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Abstract

We focus on knowledge base construction (KBC) from richly formatted data. In contrast to KBC 

from text or tabular data, KBC from richly formatted data aims to extract relations conveyed 

jointly via textual, structural, tabular, and visual expressions. We introduce Fonduer, a machine-

learning-based KBC system for richly formatted data. Fonduer presents a new data model that 

accounts for three challenging characteristics of richly formatted data: (1) prevalent document-

level relations, (2) multimodality, and (3) data variety. Fonduer uses a new deep-learning model 

to automatically capture the representation (i.e., features) needed to learn how to extract relations 

from richly formatted data. Finally, Fonduer provides a new programming model that enables 

users to convert domain expertise, based on multiple modalities of information, to meaningful 

signals of supervision for training a KBC system. Fonduer-based KBC systems are in production 

for a range of use cases, including at a major online retailer. We compare Fonduer against state-

of-the-art KBC approaches in four different domains. We show that Fonduer achieves an average 

improvement of 41 F1 points on the quality of the output knowledge base—and in some cases 

produces up to 1.87× the number of correct entries—compared to expert-curated public knowledge 

bases. We also conduct a user study to assess the usability of Fonduer’s new programming model. 

We show that after using Fonduer for only 30 minutes, non-domain experts are able to design 

KBC systems that achieve on average 23 F1 points higher quality than traditional machine-

learning-based KBC approaches.

1 INTRODUCTION

Knowledge base construction (KBC) is the process of populating a database with 

information from data such as text, tables, images, or video. Extensive efforts have been 

made to build large, high-quality knowledge bases (KBs), such as Freebase [5], YAGO [38], 

IBM Watson [6, 10], PharmGKB [17], and Google Knowledge Graph [37]. Traditionally, 

KBC solutions have focused on relation extraction from unstructured text [23, 27, 36, 44]. 

These KBC systems already support a broad range of downstream applications such as 

information retrieval, question answering, medical diagnosis, and data visualization. 

However, troves of information remain untapped in richly formatted data, where relations 
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and attributes are expressed via combinations of textual, structural, tabular, and visual cues. 

In these scenarios, the semantics of the data are significantly affected by the organization 

and layout of the document. Examples of richly formatted data include webpages, business 

reports, product specifications, and scientific literature. We use the following example to 

demonstrate KBC from richly formatted data.

Example 1.1 (HasCollectorCurrent)

We highlight the ELECTRONICS domain. We are given a collection of transistor datasheets (like 

the one shown in Figure 1), and we want to build a KB of their maximum collector currents.
1 The output KB can power a tool that verifies that transistors do not exceed their maximum 

ratings in a circuit. Figure 1 shows how relevant information is located in both the document 

header and table cells and how their relationship is expressed using semantics from multiple 

modalities.

The heterogeneity of signals in richly formatted data poses a major challenge for existing 

KBC systems. The above example shows how KBC systems that focus on text data—and 

adjacent textual contexts such as sentences or paragraphs—can miss important information 

due to this breadth of signals in richly formatted data. We review the major challenges of 

KBC from richly formatted data.

Challenges—KBC on richly formatted data poses a number of challenges beyond those 

present with unstructured data: (1) accommodating prevalent document-level relations, (2) 

capturing the multimodality of information in the input data, and (3) addressing the 

tremendous data variety.

Prevalent Document-Level Relations: We define the context of a relation as the scope 

information that needs to be considered when extracting the relation. Context can range from 

a single sentence to a whole document. KBC systems typically limit the context to a few 

sentences or a single table, assuming that relations are expressed relatively locally. However, 

for richly formatted data, many relations rely on information from throughout a document to 

be extracted.

Example 1.2 (Document-Level Relations)

In Figure 1, transistor parts are located in the document header (boxed in blue), and the 

collector current value is in a table cell (boxed in green). Moreover, the interpretation of 

some numerical values depends on their units reported in another table column (e.g., 200 

mA).

Limiting the context scope to a single sentence or table misses many potential relations—up 

to 97% in the ELECTRONICS application. On the other hand, considering all possible entity 

pairs throughout the document as candidates renders the extraction problem computationally 

intractable due to the combinatorial explosion of candidates.

1Transistors are semiconductor devices often used as switches or amplifiers. Their electrical specifications are published by 
manufacturers in datasheets.
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Multimodality—Classical KBC systems model input data as unstructured text [23, 26, 36]. 

With richly formatted data, semantics are part of multiple modalities—textual, structural, 

tabular, and visual.

Example 1.3 (Multimodality)

In Figure 1, important information (e.g., the transistor names in the header) is expressed in 

larger, bold fonts (displayed in yellow). Furthermore, the meaning of a table entry depends 

on other entries with which it is visually or tabularly aligned (shown by the red arrow). For 

instance, the semantics of a numeric value is specified by an aligned unit.

Semantics from different modalities can vary significantly but can convey complementary 

information.

Data Variety—With richly formatted data, there are two primary sources of data variety: 

(1) format variety (e.g., file or table formatting) and (2) stylistic variety (e.g., linguistic 

variation).

Example 1.4 (Data Variety)

In Figure 1, numeric intervals are expressed as “−65 … 150,” but other datasheets show 

intervals as “−65 ~ 150,” or “−65 to 150.” Similarly, tables can be formatted with a variety 

of spanning cells, header hierarchies, and layout orientations.

Data variety requires KBC systems to adopt data models that are generalizable and robust 

against heterogeneous input data.

Our Approach—We introduce Fonduer, a machine-learning-based system for KBC from 

richly formatted data. Fonduer takes as input richly formatted documents, which may be of 

diverse formats, including PDF, HTML, and XML. Fonduer parses the documents and 

analyzes the corresponding multimodal, document-level contexts to extract relations. The 

final output is a knowledge base with the relations classified to be correct. Fonduer’s 

machine-learning-based approach must tackle a series of technical challenges.

Technical Challenges: The challenges in designing Fonduer are:

1. Reasoning about relation candidates that are manifested in heterogeneous 

formats (e.g., text and tables) and span an entire document requires Fonduer’s 

machine-learning model to analyze heterogeneous, document-level context. 

While deep-learning models such as recurrent neural networks [2] are effective 

with sentence- or paragraph-level context [22], they fall short with document-

level context, such as context that span both textual and visual features (e.g., 

information conveyed via fonts or alignment) [21]. Developing such models is an 

open challenge and active area of research [21].

2. The heterogeneity of contexts in richly formatted data magnifies the need for 

large amounts of training data. Manual annotation is prohibitively expensive, 

especially when domain expertise is required. At the same time, human-curated 

KBs, which can be used to generate training data, may exhibit low coverage or 
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not exist altogether. Alternatively, weak supervision sources can be used to 

programmatically create large training sets, but it is often unclear how to 

consistently apply these sources to richly formatted data. Whereas patterns in 

unstructured data can be identified based on text alone, expressing patterns 

consistently across different modalities in richly formatted data is challenging.

3. Considering candidates across an entire document leads to a combinatorial 

explosion of possible candidates, and thus random variables, which need to be 

considered during learning and inference. This leads to a fundamental tension 

between building a practical KBC system and learning accurate models that 

exhibit high recall. In addition, the combinatorial explosion of possible 

candidates results in a large class imbalance, where the number of “True” 

candidates is much smaller than the number of “False” candidates. Therefore, 

techniques that prune candidates to balance running time and endto- end quality 

are required.

Technical Contributions: Our main contributions are as follows:

1. To account for the breadth of signals in richly formatted data, we design a new 

data model that preserves structural and semantic information across different 

data modalities. The role of Fonduer’s data model is twofold: (a) to allow users 

to specify multimodal domain knowledge that Fonduer leverages to automate 

the KBC process over richly formatted data, and (b) to provide Fonduer’s 

machine-learning model with the necessary representation to reason about 

document-wide context (see Section 3).

2. We empirically show that existing deep-learning models [46] tailored for text 

information extraction (such as long short-term memory (LSTM) networks [18]) 

struggle to capture the multimodality of richly formatted data. We introduce a 

multimodal LSTM network that combines textual context with universal features 

that correspond to structural and visual properties of the input documents. These 

features are inherently captured by Fonduer’s data model and are generated 

automatically (see Section 4.2). We also introduce a series of data layout 

optimizations to ensure the scalability of Fonduer to millions of document-wide 

candidates (see Appendix C).

3. Fonduer introduces a programming model in which no development cycles are 

spent on feature engineering. Users only need to specify candidates, the potential 

entries in the target KB, and provide lightweight supervision rules which capture 

a user’s domain knowledge and programmatically label subsets of candidates, 

which are used for training Fonduer’s deep-learning model (see Section 4.3). 

