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ABSTRACT
It is common practice for data scientists to acquire and in-
tegrate disparate data sources to achieve higher quality re-
sults. But even with a perfectly cleaned and merged data
set, two fundamental questions remain: (1) is the integrated
data set complete and (2) what is the impact of any unknown
(i.e., unobserved) data on query results?

In this work, we develop and analyze techniques to esti-
mate the impact of the unknown data (a.k.a., unknown un-
knowns) on simple aggregate queries. The key idea is that
the overlap between different data sources enables us to es-
timate the number and values of the missing data items.
Our main techniques are parameter-free and do not assume
prior knowledge about the distribution. Through a series
of experiments, we show that estimating the impact of un-
known unknowns is invaluable to better assess the results of
aggregate queries over integrated data sources.

1. INTRODUCTION
In the past few years, the number of data sources has in-

creased exponentially because of the ease of publishing data
on the web, the proliferation of data-sharing platforms (e.g.,
Google Fusion Table [19] or Freebase [15]), and the adop-
tion of open data access policies, both in science and govern-
ment. The success of crowdsourcing [11, 13, 30, 29, 38, 2, 51,
16] provides another virtually unlimited source of informa-
tion. This deluge of data has enabled data scientists, both
in commercial enterprises and in academia, to acquire and
integrate data from multiple data sources, achieving higher
quality results than ever before. It is therefore not surpris-
ing that industry and academia alike have developed highly
sophisticated systems and tools to assist data scientists in
the process of data integration [28]. However, even with a
perfectly cleaned and integrated data set, two fundamental
questions remain: (1) do the data sources cover the com-
plete data set of interest and (2) what is the impact of any
unknown (i.e., unobserved) data on query results?

1.1 Unknown Data
In this work, we develop techniques to estimate the impact

of the unknown data on aggregate queries of the form SELECT

AGGREGATE(attr) FROM table WHERE predicate.
We assume a simple data integration scenario, as depicted

in Figure 1. Several domain-related data sources are inte-
grated into one database, preserving the lineage information
for each data item or record. Naturally, these data sources
overlap with each other, but even when put together they
might not be complete. For example, all data sources in
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Figure 1: Simple data integration scenario where multiple
data sources overlap but are not necessarily complete.

Figure 1 might list U.S. tech companies but some smaller
companies might not be mentioned in any of the sources.
This data integration scenario applies to a wide range of
use cases ranging from crowdsourcing (where every crowd-
worker can be considered a single data source [13]) to data
extraction from web pages.

Estimating the impact of the unknown data (data items
that are not observed in any data source) is particularly
difficult as we neither know how many unique data items
are missing and their values; thus, we deal with unknown
unknowns. This characteristic distinguishes our work from
what is generally known as missing data, or known unknowns,
estimation in Statistics [1, 43, 40], which tries to estimate the
value of unknown (missing) attributes for known records. At
a first glance, it may seem impossible to estimate the impact
of unknown unknowns; however, for a large class of data in-
tegration scenarios, the analysis of overlap of multiple data
sources makes it feasible.

1.2 A Running Example
To demonstrate the impact of unknown unknowns, we

pose a simple aggregate query to calculate the number of all
employes in the U.S. tech industry, SELECT SUM(employees)

FROM us_tech_companies, over a crowdsourced data set. We
used techniques from [13] to design the crowdsourcing tasks
on Amazon Mechanical Turk (AMT) to collect employee
numbers from U.S. tech companies.1 The data was manually
cleaned before processing (e.g., entity resolution, removal of
partial answers). Figure 2 shows the result.

The red line represents the ground truth (i.e., the total
number of employees in the U.S. tech sector) for the query
[39], whereas the grey line shows the result of the observed
SUM query over time with the increasing number of re-
ceived crowd-answers. The gap between the observed and

1More precisely, we only asked for companies with a pres-
ence in Silicon Valley, as we found it provides more accurate
results (see also Section 6).
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Figure 2: Employees in the U.S. tech sector

the ground truth is due to the impact of the unknown un-
knowns, which gets smaller at a diminishing rate as more
crowd-answers arrive.

While the experiment was conducted in the context of
crowdsourcing, the same behavior can be observed with other
types of data sources, such as web pages. For instance, sup-
pose a user searches the Internet to create a list of all solar
energy companies in the U.S. The first few web pages will
provide the greatest benefit (i.e., more new solar compa-
nies), while after a dozen web pages the benefit of adding
another web page diminishes as the likelihood of duplicates
increases. The rate of increasing overlap of data sources is
indicative of the completeness of the data set.

1.3 A Naïve Solution
The same type of diminishing effect is also known as the

Species Accumulation Curve in Ecology [47], where the rate
of new species discovered decreases with increasing cumula-
tive effort to search. Measuring species richness (i.e., count-
ing species) is critical in many ecological studies. Plotting a
Species Accumulation Curve provides a way to estimate the
number of additional species to be discovered.

These species estimation techniques lay the foundation for
estimating the impact of unknown unknowns on aggregate
query results. A näıve solution for the SUM query from
Section 1.2 would be to first estimate the number of un-
known data items using species estimation techniques [46]
and then use mean substitution to estimate their value [37].
This assumes that the missing items have on average the
same attribute value as the observed (known) data items.

The näıve approach has a couple of drawbacks. First,
species estimation has very strict requirements on how data
is collected. Almost every data integration scenario violates
these requirements, causing the estimator to significantly
over/underestimate the number of missing data items.

Second, it ignores the fact that the attribute values of the
missing items may be correlated to the likelihood of observ-
ing certain data items. For example, large tech companies
like Google with many employees are often more well known
and thus, appear more often in data sources than smaller
start-ups, creating a biased data set. This is problematic as
it also biases the mean and with it the estimate.

In the statistics literature, this second problem is referred
to as Missing Not At Random (MNAR) [37, 43], where the
missingness of a data item depends on its value. There are
many statistical inference techniques dealing with MNAR [1,
10, 9, 1, 52, 40], but nearly all the techniques require at least
partial knowledge of the record. For example, in the case of
surveys, people with a high salary might be more reluctant
to report their salary but have no problem stating their home
address or how many children they have. Existing MNAR
techniques use the reported values (e.g., the address) to infer
the missing attributes. Unfortunately, this is not possible in
the case of unknown unknowns, as we miss the entire record.

1.4 Contributions
This work is a first step towards developing techniques

to estimate the impact of the unknown unknowns on query
results. Our focus is on simple aggregate queries, especially
SUM-aggregates, but we also touch upon other aggregations
like COUNT, AVG, MIN, and MAX. We design techniques
that can deal with the peculiarities of the data integra-
tion scenarios discussed before, such as uneven contributions
from different sources (bias of data sources).

In this work, we use crowdsourced data sets because they
are easier to collect, but the techniques are general and ap-
ply to almost all data integration scenarios that combine
overlapping data sources. While we do not argue that the
proposed techniques can predict black-swan-like data items
(i.e., extremely rare data items), we will show that our tech-
niques can provide useful estimates under more “normal”
circumstances, which we will define more formally. For in-
stance, in the example of Figure 2 we can get an almost
perfect estimate of the impact of the unknown unknowns af-
ter only 350 crowd-answers. In addition, by building upon
recent work on the Good-Turing estimator [31], we are able
to provide an upper bound for our estimates under easy to
understand conditions. In summary we make the following
contributions:
• We formalize the problem of estimating the impact of un-

known unknowns on query results and describe why ex-
isting techniques for species estimation and missing data
estimation are not sufficient.
• We develop techniques to estimate the impact of the un-

known unknowns on aggregate query results.
• We derive a first upper bound for SUM-aggregate queries.
• We examine the effectiveness of our techniques via exper-

iments using both real and synthetitc data sets.
In the following, we first formalize our problem statement

(Section 2), presents techniques to estimate the impact of
unknown unknowns for sum-queries (Section 3) and propose
an upper bound estimate (Section 4). Section 5 extends
these techniques then to other aggregate functions and in
Section 6 we evaluate our techniques, followed by related
work and conclusion.

2. THE IMPACT OF UNKNOWN
UNKNOWNS

In this Section, we define unknown unknowns, explain how
data integration over multiple sources can be regarded as a
sampling process and formally define our estimation goal.
For convenience Appendix A contains a symbol-table.

