaller n, the advantages disappear sooner.

Neighbors and periodicity. Figure 18b shows the exponential in-
crease in the number of neighbors by dimension for periodic do-

mains. It also shows the effect this has on the runtime of the favored-

and two-spoke k-d tree variants, mainly due to their longer spokes.

For aperiodic domains, the boundary strongly effects N as n varies,

and is not illuminating.

Neighbor searching with exhaustive search is not much more

expensive for periodic domains than aperiodic domains, but for

k-d tree search periodic domains are increasingly expensive as the

dimension increases. For k-d tree search, in the worst case one must

do a tree search for each periodic translation of the query point,

multiplying the query time by 2
d
. This happens more frequently for

small n (large r). However, with larger n, there is additional expense
in rebalancing the tree.

For exhaustive search and small radius, the only extra step is to

find the periodic translation of each coordinate of the test point

that is closest to the query point, only adding a smallO(d) term. For

large radius, a spoke may cross more than one periodic copy of a

sphere. To trim a spoke, we march numerically along the spoke from

the anchor, ensuring that we are trimming by the closest periodic

copy of each sphere at each step. This increases the runtime by a

factor of about 50; this is large, but still a constant across d and n.

Experiments by dimension. Figure 18c shows linear scaling in d
for fixed n using exhaustive search.

C APPLICATION: APPROXIMATE DELAUNAY GRAPHS

C.1 Motivation
Many applications rely on knowing the nearby neighbors of points.

Often it is not enough to know just the nearest point or those within

some threshold. A Delaunay graph describes both nearness and di-

rectionality; intuitively it provides all points that are nearest in some

general direction. The size of the full Delaunay tessellation (includ-

ing faces of all dimension) is inherently exponential in dimension,

and computing it becomes intractable [Barber et al. 1996]. However,

the number of edges is at most O(n2). For some types of random in-

put, the number of edges is expected to be linear, E(n), and these can
be found in E(n) time for static input [Dwyer 1989]. For meshing and

other algorithms, the input is not static and as points are adaptively

added the Delaunay graph must be dynamically updated. Some re-

cent theoretical papers [Miller and Sheehy 2013; Miller et al. 2013]

have considered dynamic approximate graphs and the challenges

of high dimensions from the standpoint of complexity analysis,

although no implementations or experimental results for these algo-

rithms are available, and they require an over-approximation rather

than an under-approximation as we provide.

ACM Transactions on Graphics, Vol. 37, No. 2, Article 22. Publication date: May 2018.