We conduct a user study to evaluate Fonduer’s programming model. We find 

that when working with richly formatted data, users utilize the semantics from 

multiple modalities of the data, including both structural and textual information 

in the document. Our study demonstrates that given 30 minutes, Fonduer’s 

programming model allows users to attain F1 scores that are 23 points higher 

than supervision via manual labeling candidates (see Section 6).
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Summary of Results— Fonduer-based systems are in production in a range of academic 

and industrial uses cases, including a major online retailer. Fonduer introduces several 

advancements over prior KBC systems (see Appendix 7): (1) In contrast to prior systems 

that focus on adjacent textual data, Fonduer can extract document-level relations expressed 

in diverse formats, ranging from textual to tabular formats; (2) Fonduer reasons about 

multimodal context, i.e., both textual and visual characteristics of the input documents, to 

extract more accurate relations; (3) In contrast to prior KBC systems that rely heavily on 

feature engineering to achieve high quality [34], Fonduer obviates the need for feature 

engineering by extending a bidirectional LSTM—the de facto deep-learning standard in 

natural language processing [24]—to obtain a representation needed to automate relation 

extraction from richly formatted data. We evaluate Fonduer in four real-world applications 

of richly formatted information extraction and show that Fonduer enables users to build 

high-quality KBs, achieving an average improvement of 41 F1 points over state-of-the-art 

KBC systems.

2 BACKGROUND

We review the concepts and terminology used in the next sections.

2.1 Knowledge Base Construction

The input to a KBC system is a collection of documents. The output of the system is a 

relational database containing facts extracted from the input and stored in an appropriate 

schema. To describe the KBC process, we adopt the standard terminology from the KBC 

community. There are four types of objects that play integral roles in KBC systems: (1) 

entities, (2) relations, (3) mentions of entities, and (4) relation mentions.

An entity e in a knowledge base corresponds to a distinct real-world person, place, or object. 

Entities can be grouped into different entity types T1, T2, …, Tn. Entities also participate in 

relationships. A relationship between n entities is represented as an n-ary relation R (e1, e2, 

…, en) and is described by a schema SR(T1, T2, …, Tn) where ei ∈ Ti. A mention m is a 

span of text that refers to an entity. A relation mention candidate (referred to as a candidate 

in this paper) is an n-ary tuple c = (m1, m2, …, mn) that represents a potential instance of a 

relation R(e1, e2, …, en). A candidate classified as true is called a relation mention, denoted 

by rR.

Example 2.1 (KBC)—Consider the HasCollectorCurrent task in Figure 1. Fonduer takes 

a corpus of transistor datasheets as input and constructs a KB containing the (Transistor Part, 

Current) binary relation as output. Parts like SMBT3904 and Currents like 200mA are 

entities. The spans of text that read “SMBT3904” and “200” (boxed in blue and green, 

respectively) are mentions of those two entities, and together they form a candidate. If the 

evidence in the document suggests that these two mentions are related, then the output KB 

will include the relation mention (SMBT3904, 200mA) of the HasCollectorCurrent 

relation.

The KBC problem is defined as follows:
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Definition 2.2 (Knowledge Base Construction)—Given a set of documents D and a 

KB schema SR(T1, T2, …, Tn), where each Ti corresponds to an entity type, extract a set of 

relation mentions rR from D, which populate the schema’s relational tables.

Like other machine-learning-based KBC systems [7, 36], Fonduer converts KBC to a 

statistical learning and inference problem: each candidate is assigned a Boolean random 

variable that can take the value “True” if the corresponding relation mention is correct, or 

“False” otherwise. In machine-learning-based KBC systems, each candidate is associated 

with certain features that provide evidence for the value that the corresponding random 

variable should take. Machine-learning-based KBC systems use machine learning to 

maximize the probability of correctly classifying candidates, given their features and ground 

truth examples.

2.2 Recurrent Neural Networks

The machine-learning model we use in Fonduer is based on a recurrent neural network 

(RNN). RNNs have obtained state-of-the-art results in many natural-language processing 

(NLP) tasks, including information extraction [15, 16, 43]. RNNs take sequential data as 

input. For each element in the input sequence, the information from previous inputs can 

affect the network output for the current element. For sequential data {x1, …, xT}, the 

structure of an RNN is mathematically described as:

ht = f(xt, ht − 1), y = g({h1, …, hT})

where ht is the hidden state for element t, and y is the representation generated by the 

sequence of hidden states {h1, …, hT}. Functions f and g are nonlinear transformations. For 

RNNs, we have that f = tanh(Whxt + Uhht−1 + bh) where Wh, Uh are parameter matrices and 

bh is a vector. Function g is typically task-specific.

Long Short-term Memory—LSTM [18] networks are a special type of RNN that 

introduce new structures referred to as gates, which control the flow of information and can 

capture long-term dependencies. There are three types of gates: input gates it control which 

values are updated in a memory cell; forget gates ft control which values remain in memory; 

and output gates ot control which values in memory are used to compute the output of the 

cell. The final structure of an LSTM is given by:

it = σ(Wixt + Uiht − 1 + bi)

ft = σ(Wfxt + Ufht − 1 + bf)

ot = σ(Woxt + Uoht − 1 + bo)
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ct = ft ◦ ct − 1 + it ◦ tanh(Wcxt + Ucht − 1 + bc)

ht = ot ◦ tanh(ct)

where ct is the cell state vector, W, U, b are parameter matrices and a vector, σ is the sigmoid 

function, and ◦ is the Hadamard product.

Bidirectional LSTMs consist of forward and backward LSTMs. The forward LSTM fF reads 

the sequence from x1 to xT and calculates a sequence of forward hidden states (h1
F, …, hT

F). 

The backward LSTM fB reads the sequence from xT to x1 and calculates a sequence of 

backward hidden states (h1
B, …, hT

B). The final hidden state for the sequence is the 

concatenation of the forward and backward hidden states, e.g., hi = [hi
F, hi

B].

Attention—Previous work explored using pooling strategies to train an RNN, such as max 

pooling [41], which compresses the information contained in potentially long input 

sequences to a fixed-length internal representation by considering all parts of the input 

sequence impartially. This compression of information can make it difficult for RNNs to 

learn from long input sequences.

In recent years, the attention mechanism has been introduced to overcome this limitation by 

using a soft word-selection process that is conditioned on the global information of the 

sentence [2]. That is, rather than squashing all information from a source input (regardless of 

its length), this mechanism allows an RNN to pay more attention to the subsets of the input 

sequence where the most relevant information is concentrated.

Fonduer uses a bidirectional LSTM with attention to represent textual features of relation 

candidates from the documents. We extend this LSTM with features that capture other data 

modalities.

3 THE Fonduer FRAMEWORK

An overview of Fonduer is shown in Figure 2. Fonduer takes as input a collection of richly 

formatted documents and a collection of user inputs. It follows a machine-learning-based 

approach to extract relations from the input documents. The relations extracted by Fonduer 

are stored in a target knowledge base.

We introduce Fonduer’s data model for representing different properties of richly formatted 

data. We then review Fonduer’s data processing pipeline and describe the new 

programming paradigm introduced by Fonduer for KBC from richly formatted data.

The design of Fonduer was strongly guided by interactions with collaborators (see the user 

study in Section 6). We find that to support KBC from richly formatted data, a unified data 

model must:
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• Serve as an abstraction for system and user interaction.

• Capture candidates that span different areas (e.g. sections of pages) and data 

modalities (e.g., textual and tabular data).

• Represent the formatting variety in richly formatted data sources in a unified 

manner.

Fonduer introduces a data model that satisfies these requirements.

3.1 Fonduer’s Data Model

Fonduer’s data model is a directed acyclic graph (DAG) that contains a hierarchy of 

contexts, whose structure reflects the intuitive hierarchy of document components. In this 

graph, each node is a context (represented as boxes in Figure 3). The root of the DAG is a 

Document, which contains Section contexts. Each Section is divided into: Texts, Tables, and 

Figures. Texts can contain multiple Paragraphs; Tables and Figures can contain Captions; 
Tables can also contain Rows and Columns, which are in turn made up of Cells. Each 

context ultimately breaks down into Paragraphs that are parsed into Sentences. In Figure 3, a 

downward edge indicates a parent-contains-child relationship. This hierarchy serves as an 

abstraction for both system and user interaction with the input corpus.

In addition, this data model allows us to capture candidates that come from different 

contexts within a document. For each context, we also store the textual contents, pointers to 

the parent contexts, and a wide range of attributes from each modality found in the original 

document. For example, standard NLP pre-processing tools are used to generate linguistic 

attributes, such as lemmas, parts of speech tags, named entity recognition tags, dependency 

paths, etc., for each Sentence. Structural and tabular attributes of a Sentence, such as tags, 

and row/column information, and parent attributes, can be captured by traversing its path in 

the data model. Visual attributes for the document are recorded by storing bounding box and 

page information for each word in a Sentence.

Example 3.1 (Data Model)—The data model representing the PDF in Figure 1 contains 

one Section with three children: a Text for the document header, a Text for the description, 

and a Table for the table itself (with 10 Rows and 4 Columns). Each Cell links to both a Row 
and Column. Texts and Cells contain Paragraphs and Sentences.

