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Abstract

We introduce a fully online model of maximum cardinality matching in which all vertices
arrive online. On the arrival of a vertex, its incident edges to previously-arrived vertices are
revealed. Each vertex has a deadline that is after all its neighbors’ arrivals. If a vertex remains
unmatched until its deadline, the algorithm must then irrevocably either match it to an un-
matched neighbor, or leave it unmatched. The model generalizes the existing one-sided online
model and is motivated by applications including ride-sharing platforms, real-estate agency, etc.

We show that the Ranking algorithm by Karp et al. (STOC 1990) is 0.5211-competitive in
our fully online model for general graphs. Our analysis brings a novel charging mechanic into
the randomized primal dual technique by Devanur et al. (SODA 2013), allowing a vertex other
than the two endpoints of a matched edge to share the gain. To our knowledge, this is the first
analysis of Ranking that beats 0.5 on general graphs in an online matching problem, a first step
towards solving the open problem by Karp et al. (STOC 1990) about the optimality of Ranking
on general graphs. If the graph is bipartite, we show that the competitive ratio of Ranking is
between 0.5541 and 0.5671. Finally, we prove that the fully online model is strictly harder than
the previous model as no online algorithm can be 0.6317 < 1− 1

e -competitive in our model even
for bipartite graphs.
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1 Introduction

Online Bipartite Matching is a central problem in the area of online algorithms with a wide range of
applications. Consider a bipartite graph where the left-hand-side is known in advance, while vertices
on the right-hand-side arrive online in an arbitrary order. On the arrival of a vertex, its incident
edges are revealed and the algorithm must irrevocably either match it to one of its unmatched
neighbors or leave it unmatched. Karp et al. [KVV90] introduced the Ranking algorithm, which
picks at the beginning a random permutation over offline vertices, and matches each online vertex
to the first unmatched neighbor according to the permutation. Further, they proved that Ranking
is (1 − 1

e )-competitive and the best possible among online algorithms. The analysis of Ranking
has been subsequently simplified in a series of papers [GM08, BM08, DJK13]. Further, it has been
generalized to several extended settings, including the vertex-weighted case [AGKM11], the random
arrival model [KMT11, MY11], and the Adwords problem [MSVV07, BJN07, DJ12].

However, all the above successful applications of Ranking crucially rely on the assumption that
one side of the bipartite graph is known upfront. This assumption prevents us from applying the
known positive results to some applications. Here is an example:

Example (Real Estate Agency). During a typical day of a real estate agent in Hong
Kong, both tenants and landlords drop by in an online fashion. Tenants specify what kinds of
apartments they are looking for as well as the deadlines before which they need to move in1.
Similarly, landlords list certain rules for tenant screening together with their deadlines. Tenants
and landlords can be modeled as the vertices in a bipartite graph. There is an edge between
a tenant-landlord pair if (1) they mutually satisfy each other’s conditions, and (2) their time
windows (between their respective arrivals and deadlines) overlap. Real estate agents charge
for each successful deal and, thus, seek to maximize the size of the bipartite matching.

This is clearly a bipartite matching problem with an online nature. However, it does not fit
into the existing model in two fundamental ways. First, vertices from both sides of the bipartite
graphs arrive online. Second, matching decision of each vertex is made at its deadline rather than
its arrival. There are many other applications with similar flavors such as job market intermediary
and organ transplantation.

A Fully Online Model. Motivated by these applications, we formulate the following alternative
online model of bipartite matching. We call it Fully Online Bipartite Matching since vertices from
both sides arrive online. Let there be an underlying bipartite graph that is completely unknown to
the algorithm at the beginning. Each time step falls into one of the following two kinds:

• Arrival of v: A vertex v arrives; edges between v and previously-arrived vertices are revealed.
• Deadline of v: This is the last time a vertex v can be matched (if it is not matched yet).

The model further guarantees that all edges incident to a vertex are revealed before its deadline.
Indeed, a tenant-landlord pair must have overlapping time windows in order to have an edge between
them in the above example. We further assume without loss of generality that algorithms are lazy
in the sense that they only make decisions on the deadlines of the vertices. On the deadline of a
vertex v, it might be the case that v has already been matched to another vertex u on u’s deadline.
Otherwise, the algorithm must irrevocably either match v to one of its unmatched neighbors, or
leave it unmatched.

1Tenants may also specify their earliest move-in dates. This is omitted in our model because, from the algorithmic
point of view, it is equivalent to having each tenant arrive on the earliest move-in date. The same applies to landlords.
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The previous one-sided online model is a special case in which all offline vertices arrive at the
beginning and have deadlines at the end, and each online vertex has its deadline right after arrival.

Further, there are many applications for which the underlying graph is not necessarily bipartite.
Consider the following example:

Example (Ride-sharing Platform). DiDi is a major ride-sharing platform in China, han-
dling tens of millions of rides on a daily basis. Requests are submitted to the platform in an
online fashion. Each request is active in the system for a few minutes. The platform may match
a pair of requests and serve them with the same taxi (or self-employed driver), provided that
the pick-up locations and destinations are compatible, and their active time windows overlap.
Requests can be modeled as vertices in a general graph and the compatibilities of pairs of
requests can be modeled as edges.

Our model generalizes straightforwardly to general graphs by removing the bipartite assumption
on the underlying graph. We refer to the generalization as Fully Online Matching.

It is easy to check that the näıve greedy algorithm that simply matches a vertex to an arbitrary
unmatched neighbor remains to be 0.5-competitive. Can we do better?

1.1 Our Results and Techniques

We consider a natural generalization of the Ranking algorithm that picks a random permutation
over all vertices at the beginning, and matches each vertex (if unmatched at its deadline) to the
first unmatched neighbor according to the permutation. This algorithm can be implemented in
our fully online model following the interpretation of Ranking by Devanur et al. [DJK13]: On the
arrival of v ∈ V , the rank of vertex v, denoted by yv, is chosen uniformly at random from [0, 1);
each vertex (if unmatched at its deadline) is matched to its unmatched neighbor with the highest,
i.e., smallest, rank. We show that the Ranking algorithm is strictly better than 0.5-competitive:

Theorem 1.1 Ranking is 0.5211-competitive for Fully Online Matching.

Theorem 1.2 Ranking is 0.5541-competitive for Fully Online Bipartite Matching.

To our knowledge, our result for the Fully Online Matching problem is the first generalization
of Ranking that achieves a competitive ratio strictly better than 0.5 in an online matching model
that allows general graphs, making the first step towards providing a positive answer to the open
question of whether Ranking is optimal for general graphs by [KVV90].

Our Techniques (Bipartite Case). We build on the randomized primal dual technique intro-
duced by Devanur et al. [DJK13]. It can be viewed as a charging argument for sharing the gain of
each matched edge between its two endpoints. Whenever an edge (u, v) is added to the matching,
where v is an offline vertex and u is an online vertex, imagine a total gain of 1 being shared between
u and v based on the rank of the offline vertex v. The higher the rank of v, the smaller share it
gets. For Online Bipartite Matching, Devanur et al. [DJK13] introduced a gain sharing method such
that, for any edge (u, v) and for any fixed ranks of offline vertices other than v, the expected gains
of u and v (from all of their incident edges) combined is at least 1− 1

e over the randomness of v’s
rank. This implies the 1− 1

e competitive ratio.
Next, consider an edge (u, v) in our model. Suppose u is the one with an earlier deadline. Since

algorithms are lazy, the edge can only be added into the matching as a result of u’s decision at its
deadline. In this sense, u plays a similar role as the online vertex and v as the offline vertex in the
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analysis of Devanur et al. [DJK13]. Hence, a natural attempt is to consider the expected gains of
u and v combined in the charging argument over the randomness of v’s rank alone.

To explain why the above approach fails, we first introduce the notions of active and passive
vertices. We say a vertex u matches actively (or is active) if it is added to the matching by
the algorithm at u’s deadline; other matched vertices are passive. All previous analyses [KVV90,
AGKM11, DJK13, CCWZ14, ACC+16] crucially rely on a structural property that whenever vertex
v is unmatched, its neighbor u must be matched to some other vertex with rank higher than v. In
our model, however, this holds only if v’s neighbor u is active.