22:14 • Mitchell, Ebeida, Awad, Park, Patney, Rushdi, Swiler, Manocha, Wei

d = 2 d = 3 d = 4 d = 5 Percentiles

Sa
m
pl
e
to

fa
rt
he

st
Vo

ro
no

iv
er
te
x
di
st
an

ce
P
o
i
n
t
-
A
n
n
u
l
u
s

0.5 1 1.5
R/r [0.67,1.25], % 50th=0.996 90th=1.05 98th=1.08

Fr
eq

ue
nc

y

Sample to its Farthest Voronoi Vertex Distance

0.5 1 1.5
R/r [0.89,1.23], % 50th=1.06 90th=1.1 98th=1.13

Fr
eq

ue
nc

y

Sample to its Farthest Voronoi Vertex Distance

0.5 1 1.5
R/r [1,1.21], % 50th=1.1 90th=1.13 98th=1.15

Fr
eq

ue
nc

y

Sample to its Farthest Voronoi Vertex Distance

0.5 1 1.5
R/r [1.07,1.33], % 50th=1.18 90th=1.22 98th=1.25

Fr
eq

ue
nc

y

Sample to its Farthest Voronoi Vertex Distance

0.
5	

1	
1.
5	

2	 3	 4	 5	

Be
ta
	

Dimension	

Point-A*p:	max	Beta	per	Sampl	

98th	
90th	
50th	

L
i
n
e
-
S
p
o
k
e
s

0.5 1 1.5
R/r [0.65,1.17], % 50th=0.932 90th=0.995 98th=1.02

Fr
eq

ue
nc

y

Sample to its Farthest Voronoi Vertex Distance

0.5 1 1.5
R/r [0.79,1.2], % 50th=0.997 90th=1.05 98th=1.08

Fr
eq

ue
nc

y

Sample to its Farthest Voronoi Vertex Distance

0.5 1 1.5
R/r [0.92,1.19], % 50th=1.05 90th=1.09 98th=1.12

Fr
eq

ue
nc

y

Sample to its Farthest Voronoi Vertex Distance

0.5 1 1.5
R/r [1.02,1.3], % 50th=1.13 90th=1.18 98th=1.21

Fr
eq

ue
nc

y

Sample to its Farthest Voronoi Vertex Distance

0.
5	

1	
1.
5	

2	 3	 4	 5	

Be
ta
	

Dimension	

Line:	max	Beta	per	Sample	

98th	
90th	
50th	

F
a
v
o
r
e
d
-
S
p
o
k
e
s

0.5 1 1.5 2
R/r [0.95,1.99], % 50th=1.45 90th=1.6 98th=1.69

Fr
eq

ue
nc

y

Sample to its Farthest Voronoi Vertex Distance

0.5 1 1.5 2
R/r [1.17,1.8], % 50th=1.46 90th=1.55 98th=1.61

Fr
eq

ue
nc

y

Sample to its Farthest Voronoi Vertex Distance

0.5 1 1.5 2
R/r [1.28,1.66], % 50th=1.46 90th=1.51 98th=1.56

Fr
eq

ue
nc

y

Sample to its Farthest Voronoi Vertex Distance

0.5 1 1.5 2
R/r [1.35,1.73], % 50th=1.51 90th=1.57 98th=1.61

Fr
eq

ue
nc

y

Sample to its Farthest Voronoi Vertex Distance

1	
1.
5	

2	

2	 3	 4	 5	

Be
ta
	

Dimension	

Favored:	max	Beta	per	Sample	

98th	
90th	
50th	

T
w
o
-
S
p
o
k
e
s

0.5 1 1.5 2 2.5 3
R/r [1.04,2.1], % 50th=1.85 90th=1.99 98th=2.03

Fr
eq

ue
nc

y

Sample to its Farthest Voronoi Vertex Distance

0.5 1 1.5 2 2.5 3
R/r [1.52,2.44], % 50th=2 90th=2.11 98th=2.18

Fr
eq

ue
nc

y

Sample to its Farthest Voronoi Vertex Distance

0.5 1 1.5 2 2.5 3
R/r [1.82,2.4], % 50th=2.11 90th=2.2 98th=2.26

Fr
eq

ue
nc

y

Sample to its Farthest Voronoi Vertex Distance

0.5 1 1.5 2 2.5 3
R/r [2.04,2.66], % 50th=2.28 90th=2.38 98th=2.45

Fr
eq

ue
nc

y

Sample to its Farthest Voronoi Vertex Distance

1	
2	

3	

2	 3	 4	 5	

Be
ta
	

Dimension	

Two:	max	Beta	per	Sample	

50th	
90th	
98th	

Vo
ro
no

iv
er
te
x
to

ne
ar
es
ts

am
pl
e
di
st
an

ce
P
o
i
n
t
-
A
n
n
u
l
u
s

0.5 1 1.5
R/r [0.58,1.2] % 50th=0.865 90th=0.992 98th=1.04

Fre
qu

en
cy

Voronoi Vertex to Nearest Sample Distance

0.5 1 1.5
R/r [0.63,1.22] % 50th=0.935 90th=1.03 98th=1.09

Fre
qu

en
cy

Voronoi Vertex to Nearest Sample Distance

0.5 1 1.5
R/r [0.69,1.24] % 50th=0.98 90th=1.06 98th=1.11

Fre
qu

en
cy

Voronoi Vertex to Nearest Sample Distance

0.5 1 1.5
R/r [0.75,1.21] % 50th=1.01 90th=1.08 98th=1.12

Fre
qu

en
cy

Voronoi Vertex to Nearest Sample Distance

0.
5	

1	
1.
5	

2	 3	 4	 5	

Be
ta
	

Dimension	

Point-A*p:	Beta	per	Voronoi	ver	

98th	
90th	
50th	

L
i
n
e
-
S
p
o
k
e
s

0.5 1 1.5
R/r [0.57,1.17] % 50th=0.815 90th=0.949 98th=0.994

Fre
qu

en
cy

Voronoi Vertex to Nearest Sample Distance

0.5 1 1.5
R/r [0.62,1.22] % 50th=0.897 90th=0.996 98th=1.05

Fre
qu

en
cy

Voronoi Vertex to Nearest Sample Distance

0.5 1 1.5
R/r [0.67,1.23] % 50th=0.954 90th=1.04 98th=1.09

Fre
qu

en
cy

Voronoi Vertex to Nearest Sample Distance

0.5 1 1.5
R/r [0.73,1.23] % 50th=0.992 90th=1.06 98th=1.11

Fre
qu

en
cy

Voronoi Vertex to Nearest Sample Distance

0.
5	

1	
1.
5	

2	 3	 4	 5	

Be
ta
	

Dimension	

Line:	Beta	per	Voronoi	vert	

98th	
90th	
50th	

F
a
v
o
r
e
d
-
S
p
o
k
e
s

0.5 1 1.5 2
R/r [0.61,1.99] % 50th=1.22 90th=1.46 98th=1.59

Fre
qu

en
cy

Voronoi Vertex to Nearest Sample Distance

0.5 1 1.5 2
R/r [0.7,1.89] % 50th=1.25 90th=1.42 98th=1.51

Fre
qu

en
cy

Voronoi Vertex to Nearest Sample Distance

0.5 1 1.5 2
R/r [0.78,1.68] % 50th=1.27 90th=1.39 98th=1.46

Fre
qu

en
cy