Fonduer’s multimodal data model unifies inputs of different formats, which addresses the 

data variety of richly formatted data that comes from variations in format. To construct the 

DAG for each document, we extract all the words in their original order. For structural and 

tabular information, we use tools such as Poppler2 to convert an input file into HTML 

format; for visual information, such as coordinates and bounding boxes, we use a PDF 

printer to convert an input file into PDF format. If a conversion occurred, we associate the 

multimodal information in the converted file with all extracted words. We align the word 

sequences of the converted file with their originals by checking if both their characters and 

number of repeated occurrences before the current word are the same. Fonduer can recover 

2https://poppler.freedesktop.org
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from conversion errors by using the inherent redundancy in signals from other modalities. In 

addition, this DAG structure also simplifies the variation in format that comes from table 

formatting.

Takeaways:  Fonduer consolidates a diverse variety of document formats, types of 

contexts, and modality semantics into one model in order to address variety inherent in 

richly formatted data. Fonduer’s data model serves as the formal representation of the 

intermediate data utilized in all future stages of the extraction process.

3.2 User Inputs and Fonduer’s Pipeline

The Fonduer processing pipeline follows three phases. We briefly describe each phase in 

turn and focus on the user inputs required by each phase. Fonduer’s internals are described 

in Section 4.

(1) KBC Initialization—The first phase in Fonduer’s pipeline is to initialize the target 

KB where the extracted relations will be stored. During this phase, Fonduer requires the 

user to specify a target schema that corresponds to the relations to be extracted. The target 

schema SR(T1, …, Tn) defines a relation R to be extracted from the input documents. An 

example of such a schema is provided below.

Example 3.2 (Relation Schema): An example SQL schema for the relation in Figure 1 is:

Fonduer uses the user-specified schema to initialize an empty relational database where the 

output KB will be stored. Furthermore, Fonduer iterates over its input corpus and 

transforms each document into an instance of Fonduer’s data model to capture the variety 

and multimodality of richly formatted documents.

(2) Candidate Generation—In this phase, Fonduer extracts relation candidates from the 

input documents. Here, users are required to provide two types of input functions: (1) 

matchers and (2) throttlers.

Matchers: To generate candidates for relation R, Fonduer requires that users define 

matchers for all distinct mention types in schema SR. Matchers are how users specify what a 

mention looks like. In Fonduer, matchers are Python functions that accept a span of text as 

input—which has a reference to its data model—and output whether or not the match 

conditions are met. Matchers range from simple regular expressions to complicated 

functions that take into account signals across multiple modalities of the input data and can 

also incorporate existing methods such as named-entity recognition.

Example 3.3 (Matchers): From the HasCollectorCurrent relation in Figure 1, users define 

matchers for each type of the schema. A dictionary of valid transistor parts can be used as 

the first matcher. For maximum current, users can exploit the pattern that these values are 

commonly expressed as a numerical value between 100 and 995 for their second matcher.
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Throttlers: Users can optionally provide throttlers, which act as hard filtering rules to 

reduce the number of candidates that are materialized. Throttlers are also Python functions, 

but rather than accepting spans of text as input, they operate on candidates, and output 

whether or not a candidate meets the specified condition. Throttlers limit the number of 

candidates considered by Fonduer.

Example 3.4 (Throttler): Continuing the example shown in Figure 1, the user provides a 

throttler, which only keeps candidates whose Current has the word “Value” as its column 

header.

Given the input matchers and throttlers, Fonduer extracts relation candidates by traversing 

its data model representation of each document. By applying matchers to each leaf of the 

data model, Fonduer can generate sets of mentions for each component of the schema. The 

cross-product of these mentions produces candidates:

Candidate(idcandidate, mention1, …, mentionn)

where mentions are spans of text and contain pointers to their context in the data model of 

their respective document. The output of this phase is a set of candidates, C.

(3) Training a Multimodal LSTM for KBC—In this phase, Fonduer trains a multimodal 

LSTM network to classify the candidates generated during Phase 2 as “True” or “False” 

mentions of target relations. Fonduer’s multimodal LSTM combines both visual and textual 

features. Recent work has also proposed the use of LSTMs for KBC but has focused only on 

textual data [46]. In Section 5.3.3, we experimentally demonstrate that state-of-the-art 

LSTMs struggle to capture the multimodal characteristics of richly formatted data, and thus, 

obtain poor-quality KBs.

Fonduer uses a bidirectional LSTM (reviewed in Section 2.2) to capture textual features 

and extends it with additional structural, tabular, and visual features captured by Fonduer’s 

data model. The LSTM used by Fonduer is described in Section 4.2. Training in Fonduer 

is split into two sub-phases: (1) a multimodal featurization phase and (2) a phase where 

supervision data is provided by the user.

Multimodal Featurization: Here, Fonduer traverses its internal data model instance for 

each input document and automatically generates features that correspond to structural, 

tabular, and visual modalities as described in Section 4.2. These constitute a bare-bones 
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feature library (referred to as feature lib, below), which augments the textual features learned 

by the LSTM. All features are stored in a relation:

Features(idcandidate, LSTMtextual, feature_libothers)

No user input is required during this step. Fonduer obviates the need for feature 

engineering and shows that incorporating multimodal information is key to achieving high-

quality relation extraction.

Supervision: To train its multimodal LSTM, Fonduer requires that users provide some 

form of supervision. Collecting sufficient training data for multi-context deep-learning 

models is a well-established challenge. As stated by LeCun et al. [21], taking into account a 

context of more than a handful of words for text-based deep-learning models requires very 

large training corpora.

To soften the burden of traditional supervision, Fonduer uses a supervision paradigm 

referred to as data programming [33]. Data programming is a human-in-the-loop paradigm 

for training machine-learning systems. In data programming, users only need to specify 

lightweight functions, referred to as labeling functions (LFs), that programmatically assign 

labels to the input candidates. A detailed overview of data programming is provided in 

Appendix A. While existing work on data programming [32] has focused on labeling 

functions over textual data, Fonduer paves the way for specifying labeling functions over 

richly formatted data.

Fonduer requires that users specify labeling functions that label the candidates from Phase 

2. Labeling functions in Fonduer are Python functions that take a candidate as input and 

assign +1 to label it as “True,” −1 to label it as “False,” or 0 to abstain.

Example 3.5 (Labeling Functions): Looking at the datasheet in Figure 1, users can express 

patterns such as having the Part and Current y-aligned on the visual rendering of the page. 

Similarly, users can write a rule that labels a candidate whose Current is in the same row as 

the word “current” as “True.”

As shown in Example 3.5, Fonduer’s internal data model allows users to specify labeling 

functions that capture supervision patterns across any modality of the data (see Section 4.3). 

In our user study, we find that it is common for users to write labeling functions that span 

multiple modalities and consider both textual and visual patterns of the input data (see 

Section 6).

The user-specified labeling functions, together with the candidates generated by Fonduer, 

are passed as input to Snorkel [32], a data-programming engine, which converts the noisy 
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labels generated by the input labeling functions to denoised labeled data used to train 

Fonduer’s multimodal LSTM model (see Appendix A).

Classification:  Fonduer uses its trained LSTM to assign a marginal probability to each 

candidate. The last layer of Fonduer’s LSTM is a softmax classifier (described in Section 

4.2) that computes the probability of a candidate being a “True” relation. In Fonduer, users 

can specify a threshold over the output marginal probabilities to determine which candidates 

will be classified as “True” (those whose marginal probability of being true exceeds the 

specified threshold) and which are “False” (those whose marginal probability fall beneath 

the threshold). This threshold depends on the requirements of the application. Applications 

that require critically high accuracy can set a high threshold value to ensure only candidates 

with a high probability of being “True” are classified as such.

As shown in Figure 2, supervision and classification are typically executed over several 

iterations as users develop a KBC application. This feedback loop allows users to quickly 

receive feedback and improve their labeling functions, and avoids the overhead of rerunning 

candidate extraction and materializing features (see Section 6).

3.3 Fonduer’s Programming Model for KBC

Fonduer is the first system to provide the necessary abstractions and mechanisms to enable 

the use of weak supervision as a means to train a KBC system for richly formatted data. 

Traditionally, machine-learning-based KBC focuses on feature engineering to obtain high-

quality KBs. This requires that users rerun feature extraction, learning, and inference after 

every modification of the features used during KBC. With Fonduer’s machine-learning 

approach, features are generated automatically. This puts emphasis on (1) specifying the 

relation candidates and (2) providing multimodal supervision rules via labeling functions. 

This approach allows users to leverage multiple sources of supervision to address data 

variety introduced by variations in style better than traditional manual labeling [36].

Fonduer’s programming paradigm obviates the need for feature engineering and introduces 

two modes of operation for Fonduer applications: (1) development and (2) production. 

During development, labeling functions are iteratively improved, in terms of both coverage 

and accuracy, through error analysis as shown by the blue arrows in Figure 2. LFs are 

applied to a small sample of labeled candidates and evaluated by the user on their accuracy 

and coverage (the fraction of candidates receiving non-zero labels). To support efficient error 

analysis, Fonduer enables users to easily inspect the resulting candidates and provides a set 

of labeling function metrics, such as coverage, conflict, and overlap, which provide users 

with a rough assessment of how to improve their LFs. In practice, approximately 20 

iterations are adequate for our users to generate a sufficiently tuned set of labeling functions 

(see Section 6). In production, the finalized LFs are applied to the entire set of candidates, 

and learning and inference are performed only once to generate the final KB.

