Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3183713.3196888acmconferencesArticle/Chapter ViewAbstractPublication PagesmodConference Proceedingsconference-collections
research-article

Synthesizing Type-Detection Logic for Rich Semantic Data Types using Open-source Code

Published: 27 May 2018 Publication History

Abstract

Given a table of data, existing systems can often detect basic atomic types (e.g., strings vs. numbers) for each column. A new generation of data-analytics and data-preparation systems are starting to automatically recognize rich semantic types such as date-time, email address, etc., for such metadata can bring an array of benefits including better table understanding, improved search relevance, precise data validation, and semantic data transformation. However, existing approaches only detect a limited number of types using regular-expression-like patterns, which are often inaccurate, and cannot handle rich semantic types such as credit card and ISBN numbers that encode semantic validations (e.g., checksum).
We developed AUTOTYPE from open-source repositories like GitHub. Users only need to provide a set of positive examples for a target data type and a search keyword, our system will automatically identify relevant code, and synthesize type-detection functions using execution traces. We compiled a benchmark with 112 semantic types, out of which the proposed system can synthesize code to detect 84 such types at a high precision. Applying the synthesized type-detection logic on web table columns have also resulted in a significant increase in data types discovered compared to alternative approaches.

References

[1]
Btrace - a tracing tool for java. https://github.com/btraceio/btrace.
[2]
Calculate GS1 check digit. https://www.gs1.org/how-calculate-check-digit-manually.
[3]
Codeplex. https://www.codeplex.com/.
[4]
Enterprise version of the proprietary github. https://enterprise.github.com/home.
[5]
GitHubGist. https://gist.github.com/.
[6]
Javascript debugger statement. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/debugger.
[7]
Luhn algorithm. https://en.wikipedia.org/wiki/Luhn_algorithm.
[8]
Python built-in ast parser. https://docs.python.org/2/library/ast.html.
[9]
Ruby debugging. http://guides.rubyonrails.org/debugging_rails_applications.html.
[10]
Trifacta built-in data types. https://docs.trifacta.com/display/PE/Supported Data Types.
[11]
A. Arulselvan. A note on the set union knapsack problem. Discrete Applied Mathematics, 169:214--218, 2014.
[12]
S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. Dbpedia: A nucleus for a web of open data. The semantic web, pages 722--735, 2007.
[13]
P. A. Bernstein. Applying model management to classical meta data problems. In CIDR, 2003.
[14]
M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, and Y. Zhang. Webtables: exploring the power of tables on the web. Proceedings of VLDB, (1), 2008.
[15]
K. Chakrabarti, S. Chaudhuri, Z. Chen, K. Ganjam, Y. He, and W. Redmond. Data services leveraging bing's data assets. IEEE Data Eng. Bull., 39(3):15--28, 2016.
[16]
X. Chu, Y. He, K. Chakrabarti, and K. Ganjam. Tegra: Table extraction by global record alignment. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pages 1713--1728. ACM, 2015.
[17]
X. Chu, J. Morcos, I. F. Ilyas, M. Ouzzani, P. Papotti, N. Tang, and Y. Ye. Katara: A data cleaning system powered by knowledge bases and crowdsourcing. In Proceedings of SIGMOD, 2015.
[18]
E. Cortez, P. A. Bernstein, Y. He, and L. Novik. Annotating database schemas to help enterprise search. Proceedings of VLDB, (12), 2015.
[19]
R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and P. Domingos. imap: discovering complex semantic matches between database schemas. In Proceedings of SIGMOD, 2004.
[20]
M. Hazewinkel, editor. Encyclopedia of Mathematics. Springer Science
[21]
Business Media B.V. / Kluwer Academic Publishers, 2001.
[22]
Y. He, K. Chakrabarti, T. Cheng, and T. Tylenda. Automatic discovery of attribute synonyms using query logs and table corpora. In Proceedings of WWW. International World Wide Web Conferences Steering Committee, 2016.
[23]
Y. He, K. Ganjam, K. Lee, Y. Wang, V. Narasayya, S. Chaudhuri, X. Chu, and Y. Zheng. Transform-Data-by-Example (TDE): Extensible Data Transformation in Excel. In SIGMOD, 2018.
[24]
K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of ir techniques. ACM Transactions on Information Systems (TOIS), 20(4):422--446, 2002.
[25]
P. G. Kolaitis. Schema mappings, data exchange, and metadata management. In Proceedings of PODS, 2005.
[26]
C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: building customized program analysis tools with dynamic instrumentation. In Acm sigplan notices, 2005.
[27]
C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Retrieval. Cambridge University Press, 2008.
[28]
C. D. Manning, P. Raghavan, and H. Schütze. Scoring, term weighting and the vector space model. Introduction to information retrieval, 100:2--4, 2008.
[29]
J. L. McCarthy. Metadata management for large statistical databases. In Proceedings of VLDB, 1982.
[30]
T. M. Mitchell. Machine learning., 1997.
[31]
J. Morcos, Z. Abedjan, I. F. Ilyas, M. Ouzzani, P. Papotti, and M. Stonebraker. Dataxformer: An interactive data transformation tool. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pages 883--888, 2015.
[32]
F. Naumann, C.-T. Ho, X. Tian, L. M. Haas, and N. Megiddo. Attribute classification using feature analysis. In Proceedings of ICDE, 2002.
[33]
V. Raman and J. M. Hellerstein. Potter's wheel: An interactive data cleaning system. In Proceedings of VLDB, 2001.
[34]
D. Ritze, O. Lehmberg, and C. Bizer. Matching html tables to dbpedia. In Proceedings of WIMS, page 10. ACM, 2015.
[35]
A. Sen. Metadata management: past, present and future. Decision Support Systems, (1), 2004.
[36]
Y. L. Simmhan, B. Plale, and D. Gannon. A survey of data provenance in e-science. SIGMOD Rec., 2005.
[37]
F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of semantic knowledge. In Proceedings of WWW, 2007.
[38]
A. Talaika, J. Biega, A. Amarilli, and F. M. Suchanek. Ibex: harvesting entities from the web using unique identifiers. In Proceedings of WebDB, 2015.
[39]
Y. Wang and Y. He. Synthesizing mapping relationships using table corpus. In Proceedings of SIGMOD, 2017.