One may try to resolve this issue with a global amortized argument. If we go over all the
edges in the graph, it cannot be the case that the endpoint with an earlier deadline of every
edge always matches passively. After all, the numbers of active and passive vertices are equal.
Interestingly, we instantiate this intuition with a local amortized argument by taking expectation
over the randomness of u’s rank as well. Recall that u is the vertex with earlier deadline and,
thus, plays a similar role as the online vertex in the argument of Devanur et al. [DJK13]. Taking
expectation over u’s rank can be viewed as amortizing the case when u’s rank is low (active) and
the case when u’s rank is high (passive).

Our Techniques (General Case). Moving from bipartite graphs to general graphs takes away
another crucial structural property that the previous arguments rely on. In a bipartite graph, if a
vertex u is matched by the Ranking algorithm for a realization of ranks while one of its neighbors v
is not, then u remains matched no matter how the rank of v changes. In a general graph, however,
it is possible that u becomes unmatched when v gets a higher rank.

We introduce a novel charging mechanic on top of the gain sharing rule used in the bipartite
case. After a matching has been chosen by Ranking, for each active vertex w, consider an alternative
run of Ranking with the same ranks but with w removed from the graph. The difference between
the two matchings will be an alternating path and, thus, at most one vertex v would change from
unmatched to matched in the absence of w. We shall refer to such a vertex v as the victim of w.
Note that each active vertex has at most one victim, but an unmatched vertex could be the victim
of many vertices. If the victim of w turns out to be its neighbor2, our new charging mechanic will
have w send to v a portion of w’s share from its incident edge in the matching, which we shall refer
to as the compensation from w to v. Further, we show that whenever the aforementioned structural
property fails, namely, some vertex u becomes unmatched when its unmatched neighbor v gets a
higher rank, we can always identify a unique neighbor w of v that sends a compensation to v to
remedy the loss in the charging argument.

Putting together the gain sharing mechanic from the bipartite case and the new mechanic of
compensations, we can prove that for any edge (u, v), the expected net gains of u and v combined
is strictly greater than 0.5 over the randomness of the ranks of both u and v.

To our knowledge, this is the first charging mechanic that allows a vertex other than the two
endpoints of a matched edge to get a share. We believe this novel charging mechanic will find
further applications in other matching problems that consider general graphs.

Hardness Results. We complement our competitive analysis with two hardness results. The first
hardness applies to arbitrary online algorithms, showing a separation between the best competitive
ratio in our fully online model and the optimal ratio of 1 − 1

e ≈ 0.6321 in the existing one-sided
online model. The second hardness focuses on the Ranking algorithm, certifying that our analysis
for the bipartite case is close to the best possible.

2This would induce an odd cycle and, thus, can only happen in non-bipartite graphs.
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Theorem 1.3 No randomized algorithm can achieve a competitive ratio better than 0.6317 for Fully
Online Bipartite Matching.

Theorem 1.4 Ranking is at most 0.5671-competitive for Fully Online Bipartite Matching.

1.2 Other Related Works

An alternative generalization of Ranking to general graphs has been considered for the problem of
oblivious matching [CCWZ14, ACC+16]: Pick a permutation of vertices uniformly at random; then,
go over the vertices one by one according to the permutation; for each unmatched vertex, match it
to the first unmatched neighbor according to the same permutation. Chan et al. [CCWZ14] showed
that it is a 0.523-approximation algorithm, improving the previous (12 + 1

400000)-approximation by a
greedy algorithm [ADFS95]. Abolhassani et al. [ACC+16] improved the ratio to 0.526 and analyzed
the weighted case. We stress that the alternative generalization is an offline algorithm because it
needs to consider the vertices in random order, while our generalization is online. Nevertheless,
our result for general graphs can be viewed as a 0.5211-approximation in the oblivious matching
problem. We believe the new algorithm and analysis in this paper, in particular, the new charging
mechanic of compensations, will find further applications in oblivious matching and other matching
problems that consider general graphs.

Another online matching model in the literature considers online edge arrivals, upon which the
algorithm must immediately decide whether to add the edge to the matching. McGregor [McG05]
gave a deterministic 1

3+2
√
2
≈ 0.1715-competitive algorithm in the edge-weighted preemptive setting.

This ratio is later shown to be tight for deterministic algorithms [Var11]. Epstein et al. [ELSW13]
designed a 1

5.356 ≈ 0.1867-competitive randomized algorithm and proved a hardness of 1
1+ln 2 ≈ 0.59.

Chiplunkar et al. [CTV15] considered a restricted setting where the input graph is an unweighted
growing tree and gave a 15

28 -competitive algorithm. Finally, Buchbinder et al. [BST17] introduced
an optimal 5

9 -competitive algorithm for unweighted forests.
Wang and Wong [WW15] considered a more restrictive model of online bipartite matching with

both sides of vertices arriving online: A vertex can only actively match other vertices at its arrival;
if it fails to match at its arrival, it may still get matched passively by other vertices later. They
showed a 0.526-competitive algorithm for a fractional version of the problem. We argue that the
model in this paper better captures our aforementioned motivating applications.

2 Preliminaries

We consider the standard competitive analysis against an oblivious adversary. The competitive
ratio of an algorithm is the ratio between the expected size of the matching by the algorithm over
its own random bits to the size of the maximum matching of the underlying graph in hindsight.
The adversary must in advance choose an instance, i.e., the underlying graph as well as arrivals
and deadlines of vertices, without observing the random bits used by the algorithm. Otherwise, no
algorithm can get any competitive ratio better than 0.5.

2.1 Ranking Algorithm and Some Basic Properties

See Algorithm 1 for a formal definition of Ranking in our model. Let M(~y) denote the matching
produced when Ranking is run with ~y as the ranks.
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Algorithm 1 The Ranking Algorithm

(1) a vertex v arrives:
pick yv ∈ [0, 1) uniformly at random.

(2) a vertex v’s deadline reaches:
if v is unmatched,

let N(v) be the set of unmatched neighbors of v.
if N(v) = ∅, then v remains unmatched;
else match v to arg minu∈N(v) yu.

Recall the following definition of active/passive vertices. In the one-sided online model, only
online vertices can be active and only offline vertices can be passive. In our fully online model,
however, vertices can in general be of either types depending on the random ranks of the vertices.

Definition 2.1 (Active, Passive) For any edge (u, v) added to the matching by Ranking at u’s
deadline, we say that u is active and v is passive.

The proofs of the following lemmas are deferred to Appendix A. The first lemma is a variant
of the monotonicity property in previous works, incorporating the notions of active and passive
vertices in our fully online model.

Lemma 2.1 (Monotonicity) For any rank vector ~y and any vertex u, we have

1. if u is active/unmatched, then M(~y) remains the same when yu increases;
2. if u is passive, then u remains passive when yu decreases.

Let ~y-u ∈ [0, 1)V \{u} be the ranks of all vertices but u, i.e., ~y-u is obtained by removing the u-th
entry in ~y. Let M(~y-u) denote the matching produced by Ranking on G − {u}, i.e., the subgraph
with vertex u removed, with ~y-u as the ranks.

For ease of notation, for any y ∈ [0, 1], we use y- to denote a value that is arbitrarily close to,
but smaller than y. For example, our arguments consider functions discontinuous at 1 and use f(1-)
to denote the limit of f(x) as x goes to 1 from below. We also consider the matching w.r.t. ranks
(yu = θ-, ~y-u) to avoid confusions in marginal cases where ranks (yu = θ, ~y-u) need tie-breaking.

By Lemma 2.1, we can uniquely define the following marginal rank for every vertex.

Definition 2.2 (Marginal Rank) For any u and any ranks ~y-u of other vertices, the marginal
rank θ of u with respect to ~y-u is the largest value such that u is passive in M(yu = θ-, ~y-u).

Note that a vertex may still match another vertex (actively) when its rank is below the marginal
rank in our fully online model. Nevertheless, it is consistent with the previous definition in the
one-sided online model that concerns offline vertices, which cannot match actively.

Lemma 2.2 (Unmatched Neighbor) Suppose v has marginal rank θ < 1 with respect to ~y-v.
Then, for any neighbor u of v that has an earlier deadline than v, and for any rank vector (yv =
y, ~y-v) with y ∈ [θ, 1), u either is passive, or actively matches a vertex with rank at most θ.

It is well known that removing a matched vertex from the graph results in an alternating path in
the matching produced by Ranking. The next lemma provides a more fine-grained characterization.

Lemma 2.3 (Alternating Path) If u is matched in ~y, then the symmetric difference between the
matchings M(~y) and M(~y-u) is an alternating path (u0, u1, . . . , ul) with u0 = u such that
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1. for all even i < l, we have (ui, ui+1) ∈M(~y); for all odd i < l, we have (ui, ui+1) ∈M(~y-u);
2. from M(~y) to M(~y-u), vertices {u1, u3, . . .} get worse, vertices {u2, u4, . . .} get better.