On average, only a small number of labeling functions are needed to achieve high-quality 

KBC (see Section 6). For example, in the ELECTRONICS application, 16 labeling functions, on 

average, are sufficient to achieve an average F1 score of over 75. Furthermore, we find that 
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tabular and visual signals are particularly valuable forms of supervision for KBC from richly 

formatted data, and complementary to traditional textual signals (see Section 6).

4 KBC IN Fonduer

Here, we focus on the implementation of each component of Fonduer. In Appendix C we 

discuss a series of optimizations that enable Fonduer’s scalability to millions of candidates.

4.1 Candidate Generation

Candidate generation from richly formatted data relies on access to document-level contexts, 

which is provided by Fonduer’s data model. Due to the significantly increased context 

needed for KBC from richly formatted data, naïvely materializing all possible candidates is 

intractable as the number of candidates grows combinatorially with the number of relation 

arguments. This combinatorial explosion can lead to performance issues for KBC systems. 

For example, in the ELECTRONICS domain, just 100 documents can generate over 1M 

candidates. In addition, we find that the majority of these candidates do not express true 

relations, creating a significant class imbalance that can hinder learning performance [19].

To address this combinatorial explosion, Fonduer allows users to specify throttlers, in 

addition to matchers, to prune away excess candidates. We find that throttlers must:

• Maintain high accuracy by only filtering negative candidates.

• Seek high coverage of the candidates.

Throttlers can be viewed as a knob that allows users to trade off precision and recall and 

promote scalability by reducing the number of candidates to be classified during KBC.

Figure 4 shows how using throttlers affects the quality-performance tradeoff in the 

ELECTRONICS domain. We see that throttling significantly improves system performance. 

However, increased throttling does not monotonically improve quality since it hurts recall. 

This tradeoff captures the fundamental tension between optimizing for system performance 

and optimizing for end-to-end quality. When no candidates are pruned, the class imbalance 

resulting from many negative candidates to the relatively small number of positive 

candidates harms quality. Therefore, as a rule of thumb, we recommend that users apply 

throttlers to balance negative and positive candidates. Fonduer provides users with 

mechanisms to evaluate this balance over a small holdout set of labeled candidates.

Takeaways— Fonduer’s data model is necessary to perform candidate generation with 

richly formatted data. Pruning negative candidates via throttlers to balance negative and 

positive candidates not only ensures the scalability of Fonduer but also improves the 

precision of Fonduer’s output.

4.2 Multimodal LSTM Model

We now describe Fonduer’s deep-learning model in detail. Fonduer’s model extends a 

bidirectional LSTM (Bi-LSTM), the de facto deeplearning standard for NLP [24], with a 

simple set of dynamically generated features that capture semantics from the structural, 
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tabular, and visual modalities of the data model. A detailed list of these features is provided 

in Appendix B. In Section 5.3.2, we perform an ablation study demonstrating that non-

textual features are key to obtaining high-quality KBs. We find that the quality of the output 

KB deteriorates up to 33 F1 points when non-textual features are removed. Figure 5 

illustrates Fonduer’s LSTM. We now review each component of Fonduer’s LSTM.

Bidirectional LSTM with Attention—Traditionally, the primary source of signal for 

relation extraction comes from unstructured text. In order to understand textual signals, 

Fonduer uses an LSTM network to extract textual features. For mentions, Fonduer builds a 

Bi-LSTM to get the textual features of the mention from both directions of sentences 

containing the candidate. For sentence si containing the ith mention in the document, the 

textual features hik of each word wik are encoded by both forward (defined as superscript F 

in equations) and backward (defined as superscript B) LSTM, which summarizes 

information about the whole sentence with a focus on wik. This takes the structure:

hik
F = LSTM(hi(k − 1)

F , Φ(si, k))

hik
B = LSTM(hi(k + 1)

B , Φ(si, k))

hik = [hik
F , hik

B]

where Φ(si, k) is the word embedding [40], which is the representation of the semantics of 

the kth word in sentence si.

Then, the textual feature representation for a mention, ti, is calculated by the following 

attention mechanism to model the importance of different words from the sentence si and to 

aggregate the feature representation of those words to form a final feature representation,

uik = tanh(Wwhik + bw)

αik =
exp(uik

T uw)

∑jexp(uij
Tuw)

ti = ∑jαijuij

where Ww, uw, and b are parameter matrices and a vector. uik is the hidden representation of 

hik, and αik is to model the importance of each word in the sentence si. Special candidate 

markers (shown in red in Figure 5) are added to the sentences to draw attention to the 
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candidates themselves. Finally, the textual features of a candidate are the concatenation of its 

mentions’ textual features [t1, …, tn].

Extended Feature Library—Features for structural, tabular, and visual modalities are 

generated by leveraging the data model, which preserves each modality’s semantics. For 

each candidate, such as the candidate (SMBT3904, 200) shown in Figure 5, Fonduer 

locates each mention in the data model and traverses the DAG to compute features from the 

modality information stored in the nodes of the graph. For example, Fonduer can traverse 

sibling nodes to add tabular features such as featurizing a node based on the other mentions 

in the same row or column. Similarly, Fonduer can traverse the data model to extract 

structural features from tags stored while parsing the document along with the hierarchy of 

the document elements themselves. We review each modality:

Structural features: These provide signals intrinsic to a document’s structure. These 

features are dynamically generated and allow Fonduer to learn from structural attributes, 

such as parent and sibling relationships and XML/HTML tag metadata found in the data 

model (shown in yellow in Figure 5). The data model also allows Fonduer to track 

structural distances of candidates, which helps when a candidate’s mentions are visually 

distant, but structurally close together. Specifically, featurizing a candidate with the distance 

to the lowest common ancestor in the data model is a positive signal for linking table 

captions to table contents.

Tabular features: These are a special subset of structural features since tables are very 

common structures inside documents and have high information density. Table features are 

drawn from the grid-like representation of rows and columns stored in the data model, 

shown in green in Figure 5. In addition to the tabular location of mentions, Fonduer also 

featurizes candidates with signals such as being in the same row or column. For example, 

consider a table that has cells with multiple lines of text; recording that two mentions share a 

row captures a signal that a visual alignment feature could easily miss.

Visual features: These provide signals observed from a visual rendering of a document. In 

cases where tabular or structural features are noisy—including nearly all documents 

converted from PDF to HTML by generic tools—visual features can provide a 

complementary view of the dependencies among text. Visual features encode many highly 

predictive types of semantic information implicitly, such as position on a page, which may 

imply when text is a title or header. An example of this is shown in red in Figure 5.

Training—All parameters of Fonduer’s LSTM are jointly trained, including the 

parameters of the Bi-LSTM as well as the weights of the last softmax layer that correspond 

to additional features.

Takeaways: To achieve high-quality KBC with richly formatted data, it is vital to have 

features from multiple data modalities. These features are only obtainable through traversing 

and accessing modality attributes stored in the data model.
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4.3 Multimodal Supervision

Unlike KBC from unstructured text, KBC from richly formatted data requires supervision 

from multiple modalities of the data. In richly formatted data, useful patterns for KBC are 

more sparse and hidden in non-textual signals, which motivates the need to exploit overlap 

and repetition in a variety of patterns over multiple modalities. Fonduer’s data model 

allows users to directly express correctness using textual, structural, tabular, or visual 

characteristics, in addition to traditional supervision sources like existing KBs. In the 

ELECTRONICS domain, over 70% of labeling functions written by our users are based on non-

textual signals. It is acceptable for these labeling functions to be noisy and conflict with one 

another. Data programming theory (see Appendix A.2) shows that, with a sufficient number 

of labeling functions, data programming can still achieve quality comparable to using 

manually labeled data.

In Section 5.3.4, we find that using metadata in the ELECTRONICS domain, such as structural, 

tabular, and visual cues, results in a 66 F1 point increase over using textual supervision 

sources alone. Using both sources gives a further increase of 2 F1 points over metadata 

alone. We also show that supervision using information from all modalities, rather than 

textual information alone, results in an increase of 43 F1 points, on average, over a variety of 

domains. Using multiple supervision sources is crucial to achieving high-quality information 

extraction from richly formatted data.

Takeaways—Supervision using multiple modalities of richly formatted data is key to 

achieving high end-to-end quality. Like multimodal featurization, multimodal supervision is 

also enabled by Fonduer’s data model and addresses stylistic data variety.

5 EXPERIMENTS

We evaluate Fonduer over four applications: ELECTRONICS, ADVERTISEMENTS, PALEONTOLOGY, 

and GENOMICS—each containing several relation extraction tasks. We seek to answer: (1) 

how does Fonduer compare against both state-of-the-art KBC techniques and manually 

curated knowledge bases? and (2) how does each component of Fonduer contribute to end-

to-end extraction quality?

5.1 Experimental Settings

Datasets—The datasets used for evaluation vary in size and format. Table 1 shows a 

summary of these datasets.