For the purpose of this work, we treat data cleaning (e.g.,
entity resolution, data fusion, etc.) as an orthogonal prob-
lem. Any data cleaning techniques [1, 12, 22, 34, 35, 33]
can be applied to our problem without altering the problem
context. While data quality can influence the estimation
quality, studying it goes beyond the scope of this paper [46].
We assume that after a proper data cleaning process we have
one instance per observed entity and know exactly how many
times the entity was observed across multiple data sources.

2.1 Unknown Unknowns
We assume that queries are of the form SELECT AGGRE-

GATE(attr) FROM table WHERE predicate, that table only
contains records about a single entity class (e.g., companies)
and that a record in table corresponds to exactly one real-



Figure 3: A sampling process for the integrated database.

world entity (e.g., IBM). Thus, in the remainder of the paper
we use record, entity and data item interchangeably.

Definition 1. (Unknown Unknowns) Let Ω be the uni-
verse of unknown size of all valid unique entities r for a
given entity class and attrA(r) be the value of attribute A of
r. Then the ground truth D ⊆ Ω is defined as a set of entities
that satisfy the predicate, i.e., D = {r ∈ Ω | predicate(r)},
where its size N = |D| is not known. Let S be a sample with
replacement from D and c be the number of unique entities
in S. Unknown unknowns U refers to any unobserved entity
r that exists in D but not in S: U = D−S with size N − c.

For our running example, Ω would be the universe of all
companies in the world, D all tech companies in the US and∑
r∈D attrempl(r) be the true number of U.S. tech sector em-

ployees. S would be a sample with duplicates and unknown
unknowns would be every company which is not in S.

What we aim to achieve is a good estimate of the ground
truth: SELECT AGGREGATE(attr) FROM D, when we only have
S. Note, that we drop the predicate from the query, since
every item in D already has to fulfill the predicate. In this
work, we assume that we neither know all entities in D nor
its size (i.e., open world assumption). This distinguishes our
problem from the problem of missing data [37, 43, 44], which
refers to incomplete data or missing attribute values.

2.2 Data Integration As Sampling Process
Data integration refers to the process of combining dif-

ferent data sources under a common schema [12]. For the
purpose of this work, we assume that data sources are inde-
pendent samples (e.g., data source are not copies from each
other and instead are independently created), and we model
the data integration process as a multi-stage sampling pro-
cess as shown in Figure 3.

We assume l data sources s1...sl, each sampling nj = |sj |
data items from the ground truth D (e.g., the complete set
of tech companies in the US with their respective number of
employees), without replacement, as a data source typ-
ically only mentions a data item once. We assume further
that every data item di ∈ D has a publicity likelihood pi
of being sampled, following some distribution X. Likewise,
the attribute values (e.g., the number of employees) have
a certain likelihood to appear in the ground truth, referred
to as value likelihood, again following some distribution Y .
These two distributions are possibly correlated making the
publicity-value correlation bigger or smaller than 0: ρ 6= 0.

The data sources l are then integrated into a single in-
tegrated data set S of size nS =

∑l
j=1 nj . Although each

source samples without replacement from N = |D| differ-
ent classes (i.e., unique data item), S contains duplicates
because every data source is sampling from the same under-
lying truth D. If l is sufficiently large, S approximates
a sample with replacement from D, which is the reason
why species estimation techniques work in the first place (we
analyze the effects of smaller l in Section 3.4 and 6). The
number of unique data items c in S is likely to be smaller
than N . In contrast, the end-user only sees a view of S,
referred to as the integrated database K (for Known data),
which contains only one entity per unique entity in S.

This data integration model covers a large class of use
cases from web integration to crowdsourcing. In the latter
case, each crowd worker can be regarded as a separate data
source sj as it is known that workers also sample without re-
placement from D [46]. While extremely powerful, there are
scenarios where this sampling model does not apply. Most
importantly, data sources are not always independent [24].
Furthermore, the number of data sources l has to be large
enough to have sufficient overlap between the sources (see
Section 6). If any of these assumptions are violated, then
only low-quality estimations are possible.

2.3 Problem Statement
We are interested in estimating the impact of unknown

unknowns (U) to adjust aggregate query results.

Definition 2. (The Impact of Unknown Unknowns) Given
an integrated database K, the impact of unknown unknowns
is defined as the difference between the current answer φK
of the aggregate query over the database K and the answer
over the ground-truth φD:

∆ = φD − φK (1)

Our goal is to estimate the answer on the ground-truth
by estimating ∆ based on S:

φ̂D = φK + ∆̂(S) (2)

Note that this definition works for all common aggregates
including MIN and MAX, where ∆̂ would be the positive or
negative adjustment to the observed MIN /MAX value.

3. SUM QUERY
In this section, we focus on SUM-aggregates to illustrate

our estimation techniques. We first formalize the näıve esti-
mator (Section 3.1), which was informally introduced in the
introduction. We then develop the frequency estimator by
making näıve estimator more robust to the publicity-value
correlation (Section 3.2). Afterwards, we describe the more
sophisticated bucket estimator (Section 3.3). Finally, we de-
velop a Monte-Carlo estimator which is better suited for a
smaller set of data sources (Section 3.4).

3.1 Naïve Estimator
Estimating the impact of unknown unknowns for SUM

queries is equivalent to solving two sub-problems: (1) esti-
mating how many unique data items are missing (i.e., the
unknown unknowns count estimate), and (2) estimating the
attribute values of the missing data items (i.e., the un-
known unknowns value estimate). The näıve estimator uses
the Chao92 [7] species estimation technique to estimate the
number of the missing data items, and mean substitution
[37] to estimate the values of them.



Let φK =
∑
r∈K attr(r) be the current sum over the inte-

grated database, then we can more formally define our näıve
estimator for the impact of unknown unknowns as:

∆naive =
φK
c︸︷︷︸

Value estimate

· (N̂ − c)︸ ︷︷ ︸
Count estimate

(3)

N̂ is the estimate of the number of unique data items in the
ground truth D, and c is the number of unique entities in
our integrated database K (thus, N̂−c is our estimate of the
number of the unknown data items). φK/c is the average
attribute value of all unique entities in our database K.

3.1.1 Chao92 estimator
Throughout the paper, we use the popular Chao92 es-

timator. Many species estimation techniques exist [3, 6],
but we choose Chao92 since it is more robust to a skewed
publicity distribution. The Chao92 estimator uses sample
coverage to predict N̂ . The sample coverage C is defined
as the sum of the probabilities pi of the observed classes.
Since the true distribution p1...pN is unknown, we estimate
C using the Good-Turing estimator [14]:

Ĉ = 1− f1/n (4)

The f -statistics, e.g., f1, represent the frequencies of ob-
served data items in the sample, where fj is the number of
data items with exactly j occurrences in the sample. f1 is
referred as singletons, f2 doubletons, and f0 as the missing
data [4]. Sample coverage measures the ratio between the
number of singletons (f1) and the sample size (n). This ra-
tio changes with the amount of duplicates in the sample.
The high-level idea is the more duplicates that exist in our
sample S compared to the number of singletons f1, the more
complete the sample is (i.e., higher sample coverage).

In addition, the Chao92 estimator explicitly incorporates
the skewness of the underlying distribution using coefficient
of variance (CV ) γ, a metric that is used to describe the
dispersion in a probability distribution [7]. A higher CV
indicates a higher variability among the pi values, while a
CV = 0 indicates that each item is equally likely (i.e., the
items follow a uniform distribution).

Given the publicity (p1 · · · pN ) that describe the proba-
bility of the i-th class being sampled from D, with mean
p̄ =

∑
i pi/N = 1/N , CV can be expressed as follows:

γ =

[∑
i

(pi − p̄)2/N

]1/2

/ p̄ (5)

However, since pi is not available for all data items, CV has
to be estimated using the f -statistic:

γ̂2 = max

{
c

Ĉ

∑
i i(i− 1)fi

n(n− 1)
− 1 , 0

}
(6)

The final Chao92 estimator for N̂Chao92 can then be for-
malated as:

N̂Chao92 =
c

Ĉ
+
n(1− Ĉ)

Ĉ
· γ̂2 (7)

3.1.2 The Estimator
N̂Chao92 is our estimate for N , and comparing this to c

provides us with a means of evaluating the completeness of
S. By substituting N̂Chao92 for N̂ , the final näıve estimator
can be written as:

∆naive =
φK
c
· (N̂Chao92 − c) =

φK · f1 ·
(
c+ γ̂2n

)
c · (n− f1)

(8)

Note, that the näıve estimator does not consider any publi-

city-value correlation and thus tends to over- or under-estimate
the ground truth.