Voronoi Vertex to Nearest Sample Distance

0.5 1 1.5 2
R/r [0.87,1.59] % 50th=1.27 90th=1.37 98th=1.43

Fre
qu

en
cy

Voronoi Vertex to Nearest Sample Distance

0.
5	

1	
1.
5	

2	

2	 3	 4	 5	

Be
ta
	

Dimension	

Favored:	Beta	per	Voronoi	vert	

98th	
90th	
50th	

T
w
o
-
S
p
o
k
e
s

0.5 1 1.5 2 2.5 3
R/r [0.61,2.43] % 50th=1.6 90th=1.89 98th=1.98

Fre
qu

en
cy

Voronoi Vertex to Nearest Sample Distance

0.5 1 1.5 2 2.5 3
R/r [0.81,2.54] % 50th=1.79 90th=2 98th=2.11

Fre
qu

en
cy

Voronoi Vertex to Nearest Sample Distance

0.5 1 1.5 2 2.5 3
R/r [1.03,2.51] % 50th=1.91 90th=2.09 98th=2.18

Fre
qu

en
cy

Voronoi Vertex to Nearest Sample Distance

0.5 1 1.5 2 2.5 3
R/r [1.22,2.54] % 50th=1.99 90th=2.14 98th=2.23

Fre
qu

en
cy

Voronoi Vertex to Nearest Sample Distance

0.
5	

1.
5	

2.
5	

2	 3	 4	 5	

Be
ta
	

Dimension	

Two:	Beta	per	Voronoi	vert	

98th	

90th	

50th	

Fig. 15. β distribution histograms: (top) sample to farthest Voronoi vertex distance, and (bottom) Voronoi vertex to nearest sample distance, for d =2–5. The
bottom-half rightmost-column illustrates that, in practices, β narrows and converges to a fixed constant as d increases, as theory predicts.

ACM Transactions on Graphics, Vol. 37, No. 2, Article 22. Publication date: May 2018.

Spoke-Darts for High-Dimensional Blue-Noise Sampling • 22:15

d = 2 d = 3 d = 4 d = 5 d = 6
s
p
e
c
t
r
a

R
D
F

0 2 4
0

1

2

3

0 2 4
0

1

2

3

0 2 4
0

1

2

3

0 2 4
0

1

2

3

0 2 4
0

1

2

3

R
P

0 200 400
0

0.5

1

1.5

0 200 400
0

0.5

1

1.5

0 200 400
0

0.5

1

1.5

0 200 400
0

0.5

1

1.5

0 200 400
0

0.5

1

1.5

V
o
r
v
e
r
t
t
o
s
a
m
p
l
e

0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5
Fig. 16. Point-Annulus output across dimensions 2–6 for aperiodic domains.

To our knowledge, we present the first practical implementa-

tion for dynamic approximate Delaunay graphs in high dimensions.

Graph D∗ contains with high probability those edges whose dual

Voronoi faces subtend a large solid angle with respect to the site

vertex. We call these edges significant Delaunay edges, and the cor-

responding D∗ a significant Delaunay graph. As a further benefit,
our method produces a witness for each edge, a domain point on its

true Voronoi face, which can be used to estimate the radial extent of

the Voronoi cell. This is used in our global optimization application,

Appendix D.

The significant edges are a subset of the true Delaunay edges, and

the Voronoi cell defined by the significant neighbors geometrically

contains the true Voronoi cell. Many high-dimensional applications

can accept approximate Delaunay graphs; the effect of the missing

edges is application dependent. For global optimization, Appen-

dix D, the approximation affects efficiency and not correctness. The

neighborhood sizes around sample points determine the order in

which new samples are generated. Prior approaches use rectangles

which usually grossly overestimate the neighborhood sizes. The

significant Delaunay graph provides a more accurate estimate of

neighborhood sizes. The true Voronoi vertices of a true Delaunay

graph would give the most accurate sizes, but there are an exponen-

tial number of them. Such compromises are commonly necessary for

high-dimensional problems. For example, the state-of-the-art high-

dimensional nearest neighbor (andk-nearest) query [Muja and Lowe

2009] often returns the wrong nearest point, but its distance is prob-

ably not much greater than the distance to the true nearest neighbor.

As algorithms for high-dimensional graphs have improved, their

use has increased in fields such as uncertainty quantification [Wit-

teveen and Iaccarino 2012] and computational topology [Gerber

et al. 2010].

C.2 Algorithm
Our basic idea is to throw random line-spokes to tease out the

significant Delaunay edges from a set of spatial neighbors. This is a

very simple method that scales well across different dimensions. It

is summarized in Algorithm 4 with details as follows. We construct

the graph D∗ for each vertex s in turn. We initialize its edge pool

with all vertices that are close enough to possibly share a Delaunay

edge with s . We next identify vertices from this pool who are actual

Delaunay neighbors of s with the following probabilistic method.