Electronics: The ELECTRONICS dataset is a collection of single bipolar transistor specification 

datasheets from over 20 manufacturers, downloaded from Digi-Key.3 These documents 

consist primarily of tables and express relations containing domain-specific symbols. We 

focus on the relations between transistor part numbers and several of their electrical 

characteristics. We use this dataset to evaluate Fonduer with respect to datasets that consist 
primarily of tables and numerical data.

3https://www.digikey.com
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Advertisements: The ADVERTISEMENTS dataset contains webpages that may contain evidence 

of human trafficking activity. These webpages may provide prices of services, locations, 

contact information, physical characteristics of the victims, etc. Here, we extract all 

attributes associated with a trafficking advertisement. The output is deployed in production 

and is used by law enforcement agencies. This is a heterogeneous dataset containing 

millions of webpages over 692 web domains in which users create customized ads, resulting 

in 100,000s of unique layouts. We use this dataset to examine the robustness of Fonduer in 
the presence of significant data variety.

Paleontology: The PALEONTOLOGY dataset is a collection of well-curated paleontology 

journal articles on fossils and ancient organisms. Here, we extract relations between 

paleontological discoveries and their corresponding physical measurements. These papers 

often contain tables spanning multiple pages. Thus, achieving high quality in this application 

requires linking content in tables to the text that references it, which can be separated by 20 

pages or more in the document. We use this dataset to test Fonduer’s ability to draw 
candidates from document-level contexts.

Genomics: The GENOMICS dataset is a collection of open-access biomedical papers on gene-

wide association studies (GWAS) from the manually curated GWAS Catalog [42]. Here, we 

extract relations between single-nucleotide polymorphisms and human phenotypes found to 

be statistically significant. This dataset is published in XML format, thus, we do not have 

visual representations. We use this dataset to evaluate how well the Fonduer framework 
extracts relations from data that is published natively in a tree-based format.

Comparison Methods—We use two different methods to evaluate the quality of 

Fonduer’s output: the upper bound of state-of-the-art KBC systems (Oracle) and manually 

curated knowledge bases (Existing Knowledge Bases).

Oracle: Existing state-of-the-art information extraction (IE) methods focus on either textual 
data or semi-structured and tabular data. We compare Fonduer against both types of IE 

methods. Each IE method can be split into (1) a candidate generation stage and (2) a filtering 

stage, the latter of which eliminates false positive candidates. For comparison, we 

approximate the upper bound of quality of three state-of-the-art information extraction 

techniques by experimentally measuring the recall achieved in the candidate generation 

stage of each technique and assuming that all candidates found using a particular technique 

are correct. That is, we assume the filtering stage is perfect by assuming a precision of 1.0.

• Text: We consider IE methods over text [23, 36]. Here, candidates are extracted 

from individual sentences, which are pre-processed with standard NLP tools to 

add part-of-speech tags, linguistic parsing information, etc.

• Table: For tables, we use an IE method for semi-structured data [3]. Candidates 

are drawn from individual tables by utilizing table content and structure.

• Ensemble: We also implement an ensemble (proposed in [9]) as the union of 

candidates generated by Text and Table.
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Existing Knowledge Base: We use existing knowledge bases as another comparison 

method. The ELECTRONICS application is compared against the transistor specifications 

published by Digi-Key, while GENOMICS is compared to both GWAS Central [4] and GWAS 

Catalog [42], which are the most comprehensive collections of GWAS data and widely-used 

public datasets. Knowledge bases such as these are constructed using a combination of 

manual entry, web aggregation, paid third-party services, and automation tools.

Fonduer Details— Fonduer is implemented in Python, with database operations being 

handled by PostgreSQL. All experiments are executed in Jupyter Notebooks on a machine 

with four CPUs (each CPU is a 14-core 2.40 GHz Xeon E5–4657L), 1 TB RAM, and 

12×3TB hard drives, with the Ubuntu 14.04 operating system.

5.2 Experimental Results

5.2.1 Oracle Comparison—We compare the end-to-end quality of Fonduer to the upper 

bound of state-of-the-art systems. In Table 2, we see that Fonduer outperforms these upper 

bounds for each dataset. In ELECTRONICS, Fonduer results in a significant improvement of 71 

F1 points over a text-only approach. In contrast, ADVERTISEMENTS has a higher upper bound 

with text than with tables, which reflects how advertisements rely more on text than the 

largely numerical tables found in ELECTRONICS. In the PALEONTOLOGY dataset, which depends 

on linking references from text to tables, the unified approach of Fonduer results in an 

increase of 43 F1 points over the Ensemble baseline. In GENOMICS, all candidates are cross-

context, preventing both the text-only and the table-only approaches from finding any valid 

candidates.

5.2.2 Existing Knowledge Base Comparison—We now compare Fonduer against 

existing knowledge bases for ELECTRONICS and GENOMICS. No manually curated KBs are 

available for the other two datasets. In Table 3, we find that Fonduer achieves high 

coverage of the existing knowledge bases, while also correctly extracting novel relation 

entries with over 85% accuracy in both applications. In ELECTRONICS, Fonduer achieved 

99% coverage and extracted an additional 17 correct entries not found in Digi-Key’s catalog. 

In the GENOMICS application, we see that Fonduer provides over 80% coverage of both 

existing KBs and finds 1.87× and 1.42× more correct entries than GWAS Central and GWAS 

Catalog, respectively.

Takeaways:  Fonduer achieves over 41 F1 points higher quality on average when 

compared against the upper bound of state-of-the-art approaches. Furthermore, Fonduer 

attains over 80% of the data in existing public knowledge bases while providing up to 1.87× 

the number of correct entries with high accuracy.

5.3 Ablation Studies

We conduct ablation studies to assess the effect of context scope, multimodal features, 

featurization approaches, and multimodal supervision on the quality of Fonduer. In each 

study, we change one component of Fonduer and hold the others constant.
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5.3.1 Context Scope Study—To evaluate the importance of addressing the non-local 

nature of candidates in richly formatted data, we analyze how the different context scopes 

contribute to end-to-end quality. We limit the extracted candidates to four levels of context 

scope in ELECTRONICS and report the average F1 score for each. Figure 6 shows that 

increasing context scope can significantly improve the F1 score. Considering document 

context gives an additional 71 F1 points (12.8×) over sentence contexts and 47 F1 points 

(2.6×) over table contexts. The positive correlation between quality and context scope 

matches our expectations, since larger context scope is required to form candidates jointly 

from both table content and surrounding text. We see a smaller increase of 11 F1 points 

(1.2×) in quality between page and document contexts since many of the ELECTRONICS 

relation mentions are presented on the first page of the document.

Takeaways: Semantics can be distributed in a document or implied in its structure, thus 

requiring larger context scope than the traditional sentence-level contexts used in previous 

KBC systems.

5.3.2 Feature Ablation Study—We evaluate Fonduer’s multimodal features. We 

analyze how different features benefit information extraction from richly formatted data by 

comparing the effects of disabling one feature type while leaving all other types enabled, and 

report the average F1 scores of each configuration in Figure 7.

We find that removing a single feature set resulted in drops of 2 F1 points (no textual 

features in PALEONTOLOGY) to 33 F1 points (no textual features in ADVERTISEMENTS). While it 

is clear in Figure 7 that each application depends on different feature types, we find that it is 

necessary to incorporate all feature types to achieve the highest extraction quality.

The characteristics of each dataset affect how valuable each feature type is to relation 

classification. The ADVERTISEMENTS dataset consists of webpages that often use tables to 

format and organize information—many relations can be found within the same cell or 

phrase. This heavy reliance on textual features is reflected by the drop of 33 F1 points when 

textual features are disabled. In ELECTRONICS, both components of the (part, attribute) tuples 

we extract are often isolated from other text. Hence, we see a small drop of 5 F1 points when 

textual features are disabled. We see a drop of 21 F1 points when structural features are 

disabled in the PALEONTOLOGY application due to its reliance on structural features to link 

between formation names (found in text sections or table captions) and the table itself. 

Finally, we see similar decreases when disabling structural and tabular features in the 

GENOMICS application (24 and 29 F1 points, respectively). Because this dataset is published 

natively in XML, structural and tabular features are almost perfectly parsed, which results in 

similar impacts of these features.

Takeaways: It is necessary to utilize multimodal features to provide a robust, domain-

agnostic description for real-world data.

5.3.3 Featurization Study—We compare Fonduer’s multimodal featurization with: (1) a 

human-tuned multimodal feature library that leverages Fonduer’s data model, requiring 

feature engineering; (2) a Bi-LSTM with attention model; this RNN considers textual 
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features only; (3) a machine-learning-based system for information extraction, referred to as 

SRV, which relies on HTML features [11]; and (4) a document-level RNN [22], which learns 

a representation over all available modes of information captured by Fonduer’s data model. 

We find that:

• Fonduer’s automatic multimodal featurization approach produces results that 

are comparable to manually-tuned feature representations requiring feature 

engineering. Fonduer’s neural network is able to extract relations with a quality 

comparable to the human-tuned approach in all datasets differing by no more 

than 2 F1 points (see Table 4).

• Fonduer’s RNN outperforms a standard, out-of-the-box Bi-LSTM significantly. 