3.2 Frequency Estimator
We developed a simple variation of the näıve estimator,

which makes direct use of the frequency statistics to improve
estimation quality. All coverage-based species estimation
methods give special attention to the singletons f1; the data
items observed exactly once. The idea is that those items,
in relation to the sample size n, give a clue about how well
the complete population is covered. A ratio of f1/n close to
1 means that almost every sample is unique, indicating that
many items might still be missing. Conversely, a ratio close
to 0 indicates all unique values have been observed several
times, decreasing the likelihood of any unknown data. We
use a similar reasoning to improve our value estimation. The
key idea is that singletons are the best indicator of missing
data items, and that their average value might be a better
representation of the values of the missing items. Let φf1 be

the sum of all singletons,
∑
r∈singletons attr(r) and N̂Chao92

again be the Chao92 count estimate. Then the estimator
can be defined as:

∆freq =
φf1
f1
· (N̂Chao92 − c) =

φf1
(
c+ γ̂2n

)
n− f1

(9)

While this estimator still does not directly consider the
publicity-value correlation, it is more robust against popu-
lar high-impact data items (i.e., data items with extreme
attribute values). For example, in our running employee
example, big companies that are highly visible like Google
or IBM can significantly impact the known value estimate
φK/c. However, through using the average value of the sin-
gletons, φf1/f1, it is reasonable to assume that those compa-
nies will not stay as singletons very long in any sample and
thus will not impact the average value for the unknown un-
knowns. This estimator is surprisingly simple and becomes
even simpler if we assume γ̂2 = 0:

∆freq =
φf1 · c
n− f1

(10)

Note, that γ̂2 = 0 makes it a Good-Turing estimate, which
also converges to the ground truth even for skewed publicity
values; it might just take a bit longer [7]. While ∆freq is
not the best estimator (see Section 6) the simplicity makes it
still useful to quickly test if an aggregate query result might
be impacted by any unknown unknowns.

3.3 Bucket Estimator
The problem with the previous two estimators is that they

do not directly consider a correlation between publicity and
attribute values. We designed the bucket as a first estimator
designed for unknown unknowns with publicity-value corre-
lation. The idea of the estimator is to divide the attribute
value range into smaller sub-ranges called buckets, and treat
each bucket as a separate data set. We can then estimate
the impact of unknown unknowns per bucket (e.g., large,
medium, or small companies) and aggregate them to the
overall effect:

∆bucket =
∑
i

∆(bi) (11)

Here ∆bi refers to the estimate per bucket and both the
frequency or näıve estimator could be used. Using buckets
has two effects: First, it provides a more detailed estimate
on what types of companies are missing and related to that,
second, the value variance per bucket decreases, making the
estimate less prune to outliers (e.g., items with extreme low



and high values can be “contained” in separate buckets).
The challenge with the bucket estimator is to determine

the right size for each bucket. If the bucket size is too small,
the bucket contains almost no data items. In an extreme
case of having a single data item per bucket, no count or
proper value estimation is possible. If the bucket size is too
big, then the publicity-value correlation can still bias the es-
timate. In fact, the case with a single bucket is equivalent to
using just the näıve or frequency estimator. In the following
we describe two bucketing strategies.

3.3.1 Static Bucket
An easy way to define buckets is to divide the observed

value range into a fixed nb number of buckets of size wi:

wi =
(amax − amin)

nb
(12)

where amin (amax) refers to the min (max) observed at-
tribute value. Afterwards we apply ∆naive per bucket. It
is important to note that the estimate goes to infinite with
buckets which only contain singletons due to division-by-
zero (n − f1 = 0, see equation 8), which can significantly
increasing the error of the estimate for very small buckets.

Unfortunately, the optimal number of buckets varies de-
pending on the underlying publicity distribution (see Ap-
pendix B). When the publicity distribution is more skewed
and correlated to attribute values, some static buckets may
contain too few data items, whereas others contain more
than enough. The true publicity distribution is not known
and we cannot predetermine the right number (or size) of
static buckets. To this end, we found that static buckets
based estimation is of little practical value.

3.3.2 Dynamic Bucket
To overcome the previously mentioned issues, we devel-

oped several alternative statistical approaches to determine
the optimal bucket boundaries over time. The most no-
table are our uses of the error estimate/upper bounds from
Section 4 and of treating f1 as a random variable (see also
Section 3.5). Surprisingly, we achieve the best performance
across all our real-world use cases and simulations using a
rather simple conservative approach, referred to as ∆Dynamic.

The core idea behind our dynamic strategy ∆Dynamic is
to sort the attribute values of S and then recursively split the
range into smaller buckets only if it minimizes the estimated
impact of unknown unknowns, i.e., the absolute ∆ value. In-
tuitively, this is controversial since either under- or overes-
timation could be better for different use cases. However,
there is a more fundamental reason behind this strategy.

The Foundation: Whenever we split a data set into
buckets, each bucket contains less data than before the split,
and the chance of an estimation error increases due to the
law of large numbers (i.e., the less data the higher the po-
tential variance) [31, 27]. To illustrate this, we consider the
simplest case of a uniform publicity distribution (γ̂ = 0) and
an even bucket split. In this case, we can show that the
Chao92 estimate for N̂ is bigger or equal to the Chao92 N̂
before the split:

N̂Chao92 =
c

1− f1/n
=

Before split︷ ︸︸ ︷
n · c
n− f1

≤ nb1 · cb1
nb1 − f1b1

+
nb2 · cb2
nb2 − f1b2︸ ︷︷ ︸

After split

(13)

When we split the data exactly into halves, it follows that

Algorithm 1: Dynamic bucket generation

Input : S
Output: List of buckets

1 b0 = (minV alue(S),maxV alue(S)) ; /* init bucket b0 */
2 todo = [b0]; /* list with b0 */
3 δmin = abs(∆(b0)) ; /* ∆ estimate over b0 */
4 bkts = [] ; /* final bucket list */
5 while !todo.empty do
6 b = todo.pop ; /* remove first element */
7 δtmp = δmin − abs(∆(b));
8 tmp = (null, null) ; /* Empty pair */
9 for unique r ∈ b do

10 (t1, t2) = split(b, r.value) ;
11 if δmin > δtmp + abs(∆(t1)) + abs(∆(t2)) then
12 δmin = δtmp + abs(∆(t1)) + abs(∆(t2));
13 tmp = (t1, t2);

14 end

15 end
16 if tmp 6= (null, null) then
17 todo.add(t1, t2);
18 else
19 bkts.add(b);
20 end
21 end

22 return bkts;

cb1 = cb2 = c/2 (i.e., we split in regard to the unique val-
ues). With a uniform publicity distribution, every item is
equally likely, and therefore we can assume that both buck-
ets contain roughly the same amount of data after the split:
nb1 = nb2 ≈ n/2. However, in contrast to n and c, the
number of singletons (f1) can vary significantly between the
buckets. In fact, we know that the estimators only stabi-
lize if every item was observed several times [7] and as a
consequence n has to be significantly larger than c and c
significantly larger than f1 (n � c � f1). Therefore, the
variance of f1 is relatively higher than the one of n or c be-
tween the buckets and if we split, there is a higher chance
that we unevenly distribute the f1 among the buckets.

To model the uneven distribution of f1 we introduce an-
other parameter α ∈ [0, 1] and set f1b1 = α · f1 and f1b2 =
(1−α)·f1. As a result the inequality in equation 13 becomes:

n · c
n− f1︸ ︷︷ ︸

Before split

≤
n
2
· c

2
n
2
− α · f1

+
n
2
· c

2
n
2
− (1− α) · f1︸ ︷︷ ︸

After split

(14)

Appendix C shows that the right hand side of the above
inequality has its global minimum at α = 0.5, which evalu-
ates to nc/(n− f1) (N̂ before split), and that the inequality
always holds. Thus, it can be seen that splitting a data set
into buckets not only potentially increases the error, but it
does so in a monotonic way.