Using spoke-darts, we throwm line-spokes. We trim each spoke ℓ

using the separating hyperplane between s and each vertex s ′ in
the pool. There is one pool vertex s∗ whose hyperplane trims ℓ the

most. (In degenerate cases where multiple vertices trim the spoke

the most and equally, we can pick an arbitrary one for s∗.) The far
end of the trimmed spoke ω is equidistant from s and s∗, and no

ACM Transactions on Graphics, Vol. 37, No. 2, Article 22. Publication date: May 2018.

22:16 • Mitchell, Ebeida, Awad, Park, Patney, Rushdi, Swiler, Manocha, Wei

14	

17	

2	

29	32	

4	

12	

8	24	
10	 6	20	

0	

20	

40	

60	

80	

0	 1	 2	 3	 4	 5	

sq
rt
('

m
e	
in
	se

c)
	

outputsize	n	x	100,000	

Scaling	by	n:	array,	aperiodic	

data	
predic'ons	

(a) aperiodic domain

2	
3	

4	5	
6	

0	

20	

40	

60	

80	

0	 1	 2	 3	 4	 5	

sq
rt
('

m
e	
in
	se

c)
	

outputsize	n	x	100,000	

Scaling	by	n:	array,	periodic	

(b) periodic domain

2	
3	

4	

5	

6	7	

8	

0	
10
00
	

20
00
	

0	 5	 10	

!m
e	
in
	se

c	

outputsize	n	log10	n	x	1,000,000	

Scaling	by	n:	k-d	tree,	aperiodic	

(c) aperiodic domain

2	
3	

4	

5	6	

0	
10
00
	

20
00
	

0	 5	 10	

!m
e	
in
	se

c	

outputsize	n	log10	n	x	1,000,000	

Scaling	by	n:	k-d	tree,	periodic	

(d) periodic domain

Fig. 17. Line-spokes scaling by output sample number n. Top: exhaustive
array neighbor search. Bottom: k-d tree search. Each trendline is labeled
by the dimension of the domain in that study. In the top, the trendlines
being straight illustrate that using exhaustive search runtime is O(n2) for
large but fixed d . In the bottom, straight trendlines would illustrate perfect
O(n logn) scaling.

nt	

pt	

na	

pa	

0	

15	

30	

45	

2	 4	 6	 8	

!m
e	
in
	m

in
ut
es
	

	

dimension	

Scaling	by	d	for	n=200,000:	
by	search		
and	periodicity	

(a) Runtime cross-over

N	

favored/line	

two/line	
1	

10	

100	

1,000	

10	

100	

1,000	

10,000	

2	 3	 4	 5	 6	 7	

Ti
m
e	
Ra

2o
	

N
ei
gh
bo

rs
		N

	
	

dimension	

Neighbor,	and	2me	ra2o,	by	d:	
periodic,	tree	

(b) Neighbor scaling

line

favored

two

0
5
10
15
20
25

2 7 12 17 22

re
la
tiv

e(
tim

e

dimension

Scaling(by(d(for(n=32,000:((
array,(large(r,(periodic

(c) Linear runtime in d

line	

favored	

two	

0	

0.2	

0.4	

0.6	

0.8	

1	

2	 7	 12	 17	 22	

r	

dimension	

Sample	radius	for	n=32,000	by	d		
by	algorithm:	periodic	

(d) Radius for fixed n by d

Fig. 18. Fixed-n scaling by dimension. In (a), “pt” is periodic domain with
tree search, and “na” is non-periodic with exhaustive array search, etc. The
straight lines in 18c demonstrate linear runtime in d for array search.

other vertex is closer. Hence ω is the witness that s and s∗ share a
Voronoi-face (Delaunay-edge), and ss∗ is added to D∗.

The reason we tend to find the significant neighbors with high

probability is obvious from the above algorithm description. Spokes

sample the solid angle around each vertex s uniformly, so the prob-

ability that a given spoke hits a given Voronoi face is proportional

to the solid angle the face subtends at s . As the number of spokesm
increases we are more likely to also find less significant neighbors,

and D∗ → D.

Input: s , graph D∗, NeighborCandidatesM, RecursionFlag R
Output: D∗ with s added
1: // R = true for a new vertex s
2: N = ∅ // approx. Delaunay neighbors of s
3: δ (s) = 0 // approx. cell radius of s
4: for i = 1 tom do
5: ℓ ← RandomSpoke(s, 0, |Ω |)
6: for each sample s ′ ∈ M do
7: π (s, s ′) ← hyperplane between s and s ′

8: trim ℓ with π (s, s ′)
9: if ℓ got shorter then
10: s∗ ← s ′

11: D∗ ← D∗⋃ {
ss∗

}
// without duplication

12: N ← N ⋃{s∗}
13: δ (s) = max (δ (s), length(ℓ))
14: if R = true then
15: // update edges of neighbors, removing some

16: for each sample s ′ ∈ N do
17: M ← Neighbors(s ′)⋃{s}
18: D∗ ← D∗ \ Edges(s ′) // remove all edges

19: Recurse(s ′,D∗,M, false) // restore some

20: return D∗

Algorithm 4. Add a vertex to the approximate Delaunay graph.