Here, passive is better than active, which is in turns better than unmatched. Conditioned on being
passive, matching to a vertex with earlier deadline is better. Conditioned on being active, matching
to a vertex with higher rank is better.

2.2 Randomized Dual Fitting

Consider the following linear program relaxation of the matching problem and its dual.

max :
∑

(u,v)∈E xuv min :
∑

u∈V αu

s.t.
∑

v:(u,v)∈E xuv ≤ 1 ∀u ∈ V s.t. αu + αv ≥ 1 ∀(u, v) ∈ E

xuv ≥ 0 ∀(u, v) ∈ E αu ≥ 0 ∀u ∈ V

It is known that the above linear program relaxation is integral for bipartite graphs, but it has
a large integrality gap for general graphs (e.g., a complete graph of 3 vertices). Interestingly, this
relaxation is sufficient for proving our positive results, even for general graphs.

Our approach builds on the randomized primal dual technique by Devanur et al. [DJK13]. We
believe it is more appropriate to call our analysis (for general graphs) randomized dual fitting,
however, because it relies on an extra phase of adjustments to the dual variables at the end that
requires full knowledge of the instance.

Randomized Dual Fitting. We set the primal variables according to the matching by Ranking,
which ensures primal feasibility, and set the dual variables such that the dual objective equals the
primal objective. The dual assignment can be viewed as splitting the gain of 1 of every matched
edge among the vertices; the dual variable αv for every vertex v is equal to the total share it gets
from all matched edges. Given primal feasibility and equal objectives, the usual primal dual and
dual fitting techniques would further seek to show approximate dual feasibility, namely, αu+αv ≥ F
for every edge (u, v) where F is the target competitive ratio. This is where the usual techniques fail
and the smart insight by Devanur et al. [DJK13] comes to help. Due to the intrinsic randomness
of Ranking, the above primal and dual assignments are themselves random variables. Devanur
et al. [DJK13] observe that it suffices to have approximate dual feasibility in expectation. For
completeness, we formulate this insight as the following lemma and include a proof in Appendix A.

Lemma 2.4 Ranking is F -competitive if we can set (non-negative) dual variables such that

1.
∑

(u,v)∈E xuv =
∑

u∈V αu; and

2. E~y[αu + αv] ≥ F for all (u, v) ∈ E.

3 Bipartite Graphs: A Warm-up

Dual Assignment. We adopt the dual assignment by Devanur et al. [DJK13] and share the gain
of each matched edge between its two endpoints as follows:

• Gain Sharing: Whenever an edge (u, v) is added to the matching with u active and v passive,
let αu = 1− g(yv) and αv = g(yv). Here, g : [0, 1]→ [0, 1] is non-decreasing with g(1) = 1.
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Randomized Primal Dual Analysis. The previous analysis of Ranking for Online Bipartite
Matching relies on a structural property that for any edge (u, v) and any ranks ~y-v, u matches a
vertex with rank no larger than v’s marginal rank regardless of v’s rank (e.g. Lemma 2.3 of [DJK13]).
However, in our fully online setting, the same property holds only when u is active. By introducing
the notions of passive and active vertices, we show the following weaker version of the property. It
complements the basic property when yu is larger than the marginal rank (Lemma 2.2).

Lemma 3.1 Suppose v has marginal rank θ < 1 with respect to ~y-v. Then, for any neighbor u of
v that has an earlier deadline than v, and for any rank vector (yv = y, ~y-v) with y ∈ [0, θ), u either
is passive, or matches actively to a vertex with rank at most θ.

Proof: We consider the matchings in 3 sets of ranks ~y = (yv = y, ~y-v), ~y-v and ~yθ = (yv = θ, ~y-v).
First, we show that u matches the same neighbor in M(~yθ) and M(~y-v). Since v is unmatched or
active in M(~yθ), removing v cannot affect vertices with earlier deadlines. In particular, u would
match the same neighbor.

Consider the alternating path from M(~y) to M(~y-v). If u is not in the alternating path, then u
matches the same neighbor in all M(~y), M(~y-v) and M(~yθ). Otherwise, u appears in the alternating
path with an odd distance from v since the graph is bipartite. Hence, by Lemma 2.3, u is better
in M(~y) than in M(~y-v) and, thus, is better than in M(~yθ). In both cases, u is passive or actively
matches a vertex with rank ≤ θ in M(~y), since this holds for u in M(~yθ) (by Lemma 2.2).

Recall that for any edge (u, v) we will consider the expected gain of αu and αv combined over
the randomness of the ranks of both u and v. First, let us fix the rank of u, the vertex with an
earlier deadline, and consider the expected gain over the randomness of v’s rank alone.

Lemma 3.2 For any neighbor u of v that has an earlier deadline than v, and for any ~y-v, we have

Eyv [αu + αv] ≥ f(yu)
def
= minθ∈[0,1]

{∫ θ
0 g(yv)dyv + min{1− g(θ), g(yu)}

}
.

Proof: Let θ be the marginal rank of v with respect to ranks ~y-v. By definition, v is passive
and gets g(yv) when yv < θ, i.e. Eyv [αv · 1 (yv < θ)] =

∫ θ
0 g(yv)dyv. By Lemma 2.2 and 3.1,

Eyv [αu] ≥ min{1 − g(θ), g(yu)}. Adding them together and taking the minimum over all possible
θ’s concludes the statement.

It is worthwhile to make a comparison with a similar claim in the previous analysis by Devanur
et al. [DJK13] for Online Bipartite Matching:

Eyv [αu + αv] ≥ minθ∈[0,1]

{∫ θ
0 g(yv)dyv + 1− g(θ)

}
,

where u is an online vertex and v is an offline vertex. As we have discussed in the introduction,
for every edge in our model, the endpoint with an earlier deadline plays a similar role as the online
vertex in the previous one-sided online model since the edge can only be added to the matching
as a result of this endpoint’s matching decision. In this sense, the bounds are indeed very similar,
except for the last term, where the previous bound simply has 1 − g(θ) while our bound has the
smaller of 1− g(θ) and g(yu).

We interpret Lemma 3.2 as follows. It recovers the previous bound when the rank of u is large
(1 − g(θ) ≤ g(yu)), which roughly corresponds to the case when u is active (or unmatched) and
the previous structural property holds. When the rank of u is small (1 − g(θ) > g(yu)), which
roughly corresponds to the case when u is passive, it still provides some weaker lower bound on
the expected gains of the two endpoints. The weaker bound, however, is at most 0.5 in the worst
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case: the RHS becomes min{1 − g(0), g(0)} ≤ 0.5 for θ = yu = 0. Hence, it is crucial that we
take expectation over the randomness of u’s rank as well, effectively amortizing the cases when u
is active and when it is passive. This idea carries over to general graphs.

Proof of Theorem 1.2: Let g(x) = ex−1, where x ∈ [0, 1]. For all (u, v) ∈ E, by Lemma 3.2,

E~y [αu + αv] = E~y-v [Eyv [αu + αv]] ≥ E~y-v [f(yu)] =
∫ 1
0 f(yu)dyu.

Observe that ∫ θ
0 g(z)dz + 1− g(θ) = eθ−1 − 1

e + 1− eθ−1 = 1− 1
e

and
∫ θ
0 g(z)dz + g(x) ≥ g(x) for all θ ∈ [0, 1]. We have f(x) ≥ min{g(x), 1− 1

e}, which implies (let
θ = ln(e− 1) s.t. g(θ) = 1− 1

e )∫ 1
0 f(x)dx ≥

∫ θ
0 e

x−1dx+ (1− θ)(1− 1
e ) = e−2

e + (1− ln(e− 1))(1− 1
e ) ≈ 0.55418.

By Lemma 2.4, we conclude that Ranking is at least 0.5541-competitive.

We are aware of a different function g(y) = min{1, ey−1 + 0.0128} that gives a (very slightly)
better competitive ratio 0.5547. For convenience of presentation we only fix a simple form here.

4 General Graphs: An Overview

Dual Assignment. Moving from bipartite graphs to general graphs, even the weaker version of
the structural property, i.e., Lemma 3.1, ceases to hold. Consider an edge (u, v) with u’s deadline
being earlier. It is possible that decreasing yv leads to a change of u’s status from matched to
unmatched in a non-bipartite graph. As a result, the simple gain sharing rule in the previous
analysis on the bipartite case no longer gives any bound strictly better than 0.5.