Yet, this does not mean that the sum estimate ∆ always
increases as well. Especially with a publicity-value corre-
lation, the overall estimate of ∆ over all buckets can still
decrease as the average attribute values per bucket differ.
This is in-line with our original motivation to use buckets,
as we wanted to get a more detailed unknown unknowns
estimate (e.g., how many small companies vs. large compa-
nies are missing). Bringing these two observations together,
we can assume for many real-world use cases that when-
ever our estimate of the impact of unknown unknowns ∆
increases after a split, it has a significant chance of being
caused by the increasing error in N̂ , whereas when it de-
creases it potentially improves the estimate due to the more



detailed unknown estimate. While it does not always have
to be the case (e.g., if the publicity-value correlation is nega-
tive) it is still an indicator for many real-world use cases (see
Section 6). Based on the observations, we have devised the
conservative bucket splitting strategy: only split the bucket
if the overall estimate for ∆ is minimized.

The Algorithm: Algorithm 1 shows the final algorithm.
First we add a bucket which covers the complete value range
of S to the todo list (line 2) and calculate the current ∆
over S (line 3). Note that we take the absolute values of
all estimates (∆) to underestimate the impact of unknown
unknowns even for the case of having negative attribute val-
ues (e.g., net losses of companies). Afterwards, we check
recursively if we can split the bucket to minimize ∆ until no
further “underestimation” is possible (line 5-21).

We therefore remove the first bucket from the todo list
(line 6) and calculate the ∆ over S without the impact of
this bucket b (line 7). Note, that during the first iteration
δtmp will be 0. Afterwards, for every unique record in b, we
split the current bucket b into two temporary buckets t1 and
t2 based on the record’s attribute value (line 10). If the re-
sulting estimate using this split is bigger than any previously
observed minimums (line 11), we set the new minimum to
this value (line 12) and temporally store the new buckets
(line 13). When the for-loop of line 9-15 finishes and if at
least one new bucket was found (line 16), tmp will contain
the new split point, which minimizes δ for the bucket, and
δmin the new minimum value of δ. Those buckets are then
added to the todo list (line 17) to be checked, if splitting
them again would further lower the estimate. On the other
hand, if tmp is empty, the algorithm wasn’t able to further
split the bucket and the current bucket without any addi-
tional splits is added to the final bucket list (line 19). If no
buckets are left in the todo list, the algorithm terminates
and bkts contains the final list of buckets.

3.4 Monte-Carlo Estimator
As our experiments show, the previous estimator actually

performs very well (see Section 6). However, what it does
not consider is the effect of uneven contributions from data
sources (i.e., one data source contains much more data than
another) and the peculiarities of the sampling process it-
self. The Chao92 species estimation, like almost all other
estimators, assumes sampling with replacement, whereas our
data sources sample without replacement from the underly-
ing ground truth. The reason why the Chao92 still works
is, that with a reasonably high number of data sources the
integrated data source S approximates a sample with re-
placement [46]. However, with either a small number of
data sources or uneven contributions from sources (i.e., some
sources are significantly bigger than others), S diverges sig-
nificantly from a sample done with replacement, resulting in
significant over- or under-estimation. In the case of crowd-
sourcing, the workers which provide significantly more data
items than other workers, are referred to as streakers [46].

To address these issues, we present a Monte Carlo-based
(MC) estimator for N̂ . The idea is that we simulate the sam-
pling process to find the best distribution with its population
size N , which best explains the observed sample including
how many items sj every data source j contributes. More
formally, given (s1, ..., sl) what we seek is a set of parameters
Θ (e.g., the distribution parameters) for the MC simulation,
which minimize some distance function Γ between the ob-

Algorithm 2: Monte Carlo method

Input : θN̂ , θλ, S, [n1, ..., nl], nbRuns
Output: Average distance

1 E = dist(θN̂ , θλ); /* publicity of N̂ items */

2 Γ = 0.0; /* default value */

3 for i = 1 to nbRuns do
4 Q = []; /* simulated model */
5 for j = 1 to l do
6 si = sample(nj , E); /* w/o repl */
7 Q.add(si);

8 end
9 (FS , FQ) = indexing(S,Q);

10 F ′S = smooth(FS , FQ);

11 Γ += klDiv(F ′S , FQ); /* KL-divergence */

12 end

13 return Γ/nbRuns;

served data S and the simulated data QΘ:

argmin
Θ

Γ(S,QΘ|l, [s1, ..., sl]) (15)

In the following we first describe the MC method for gen-
erating QΘ with given Θ, the distance function Γ, and finally
the search strategy to find the optimal parameter Θ.

3.4.1 Monte-Carlo Method
In contrast to the other estimators, the Monte-Carlo es-

timator requires an assumption about the shape of the un-
derlying publicity distribution; in this work, we use an ex-
ponential distribution for publicity, from which data source
j samples nj data items. Accordingly, the parameter Θ has
two components: θN specifies the assumed number of data
items, and θλ governs the shape (skew) of publicity distribu-
tion. Note, that the assumption of the exponential distribu-
tions makes the MC method a parametric model. The goal
of the MC simulation is to determine how well θN and θλ
help to explain the observed S.

Algorithm 2 shows our MC algorithm. First, we use an
exponential distribution with skew θλ to sample publicity
(p1 · · · pN̂ ) for θN̂ items (line 1). And then we initialize the
distance to 0 (line 2). Afterwards we repeat the following
procedure nbRuns times. For every data source (line 5)
we sample nj data items according to E, but also without
replacement (line 6). The sampled items are added to Q
to form a histogram (line 7) for the particular run. After
simulating l sources, Q contains the simulated version of S.

To finally compare the simulated sample Q with the ob-
served sample S, we make use of the discrete KL-divergence
metric [23]. However, this requires transforming S and Q
into a frequency statistic and indexing them to ensure that
the right items are compared with each other (line 9).

After the indexing we have two comparable frequency
statistics for S and the simulation: FS and FQ. However,

S might contain less than N̂ unique data items, for which
the KL-divergence is not defined. We therefore adjust FS
and assign a small non-zero probability to the missing extra
unique items (line 10). Finally, the two frequency statistics
can be compared using the standard KL-Divergence metric
and added to the total distance (line 11) and after all the
simulation runs the average distance is returned (line 13).

3.4.2 Search Strategy
We can now simulate the observed sampling process lead-

ing to S, but we still need a way to find the optimal Θ,
which best explains the observed sample S. The difficulty
is, that even though the KL-divergence cost function is con-



Algorithm 3: Monte-Carlo based N̂ estimation

Input : [s1, ...sl],c, ˆNChao92,nbRuns

Output: Estimated number of unique data items, N̂

1 DKL = []; /* KL-divergence */
2 n = sizes([s1, ..., sl]); /* [n1, ..., nl] */

3 ΘN̂ = [c :
(N̂Chao92−c)

10
: NChao92];

4 Θλ = [−0.4 : 0.1 : 0.4];

5 for θN̂ ∈ ΘN̂ do
6 for θN̂ ∈ Θλ do
7 Γ = monteCarlo(θN̂ , θλ, n, nr); /* Alg 2 */

8 DKL.add(Γ);

9 end
10 end

11 p = curveF it(ΘN̂ ,Θλ, DKL, 2); /* 2-D curve fit */

12 [N̂, λ] = arg min{p(N̂, λ)}
λ∈[−0.4,0.4],N̂∈[c, ˆNChao92]

; /* min on the curve */

13 return N̂ ;

vex, the integer variable N̂ prevents us from using tractable
optimization algorithms (e.g., gradient descent). Further-
more, the the distance function can be quite sensitive to
small amounts of noise in D.

We therefore make the estimator more robust by first per-
forming a grid search for Θ (line 5-10). We vary θN between

c ≤ N̂ ≤ N̂Chao92 with a step-size (N̂Chao92 − c)/10 and θλ
between −0.4 ≤ λ ≤ 0.4 (i.e., almost no to heavy skew) with
a step-size 0.1 (line 2 and 3). The step sizes are chosen to
be small enough to efficiently model the convex curve, but
large enough to be robust to any noise. Afterwards, we fit a
two-dimensional curve using least-squares curve fitting (line

11) and return the N̂MC with the minimum DKL on the
fitted curve as the final count estimate (line 11).

Finally, to estimate the total difference, we use our näıve
estimation technique with N̂MC . The estimate is more ro-
bust and over-estimates less than the original näıve esti-
mator as our MC method always penalizes any unmatched
unique items in Q. In other words, the MC estimator fa-
vors solutions where N̂ is closer to the number of observed
unique items c.