0	

50	

100	

150	

6	
 8	
 10	
 12	
 14	

Ti
m
e	

(s
ec
on

ds
)	

Dimension	

SpokeDarts	

Qhull	

m	
 =	
 1000	

m	
 =	
 10,000	

m	
 =	
 25,000	

(a) computation time

0	

500	

1000	

1500	

6	
 8	
 10	
 12	
 14	

M
em

or
y	

(M

B)
	

	

Dimension	

SpokeDarts	

<	
 2.5	
 MB	

Qhull	
 	

(b) memory requirement

Fig. 19. Comparison of speed (a) and memory (b) between Qhull and spoke-
dart sampling for an approximate Delaunay graph. Qhull becomes infeasible
beyond d = 10 whereas our method scales well.

20	

30	

40	

50	

60	

4	
 40	
 400	
 4000	
 40000	

%
	
 e
dg
es
	
 m

is
si
ng
	

	
 	

m	

d=8	

d=9	

d=10	

(a) effects ofm on% ofmissing edges

0.1	

1	

10	

100	

1000	

4	
 40	
 400	
 4000	
 40000	

Ti
m
e	

ra
(o

	

m	

Qhull	
 /	
 SpokeDarts	

Time	
 	
 Ra(o	

	

d=8	

d=9	

d=10	

(b) effects ofm on time

Fig. 20. Effects ofm on the approximate Delaunay graph. Asm increases,
fewer Delaunay edges are missed (a) but run-time increases (b).

C.3 Experiments
We demonstrate the efficiency of our approach against Qhull [Bar-

ber et al. 1996]. It is a commonly-used code for full convex hulls and

ACM Transactions on Graphics, Vol. 37, No. 2, Article 22. Publication date: May 2018.

Spoke-Darts for High-Dimensional Blue-Noise Sampling • 22:17

Delaunay triangulations, and hence suffers from the curse of dimen-

sionality. We know of no tools for approximate Delaunay graphs

to compare against. As test input, we used Poisson-disk point sets

over the unit-box domain in various dimensions. For each case, we

used Qhull to generate the exact solution D and our method for

the approximate solution D∗. As Figure 19 shows, the memory and

time requirements of Qhull grows significantly as d increases. Qhull

required memory that might not be practical for d ≥ 11. On the

other hand, our method shows a linear growth for time and mem-

ory with d . We see that our method became competitive for d ≥ 9.

Figure 20 shows the effect ofm on the time and number of missed

edges.

D RETHINKING GLOBAL OPTIMIZATION USING
VORONOI DECOMPOSITIONS

A variety of disciplines, — science, engineering or even economics,

— seek the “best” answer for a question under study. This usually

requires solving a global optimization problem, where we have to

explore the parameter space of a function f in order to find the

optimum point
ˆf of some objective function, possibly under a set

of feasibility constraints. For many problems, local optimality is not

sufficient and a global optimal point is desired. For simple analyt-

ical functions, some algorithms are guaranteed to find the global

minimum. However, no method is guaranteed to find the global

minimum for all functions, or even come close in finite time. For

example, no method is guaranteed to find the minimum of a function

resembling white noise. In practice, heuristic stochastic techniques

are usually the best, and sometimes the only option [Horst et al.

2002]. Lipschitzian optimization is an important category of global

optimization methods. Shubert [1972] explores the parameter space

and provides convergence based on the Lipschitz constant K of the

objective function, where a function f is Lipschitz continuous with
constant K > 0 if

| f (xi) − f (x j)| ≤ K |xi − x j | (3)

for all xi , x j in the domain of f . The DIRECT algorithm [Jones

et al. 1993] extends Shubert’s work to higher dimensions and does

not require knowledge of K , decomposing a domain into nested

hyperrectangle partitions.

In this section, we demonstrate how spoke-dart sampling can

further generalize DIRECT by sampling points in random directions,

not necessarily aligned with grid lines and replacing the nested hy-

perrectangle partitions with random approximations to Voronoi cells.
Using classical test functions, we briefly illustrate how spoke-dart

sampling has a significantly improved optimization performance.

We believe this opens the door to new solutions of optimization

problems. Below, we outline our optimization approach, called “Opt-

darts” and provide a careful comparison between Opt-darts and

DIRECT.

To our knowledge, our method is the first stochastic Lipschitzian

optimization technique. Our use of the phrase “stochastic” refers to

the randomness in the Voronoi cell seed locations within our algo-

rithm; we are not referring to optimization of a stochastic objective

function. Computing and refining random Voronoi cells has been

intractable in high dimensions due to the exponential growth of

Voronoi vertices as the dimension increases, and this is probably

why this direction has not been explored before. Our spoke darts

algorithm enables the size estimation of the Voronoi Cells without

explicitly calculating and storing these Voronoi vertices. This al-

lows tractable cell refinement needed in solving global optimization

problems.