The F1-score obtained by Fonduer’s multimodal RNN model is 1.7× to 2.2× 

higher than that of a typical Bi-LSTM (see Table 4).

• Fonduer outperforms extraction systems that leverage HTML features alone. 

Table 5 shows a comparison between Fonduer and SRV [11] in the 

ADVERTISEMENTS domain—the only one of our datasets with HTML documents as 

input. Fonduer’s features capture more information than SRV’s HTML-based 

features, which only capture structural and textual information. This results in 

2.3× higher quality.

• Using a document-level RNN to learn a single representation across all possible 

modalities results in neural networks with structures that are too large and too 

unique to batch effectively. This leads to slow runtime during training and poor-

quality KBs. In Table 6, we compare the performance of a document-level RNN 

[22] and Fonduer’s approach of appending non-textual information in the last 

layer of the model. As shown Fonduer’s multimodal RNN obtains an F1-score 

that is almost 3× higher while being three orders of magnitude faster to train.

Takeaways: Direct feature engineering is unnecessary when utilizing deep learning as a 

basis to obtain the feature representation needed to extract relations from richly formatted 

data.

5.3.4 Supervision Ablation Study—We study how quality is affected when using only 

textual LFs, only metadata LFs, and the combination of the two sets of LFs. Textual LFs 

only operate on textual modality characteristics while metadata LFs operate on structural, 

tabular, and visual modality characteristics. Figure 8 shows that applying metadata-based 

LFs achieves higher quality than traditional textual-level LFs alone. The highest quality is 

achieved when both types of LFs are used. In ELECTRONICS, we see an increase of 66 F1 

points (9.2×) when using metadata LFs and a 3 F1 point (1.04×) improvement over metadata 

LFs when both types are used. Because this dataset relies more heavily on distant signals, 

LFs that can label correctness based on column or row header content significantly improve 

extraction quality. The ADVERTISEMENTS application benefits equally from metadata and 

textual LFs. Yet, we get an increase of 20 F1 points (1.2×) when both types of LFs are 

applied. The PALEONTOLOGY and GENOMICS applications show more moderate increases of 40 

(4.6×) and 40 (1.8×) F1 points by using both types over only textual LFs, respectively.
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6 USER STUDY

Traditionally, ground truth data is created through manual annotation, crowdsourcing, or 

other time-consuming methods and then used as data for training a machine-learning model. 

In Fonduer, we use the data-programming model for users to programmatically generate 

training data, rather than needing to perform manual annotation—a human-in-the-loop 

approach. In this section we qualitatively evaluate the effectiveness of our approach 

compared to traditional human labeling and observe the extent to which users leverage non-

textual semantics when labeling candidates.

We conducted a user study with 10 users, where each user was asked to complete the 

relation extraction task of extracting maximum collector-emitter voltages from the 

ELECTRONICS dataset. Using the same experimental settings, we compare the effectiveness of 

two approaches for obtaining training data: (1) manual annotations (Manual) and (2) using 

labeling functions (LF). We selected users with a basic knowledge of Python but no 

expertise in the ELECTRONICS domain. Users completed a 20 minute walk-through to 

familiarize themselves with the interface and procedures. To minimize the effect of cognitive 

fatigue and familiarity with the task, half of the users performed the task of manually 

annotating training data first, then the task of writing labeling functions, while the other half 

performed the tasks in the reverse order. We allotted 30 minutes for each task and evaluated 

the quality that was achieved using each approach at several checkpoints. For manual 

annotations, we evaluated every five minutes. We plotted the quality achieved by user’s 

labeling functions each time the user performed an iteration of supervision and classification 

as part of Fonduer’s iterative approach. We filtered out two outliers and report results of 

eight users.

In Figure 9 (left), we report the quality (F1 score) achieved by the two different approaches. 

The average F1 achieved using manual annotation was 0.26 while the average F1 score using 

labeling functions was 0.49, an improvement of 1.9×. We found with statistical significance 

that all users were able to achieve higher F1 scores using labeling functions than manually 

annotating candidates, regardless of the order in which they performed the approaches. 

There are two primary reasons for this trend. First, labeling functions provide a larger set of 

training data than manual annotations by enabling users to apply patterns they find in the 

data programmatically to all candidates—a natural desire they often vocalized while 

performing manual annotation. On average, our users manually labeled 285 candidates in the 

allotted time, while the labeling functions they created labeled 19,075 candidates. Users 

provided seven labeling functions on average. Second, labeling functions tend to allow 

Fonduer to learn more generic features, whereas manual annotations may not adequately 

cover the characteristics of the dataset as a whole. For example, labeling functions are easily 

applied to new data.

In addition, we found that for richly formatted data, users relied less on textual information

—a primary signal in traditional KBC tasks—and more on information from other 

modalities, as shown in Figure 9 (right). Users utilized the semantics from multiple 

modalities of the richly formatted data, with 58.5% of their labeling functions using tabular 

information. This reflects the characteristics of the ELECTRONICS dataset, which contains 
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information that is primarily found in tables. In our study, the most common labeling 

functions in each modality were:

• Tabular: labeling a candidate based on the words found in the same row or 

column.

• Visual: labeling a candidate based on its placement in a document (e.g., which 

page it was found on).

• Structural: labeling a candidate based on its tag names.

• Textual: labeling a candidate based on the textual characteristics of the voltage 

mention (e.g. magnitude).

Takeaways

We found that when working with richly formatted data, users relied heavily on non-textual 

signals to identify candidates and weakly supervise the KBC system. Furthermore, 

leveraging weak supervision allowed users to create knowledge bases more effectively than 

traditional manual annotations alone.

7 RELATED WORK

We briefly review prior work in a few categories.

Context Scope

Existing KBC systems often restrict candidates to specific context scopes such as single 

sentences [23, 44] or tables [7]. Others perform KBC from richly formatted data by 

ensembling candidates discovered using separate extraction tasks [9, 14], which overlooks 

candidates composed of mentions that must be found jointly from document-level context 

scopes.

Multimodality

In unstructured data information extraction systems, only textual features [26] are utilized. 

Recognizing the need to represent layout information as well when working with richly 

formatted data, various additional feature libraries have been proposed. Some have relied 

predominantly on structural features, usually in the context of web tables [11, 30, 31, 39]. 

Others have built systems that rely only on visual information [13, 45]. There have been 

instances of visual information being used to supplement a tree-based representation of a 

document [8, 20], but these systems were designed for other tasks, such as document 

classification and page segmentation. By utilizing our deep-learning-based featurization 

approach, which supports all of these representations, Fonduer obviates the need to focus 

on feature engineering and frees the user to iterate over the supervision and learning stages 

of the framework.

Supervision Sources

Distant supervision is one effective way to programmatically create training data for use in 

machine learning. In this paradigm, facts from existing knowledge bases are paired with 
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unlabeled documents to create noisy or “weakly” labeled training examples [1, 25, 26, 28]. 

In addition to existing knowledge bases, crowdsourcing [12] and heuristics from domain 

experts [29] have also proven to be effective weak supervision sources. In our work, we 

show that by incorporating all kinds of supervision in one framework in a noise-aware way, 

we are able to achieve high quality in knowledge base construction. Furthermore, through 

our programming model, we empower users to add supervision based on intuition from any 

modality of data.

8 CONCLUSION

In this paper, we study how to extract information from richly formatted data. We show that 

the key challenges of this problem are (1) prevalent document-level relations, (2) 

multimodality, and (3) data variety. To address these, we propose Fonduer, the first KBC 

system for richly formatted information extraction. We describe Fonduer’s data model, 

which enables users to perform candidate extraction, multimodal featurization, and 

multimodal supervision through a simple programming model. We evaluate Fonduer on 

four real-world domains and show an average improvement of 41 F1 points over the upper 

bound of state-of-the-art approaches. In some domains, Fonduer extracts up to 1.87× the 

number of correct relations compared to expert-curated public knowledge bases.
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A DATA PROGRAMMING

Machine-learning-based KBC systems rely heavily on ground truth data (called training 
data) to achieve high quality. Traditionally, manual annotations or incomplete KBs are used 

to construct training data for machine-learning-based KBC systems. However, these 

resources are either costly to obtain or may have limited coverage over the candidates 

considered during the KBC process. To address this challenge, Fonduer builds upon the 

newly introduced paradigm of data programming [33], which enables both domain experts 

and non-domain experts alike to programmatically generate large training datasets by 

leveraging multiple weak supervision sources and domain knowledge.

In data programming, which provides a framework for weak supervision, users provide 

weak supervision in the form of user-defined functions, called labeling functions. Each 

labeling function provides potentially noisy labels for a subset of the input data and are 

combined to create large, potentially overlapping sets of labels which can be used to train a 

machine-learning model. Many different weak-supervision approaches can be expressed as 

labeling functions. This includes strategies that use existing knowledge bases, individual 

annotators’ labels (as in crowdsourcing), or user-defined functions that rely on domain-

specific patterns and dictionaries to assign labels to the input data.