3.5 Other Estimators
During the course of developing the above estimators,

we explored various alternatives. For example, we exper-
imented with alternative static bucket strategies (see also
Appendix B). Most importantly though, we noticed that
many proposed techniques can actually be combined. For
instance, we can use the frequency estimator, instead of the
näıve estimator, with the bucket (i.e., Dynamic Bucket ap-
proach) estimator or the Monte-Carlo estimator. More in-
terestingly, we can also combine the Monte-Carlo estimator
with the bucket estimator. However, as the Monte-Carlo es-
timator requires large sample sizes to be accurate, we found
that it often decreases the estimation quality. Similarly, we
found that the difference between the näıve and frequency
estimators does not help much for the bucket approach (see
Appendix D). For the experiments we therefore focus on the
original techniques rather than the various combinations and
included the other results in the appendix.

4. ESTIMATION ERROR UPPER BOUND
In this section, we derive an estimation error upper bound,

specifically, the worst case estimation error of the näıve es-

timator (Equation 3). The same upper bound can easily be
applied to each bucket in the bucket estimator, as well as
the Monte-Carlo estimator.

To estimate the impact of unknown unknowns on SUM
query results we multiply the estimate for the number of
unknown data with the estimate of the values. Hence, we
define the worst case estimate as the product of the worst
case unknown data count and the worst case value estimate.

The Chao92 count estimation is based on sample cover-
age plus a correction for the skew γ̂ > 0. Recent work
proposed a tight error bound of the Good-Turing estimator
for the ground truth unknown unknowns distribution mass
(M0) [31]:

M0 ≤
f1

n
+ (2
√

2 +
√

3) ·
√

log 3/ε

n
(16)

which holds with probability at least 1−ε over the choice
of the sample with n = |S|. The confidence parameter ε
governs the tightness of this bound (we use ε = 0.01 for 99%
confidence). Based on equation 16, we bound Chao92:

N̂Chao92 =
c

Ĉ
+
n(1− Ĉ)

Ĉ
· γ̂2

≈ c

Ĉ
=

c

1−M0

≤ c

1− ( f1
n

+ (2
√

2 +
√

3) ·
√

log log 3/δ
n

)

(17)

Notice, that we can omit γ̂ as it only makes the Chao92 con-
verge faster, but does not influence the asymptotic estimate,
which is based on the sample coverage.

As the distribution of the mean substitution (φK
c

) tend to
a normal distribution (Central Limit Theorem), we define
the worst case estimate of the ground truth attribute mean
value (φD

N
) with the help of the sample standard deviation

(σK): φD
N
≤ φK

c
+ z · σK (18)

Here z controls the confidence of the bound, and we use
z = 3 based on the three-sigma rule of thumb [49] to have
nearly all values with 99.95% confidence lie below the upper
bound. The final upper bound is then the simple multiplica-
tion of the two worst case estimators (we present the results
in Section 6.4):

∆bound =
(φK
c

+ z · σK) · c

1− ( f1
n

+ (2
√

2 +
√

3) ·
√

log log 3/δ
n

)
(19)

5. OTHER AGGREGATE QUERIES
In this section we describe how the same techniques for

SUM-aggregates can be applied to other aggregates for esti-
mating the impact of the unknown unknowns.

COUNT: Estimating COUNT is easier than SUM as it
only requires estimating the number of unknown data items,
but not their values. For instance, one could either directly
use the Chao92 estimator or the techniques proposed in [46].
In addition, the bucket and Monte-Carlo approaches can be
used simply by skipping the second step, i.e., not multiplying
the estimated count with the value estimates.

AVG: The simplest way to estimate the AVG with un-
known unknowns is to use the AVG over the observed sam-
ple S (i.e., the law of large numbers). This is reasonable
because of the law of large numbers. However, S might
be biased due to a publicity-value correlation and need to
be corrected. One way to deal with the bias is to use our
bucket approach with a simple modification on how the ∆b

per bucket are aggregated (e.g., weighted average of averages



by the number of unique data items (N̂Chao92) per bucket).
MAX/MIN: At a first glance, it seems impossible to es-

timate MIN or MAX in the presence of unknown unknowns.
However, we can still do better than simply returning the ob-
served extreme values by reporting when we believe that the
observed minimum or maximum value is the true extreme
values. This is already very helpful in many integration sce-
narios and easy to do with our bucket estimator. The strat-
egy divides the observed value range of S into consecutive
sub-ranges (i.e., buckets); the number of unknown unknowns
as well as their values are estimated per bucket. If the es-
timated unknown unknowns count in the highest (lowest)
value range bucket is zero, then we say that we have ob-
served the true maximum (minimum) value and only then
report the highest (lowest) value.

6. EXPERIMENTS
We evaluated our algorithms on several crowdsourced and

synthetic data sets to test their predictive power. Crowd-
sourcing allowed us to generate many real data sets and
avoided the licensing issues which often comes with other
data sources. We designed our experiments to answer the
following questions:
• How does the estimation quality between the different

estimators compare on real-world data sets?
• What is the sensitivity of our estimators in regard to

data skew (publicity-value correlation) and streakers/im-
balance of data sources?
• How useful is the upper bound?
• How early are accurate MIN/MAX estimates possible?

6.1 Real Crowdsourced Data
We evaluated the estimation techniques on a number of

real-world data sets, each gathered independently using Ama-
zon Mechanical Turk, following the guidelines in [13]. Here
we chose four representative data sets and four aggregate
queries, which show different characteristics we encountered
during the evaluation.
1. US tech revenue & employment: For the query: how

much revenue does the US tech industry produce?, i.e.,
SELECT SUM(revenue) FROM us_tech_ companies, we used
the crowd to collect US2 tech company names and rev-
enues. Similarly, in an independent experiment we asked
for US tech company names and number of employees, in
order to answer the question: how many people does the
US tech industry employ?, i.e., SELECT SUM(employees)

FROM us_tech_companies. We selected the two data sets
as they exhibit a steady arrival of unique answers from
crowd workers.

2. US GDP: As a proof-of-concept experiment, we asked
crowd workers to enter a US state with its GDP. This
data set suffered from streakers.

3. Proton beam: Together with researchers from the field
of Evidence Based Medicine (EBM) (group-name omit-
ted for double blind reviewing) we created a platform
for abstract screening and fact extraction and spent over
$6,000 on AMT, to screen articles about 4 different topics.
Here we utilize the results on one of these, namely Pro-
ton beam: a set of articles on the benefits and harms of
charged-particle radiation therapy for patients with can-

2
We asked for companies in Silicon Valley to get a representative

sample of US tech companies; without restrictions we received too
many tiny computer shops and even non-US based companies.

Figure 4: The best US tech-sector employment

cer. Part of the abstract screening asked workers to sup-
ply the number of patients being studied. The question
we aim to answer is how many people, in total, partici-
pated in these type of studies: SELECT SUM(participants)

FROM proton_beam_studies. This data set and research
question is grounded in a real world problem and unlike
the other queries, this one does not have a known answer.

We paid between 2 and 35 cents per task. For the Pro-
ton beam experiment we designed a qualification test and
introduced hidden control tests to filter out bad workers (
reference is omitted for double blind reviewing), the other
experiments were done without qualification tests. For the
purposes of this study, we performed data cleaning manu-
ally: if workers disagreed on the value (e.g., the number of
employees of a company) we used the average.

In the following we describe the results for every data set
and the following estimators: Näıve (naive) (Section 3.1),
frequency (Freq) (Section 3.2), bucket (Bucket) (Section 3.3),
and Monte-Carlo (MC) (Section 3.4) estimators (other es-
timators did not perform that well or had the same perfor-
mance and are only shown in Appendix B and D).

6.1.1 US Tech-Sector Employment
Figure 4 shows the SUM estimates from the different es-

timators (colored lines) for our running example SELECT

SUM(employees) FROM us_tech_companies as well as the ob-
served SUM (grey line) over time (i.e., with an increasing
number of crowd-answers). As the ground-truth (dotted
black line) we used the US tech sector employment report
from the Pew Research Center [39].

Both the näıve and frequency estimators heavily overesti-
mate the impact of unknown unknowns. The frequency esti-
mator does slightly better than the näıve estimator, which
indicates that some big companies have a high publicity like-
lihood and were observed early on by several sources.

In contrast, the MC estimator does well until it falls back
to the observed query result. This can be explained by a
peculiarity of this experiment. After roughly 280 crowd-
provided data item, all remaining companies have a rather
uniform publicity likelihood. In such a case, the MC es-
timator has a tendency to favor count estimates, which are
similar to the number of observed items: N̂MC ∼ c. A major
drawback of our MC estimation technique.