D.1 DIRECT algorithm
The DIRECT (DIviding RECTangles) algorithm [Jones et al. 1993]

was developed for optimization of “black-box” functions (often ex-

pensive engineering simulations) which may be nonlinear, non-

convex, and multi-modal. DIRECT is a global optimization approach

that combines global exploration of the space with local search

around the best solution and does not require gradient information.

DIRECT partitions the domain into hyperrectangles. It refines those

rectangles, typically by trisecting each rectangle along one of its

long sides. The refinement process creates nested hyperrectangles

that could contain a point whose function value is smaller than the

smallest f ∗ found so far. This refinement recurses until reaching

the maximum number of iterations, or the remaining possible im-

provement is small. An important aspect of DIRECT is that it does

not just pick one hyperrectangle for refinement. Instead, several

hyperrectangles are selected based on relative weightings of local

versus global search.

Each rectangle i is associated with two quantities: 1) a function

evaluation fi at its center and 2) a size estimate hi given by the

distance from the rectangle center ci to any of its corners. The lower
convex hull H of the 2D data points {hi , fi } lists the cells to be

refined next. This convex hull is a Pareto curve that represents the

tradeoff between local search (search around the best values of fi)
and global search (search around points with large hi because they
have not been refined much yet).

To avoid overrefining the cell with the current best solution f ∗, an
artificial data point is added with {h0 = 0, f0 = f ∗ − ϵ | f ∗ |}, where
ϵ (typically set to 10

−4
) is a parameter to balance global and local

searches. A cell is refined by choosing an axis-aligned direction, and

splitting the cell into three equal-sized cells in that direction.H is

updated every time its cells are refined. This refinement recurses

until the sample budget is exhausted. Note that limiting the cell

refinement to those inH explores the most probable locations for

a new best solution without any assumptions about the Lipschitz

constant K of the underlying function.

D.2 Opt-darts algorithm: our method
In this section, we first highlight limitations of DIRECT and how

they are addressed in Opt-Darts. We then present the details of how

Opt-darts chooses the first sample, estimates a cell size, and refines

a cell. We then summarize the algorithm in a pseudocode.

Motivation. DIRECT had a number of algorithmic limitations: 1) a

cell can only be a hyperrectangle, 2) nested refinement, where a new

cell can not extend beyond the boundaries of the refined cell, and 3)

new sample points can only be on an axis-aligned direction with

the refined cell’s center. To mitigate these limitations, our algorithm

(Opt-darts) uses Voronoi cells rather than hyperrectangles. From a

Lipschitzian perspective, the cell size hi should be the distance from
its sample point ci (cell seed) and its furthest Voronoi vertexvi . This

ACM Transactions on Graphics, Vol. 37, No. 2, Article 22. Publication date: May 2018.

22:18 • Mitchell, Ebeida, Awad, Park, Patney, Rushdi, Swiler, Manocha, Wei

offers a much more accurate neighborhood representation. On the

other hand, nested refinement may result in false convergence (a

phenomenon often reported by DIRECT users). This happens when

DIRECT persistently refines a cell that is close to
ˆf but does not actu-

ally contain it; see Figure 21 for an illustration. Voronoi cells do not

follow the nested refinement approach; each new sample includes

the domain points closest to it, with no boundary constraints. In

DIRECT, axis-aligned sampling results in a stair-pattern marching

towards the global solution. Alleviating this constraint increases the

possibility of sampling points closer to
ˆf . Moreover, while DIRECT

adds new samples in the interior of the refined cell, Opt-dart has

the flexibility of adding points on the refined cell’s boundaries. This

is more efficient for space filling.

Algorithm. TheOpt-darts algorithm is summarized inAlgorithm 5.

Sampling first point. We pick the first point uniformly randomly

from the middle 1/3 of the domain.

Cell size estimation. Starting at a cell seed ci , we throw two sets of

spokes:d spokes in axis-aligned directions (mimickingDIRECT), and

2d more spokes along random directions, for a total of 3d spokes.

(One may use more spokes to more accurately estimate the cell

size, at the price of higher computational cost.) Each spoke starts

infinite, with anchor point ci , and we trim each end by separating

hyperplanes until its end points are on the cell’s boundary. If an

end point is too close to the domain boundary, we reduce its length

so its distance to the nearest boundary plane is at least 1/3 the

distance from the center to that plane. We label the end points pr
and pl . We say the length of the spoke is min(∥cipl)∥2, ∥cipr ∥2). We

approximate the cell size by the longest such length, with spoke

with end points li and ri .

Cell refinement. When cell i is chosen for refinement, li and ri
are added as new samples, implicitly creating two new Voronoi cells

and modifying nearby cells.