Wu et al. Page 25

Proc ACM SIGMOD Int Conf Manag Data. Author manuscript; available in PMC 2018 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The aforementioned sources of supervision can have varying degrees of accuracy, and may 

conflict with each other. Data programming relies on a generative probabilistic model to 

estimate the accuracy of each labeling function by reasoning about the conflicts and overlap 

across labeling functions. The estimated labeling function accuracies are in turn used to 

assign a probabilistic label to each candidate. These labels are used in conjunction with a 

noise-aware discriminative model to train a machine-learning model for KBC.

A.1 Components of Data Programming

The main components in data programming are as follows:

Candidates

A set of candidates C to be probabilistically classified.

Labeling Functions

Labeling functions are used to programmatically provide labels for training data. A labeling 

function is a user-defined procedure that takes a candidate as input and outputs a label. 

Labels can be as simple as true or false for binary tasks, or one of many classes for more 

complex multiclass tasks. Since each labeling function is applied to all candidates and 

labeling functions are rarely perfectly accurate, there may be disagreements between them. 

The labeling functions provided by the user for binary classification can be more formally 

defined as follows. For each labeling function λi and r ∈ C, we have λi : r ↦ {−1, 0, 1} 

where +1 or −1 denotes a candidate as “True” or “False” and 0 abstains. The output of 

applying a set of l labeling functions to k candidates is the label matrix Λ ∈ {−1, 0, 1}k× l.

Output

Data-programming frameworks output a confidence value p for the classification for each 

candidate as a vector Y ∈ {p}k.

To perform data programming in Fonduer, we rely on a data-programming engine, Snorkel 

[32]. Snorkel accepts candidates and labels as input and produces marginal probabilities for 

each candidate as output. These input and output components are stored as relational tables. 

Their schemas are detailed in Section 3.

A.2 Theoretical Guarantees

While data programming uses labeling functions to generate noisy training data, it 

theoretically achieves a learning rate similar to methods that use manually labeled data [33]. 

In the typical supervised-learning setup, users are required to manually label Õ (ε−2) 

examples for the target model to achieve an expected loss of ε. To achieve this rate, data 

programming only requires the user to specify a constant number of labeling functions that 

does not depend on ε. Let β be the minimum coverage across labeling functions (i.e., the 

probability that a labeling function provides a label for an input point) and γ be the 

minimum reliability of labeling functions, where γ = 2 · a − 1 with a denoting the accuracy 

of a labeling function. Then under the assumptions that (1) labeling functions are 

conditionally independent given the true labels of input data, (2) the number of user-
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provided labeling functions is at least Õ (γ −3 β −1), and (3) there are k = Õ (ε −2) 

candidates, data programming achieves an expected loss ε. Despite the strict assumptions 

with respect to labeling functions, we find that using data programming to develop KBC 

systems for richly formatted data leads to high-quality KBs (across diverse real-world 

applications) even when some of the data-programming assumptions are not met (see 

Section 5.2).

B EXTENDED FEATURE LIBRARY

Fonduer augments a bidirectional LSTM with features from an extended feature library in 

order to better model the multiple modalities of richly formatted data. In addition, these 

extended features can provide signals drawn from large contexts since they can be calculated 

using Fonduer’s data model of the document rather than being limited to a single sentence 

or table. In Section 5, we find that including multimodal features is critical to achieving 

high-quality relation extraction. The provided extended feature library serves as a baseline 

example of these types of features that can be easily enhanced in the future. However, even 

with these baseline features, our users have been able to build high-quality knowledge bases 

for their applications.

The extended feature library consists of a baseline set of features from the structural, tabular, 

and visual modalities. Table 7 lists the details of the extended feature library. Features are 

represented as strings, and each feature space is then mapped into a one-dimensional bit 

vector for each candidate, where each bit represents whether the candidate has the 

corresponding feature.

C Fonduer AT SCALE

We use two optimizations to enable Fonduer’s scalability to millions of candidates (see 

Section 3.1): (1) data caching and (2) data representations that optimize data access during 

the KBC process. Such optimizations are standard in database systems. Nonetheless, their 

impact on KBC has not been studied in detail.

Each candidate to be classified by Fonduer’s LSTM as “True” or “False” is associated with 

a set of mentions (see Section 3.2). For each candidate, Fonduer’s multimodal featurization 

generates features that describe each individual mention in isolation and features that jointly 

describe the set of all mentions in the candidate. Since each mention can be associated with 

many different candidates, we cache the featurization of each mention. Caching during 

featurization results in a 100× speed-up on average in the ELECTRONICS domain yet only 

accounts for 10% of this stage’s memory usage.

Recall from Section 3.3 that Fonduer’s programming model introduces two modes of 

operation: (1) development, where users iteratively improve the quality of labeling functions 

without executing the entire pipeline; and (2) production, where the full pipeline is executed 

once to produce the knowledge base. We use different data representations to implement the 

abstract data structures of Features and Labels (a structure that stores the output of labeling 

functions after applying them over the generated candidates). Implementing Features as a 
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list-of-lists structure minimizes runtime in both modes of operation since it accounts for 

sparsity. We also find that Labels implemented as a coordinate list during the development 

mode are optimal for fast updates. A list-of-lists implementation is used for Labels in 

production mode.

C.1 Data Caching

With richly formatted data, which frequently requires document-level context, thousands of 

candidates need to be featurized for each document. Candidate features from the extended 

feature library are computed at both the mention level and relation level by traversing the 

data model accessing modality attributes. Because each mention is part of many candidates, 

naïve featurization of candidates can result in the redundant computation of thousands of 

mention features. This pattern highlights the value of data caching when performing 

multimodal featurization on richly formatted data.

Traditional KBC systems that operate on single sentences of unstructured text pragmatically 

assume that only a small number of candidates will need to be featurized for each sentence 

and do not cache mention features as a result.

Example C.1 (Inefficient Featurization)

In Figure 1, the transistor part mention MMBT3904 could be matched with up to 15 

different numerical values in the datasheet. Without caching, the features of the MMBT3904 

would be unnecessarily recalculated 14 times, once for each candidate. In real documents 

100s of feature calculations would be wasted.

In Example C.1, eliminating unnecessary feature computations can improve performance by 

an order of magnitude.

To optimize the feature-generation process, Fonduer implements a document-level caching 

scheme for mention features. The first computation of a mention feature requires traversing 

the data model. Then, the result is cached for fast access if the feature is needed again. All 

features are cached until all candidates in a document are fully featurized, after which the 

cache is flushed. Because Fonduer operates on documents atomically, caching a single 

document at a time improves performance without adding significant memory overhead. In 

the ELECTRONICS application, we find that caching achieves over 100× speed-up on average 

and in some cases even over 1000×, while only accounting for approximately 10% of the 

memory footprint of the featurization stage.

Takeaways—When performing feature generation from richly formatted data, caching the 

intermediate results can yield over 1000× improvements in featurization runtime without 

adding significant memory overhead.

C.2 Data Representations

The Fonduer programming model involves two modes of operation: (1) development and 

(2) production. In development, users iteratively improve the quality of their labeling 

functions through error analysis and without executing the full pipeline as in previous 
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techniques such as incremental KBC [36]. Once the labeling functions are finalized, the 

Fonduer pipeline is only run once in production.

In both modes of operation, Fonduer produces two abstract data structures (Features and 

Labels as described in Section 3). These data structures have three access patterns: (1) 

materialization, where the data structure is created; (2) updates, which include inserts, 

deletions, and value changes; and (3) queries, where users can inspect the features and labels 

to make informed updates to labeling functions.

Both Features and Labels can be viewed as matrices, where each row represents annotations 

for a candidate (see Section 3.2). Features are dynamically named during multimodal 

featurization but are static for the lifetime of a candidate. Labels are statically named in 

classification but updated during development. Typically Features are sparse: in the 

ELECTRONICS application, each candidate has about 100 features while the number of unique 

features can be more than 10M. Labels are also sparse, where the number of unique labels is 

the number of labeling functions.

The data representation that is implemented to store these abstract data structures can 

significantly affect overall system runtime. In the ELECTRONICS application, multimodal 

featurization accounts for 50% of end-to-end runtime, while classification accounts for 15%. 

We discuss two common sparse matrix representations that can be materialized in a SQL 

database.

• List of lists (LIL): Each row stores a list of (column key, value) pairs. Zero-

valued pairs are omitted. An entire row can be retrieved in a single query. 

However, updating values requires iterating over sublists.

• Coordinate list (COO): Rows store (row key, column - key, value) triples. Zero-

valued triples are omitted. With COO, multiple queries must be performed to 

fetch a row’s attributes. However, updating values takes constant time.

The choice of data representation for Features and Labels reflects their different access 

patterns, as well as the mode of operation. During development, Features are materialized 

once, but frequently queried during the iterative KBC process. Labels are updated each time 

a user modifies labeling functions. In production, Features’ access pattern remains the same. 

However, Labels are not updated once users have finalized their set of labeling functions.

From the access patterns in the Fonduer pipeline, and the characteristics of each sparse 

matrix representation, we find that implementing Features as an LIL minimizes runtime in 

production and development. Labels, however, should be implemented as COO to support 

fast insertions during iterative KBC and reduce runtimes for each iteration. In production, 

Labels can also be implemented as LIL to avoid the computation overhead of COO. In the 

ELECTRONICS application, we find that LIL provides 1.4× speed-up over COO in production 

and that COO provides over 5.8× speed-up over LIL when adding a new labeling function.