To handle general graphs, we design a novel charging mechanic on top of the gain sharing rule
between the endpoints of matched edges. First, we introduce the following notion of victim.

Definition 4.1 (Victim) For any ranks ~y and any active vertex w, v is w’s victim if

• v is an unmatched neighbor of w;
• v is matched in M(~y-w).

Observe that removing w results in an alternating path (Lemma 2.3) and, thus, at most one
vertex changes from unmatched to matched. Hence, each active vertex has at most one victim.

Consider the following two-step approach for computing a dual assignment:

• Gain Sharing: Whenever an edge (u, v) is added to the matching with u active and v passive,
let αu = 1− g(yv) and αv = g(yv). Here, g : [0, 1]→ [0, 1] is non-decreasing with g(1) = 1.

• Compensation: For every active vertex u that has a victim z, suppose u is matched to v.
Decrease αu and increase αz by the same amount h(yv), where h : [0, 1] → [0, 1] is non-
decreasing in [0, 1), h(y)/y is non-increasing, h(1) = 0 and 1− g(y)− h(y) ≥ 0 for all y.

Note that the second step, in particular, identifying the victims of active vertices, can only be done
after the entire instance has been revealed.

Each matched vertex will gain only from its incident matched edge. If it is further active and
has a victim, it needs to send a compensation to the victim. Further, the active vertex can always
afford the compensation from its gain since 1− g(y)− h(y) ≥ 0 for all y ∈ [0, 1). The monotonicity
of h(y)/y is for technical reasons in the analysis. Finally, note that an unmatched vertex may
receive compensations from any number of active vertices.
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Figure 4.1: We use solid line to represent an edge in the matching, where the direction (if any)
is from active vertex to passive vertex. (a) when v is higher than its marginal rank, u matches a
vertex with rank yz = τ > θ; (b) v is unmatched and compensated by w when it is lower than
its marginal rank; u either is passive, or matches actively some vertex with rank higher than τ
since v is unmatched; (c) the symmetric difference between the two matchings: an alternating path
triggered when yv increases to be larger than its marginal rank.

Randomized Dual Fitting Analysis. The main technical lemma is to establish a lower bound
for Eyv [αu + αv], as we have done in Lemma 3.2 for bipartite graphs. Due to space constraint, we
present the analysis for a special case with following assumptions (θ is the marginal rank of v):

• v is unmatched in M(yv = y, ~y-v) for all y ≥ θ;
• u actively matches the same vertex z with rank yz = τ > θ in M(yv = y, ~y-v) for all y < θ.

In other words, any rank of v higher than its marginal rank leads to the same (worse) situation for
u, i.e. matching a vertex with rank τ ∈ (θ, 1). See Figure 4.1 for an illustrative example.

In general, we need to also consider the case that v is active when its rank is lower than the
marginal θ, and the possibility that u’s matching status may change multiple times as the rank of
v gets higher. See Appendix B.1 for the analysis without the simplifying assumptions.

Subject to the above simplifying assumptions, we show the following:

Lemma 4.1 For any neighbor u of v that has an earlier deadline than v, and for any ~y-v, we have

Eyv [αv + αu] ≥
∫ θ
0 g(yv)dyv + (τ − θ) · h(θ) + θ · (1− g(τ)− h(τ))

+ (1− θ) ·min
{
g(yu), 1− g(θ)− h(θ)

}
.

Suppose w matches actively to v in M(yv = θ-, ~y-v) (refer to Figure 4.1(a)), that is, it is the
first vertex after v in the alternating path when v’s rank moves below its marginal rank (refer to
Figure 4.1(c)). We show in the following lemma that v receives a compensation from w whenever
its rank yv is between θ and τ (refer to Figure 4.1(b)).

Lemma 4.2 For any y ∈ [θ, τ), v is the victim of w in M(yv = y, ~y-v).

Proof: Let ~y1 = (yv = y, ~y-v), where y ∈ [θ, τ). By our assumption, v is unmatched and, thus, is
an unmatched neighbor of w in M(~y1). To prove that v is the victim of w, we need to show that
(1) w is active in M(~y1) and (2) v becomes matched when we remove w from the graph.

Consider ~y2 = (yv = θ-, ~y-v). By our assumptions, v is passively matched to w and u actively
matches z with yz = τ in M(~y2). For this to happen, w must have an earlier deadline than v and
none of matching decisions before w’s deadline pick w or v. Then, lowering v’s rank would not
affect these decisions before w’s deadline and, thus, w must also be active in M(~y1).

9



Finally, consider what happens when w is removed from the graph. It triggers a portion of the
alternating path (i.e., Figure 4.1(c)), the symmetric difference between M(~y1) and M(~y2). The
portion starts from w (exclusive) and ends the first time when v becomes relevant, i.e., a vertex in
the alternating path decides to pick v instead of the next vertex in the path. Further, we know for
sure that v will be relevant at some point because otherwise u is in the path and the next vertex z
has rank τ > y. Therefore, v must be matched when w is removed from the graph.

The next two lemmas give lower bounds on the expected gain of αv and αu, respectively, over
the randomness of v’s rank alone.

Lemma 4.3 Eyv [αv] ≥
∫ θ
0 g(yv)dyv + (τ − θ) · h(θ).

Proof: By definition, when yv < θ, v is passive and hence αv = g(yv).
Since w matches v actively in M(yv = θ-, ~y-v) but not in M(yv = θ, ~y-v), we know that w must

match a vertex with rank θ in M(yv ≥ θ, ~y-v). For yv ∈ [θ, τ), Lemma 4.2 implies that v is the
victim of w and, thus, v receives a compensation h(θ) from w. To sum up, we have

Eyv [αv] ≥ Eyv [αv · 1 (yv < θ)] + Eyv [αv · 1 (yv ∈ [θ, τ))] ≥
∫ θ
0 g(yv)dyv + (τ − θ)h(θ),

as claimed.

Lemma 4.4 Eyv [αu] ≥ θ · (1− g(τ)− h(τ)) + (1− θ) ·min{g(yu), 1− g(θ)− h(θ)}.

Proof: By assumption, u actively matches vertex z with rank yz = τ when yv < θ. Thus, u gains
1 − g(τ) during the gain sharing phase and gives away h(τ) to its victim (if any). Integrating yv
from 0 to θ gives the first term on the RHS.

For yv ≥ θ, u either is passive, or actively matches a vertex with rank at most θ. In the first
case, we have αu = g(yu). In the second case, we have αu ≥ 1− g(θ)− h(θ), by the monotonicity
of g, h. Integrating yv from θ to 1 gives the second term on the RHS.

Summing up the inequalities in Lemma 4.3 and 4.4 proves Lemma 4.1.
Comparing the bounds of Lemma 4.3 and Lemma 4.4, the parameter τ presents a trade-off

between the expected gains αu and αv of the two vertices. The larger τ is, the less u gets when v
is above its marginal rank, e.g., 1− g(τ)− h(τ), and the more v gets as compensations when it is
below its marginal rank, e.g., (τ − θ) · h(τ); and vice versa.

Charging Functions. If Lemma 4.1 holds unconditionally, it remains to show that there exists
functions g, h (with desired properties) and constant F > 0.5 such that∫ 1

0
min

0≤θ<τ<1

{∫ θ

0
g(yv)dyv + (τ − θ)h(θ) + θ · (1− g(τ)− h(τ))

+ (1− θ) ·min
{
g(yu), 1− g(θ)− h(θ)

}}
dyu ≥ F ,

and to apply Lemma 2.4 to conclude that Ranking is F -competitive. The unconditional version
of Lemma 4.1 turns out to give a more complicated bound due to the considerations of other
cases. Nevertheless, we can use a linear program to optimize the ratio over fine-grained discretized
versions of g and h. To give a rigorous proof, which is deferred to Appendix B.2, we approximate
the solutions of the linear program with piecewise-linear g and h (with two segments). We conclude
with our choice of g and h that Ranking is 0.5211-competitive.
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A Missing Proofs in Section 2

Proof of Lemma 2.1: For the first statement, since u is active or unmatched, we know that
for each neighbor v of u with an earlier deadline than u, v does not match u in M(~y) at their
deadlines. Hence when yu increases, they would make the same decision. In other words, when
u’s deadline reaches, the partial matching produced is the same as before. As a consequence, the
eventual matching produced would be identical, as u will actively match the same vertex as in
M(~y).