Input: sample budget N , function to optimize f

Output: global optimum estimate f ∗ ≈ ˆf
1: Sample first point x1, evaluate f1 = f (x1)
2: Estimate cell size h1
3: n ← 1

4: while n ≤ N do
5: Construct 2D lower convex hullH of {hi , fi }
6: for each ci ∈ H do
7: Refine cell ci , evaluate f at new points

8: Update cell sizes of new and refined cells

9: n ← n + 2
10: if n ≥ N then end
11: return f ∗ = min{ fi } // best solution found

Algorithm 5. Opt-darts

D.3 Analytical experiments
In this section, we used two standard test functions, Easom and

Bohachevsky [Jamil and Yang 2013], over a variable number of di-

mensions to illustrate the difference between Opt-darts and DIRECT.

Two of the test suites which list these functions [Jamil and Yang

2013; Yang 2010] have been collectively cited more than 350 times.

They are also available in many online tools and from test function

libraries in Matlab [Burkardt 2011; Leong 2016], and R [Bossek 2017].

We chose these two functions to represent two extreme behaviors

in the neighborhood of the global minimum
ˆf . The Easom function

approaches the global minimum via very high gradient. It is almost

flat everywhere and has a deep “pinhole” region where the optimum

lies. In contrast, the Bohachevsky function approaches
ˆf via an

almost flat region that looks like a shallow bowl. Both functions are

noisy, and have many local minima. The global minimum
ˆf = 0 for

both functions, and is located at the origin, ∀d . Note that finding
ˆf for the class of functions like Easom gets significantly harder as

dimension increases. This problem is not as significant for the class

of functions like Bohachevsky. Figure 21 illustrates an informative

comparison of DIRECT and Opt-darts in terms of point placement

using evaluations of the Easom function. In Table 1 in Section 6.2,

we compare the number of function evaluations needed to be within

10
−4

of the true global minimum
ˆf . As shown in the table, opt-darts

was able to achieve orders of speedup over DIRECT.

D
I
R
E
C
T

O
p
t
-
d
a
r
t
s

n = 3 n = 5 n = 7 n = 41

Fig. 21. Contrasting sample placements, over the 2D Easom test function.
The global minimum ˆf is located at the lower left corner of the domain.
Opt-darts approached it much faster than DIRECT.

E APPLICATION: RENDERING
For a traditional rendering demonstration, we have integrated spoke-

darts into the Mitsuba physically-based renderer [Jakob 2010]. Most

rendering algorithms in Mitsuba use point samplers to generate

multidimensional point sets, providing a good base for applying and

comparing different sampling methods.

Scenes. We have chosen two scenes for this rendering experiment:

Babylon and torus-in-glass, as shown in Figure 22. The Babylon

case uses 4d samples corresponding to the 2D camera screen space

+ the 2D lens space to generate defocus blur. The torus-in-glass

cases demonstrates a bidirectional path tracer using 8d samples

corresponding to 2D for the sky emitter, 2D for the camera screen,

and 2D for each bounce along each camera and light path.

Results. In Figure 22, we compare the rendering quality of our

method against the high-quality samplers within Mitsuba: mul-

tidimensional stratified sampling, and low-discrepancy sampling

based on [Kollig and Keller 2003]. These samplers all seem to be

well-spaced only along pairs of dimensions, such as the x-y cam-

era samples and the u-v lens samples, but not the joint domains in

ACM Transactions on Graphics, Vol. 37, No. 2, Article 22. Publication date: May 2018.

Spoke-Darts for High-Dimensional Blue-Noise Sampling • 22:19

Stratified Low-discrepancy Spoke-darts

4D
,1

6-
sp

p
8D

,2
56

-s
pp

Fig. 22. Rendering by Mitsuba using two of the default Mitsuba samplers
and Spoke-darts. The Babylon scene (top) renders antialiased depth-of-field
using 16 samples-per-pixel (spp) in 4 dimensions, and the torus-in-glass
scene (bottom) renders antialiased using 256-spp in 8D.

higher dimensions such as the 4D camera + lens domain. In contrast,

spoke-darts samples are well-spaced along the joint domains. In

Figure 22, the rendering quality using spoke-darts is comparable

to that of using Mitsuba’s samplers. As analyzed in [Reinert et al.

2016], the rendering quality depends on the projected sample dis-

tributions, which might explain the comparable quality of Mitsuba

samplers and our method. Nevertheless, our method guarantees

good sample distributions in any dimensions and performs at least

as well in projected dimensions, even without explicit consideration

of projected distributions as in [Reinert et al. 2016].

F APPLICATION: MOTION PLANNING
Motion planning algorithms are frequently used in robotics, gam-

ing, CAD/CAM, and animation [Overmars 2005; Pan et al. 2010;

Yamane et al. 2004]. The main goal is to compute a collision-free

path for real or virtual robots among obstacles. Furthermore, the

resulting path may need to satisfy additional constraints, such as

path smoothness, dynamics constraints, and plausible motions. This

problem has been extensively studied for more than three decades.