Finally, the bucket estimator provides the best estimate
(4053160.57 at 500 crowd answers), which is only ∼ 2.5%
above the ground truth (3951730). While it is possible that
the bucket estimator might require more data to converge, it
is also possible that the ground truth is inaccurate: the em-
ployment statistics can vary widely based on many factors
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Figure 5: Real data experiments with aggregate SUM query

(e.g., inclusion of part-time employees, tech sector defini-
tion). We also speculate that there exist many smaller US
tech start-ups that might be overlooked by survey research
agencies, due to the high data collection cost. In contrast, a
school of crowd workers can more easily find smaller start-
ups and their number of employees on web-pages. Thus, the
bucket estimate could be closer to the ground truth than the
one by the Pew Research Center. This is an astonishing re-
sult as the cost of crowdsourcing (e.g., $50.00 per 500 crowd-
answers for US tech revenue & employment experiments) is
probably only a small fraction of the cost of survey research
by any major agency.

6.1.2 US Tech-Sector Revenue
Figure 5(a) shows the results for the US tech-sector rev-

enue. In this data set, both the näıve and the frequency
techniques overestimate the ground truth significantly be-
cause of the publicity-value correlation. While both estima-
tors will eventually converge to the ground truth, it requires
significantly more crowd-answers than what we collected.

Again, both Monte-Carlo and bucket estimators provide
better estimates than näıve and frequency estimators .Yet,
Monte-Carlo still overestimates, whereas bucket gives an al-
most perfect estimate after 240 answers. However, it can
also be observed that the bucket estimator slightly over-
estimates at the end of the experiment. This happens be-
cause one crowd-worker suddenly reported a few unique smaller
companies causing the estimator to believe that there were
more. Again, we cannot say with 100% certainty that our
assumed ground-truth is actually the real ground truth and
the bucket estimate might or might not be the real value.

6.1.3 GDP per US State
Figure 5(b) shows the estimate quality for our GDP exper-

iment. To clean the data, we substituted the crowd reported
GDP values with the values from [50]. This experiment suf-
fered from streakers, i.e., uneven contributions from crowd
workers. A single crowd-worker reported almost all answers
in the beginning; this kind of aggressive behavior results in
unusually high f1, which throws off the estimators.

As the figure shows, only the Monte-Carlo based technique
can actually deal with streakers and provides a reasonable
estimate even in the beginning. However, it should also be
noted that all estimators converge after 60 samples (for N =
50). Furthermore, except for the Monte-Carlo estimator,
there is no difference between the other estimators.

6.1.4 Proton Beam
Finally, results for Proton beam are shown in Figure 5(c).

Again the Monte-Carlo estimator follows the observed line,

which makes the estimates less interesting. Furthermore, we
suspect that the näıve and the frequency estimators overes-
timate with constantly increasing number of unique data
items (reviewed articles). By manually examining the data
set, we confirm that this crowdsourcing experiment did not
encounter any streakers, which may cause our estimators
(e.g., bucket) to fail. Note that the bucket estimator con-
verges to roughly 95k, which we consider to be the best
estimate of the number of participants for this particular
type of cancer therapy effectiveness study.

6.1.5 Discussion
Overall, our bucket estimator has the highest accuracy.

The only exception is when streakers are present, making
the Monte Carlo to perform better. However, it should also
be noted, that the run-time of the Monte-Carlo estimator
is significantly higher than the other estimators. While not
a serious issue for our experiments (roughly 3.5s for Monte-
Carlo vs. 0.2s for bucket), it could be significant for larger
data sets, as the run-time scales linearly with sample size
(the inner loop in Algorithm 2 depends on the sample size).
In the remainder we analyze the different estimators in more
depths using simulation and make final recommendations
about which estimator to use at the end of the section.

6.2 Synthetic Data Experiment
To explore the estimation quality more systematically,

we used a synthetic data set with N = 100 unique items,
each having a single attribute-value ranging from 10 to 1000
(attr = 10, 20, 30, ..., 1000). We further simulated the sam-
pling process outlined in Section 2 and used an exponential
distribution with parameter λ to model various publicity dis-
tributions ( λ = 0: uniform; λ = 4: highly skewed). Finally,
our simulation allowed us to vary the publicity-value corre-
lation ( ρ = 0: no correlation; ρ = 1: perfect correlation -
the most frequent item also has the largest value).

Figure 6 shows the results for various synthetic data ex-
periments, each of which is repeated 50 times and the re-
sults averaged (we omit the error bars for better readability).
From left to right, we vary the number of simulated crowd-
workers (i.e., sources) from w = 100, 10 to 5. From top to
bottom, we first assume no publicity skew and no publicity-
value correlation (λ = 0, ρ = 0), a for species estimation
techniques often ideal scenario, we then show the more re-
alistic scenario with skew and publicity-value correlation
(λ = 4, ρ = 1), and finally simulate an environment where
some rare items might contain high values (λ = 4, ρ = 0).

Ideal: Looking at the top-left figure with a uniform pub-
licity distribution and a hundred workers, we can see that



Figure 6: Synthetic data with varying number of sources (w), degrees of publicity skew (λ) & publicity-value correlation (ρ).

all estimators perform very well from the beginning. This
is not surprising as all estimators work best with sampling
with replacement from a uniform publicity distribution; hav-
ing many workers sampling without replacement from a uni-
form distribution approximates sampling with replacement.
With fewer numbers of workers sampling from the uniform
distribution (top row), all estimators start to overestimate
slightly. We conclude, that under the ideal conditions (i.e.,
the original assumptions of species estimation technique) all
estimators perform equally well.

Realistic: The middle row shows the scenarios which
best resemble real-world use cases as it considers a skewed
publicity distribution with a positive publicity-value correla-
tion. In this case, the bucket estimator always provides the
best estimates. However, in contrast to the real-world ex-
periments the frequency estimator also performs well. This
is due to a couple of reasons: Firstly, the publicity is highly
skewed and perfectly correlated to the values. Secondly, the
item values are evenly spaced. This helps the frequency es-
timator to under-estimate as singletons consist of only rare
low-valued items from the tail – a peculiarity of this simula-
tion. Also interestingly, with 5 evenly contributing workers
almost all estimators perform about the same. However,
the bucket estimator has less variance (not shown). We con-
clude, that under the more realistic conditions the bucket
estimator performs the best and does not over-estimate the
value.

Rare events: Finally, we see in the bottom row that
the bucket estimator is not the best choice. This is the case
where we have skewed publicity, but no publicity-value corre-
lation. In fact, all estimators perform poorly in this scenario,
even with a lot of data sources (d). As the publicity distri-
bution tail can take on any values (i.e., no publicity-value
correlation, the tail (i.e., singletons) can contain many high-

impact values or “black-swan” events. In this case, because
it conservatively favors underestimation, the bucket estima-
tor performs worse. In summary, none of the estimators
are able to predict black-swan events or the long tail; all the
estimators underestimate the ground truth.

6.3 Streakers
We have seen in Section 6.1.3 that the estimators can

heavily overestimate in the presence of streakers. We now
examine the effects of streakers using the synthetic data set
with n = 20, λ = 1.0 and ρ = 1.0.

First, we consider an extreme case where each source suc-
cessively provides all N = 100 data items; first, one data
source contributes n = 100 items and then the second source
starts to contribute its n = 100 items, and so on. Figure 7(a)
shows that Monte-Carlo simply defaults to the observed sum
from one source (n = 100), whereas all other estimators fail.
This is because of the fact that all Chao92-based estimators
assume a sample with replacement; an assumption which is
strongly violated in this case. Only Monte-Carlo is more ro-
bust against streakers as it tries to best explain the observed
S using simulation.

Next, we consider a more moderate case where we inject a
single streaker (i.e., an overly ambitious crowd-worker). In
Figure 7(b) a streaker is injected at the sample size n = 160,
contributing all N = 100 unique data items directly af-
terwards. Similar to the previous case, all estimators, ex-
cept Monte-Carlo, heavily overestimate in the presence of a
streaker. Again, the reason is that Monte-Carlo uses simu-
lation to explain the observed sample S instead of assuming
that S was created using sampling with replacement.