The second statement is implied by the first statement. Suppose otherwise, e.g., u is active or
unmatched when yu is decreased from y to some y′ < y. Then we know that by increasing yu from
y′ to y, u becomes passive, which violates the first statement.

Proof of Lemma 2.2: Consider the matching M(yv = θ, ~y-v). By definition, v is either active
or unmatched. Hence, at u’s deadline, which is earlier than v’s deadline, v is unmatched. Conse-
quently, u either is passive or matches actively to some vertex w with yw ≤ yv = θ. By Lemma 2.1,
there is no change in the matching when we increases yu, which concludes the proof.

Proof of Lemma 2.3: We prove the lemma by mathematical induction on n, the total number
of vertices. For the base case when n = 2, the symmetric difference is a single edge (u, u1) and the
second statement holds since u1 is matched in M(~y) and unmatched in M(~y-u).

Suppose the lemma holds for 1, 2, . . . , n− 1 and we consider the case when |V | = n.
Let u1 be matched to u in M(~y). Observe that if we remove both u and u1 from G (let

~y′ ∈ [0, 1]V \{u,u1} be the resulting vector), then we have M(~y) = M(~y′) ∪ {(u, u1)}.
If u1 is unmatched in M(~y-u), then we have M(~y-u) = M(~y′) and the lemma holds by induction

hypothesis. Now suppose u1 is matched in M(~y-u).
By definition ~y′ is obtained by removing u1 (which is matched in ~y-u) from ~y-u. By induction

hypothesis, the symmetric difference between M(~y-u) and M(~y′) is an alternating path (u1, . . . , ul)
such that (a) for all odd i < l, we have (ui, ui+1) ∈M(~y-u); for all even i < l, we have (ui, ui+1) ∈
M(~y′); (b) from M(~y-u) to M(~y′), vertices {u2, u4, . . .} get worse, vertices {u3, u5, . . .} get better.

Hence the symmetric difference between M(~y) and M(~y-u) is the alternating path (u, u1, . . . , ul)
(recall that M(~y) = M(~y′) ∪ {(u, u1)}). It is easy to see that statement (a) holds, and statement
(b) holds for vertices {u2, . . . , ul}.

Now consider vertex u1, which is matched to u in M(~y), and matched to u2 in M(~y-u).
If u1 is passively matched (by u) in M(~y), then we know that u has an earlier deadline than u1.

Hence in M(~y-u), either u1 is active, or passively matched by some u2 with a deadline later than
u. In other words, u1 gets worse from M(~y) to M(~y-u).

If u1 matches u actively in M(~y), then we know that u1 has an earlier deadline than u. Hence
when u1 is considered in ~y-u, the set of unmatched vertices (except for u) is identical as in M(~y).
Consequently, u1 actively matches some vertex u2 with yu2 > yu (otherwise u1 will not match u in
M(~y)). In other words, u1 gets worse from M(~y) to M(~y-u).

Proof of Lemma 2.4: Let α̃u := E~y [αu] /F for all u ∈ V . By the first assumption,

∑
u∈V

α̃u =
∑
u∈V

E~y [αu]

F
=

1

F
E~y

[∑
u∈V

αu

]
=

1

F
E~y

 ∑
(u,v)∈E

xuv

 .
Moreover, α̃ is a feasible dual solution: by the second assumption, α̃u+α̃v = E~y [αu + αv] /F ≥ 1
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for all (u, v) ∈ E. By duality, we conclude that

1

F
E~y

 ∑
(u,v)∈E

xuv

 =
∑
u∈V

α̃u ≥ OPT,

where OPT is the optimal primal solution, which is at least the size of a maximum matching.

B Missing Proofs in Section 4

B.1 General Version of Lemma 4.1

In this section we prove the following lemma, which is a general version of Lemma 4.1 (without the
simplifying assumptions on u, v we made in Section 4).

Lemma B.1 For any neighbor u of v that has an earlier deadline than v, and for any ~y-v, we have

Eyv [αu + αv] ≥ f(yu)
def
= min

θ

{
min
τ∈[θ,1)

{∫ θ

0
g(yv)dyv + min {(1− θ)(1− g(1-)− h(1-)), (τ − θ)h(θ)}

+(1− θ) min {g(yu), 1− g(θ)− h(θ)}+ θmin {g(yu), 1− g(τ)− h(τ)}
}
,∫ θ

0
g(yv)dyv + (1− θ) min{1− g(1-)− h(1-), h(θ)}+ (1− θ) min {g(yu), 1− g(θ)}

}
.

Fix any neighbor u of v with an earlier deadline than v, and any ~y-v. Let θ be the marginal
rank of v, i.e. v is passive only when yv < θ. By Lemma 2.2, we know that when yv ≥ θ, u either
is passive or actively matches some vertex with rank at most θ.

We define in the following two lists of thresholds {θi}m+1
i=0 and {τi}m+1

i=0 that captures the match-
ing statuses of u when yv is smaller than the marginal rank θ.

Imagine that we decrease yv continuously starting from yv = θ. Let θ0 = θ and τ0 = θ. We
define yv = θ-i+1 to be the first moment after θi when u actively matches some vertex zi+1 with
yzi+1 > τi. For convenience of description, we say that u actively matches a vertex with rank 1 if
u is unmatched (by definition, the gain of αu is 0 in both descriptions since 1− g(1) = 0). Define
τi+1 := yzi+1 . Let θm be the last non-zero threshold. For convenience, we define θm+1 = 0 and
τm+1 = 1. By definition we have the following fact.

Fact B.1 There exists a sequence of non-increasing thresholds {θi}m+1
i=0 and a sequence of non-

decreasing thresholds {τi}m+1
i=0 such that

1. for all 0 ≤ i ≤ m and y ∈ [θi+1, θi), u is passive or actively matches some vertex with rank at
most τi in M(yv = y, ~y-v);

2. for all 1 ≤ i ≤ m, u actively matches a vertex zi with rank τi in M(yv = θ-i , ~y-v).

For all i ∈ [m], let wi be be vertex that actively matches v in M(yv = θ-i, ~y-v).
Observe that all wi’s must be different, e.g. the deadline of wi+1 must be earlier than wi, in

order for wi+1 to match v in M(yv = θ-i+1, ~y-v). Moreover, we know that in M(yv = θ, ~y-v), each wi
matches a vertex with rank θi, since wi chooses v in M(yv = θ-i, ~y-v) but not in M(yv = θi, ~y-v).

Lemma B.2 For all y ∈ [θ, τi), if v is unmatched in M(yv = y, ~y-v), then v is the victim of wi.
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Proof: Let ~y1 = (yv = y, ~y-v), where y ∈ [θ, τi). Trivially, v is an unmatched neighbor of wi in
M(~y1). To prove that v is the victim of wi, it suffices to show that wi is active in M(~y1) and v
becomes matched when we remove wi from the graph.

Let ~y2 = (yv = θ-i, ~y-v). By definition, v is passively matched by wi and u actively matches zi
with yzi = τi in M(~y2). It is easy to see that wi is also active in M(~y1), as otherwise, wi should
still be passive in M(~y2) given that v does not affect any decisions before wi’s deadline.

Let ~y3 be the ranks by removing the wi-th entry from ~y1. Assume for contrary that v is
unmatched in M(~y3). Then we have M(~y3) = M(~y2) \ {(wi, v)}. This implies that u actively
matches zi in M(~y3) while v (with rank yv < yzi = τi) is unmatched, which is a contradiction.

Equipped with Lemma B.2, we first give a lower bound on the expected gain of αv. For
notational convenience, we define a new function φ : [0, 1]→ [0, 1] such that φ(y) := 1−g(y)−h(y).
Recall by definition of g and h, φ is a non-increasing function with φ(1) = 0.

Lemma B.3 Eyv [αv] ≥
∫ θ
0 g(yv)dyv + min {(1− θ)φ(1-),

∑m
i=0(τi − θ)h(θi)}.

Proof: By definition, v is passive when yv < θ. Hence we have Eyv [αv · 1 (yv < θ)] =
∫ θ
0 g(yv)dyv,

which corresponds to the first term on the RHS.
For all yv ≥ θ, v is either active or unmatched. In the first case, let p be matched passively

by v in M(yv, ~y-v). We know that v gains 1− g(yp) during the gain sharing phase and gives away
h(yp) to its victim (if any), which implies αv ≥ 1− g(yz)− h(yz) = φ(yz) ≥ φ(1-). Hence we have
Eyv [αv · 1 (yv ≥ θ)] ≥ (1− θ)φ(1-).