Two main challenges are:

Speed. The computation needs to be fast enough for interac-

tive applications and dynamic environments.

High dimensionality. HighDegrees-Of-Freedom (DOF) robots

are very common. For example, the simplest models for hu-

mans (or humanoid robots) have tens of DOF, capable of

motions like walking, sitting, bending, or picking objects.

Some of the most popular algorithms for high-DOF robots use

sample-based planning [LaValle and Kuffner 2001]. The main idea

is to generate random collision-free sample points in the high-

dimensional configuration space, and join the nearby points using

local collision-free paths. Connected paths provide a roadmap or

tree for path computation or navigation. In particular, RRT (Rapidly-

exploring Random Tree) [Kuffner and Lavalle 2000] incrementally

builds a tree from the initial point towards the goal configuration.

Benchmark DOF RRT (1 CPU core) GPU Poisson-RRT Speed-up

Easy 6 0.34 0.03 12.14×
AlphaPuzzle 6 32.76 1.31 24.93×
Apartment 6 191.79 11.88 16.15×
HRP-4 23 6.17 0.32 19.28×

Table 2. Comparison of the performances of our GPU-based Poisson-RRT
planning algorithms and a reference single-core CPU algorithm. We com-
pared the planning time for different benchmarks using 100 trials.

RRT is relatively simple to implement and widely used in many

applications.

However, prior RRT methods generate samples via white noise

(a.k.a. Poisson process). These samples are not uniformly spaced in

the configuration space, leading to suboptimal computation. Park

et al. [2016] demonstrated that using Poisson-disk sampling in-

stead can lead to more efficient exploration of the configuration

space. We summarize [Park et al. 2016] in Algorithm 6. However,

the algorithm described in [Park et al. 2016] assumes availability

of precomputed Poisson-disk samples that can guide the selection

of new points which are not too close to prior points. It starts with

uniform sampling in the high dimensional space, and generates

more adaptive samples in tight space or narrow passages. Further-

more, the Poisson-disk sampling can be used to design a parallel

version of RRT algorithm that can map well to current commodity

processors, including multi-core CPUs and many-core GPUs. Using

a precomputed sampling that is shared by all threads allows effi-

cient detection when a tree branch reaches an area that is already

explored, and avoids redundant exploration.

Input: configurations xinit and xдoal in domain Ω
Input: Poisson-disk sample set P precomputed via Algorithm 1

Output: RRT Tree T
1: T.add(xinit)
2: P.add(xдoal)
3: for i = 1 tom do in parallel // multiple threads

4: while xдoal < T do
5: y← RandomSample(Ω)
6: T← Extend(T, y, P)
7: end for
8: return T

Algorithm 6. Parallel Poisson-RRT with precomputed samples.

We use the novel spoke-darts algorithm to precompute the high-

dimension sample set via spoke-dart sampling and also adaptively re-

fine this set to compute collision-free paths through narrow passages.

This high-dimensional set is used by the resulting Poisson-RRT

based motion planning algorithm [Park et al. 2016]. Furthermore,

it is used to design a practical parallel RRT in high-dimensional

configurations space, e.g., for a 23 DOF robot. We highlight the

performance of this novel parallel Poisson RRT planner on three

well-known motion planning benchmark scenarios from OMPL [Şu-

can et al. 2012]. These scenarios all have 6 DOF, and vary in their

level of difficulty. We also compute the motion of the HRP-4 robot

with 23 DOF; see Figure 1d. The total times taken by the planner
are shown in Table 2.

ACM Transactions on Graphics, Vol. 37, No. 2, Article 22. Publication date: May 2018.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Advancing front
	2.2 Hyperplane sampling
	2.3 Combining advancing front with line search

	3 Spoke-Dart Blue Noise Sampling
	3.1 Spokes
	3.2 CollectNeighbors
	3.3 RandomSpoke
	3.4 TrimSpoke
	3.5 RandomSample
	3.6 Two-spokes

	4 Analysis and Guarantees
	4.1 Probability of achieved saturation
	4.2 Bound proofs

	5 Experimental Results
	5.1 Distribution comparisons
	5.2 Output size
	5.3 Runtime scaling

	6 Applications
	6.1 Approximate Delaunay graph
	6.2 Global optimization
	6.3 Rendering
	6.4 Motion planning

	7 Conclusions and Future Work
	References
	A Soft Blue Noise
	A.1 Favored-Spokes
	A.2 Two-Spokes for soft blue noise

	B Additional experimental results
	B.1 Output size data
	B.2 Distribution
	B.3 Runtime scaling details

	C Application: Approximate Delaunay graphs
	C.1 Motivation
	C.2 Algorithm
	C.3 Experiments

	D Rethinking Global Optimization using Voronoi Decompositions
	D.1 DIRECT algorithm
	D.2 Opt-darts algorithm: our method
	D.3 Analytical experiments

	E Application: Rendering
	F Application: Motion Planning