6.4 Other Queries & Upper Bound
In this subsection we present results for other aggregate

queries than SUM using the techniques from Section 5. As



(a) streakers only (b) a streaker injected at n = 160 (c) upper bound
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Figure 7: Streaker effect (a-b), estimation upper bound (c), AVG query (d) and aggregate MAX/MIN queries (e)(f) experi-
ments using a synthetic data (λ = 1.0, ρ = 1.0: larger values are more likely)

before we use synthetic data with 100 unique data items
(e.g., with values {10, 20, 30, ..., 1000}) integrated over 20
sources with λ = 1.0 and a publicity-value correlation ρ =
1.0. The experiments are repeated 1000 times.

AVG: Figure 7(c) shows the observed (gray line) and
estimated (blue line) for a simple average query of the form
SELECT AVG(attr) FROM table. We only show the bucket
estimation, as other estimates exactly overlap the observed
AVG query results (i.e., when all unknown unknowns as-
sume the same observed mean value, the AVG query result
is the same as the observed). As with the sum-aggregates,
our dynamic bucket estimator is able to correct the bias of
the average because of the publicity-value correlation and
provides an almost perfect estimate in this scenario.

MIN/MAX: Figure 7(d-e) compactly visualizes the ob-
served MIN or MAX query results. The heat-map shows
when the real MIN/MAX value was observed in the data set
(the darker the color the more often the result was observed
given a number of samples over the 1000 repetitions). The
green line shows on average, which value was reported if the
unknown unknowns count estimate for the highest (MAX) /
lowest (MIN) bucket was zero. The text next to the green
line shows how often over the 1000 repetitions the MIN/-
MAX value was reported for a given sample size. As it can
be seen the average is almost perfect for both MAX and MIN
(note the actual minimum value is 10). That is, whenever
our estimation technique for MAX/MIN reports a value the
user can have more trust in it. It should be noted tough,
that it is impossible to estimate rare extreme values (black
swans). Thus, it is only possible to improve upon the confi-
dence but not eliminate any doubts in the results.

Upper Bound: Finally in Figure 7(f) we show the upper-
bound from Section 4 using the same synthetic data set.
As it can be seen, the bound is very loose (i.e., very large
compared to our estimates) and becomes more tight as we
observe more data. We observed the same behavior over
the real-world data sets (omitted due to space constraints).
While the upper bound provides a valuable insight, it may
still be too loose for many real-world scenarios and we hope
to improve it in the future.

6.5 Summary

Which Estimator To Use While the Monte Carlo or
bucket estimators always dominate all the others, there is
no clear winner between them. The bucket estimator per-
forms exceptionally well unless the data sources are imbal-
anced. It provides the best performance on the real-world
use cases (except on the GDP experiment, which suffers from
streakers); furthermore, it performs at least as good as other
estimators in the simulations from Section 6.2 (except for
the rare event case, in which all estimators fail to predict
black-swan events). However, when the data sources are
imbalanced the Monte Carlo estimator wins.

The reason is, that the bucket estimator is a sample coverage-
based method as it uses Chao92 and thus, a nonparametric
model, which does not require assumptions about the un-
derlying distribution. However, it assumes a single sample
without replacement. This assumption is not an issue as
long as enough independent data sources exists (using sim-
ulations we found that 5 sources are often sufficient, see
Appendix E) and every data source contributes evenly to S
(i.e., there are no streakers).

In contrast, the Monte-Carlo estimator is a form of a Data-
Analytic Methods and really good at adjusting to the specif-
ically observed sampling scenario (i.e., streakers), but at a
cost of being a parametric model. The method assumes an
exponential distribution to model the publicity distribution,
which can be good or bad depending on the true shape of the
underlying distribution. Thus, our recommendation is to use
the bucket estimator, when the analyst knows that enough
data sources contribute evenly to the sample, and, other-
wise, to use the more conservative Monte Carlo method.

While theoretically the bucket estimator should be fairly
accurate early on, the authors of [7] found that the Chao92
estimator is inaccurate with very low sample coverage C
(i.e., observed items are mostly singletons) and reported re-
sults for cases with C ≥ 0.395 only. Based on that result,
we make the general recommendation to use the estimates
if the predicted sample coverage Ĉ (Equation 4) is greater
than 40%.

Trust In The Results With any types of estimators
the main question arises: How can we trust the estimate?
In 1953, Good, who worked with Turing on the estimators,
already pointed out that“I don’t believe it is usually possible



to estimate the number of species ... but only an appropriate
lower bound to that number. This is because there is nearly
always a good chance that there are a very large number
of extremely rare species”[3]. In estimating the Impact of
unknown unknowns, this statement is even more critical as
the rare items can have extreme values.

Yet besides this obvious risks and assumptions, species es-
timation techniques are extensively used in biology and even
helped to decipher the Enigma machine [14]. We actually
believe that it comes down to a simple question: What do
you trust more? A potentially wrong answer as no missing
data is considered or a potentially wrongly corrected result.
Now knowing, that with enough sources and no imbalance
of sources, our bucket estimator rather under- than over-
estimates, it can generally be said that it can only improve
the answer (see the simulations and real-world experiments).
With imbalance of and/or only a few data sources, the an-
swer is less clear, as the estimators also more often over-
estimate, even the conservative Monte Carlo technique (e.g.,
see Figure 5(b)). Thus, the true answer lies probably some-
where in between. With the help of our upper bound, we can
give the user at least a value range and an idea where the
true value might be. It should be noted though, that the
upper bound requires also two new assumptions: an item
probability of at least 1− ε and that the value mean follows
a normal distribution, which in some rare cases might be
violated. Still we believe, knowing something is wrong and
a best guess, where the true value might be, is better than
staying on the blind-side. In this work, we made a first step
in the direction, while a lot remains to be done from de-
veloping more tighter bounds, better ways to deal with the
imbalance of sources, and easier ways to convey the meaning
(and assumptions) of the estimates to the user.

7. RELATED WORK
Traditional query processing assumes the database to be

complete (i.e., closed world assumption). Furthermore, nearly
all sampling-based query processing techniques assume knowl-
edge of the population size [18]; hence, none of these are
suitable for our problem with unknown unknowns. To the
best of our knowledge, this is the first work on estimating
the impact of the unknown unknowns on query results (i.e.,
aggregate query processing in the open world).

Species estimation: Most related to this work are the
various species estimation techniques, like Chao92 [7, 5, 3].
Recent work [48] in this area even tries to estimate the shape
of the population (e.g., support size, N). We could use these
techniques in place of Chao92 to estimate the number of
unknown unknowns, but not to directly estimate the impact
of unknown, as the shape does not concern the values of
unknown unknowns.

Species estimation techniques have also been used to es-
timate the size of search engine indexes and the deep web
[25]. The problem is similar to our unknown unknowns count
estimation, and the most common technique (i.e., capture-
recapture) is also based on the species estimation techniques
[26]. However, they again do not consider the unknown un-
knowns value.

Species estimation techniques have also been used in the
context of distinct value estimation for a database table [18,
8]. However those techniques leverage the knowledge of the
table size to avoid over-estimation.

Survey Methodology & Missing Data: There is a

vast body of literature on sampling-based statistical infer-
ences to estimate population statistics [45, 32, 20] or tech-
niques to deal with missingness of values [43, 1, 10, 9, 52].

However, unknown unknowns are different from the miss-
ing data; missingness refers to the case when the record is
known, but one (or more) of the values/attributes is miss-
ing. In addition, most of the techniques assume to know the
population size to categorize something as missing (e.g., a
registered subject participates and leaves before the study
completes, a subject deliberately returns an empty ques-
tionnaire, only this many subjects out of that many people
responded, etc.) and, to some extent, knowing the cause of
missingness (e.g., missing completely at random, missing at
random, missing not at random) to select appropriate tech-
niques. Moreover, the statistical inference techniques, e.g.,
multiple imputation based EM/maximum likelihood estima-
tion [1, 10], propensity score estimation [9], or Markov Chain
Monte Carlo simulation [1, 52]) used to fill the missing vari-
ables, require the known non-missing attributes of the record
with missing values to be able to use an inference model. In
the case of unknown unknowns, these assumptions are vio-
lated as the entire record (i.e., all attributes) are missing.

Missing data is also well studied in databases [40, 37, 21];
however, as traditional RDBMS query processing function
under the closed world assumption, they do not consider un-
known unknowns as part of the query processing and largely
consider it a data cleaning aspect.