In the second case, by Lemma B.2, v is the victim of wi when yv ∈ [θ, τi). Hence v gains
h(θi) from wi in the compensation phase (recall that wi matches a vertex with rank θi when
yv ∈ [θ, τi)). Putting all compensation (from w1, . . . , wm) together, we get Eyv [αv · 1 (yv ≥ θ)] ≥∑m

i=0(τi − θ)h(θi), which corresponds to the second the term on the RHS.

Lemma B.4 Eyv [αu · 1 (yv < θ)] ≥
∑m

i=0(θi − θi+1) min {g(yu), φ(τi)}.

Proof: We partition the interval [0, θ) into m+ 1 segments: [θi+1, θi), for 0 ≤ i ≤ m. Fix any i,
and consider yv ∈ [θi+1, θi). If u is passive in M(yv, ~y-v), then we have αu ≥ g(yu). Otherwise, we
know that u actively matches a vertex z with yz ≤ τi (by Fact B.1). Hence u gains 1−g(yz) during
the gain sharing phase and gives away h(yz) to its victim (if any), i.e., we have αu ≥ φ(yz) ≥ φ(τi).
Summing up the gain from the m+ 1 segments concludes the proof.

Observe that for lower bounding Eyv [αu + αv], we shall consider the total gain of αu +αv. We
may omit the compensation from u to v, since it does not change the summation. For analysis
convenience, we assume v is never a victim of u.

Lemma B.5 Eyv [αu · 1 (yv ≥ θ)] ≥ (1 − θ) min{g(yu), φ(θ)}. Moreover, if τm = 1, then we have
Eyv [αu · 1 (yv ≥ θ)] ≥ (1− θ) min{g(yu), 1− g(θ)}.

Proof: For all yv ≥ θ, u is either passive or actively matches a vertex with rank at most θ.
Therefore, αu ≥ min{g(yu), φ(θ)}. Integrating yv from θ to 1 gives the first statement.

When τm = 1, we know that u is unmatched when yv = θ-m. Fix any ~y = (yv, ~y-v), where yv ≥ θ.
We show that u does not have any unmatched neighbor other than v in M(~y), which implies that
u does not have a victim and hence αu ≥ min{g(yu), 1− g(θ)}.

Suppose otherwise, let z 6= v be the unmatched neighbor of u in M(~y).
Let ~y1 = (yv = θ-m, ~y-v). We know that u is matched in M(~y) and unmatched in M(~y1).

Consider the partial matchings produced right after u’s deadline when Ranking is run with ~y and
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~y1, respectively. We denote the matchings by Mu(~y) and Mu(~y1), respectively. It is easy to see
that the symmetric difference between Mu(~y) and Mu(~y1) is an alternating path, with u being one
endpoint. Observe that v is matched in Mu(~y1) (as u is unmatched), and is unmatched in Mu(~y)
(as it is not passive in M(~y)). Hence v is the other end point of the alternating path. Consequently,
we know that z is unmatched in Mu(~y1) (as it is unmatched in Mu(~y)), which is a contradiction as
its neighbor u is also unmatched in Mu(~y1).

The next technical lemma shows that the worst case is achieved when there exists only one
threshold θm = θ, i.e. u matches some vertex with rank τ > θ in M(yv = θ-, ~y-v), and matches a
vertex with rank at most τ for all yv < θ.

Lemma B.6 Given that h(y)/y is a non-increasing function, we have

min

{
(1− θ)φ(1-),

m∑
i=0

(τi − θ)h(θi)

}
+

m∑
i=0

(θi − θi+1) min{g(yu), φ(τi)}

≥min
i

{
min {(1− θ)φ(1-), (τi − θ)h(θ)}+ θmin {g(yu), φ(τi)}

}
.

Proof: Consider the first term of LHS. If (1− θ)φ(1-) <
∑m

i=0(τi − θ)h(θi), we have

LHS ≥(1− θ)φ(1-) +
m∑
i=0

(θi − θi+1) min {g(yu), φ(τm)}

=(1− θ)φ(1-) + θmin {g(yu), φ(τm)} ≥ RHS.

If (1− θ)φ(1-) ≥
∑m

i=0(τi − θ)h(θi), we have

LHS =

m∑
i=0

(τi − θ)h(θi) +

m∑
i=0

(θi − θi+1) min{g(yu), φ(τi)}

=

m∑
i=0

(θi − θi+1)

(
τi − θ

θi − θi+1
h(θi) + min{g(yu), φ(τi)}

)

≥
m∑
i=0

(θi − θi+1)

(
τi − θ
θ

h(θ) + min{g(yu), φ(τi)}
)

≥
m∑
i=0

(θi − θi+1) min
j

{
τj − θ
θ

h(θ) + min{g(yu), φ(τj)}
}

= min
j

{
(τj − θ)h(θ) + θmin{g(yu), φ(τi)}

}
≥ RHS,

where the first inequality follows from τi−θ
θi−θi+1

h(θi) ≥ (τi − θ)h(θi)θi
≥ (τi − θ)h(θ)θ .

Proof of Lemma B.1: By Lemma B.3 and B.4, we have

Eyv [αv] + Eyv [αu · 1 (yv < θ)]

≥
∫ θ

0
g(yv)dyv + min

{
(1− θ)φ(1-),

m∑
i=0

(τi − θ)h(θi)

}
+

m∑
i=0

(θi − θi+1) min{g(yu), φ(τi)}

≥
∫ θ

0
g(yv)dyv + min

i

{
min{(1− θ)φ(1-), (τi − θ)h(θ)}+ θmin{g(yu), φ(τi)}

}
,

16



where the last inequality comes from Lemma B.6.
Combining with Lemma B.5 (which gives different lower bounds for Eyv [αu · 1 (yv ≥ θ)] de-

pending on whether τm = 1), we prove Lemma B.1 for two cases, depending on whether τm = 1.
If τm < 1, we have (recall that φ(θ) = 1− g(θ)− h(θ) ≤ 1− g(θ))

Eyv [αu + αv] = Eyv [αv] + Eyv [αu · 1 (yv < θ)] + Eyv [αu · 1 (yv ≥ θ)]

≥
∫ θ

0
g(yv)dyv + min

τ∈[θ,1)

{
min{(1− θ)φ(1-), (τ − θ)h(θ)}+ θmin{g(yu), φ(τ)}

}
+ (1− θ) min{g(yu), φ(θ)},

which corresponds to the first term of the outer most min in the expression of Lemma B.1.
If τm = 1, we have

Eyv [αu + αv] ≥
∫ θ

0
g(yv)dyv + min

τ∈[θ,1]

{
min{(1− θ)φ(1-), (τ − θ)h(θ)}+ θmin{g(yu), φ(τ)}

}
+ (1− θ) min{g(yu), 1− g(θ)}

≥min

{
min
τ∈[θ,1)

{∫ θ

0
g(yv)dyv + min{(1− θ)φ(1-), (τ − θ)h(θ)}+ θmin{g(yu), φ(τ)}

+ (1− θ) min{g(yu), φ(θ)}
}
,∫ θ

0
g(yv)dyv + (1− θ) min{φ(1-), h(θ)}+ (1− θ) min{g(yu), 1− g(θ)}

}
.

Taking the minimum over all possible θ’s concludes the proof.

B.2 Lower Bound of the Competitive Ratio

Recall that

f(yu)
def
= min

θ

{
min
τ∈[θ,1)

{∫ θ

0
g(yv)dyv + min {(1− θ)(1− g(1-)− h(1-)), (τ − θ)h(θ)}

+(1− θ) min {g(yu), 1− g(θ)− h(θ)}+ θmin {g(yu), 1− g(τ)− h(τ)}
}
,∫ θ

0
g(yv)dyv + (1− θ) min{1− g(1-)− h(1-), h(θ)}+ (1− θ) min {g(yu), 1− g(θ)}

}
.

We construct the functions g, h explicitly as follows (refer to Figure B.1).

g(x) =


k1gx+ b, x ∈ [0, t]

k2g(x− t) + k1gt+ b, x ∈ (t, 1)

1 x = 1

, h(x) =


k1hx, x ∈ [0, t]

k2h(x− t) + k1ht, x ∈ (t, 1)

0 x = 1

,

where t = 0.3, k1g = 0.21, k2g = 0.1, b = 0.46, k1h = 0.26, k2h = 0.17. It is easy to see that both g, h are
non-decreasing in [0, 1) and h(x)/x is non-increasing.
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Figure B.1: g(x) and h(x)

We first simplify the expression of f(yu). Recall that we define φ(y) = 1 − g(y) − h(y), which
is a decreasing function with φ(1) = 0. By definition of g, h stated above, we have φ(1-) = 0.21.