Cited By

View all
  • (2024)Table-GPT: Table Fine-tuned GPT for Diverse Table TasksProceedings of the ACM on Management of Data10.1145/36549792:3(1-28)Online publication date: 30-May-2024
  • (2023)Learning from Uncurated Regular Expressions for Semantic Type ClassificationProceedings of the 1st Workshop on Simplicity in Management of Data10.1145/3596225.3596226(1-5)Online publication date: 23-Jun-2023
  • (2023)Flexible Hybrid Table Recognition and Semantic Interpretation SystemSN Computer Science10.1007/s42979-022-01659-z4:3Online publication date: 4-Mar-2023
  • Show More Cited By

Index Terms

  1. Synthesizing Type-Detection Logic for Rich Semantic Data Types using Open-source Code

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      SIGMOD '18: Proceedings of the 2018 International Conference on Management of Data
      May 2018
      1874 pages
      ISBN:9781450347037
      DOI:10.1145/3183713
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 27 May 2018

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. code search
      2. data preparation
      3. metadata management
      4. open-source code
      5. semantic data types
      6. type detection

      Qualifiers

      • Research-article

      Conference

      SIGMOD/PODS '18
      Sponsor:

      Acceptance Rates

      SIGMOD '18 Paper Acceptance Rate 90 of 461 submissions, 20%;
      Overall Acceptance Rate 785 of 4,003 submissions, 20%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)21
      • Downloads (Last 6 weeks)4
      Reflects downloads up to 12 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Table-GPT: Table Fine-tuned GPT for Diverse Table TasksProceedings of the ACM on Management of Data10.1145/36549792:3(1-28)Online publication date: 30-May-2024
      • (2023)Learning from Uncurated Regular Expressions for Semantic Type ClassificationProceedings of the 1st Workshop on Simplicity in Management of Data10.1145/3596225.3596226(1-5)Online publication date: 23-Jun-2023
      • (2023)Flexible Hybrid Table Recognition and Semantic Interpretation SystemSN Computer Science10.1007/s42979-022-01659-z4:3Online publication date: 4-Mar-2023
      • (2022)Fine-grained semantic type discovery for heterogeneous sources using clusteringThe VLDB Journal10.1007/s00778-022-00743-332:2(305-324)Online publication date: 17-May-2022
      • (2021)Auto-Validate: Unsupervised Data Validation Using Data-Domain Patterns Inferred from Data LakesProceedings of the 2021 International Conference on Management of Data10.1145/3448016.3457250(1678-1691)Online publication date: 9-Jun-2021
      • (2021)Interactive cross-language code retrieval with auto-encodersProceedings of the 36th IEEE/ACM International Conference on Automated Software Engineering10.1109/ASE51524.2021.9678929(167-178)Online publication date: 15-Nov-2021
      • (2021)VizSmithProceedings of the 36th IEEE/ACM International Conference on Automated Software Engineering10.1109/ASE51524.2021.9678696(129-141)Online publication date: 15-Nov-2021
      • (2020)Auto-transformProceedings of the VLDB Endowment10.14778/3407790.340783113:12(2368-2381)Online publication date: 14-Sep-2020
      • (2020)SatoProceedings of the VLDB Endowment10.14778/3407790.340779313:12(1835-1848)Online publication date: 1-Jul-2020
      • (2019)Auto-EM: End-to-end Fuzzy Entity-Matching using Pre-trained Deep Models and Transfer LearningThe World Wide Web Conference10.1145/3308558.3313578(2413-2424)Online publication date: 13-May-2019
      • Show More Cited By

      View Options

      Get Access

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media