Takeaways

We find that Labels should be implemented as a coordinate list during development, which 

supports fast updates for supervision, while Features should use a list of lists, which 
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provides faster query times. In production, both Features and Labels should use a list-of-list 

representation.

D FUTURE WORK

Being able to extract information from richly formatted data enables a wide range of 

applications, and represents a new and interesting research direction. While we have 

demonstrated that Fonduer can already obtain high-quality knowledge bases in several 

applications, we recognize that many interesting challenges remain. We briefly discuss some 

of these challenges.

Data Model

One challenge in extracting information from richly formatted data comes directly at the 

data level—we cannot perfectly preserve all document information. Future work in parsing, 

OCR, and computer vision have the potential to improve the quality of Fonduer’s data 

model for complex table structures and figures. For example, improving the granularity of 

Fonduer’s data model to be able to identify axis titles, legends, and footnotes could provide 

additional signals to learn from and additional specificity for users to leverage while using 

the Fonduer programming model.

Deep-Learning Model

Fonduer’s multimodal recurrent neural network provides a prototypical automated 

featurization approach that achieves high quality across several domains. However, future 

developments for incorporating domain-specific features could strengthen these models. In 

addition, it may be possible to expand our deep-learning model to perform additional tasks 

(e.g., identifying candidates) to simplify the Fonduer pipeline.

Programming Model

Fonduer currently exposes a Python interface to allow users to provide weak supervision. 

However, further research in user interfaces for weak supervision could bolster user 

efficiency in Fonduer. For example, allowing users to use natural language or graphical 

interfaces in supervision may result in improved efficiency and reduced development time 

through a more powerful programming model. Similarly, feedback techniques like active 
learning [35] could empower users to more quickly recognize classes of candidates that need 

further disambiguation with LFs.
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Figure 1. 
A KBC task to populate relation HasCollectorCurrent (Transistor Part, Current) from 

transistor datasheets. Part and Current mentions are in blue and green, respectively.
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Figure 2. 
An overview of Fonduer KBC over richly formatted data. Given a set of richly formatted 

documents and a series of lightweight inputs from the user, Fonduer extracts facts and 

stores them in a relational database.
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Figure 3. 
Fonduer’s data model.

Wu et al. Page 33

Proc ACM SIGMOD Int Conf Manag Data. Author manuscript; available in PMC 2018 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Tradeoff between (a) quality and (b) execution time when pruning the number of candidates 

using throttlers.
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Figure 5. 
An illustration of Fonduer’s multimodal LSTM for candidate (SMBT3904, 200) in Figure 

1.
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Figure 6. 
Average F1 score over four relations when broadening the extraction context scope in 

ELECTRONICS.
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Figure 7. 
The impact of each modality in the feature library.
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Figure 8. 
Study of different supervision resources on quality. Metadata includes structural, tabular, and 

visual information.
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Figure 9. 
F1 quality over time with 95% confidence intervals (left). Modality distribution of user 

labeling functions (right).
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Table 1

Summary of the datasets used in our experiments.

Dataset Size #Docs #Rels Format

Elec. 3GB 7K 4 PDF

Ads. 52GB 9.3M 4 HTML

Paleo. 95GB 0.3M 10 PDF

Gen. 1.8GB 589 4 XML
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Table 3

End-to-end quality vs. existing knowledge bases.

System Elec. Gen.

Knowledge Base Digi-Key GWAS
Central

GWAS
Catalog

# Entries in KB 376 3,008 4,023

# Entries in Fonduer 447 6,420 6,420

Coverage 0.99 0.82 0.80

Accuracy 0.87 0.87 0.89

# New Correct Entries 17 3,154 2,486

Increase in Correct Entries 1.05× 1.87× 1.42×
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Table 4

Comparing approaches to featurization based on Fonduer’s data model.

Sys. Metric Human-tuned Bi-LSTM w/ Attn. Fonduer

Elec.

Prec. 0.71 0.42 0.73

Rec. 0.82 0.50 0.81

F1 0.76 0.45 0.77

Ads.

Prec. 0.88 0.51 0.87

Rec. 0.88 0.43 0.89

F1 0.88 0.47 0.88

Paleo.

Prec. 0.92 0.52 0.76

Rec. 0.37 0.15 0.38

F1 0.53 0.23 0.51

Gen.

Prec. 0.92 0.66 0.89

Rec. 0.82 0.41 0.81

F1 0.87 0.47 0.85
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Table 5

Comparing the features of SRV and Fonduer.

Feature Model Precision Recall F1

SRV 0.72 0.34 0.39

Fonduer 0.87 0.89 0.88
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Table 6

Comparing document-level RNN and Fonduer’s deep-learning model on a single relation from Electronics.

Learning Model Runtime during Training (secs/epoch) Quality (F1)

Document-level RNN 37,421 0.26

Fonduer 48 0.65
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Table 7

Features from Fonduer’s feature library. Example values are drawn from the example candidate in Figure 1. 

Capitalized prefixes represent the feature templates and the remainder of the string represents a feature’s 

value.

Feature Type Arity Description Example Value

Structural Unary HTML tag of the mention TAG_<h1>

Structural Unary HTML attributes of the mention HTML_ATTR_font-family:Arial

Structural Unary HTML tag of the mention’s parent PARENT_TAG_<p>

Structural Unary HTML tag of the mention’s previous sibling PREV_SIB_TAG_<td>

Structural Unary HTML tag of the mention’s next sibling NEXT_SIB_TAG_<h1>

Structural Unary Position of a node among its siblings NODE_POS_1

Structural Unary HTML class sequence of the mention’s ancestors ANCESTOR_CLASS_<s1>

Structural Unary HTML tag sequence of the mention’s ancestors ANCESTOR_TAG_<body>_<p>

Structural Unary HTML ID’s of the mention’s ancestors ANCESTOR_ID_l1b

Structural Binary HTML tags shared between mentions on the path to the root 
of the document

COMMON_ANCESTOR_<body>

Structural Binary Minimum distance between two mentions to their lowest 
common ancestor

LOWEST_ANCESTOR_DEPTH_1

Tabular Unary N-grams in the same cell as the mentiona CELL_cevb

Tabular Unary Row number of the mention ROW_NUM_5

Tabular Unary Column number of the mention COL_NUM_3

Tabular Unary Number of rows the mention spans ROW_SPAN_1

Tabular Unary Number of columns the mention spans COL_SPAN_1

Tabular Unary Row header n-grams in the table of the mention ROW_HEAD_collector

Tabular Unary Column header n-grams in the table of the mention COL_HEAD_value

Tabular Unary N-grams from all Cells that are in the same row as the given 

mentiona
ROW_200_[ma]c

Tabular Unary N-grams from all Cells that are in the same column as the 

given mentiona
COL_200_[6]c

Tabular Binary Whether two mentions are in the same table SAME_TABLEb

Tabular Binary Row number difference if two mentions are in the same 
table

SAME_TABLE_ROW_DIFF_1b

Tabular Binary Column number difference if two mentions are in the same 
table

SAME_TABLE_COL_DIFF_3b

Tabular Binary Manhattan distance between two mentions in the same table SAME_TABLE_MANHATTAN_DIST_10b

Tabular Binary Whether two mentions are in the same cell SAME_CELLb

Tabular Binary Word distance between mentions in the same cell WORD_DIFF_1b

Tabular Binary Character distance between mentions in the same cell CHAR_DIFF_1b

Tabular Binary Whether two mentions in a cell are in the same sentence SAME_PHRASEb

Tabular Binary Whether two mention are in the different tables DIFF_TABLEb
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Feature Type Arity Description Example Value

Tabular Binary Row number difference if two mentions are in different 
tables

DIFF_TABLE_ROW_DIFF_4b

Tabular Binary Column number difference if two mentions are in different 
tables

DIFF_TABLE_COL_DIFF_2b

Tabular Binary Manhattan distance between two mentions in different tables DIFF_TABLE_MANHATTAN_DIST_7b

Visual Unary N-grams of all lemmas visually aligned with the mentiona ALIGNED_current

Visual Unary Page number of the mention PAGE_1

Visual Binary Whether two mentions are on the same page SAME_PAGE

Visual Binary Whether two mentions are horizontally aligned HORZ_ALIGNEDb

Visual Binary Whether two mentions are vertically aligned VERT_ALIGNED

Visual Binary Whether two mentions’ left bounding-box borders are 
vertically aligned

VERT_ALIGNED_LEFTb

Visual Binary Whether two mentions’ right bounding-box borders are 
vertically aligned

VERT_ALIGNED_RIGHTb

Visual Binary Whether the centers of two mentions’ bounding boxes are 
vertically aligned

VERT_ALIGNED_CENTERb

a
All N-grams are 1-grams by default.

b
This feature was not present in the example candidate. The values shown are example values from other documents.

c
In this example, the mention is 200, which forms part of the feature prefix. The value is shown in square brackets.
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