Observe that (1− θ)φ(1-) > (1− θ) · 0.197 = (1− θ)h(1-) ≥ (τ − θ)h(θ) for all τ, θ. Hence,

f(yu) = min

{
min
θ≤τ<1

ψ1(yu, θ, τ),min
θ≤1

ψ2(yu, θ)

}
,

where

ψ1(yu, θ, τ)
def
=

∫ θ

0
g(yv)dyv + (τ − θ)h(θ) + (1− θ) min {g(yu), φ(θ)}+ θmin {g(yu), φ(τ)} ,

ψ2(yu, θ)
def
=

∫ θ

0
g(yv)dyv + (1− θ)h(θ) + (1− θ) min {g(yu), 1− g(θ)} .

The following lemma implies that Ranking is 0.5211-competitive.

Lemma B.7
∫ 1
0 f(yu)dyu > 0.5211.

Proof: As we will show in Lemma B.8 and Lemma B.9 below, we have

f(yu) = min

{
min
θ≤τ<1

ψ1(yu, θ, τ),min
θ≤1

ψ2(yu, θ)

}
≥ min{g(yu), 0.5349}.

Let y∗u be such that g(y∗u) = 0.5349, we have∫ 1

0
f(yu)dyu =

∫ y∗u

0
f(yu)dyu +

∫ 1

y∗u

f(yu)dyu =

∫ y∗u

0
g(yu)dyu + (1− y∗u) · 0.5349 > 0.5211.

We first consider the easier one, ψ2.

Lemma B.8 For any θ ≤ 1, we have ψ2(yu, θ) > min{g(yu), 0.5349}.
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Proof: First, if θ = 1, we have ψ2(yu, θ) =
∫ 1
0 g(yv)dyv ≈ 0.5381 > 0.5349. Now consider θ < 1.

If g(yu) < 1− g(θ), we have ψ2(yu, θ) =
∫ θ
0 g(yv)dyv + (1− θ)h(θ) + (1− θ)g(yu). Thus

∂ψ2

∂θ
= g(θ) + (1− θ)h′(θ)− h(θ)− g(yu),

∂2ψ2

∂θ2
= g′(θ)− 2 · h′(θ) =

{
k1g − 2k2h = −0.31 θ < t

k2g − 2k2h = −0.24 θ > t
.

Hence the minimum of ψ2(yu, θ) is achieved at arg minθ<1{ψ2(yu, θ)} ∈ {0, t, 1-}. Note that

ψ2(yu, 0) = h(0) + g(yu) ≥ g(yu),

ψ2(yu, t) =

∫ t

0
g(yv)dyv + (1− t)h(t) + (1− t)g(yu) > t · 0.673 + (1− t) · g(yu) > g(yu),

ψ2(yu, 1
-) =

∫ 1

0
g(yv)dyv ≈ 0.5381 > 0.5349.

We have minθ<1{ψ2(yu, θ)} ≥ min{g(yu), 0.5349}, as claimed.

If g(yu) ≥ 1− g(θ), we have ψ2(yu, θ) =
∫ θ
0 g(yv)dyv + (1− θ)h(θ) + (1− θ)(1− g(θ)). Thus

∂ψ2

∂θ
= g(θ) + (1− θ)h′(θ)− h(θ)− (1− g(θ))− (1− θ)g′(θ),

∂2ψ2

∂θ2
= 3 · g′(θ)− 2 · h′(θ) =

{
0.11 θ < t

−0.04 θ > t
.

We calculate the zero point of ∂ψ2

∂θ in [0, t), i.e., let ∂ψ2

∂θ = 0, we have solution

θ∗ =
1 + k1g − k1h − 2b

3k1g − 2k1h
≈ 0.273.

(a) ψ2(yu, θ) (b) ∂ψ2
∂θ

Figure B.2: ψ2(yu, θ) and ∂ψ2

∂θ

Thus, for any fixed yu, ψ2(yu, θ) is decreasing in [0, θ∗] and increasing in (θ∗, t). So the minimum

of ψ2(yu, θ) in [0, t] is achieved at θ∗. Also, since ∂2ψ2

∂θ2
< 0 in (t, 1), the minimum of ψ2(yu, θ) in
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[t, 1) is achieved at either t or 1-. To sum up, the overall minimum is achieved at either θ∗ or 1-:

ψ2(yu, θ
∗) =

∫ θ∗

0
g(yv)dyv + (1− θ∗)h(θ∗) + (1− θ∗)(1− g(θ∗)) ≈ 0.5359 > 0.5349

ψ2(yu, 1
-) =

∫ 1

0
g(yv)dyv ≈ 0.5381 > 0.5349,

Thus we have minθ<1 ψ2(yu, θ) = min{ψ2(yu, θ
∗), ψ2(yu, 1

-)} > 0.5349, as required.

Next we consider ψ1.

Lemma B.9 For all θ ≤ τ < 1, we have ψ1(yu, θ, τ) > min{g(yu), 0.5349}.

Proof: If g(yu) ≤ φ(τ), then we have ψ1(yu, θ, τ) =
∫ θ
0 g(yv)dyv + (τ − θ)h(θ) + (1 − θ)g(yu) +

θg(yu) ≥ g(yu), as required. Now consider g(yu) > φ(τ). Observe that

∂ψ1

∂τ
= h(θ)− θ(g′(τ) + h′(τ)) ≤ 0,

where the last inequality holds since h(θ) ≤ k1hθ ≤ (k2g + k2h)θ ≤ (g′(τ) +h′(τ))θ for all τ . Thus, for
all τ we have ψ1(yu, θ, τ) ≥ ψ1(yu, θ, 1

-), i.e., the minimum is achieved when τ = 1-.
Depending on whether g(yu) ≥ φ(θ), we consider two cases. If g(yu) < φ(θ), we have

ψ1(yu, θ, τ) =

∫ θ

0
g(yv)dyv + (τ − θ) · h(θ) + (1− θ) · g(yu) + θ · φ(τ).

For any fixed θ, the minimum is achieved when τ = 1-, which is

ψ1(yu, θ, 1
-) =

∫ θ

0
g(yv)dyv + (1- − θ)h(θ) + (1− θ)g(yu) + θ · φ(1-)

≥
∫ θ

0
g(yv)dyv + (1− θ)h(θ) + (1− θ)g(yu) ≥ ψ2(yu, θ) ≥ min{g(yu), 0.5349},

where the last inequality follows from Lemma B.8. If g(yu) ≥ φ(θ), we have

ψ1(yu, θ, τ) =

∫ θ

0
g(yv)dyv + (τ − θ) · h(θ) + (1− θ) · φ(θ) + θ · φ(τ),

the minimum of which is achieved when τ = 1-. Define ψ(θ) to be the minimum:

ψ(θ)
def
= ψ1(yu, θ, 1

-) =

∫ θ

0
g(yv)dyv + (1- − θ) · h(θ) + (1− θ) · φ(θ) + θ · φ(1-)

=

∫ θ

0
g(yv)dyv + (1− θ) · (1− g(θ)) + θ · (1− g(1-)− h(1-)).

By the following, we have ∂ψ
∂θ > 0 for all θ ∈ (t, 1), i.e., ψ(θ) is increasing when θ ∈ (t, 1).

∂ψ

∂θ
= g(θ) + (1− θ)(−g′(θ))− (1− g(θ)) + 1− g(1-)− h(1-).

∂2ψ

∂θ2
= 3g′(θ) > 0, ∀θ ∈ [0, t) ∪ (t, 1)

∂ψ

∂θ

∣∣∣∣
θ=0

= 2g(0)− k1g − g(1-)− h(1-) ≈ −0.08 < 0

∂ψ

∂θ

∣∣∣∣
θ=t

= 2g(t)− (1− t)k2g − g(1-)− h(1-) = 0.186 > 0.
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(a) ψ(θ) (b) ∂ψ
∂θ

Figure B.3: ψ(θ) and ∂ψ
∂θ

Hence the minimum of ψ(θ) is achieved when θ ∈ (0, t]. Let ∂ψ
∂θ = 0, we have

∂ψ

∂θ
= g(θ)− (1− θ)g′(θ)− (1− g(θ)) + 1− g(1-)− h(1-) = 0

⇐⇒ 3k1gθ + 2b− g(1-)− h(1-)− k1g = 0.

⇐⇒ θ∗ =
k1g + g(1-) + h(1-)− 2b

3k1g
≈ 0.127.

Thus for all θ ≤ τ < 1, we have ψ1(yu, θ, τ) ≥ ψ(θ) ≥ ψ(θ∗) ≈ 0.5349, as claimed.

C Hardness Results

Proof of Theorem 1.3: Consider the following hard instance. Let k, h be integer parameters,
and n :=

∑h
i=0 k

i = kh+1−1
k−1 be the number of vertices on each side of a bipartite graph. In

the following, we construct a bipartite graph on vertices U ∪ V , where U = {u1, . . . , un} and
V = {v1, . . . , vn−kh , b1, . . . , bkh}. It is easy to check by our construction that the graph is bipartite,
but U, V does not correspond to the two sides of the bipartite graph.

Hard Instance. Refer to Figure C.1 (an illustrating example with k = 3 and h = 2). At the
beginning, vertex u1 arrives, together with all its k + 1 neighbors (children). Let the deadline
of u1 be reached immediately. Then we choose uniformly at random k vertices from the k + 1
neighbors of u1 to be u2, . . . , uk+1. Let the remaining vertex be v1. We repeat the procedure for
vertices u2, . . . , uk+1, i.e., each vertex ui has k + 1 children, among which k vertices are chosen to
be u(i−1)k+2 . . . , uik+1 while the remaining one becomes vi, and let the deadline of ui be reached
immediately. We continue building the tree for h levels. Note that in level i, there are ki vertices
(excluding the v vertices). Hence the tree with h levels has n vertices.

At last, we pick a random permutation A = (a1, a2, . . . , akh) of the kh vertices {un−kh+1, . . . , un}
at level h. Let vertices B = {b1, . . . , bkh} arrive (b1 arrives first and bkh last), such that bi is
connected to vertices ai, . . . , an, and the deadline of bi is reached immediately when it arrives.

Let the deadlines of vertices in A ∪ (V \B) be reached at the end.
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Level 2

Level 0

A

B

Figure C.1: Hard instance for any online algorithm: an illustrating example with k = 3 and h = 2.

Competitive Ratio. First observe that graph G has a perfect matching, by matching ui to vi
(for all i ∈ [n−kh]) and ai to bi (for all i ∈ [kh]). Now we consider any online algorithm. Note that
when the deadline of ui is reached, it is not worse to match ui if it has an unmatched neighbor:
if we do not match ui, then the symmetric difference is an alternating path, thus the number of
vertices matched does not increase. Hence we assume w.l.o.g. that all vertices in U \ A will be
matched eventually.

Let pi be the probability that a vertex ux from level i is matched when the deadline of its parent
uy in the tree is reached. Note that pi is also the probability that vy is matched, as vy is chosen

uniformly at random among the k + 1 children of uy. Observe that we have pi = 1−pi−1

k+1 , where
p0 = 1. It is easy to check (by induction) that for all i ≤ h, we have

pi =
1

k + 2

(
1−

(
−1

k + 1

)i)

Hence before vertex b1 arrives, each vertex from A is matched with probability ph. By the
standard water-filling algorithm, it is easy to see that the expected number of matched vertices
from B (at the end of the algorithm) is t such that

1

kh
+

1

kh − 1
+ . . .+

1

kh − t+ 1
= 1− ph =

k + 1

k + 2
+

1

k + 2

(
−1

k + 1

)h
.

When h tends to infinity, we have t ≈ (1− e−
k+1
k+2 ) · kh. Hence the competitive ratio is

2t+ |U \A|+ 1
k+2 |A|+

1
k+2 |V \B|

2n
=

2(1− e−
k+1
k+2 ) · kh · (k − 1) + kh − 1

2(kh+1 − 1)
+

1

2(k + 2)
,

which tends to k−1
k (1 − e−

k+1
k+2 ) + 1

2k + 1
2(k+2) when h tends to infinity. For k = 7, the ratio is

62
63 −

6
7 · e

− 8
9 ≈ 0.631745.

Proof of Theorem 1.4: Consider the following hard instance. Let k, h be integer parameters,
and n := k · h be the number of vertices on each side of a bipartite graph G. In the following,
we construct a bipartite graph on vertices U ∪ V , where U = {u1, . . . , un} and V = {v1, . . . , vn}.
As before, it is easy to check by our construction that the graph is bipartite, but U, V does not
correspond to the two sides of the bipartite graph.
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Hard Instance. Refer to Figure C.2. For all i ∈ [n], let ui be the only neighbor of vi. We
group every k consecutive vertices in U as a group, i.e., let U = ∪i∈[h]Ui, where the i-th group
Ui = {u(i−1)k+1, u(i−1)k+2, . . . , uik}. Let there be an edge between ui and uj if they are from two
consecutive groups, respectively. In other words, we form a complete bipartite graph between any
two consecutive groups Ui and Ui+1.

𝑢2

𝑣3

𝑢3

𝑣1

𝑢1

𝑣5

𝑢5

𝑣6

𝑢6

𝑣4

𝑢4

𝑣8

𝑢8

𝑣9

𝑢9

𝑣7

𝑢7

𝑣11

𝑢11

𝑣12

𝑢12

𝑣10

𝑢10

𝑈1 ∪ 𝑉1 𝑈2 ∪ 𝑉2 𝑈3 ∪ 𝑉3 𝑈4 ∪ 𝑉4

𝑣2

Figure C.2: Hard instance for Ranking: an illustrating example with k = 3 and h = 4: vertices in
U and V are represented by the solid black circles and white circles, respectively.

Let the deadline of vertex u1 be reached first, then u2’s deadline, u3’s deadline, etc.

Competitive Ratio of Ranking. It is easy to see that graph G has a perfect matching, by
matching ui to vi for each i ∈ [n]. Recall that in the Ranking algorithm, each vertex u is assigned a
random rank yu ∈ [0, 1). At the deadline of an unmatched vertex, it is matched to its unmatched
neighbor v (if any) with the smallest yv. Observe that in our instance, all vertices from U will be
matched eventually, while each vi ∈ V will be matched only if at the deadline of ui, ui is unmatched
and yvi is smaller than the ranks of all unmatched vertices from the next group Ud i

k
e+1.

For all i ∈ [h], let Xi ∈ {0, 1, · · · , k} be the number of unmatched vertices in Ui right before
the deadline of the first vertex u(i−1)k+1 in Ui is reached. It is easy to see that Xi+1 is a random
variable that depends only on Xi. Hence the sequence X1, X2, . . . , Xh forms a Markov chain (with
k+ 1 states) with initial state X1 = k. Observe that all vertices in U are matched, and the number

of vertices matched in Vi equals Xi +Xi+1−k. Hence the competitive ratio of Ranking ≈
∑
i∈[h]Xi
kh .

We say phase i begin when the deadline of the first vertex of Ui is reached, and end after the
deadline of the last vertex of Ui. Fix any phase i, where i < h. Recall that initially Xi vertices of
Ui are unmatched. Let Z(t) be the number of unmatched vertices in Ui+1, when the deadlines of
exactly t unmatched vertices in Ui have passed. We have Z(0) = k and Xi+1 = Z(Xi). Let y1 ≤
y2 ≤ · · · ≤ yk be the ranks of vertices in Ui+1. It is easy to see that E [Z(t+ 1)] = Z(t)− 1 + yZ(t).

Taking expectation over all yi’s, we have E [Z(t+ 1)] = E [Z(t)]− 1 + E[Z(t)]
k+1 . Let z( tk )

def
= Z(t)

k . It

is easy to see when k → ∞, z( tk ) → e−
t
k . This is saying, given Xi, E [Xi+1] = k · e−

Xi
k when k

tends to infinity.
Finally, note that all vertices in Ui+1 are symmetric. Hence, each of them is unmatched at the

end of phase i with probability E[Xi+1]
k = e−

Xi
k . Moreover, for any two vertices ua, ub ∈ Ui+1, the

probability that ua is unmatched at the end of phase i is negatively correlated with the probability
of ub: conditioned on ub being unmatched at the end of phase i, the probability of ua being
unmatched is smaller. Thus we have measure concentration bound on Xi+1, by standard argument
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using moment generation function. In other words, the stationary distribution (when k and h tends
to infinity) converges to a single point mass with,

X

k
= e−

X
k ,

which implies X
k ≈ 0.56714, the Omega constant, which is also the competitive ratio of Ranking.
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