Recent works [21, 41] defined database completeness in
a partly open world semantic (i.e., database can be incom-
plete, which causes incorrect query results) and use the com-
pleteness information to denote the completeness of query
results. Similar in spirit to our work, they investigate the
impact on query results of entire database records that may
be missing [41]; however, they also assume the knowledge of
population size (e.g., there are 7 days in a week, there are
this many cities in France) to define the completely missing
records and measure the completeness.

Sampling-Based Query Processing: To cope with
aggregates over large data sets, sampling based estimation
techniques have been proposed as part of query processing
[36, 17, 42]. One limiting aspect of any sampling based esti-
mation techniques, though, is that they assume a complete
database (i.e., closed world).

8. CONCLUSION
Integrating various data sources into a unified data set is

one of the most fundamental tools to achieve high quality
answers. However, even with the best data integration tech-
niques, some relevant data might be missing from the inte-
grated data set. In this work, we have developed techniques
to quantify the impact of any such missing data on simple
aggregate query results. The challenge lies in the fact that
the existence and the value of the missing data is unknown.
To our knowledge, this is the first work on estimating the
impact of unknown unknowns on query results.

By nature, our techniques cannot predict black swan events
(i.e., extremely rare data items) due to a heavily skewed
publicity distribution. However, based on our evaluation re-
sults, we believe that the proposed techniques can provide
valuable insights for users; rather than blindly believing the
closed-world query result, the user gets an idea of what the
impact of unknown unknowns might be.

There are several interesting future directions. Currently,



none of our estimators provides the best performance under
all circumstances. The Monte-Carlo estimator is very robust
against streakers, whereas the bucket estimator provides the
most accurate results, if no streakers are present. How to
develop a robust estimator in all scenarios remains an im-
portant area for future work. Similarly, developing a tighter
upper-bound for aggregate queries would be of great value.
Finally, extending the proposed techniques for more com-
plex aggregate queries (e.g., with joins) also remains open
for future work.

This work is an important step towards providing higher
quality query results. After all, we live in a big data world
where even an integrated data set over multiple sources is
possibly incomplete.
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APPENDIX
A. SYMBOL TABLE

Ω Universe of all valid entities (unknown size)
r A valid unique entity or data item
D Ground truth or the underlying population
S Observed sample of size n = |S|, with duplicates
K Integrated database with only unique entities from S
U Unknown unknowns that exist in D, but not in S or K
M0 Unknown unknowns distribution mass in D
c The number of unique data items in S; c = |K|
sj Source j with nj = |sj | data items
N The size of the ground truth; N = |D|
φ The aggregated query result: e.g., φD (over D)
∆ The impact of unknown unknowns: ∆ = φD − φK
fj A frequency statistic, i.e., the number of data items

with exactly j occurrences in S.
F The set of frequency statistics, {f1, f2, ..., fn}
ρ The correlation between publicity and value distribut-

ions, i.e., publicity-value correlation
γ Coefficient of variance (data skew measure)
C Sample coverage, also C = 1−M0

Table 1: Symbols

B. STATIC BUCKET BASED ESTIMATOR
In Section 3.3.1, we state that the optimal number of buck-

ets depends on the underlying publicity distribution. Here,
we elaborate on this with the two examples.

Figure 8: The best US tech-sector employment estimation
with static buckets. Splitting into more buckets improves
estimation. Eq-width (6-bkt, 10-bkt) are missing due to
some of the buckets are empty.

Figure 8 shows the US tech-sector employment estimates
by various estimators: Naive (1-bucket), Bucket (a.k.a.,

Dynamic Bucket), and Static Bucket (Eq-width and Eq-
height). In this particular example, splitting into more buck-
ets improves estimation, as the underlying publicity distri-
bution is skewed and correlated to the values (i.e., larger
companies are more well known).

Figure 9: Sum(1:10:1000) estimation with static buckets.
Splitting less (e.g., Naive) improves estimation. Data points
are missing when some buckets contain singletons only (i.e.,
infinite estimation).

In contrast, in the simulated case in Figure 9, splitting
into less (e.g., Naive) improves estimation as the underlying
publicity is uniform. Notice, that in both examples above,
the bucket estimator yields the best estimates, dynamically
resizing buckets on its own.

Also notice, that we consider two variants of static buck-
ets: the one described in the paper, equi-width, which di-
vides the observed value range into a fixed number of buck-
ets, and another obvious variant, equi-height, which di-
vides the observed sample, sorted by value, evenly into a
fixed number of buckets. Both static bucket types are sim-
ple to use, but they require parameter tuning for the optimal
number of buckets, which is hard to predict without knowing
the true publicity distribution.

C. THE INCREASE IN COUNT ESTIMATE
AFTER BUCKET SPLIT

In equation 14, we claimed that the count estimation
(N̂Chao92 = nc/(n − f1)) of a bucket increases after split-
ting the bucket, if data items are evenly distributed over the
attribute value range, and there is no publicity-value corre-
lation:

N̂Chao92 =
c

1− f1/n
=

Before split︷ ︸︸ ︷
n · c
n− f1

≤
n
2
· c

2
n
2
− α · f1

+
n
2
· c

2
n
2
− (1− α) · f1︸ ︷︷ ︸

After split

The α parameter governs the split of the original singleton
count (f1) into a pair of smaller buckets. We assume n and
c are evenly distributed between the split buckets, as items
are evenly distributed over the value range, and all values
are equally likely (no value-publicity correlation). We now
show that the above inequality holds by showing that the
right hand side (after split) is minimized at nc/(n − f1).
Note that nc/(n − f1) is a positive number as n ≥ f1 ≥ 0
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and c ≥ 0.
To find the minimum, we take the first derivative of the

right hand side (denoted by R) with respect to α:

R′ =
−c · f1 · n

4(−(1− α) · f1 + n
2

)2
+

−c · f1 · n
4(−α · f1 + n

2
)2

Solving R′ = 0, we get α = 0.5; we have R(0.5) = nc/(n−
f1) as shown below:

R(0.5) =
n
2
· c

2
n
2
− 0.5 · f1

+
n
2
· c

2
n
2
− (1− 0.5) · f1

=
n
2
· c

2
+ n

2
· c

2
n
2
− 0.5 · f1

=
n · c
n− f1

Finally, we show R(0.5) = nc/(n−f1) is the minimum by
ensuring R′′(0.5) > 0:

R′′ =
c · f2

1 · n
2(−(1− α) · f1 + n

2
)3

+
c · f2

1 · n
2(−α · f1 + n

2
)3

R′′(0.5) =
c · f2

1 · n
2(−(1− 0.5) · f1 + n

2
)3

+
c · f2

1 · n
2(−0.5 · f1 + n

2
)3

=
c · f2

1 · n
(−0.5 · f1 + n

2
)3

=
8c · f2

1 · n
(−f1 + n)3

Note that n ≥ f1, and this makes R′′ > 0; R is minimized
at nc/(n− f1) and the inequality holds true:

Before split︷ ︸︸ ︷
n · c
n− f1

≤
n
2
· c

2
n
2
− α · f1

+
n
2
· c

2
n
2
− (1− α) · f1︸ ︷︷ ︸

After split

D. OTHER ESTIMATORS
Many proposed techniques can be combined: we can use

the frequency estimator, instead of the näıve estimator, with
the bucket (i.e., Dynamic Bucket approach) estimator or the
Monte-Carlo estimator. We can also combine the Monte-
Carlo estimator with the bucket estimator.

Figure 10: The best US tech-sector employment estimation
with other estimators

However, as the Monte-Carlo estimator requires large sam-
ple sizes to be accurate, combining it with bucket estimator
often results in lower estimation quality (i.e., each bucket
contains a smaller sample). Furthermore, each bucket (a
smaller value range) entails a part of the underlying public-
ity distribution; hence, the publicity distribution per bucket
appears more uniform. As a major drawback, the Monte-

Carlo estimator exhibits a tendency to favor its count esti-
mate N̂MC ∼ c (see Section 6.1.1). Such tendency gets more
imminent in Monte-Carlo with Bucket estimator as seen in
Figure 10. Similarly, we found that the difference between
the näıve and frequency estimators is not significant for the
bucket estimator (i.e., uniform publicity).

E. NUMBER OF SOURCES
Bucket estimator is non-parametric and works well with

with both uniform and skewed distributions; however, it
assumes a sample S sampled with replacement. This as-
sumption is appropriate as long as enough independent data
sources contribute evenly to S.

(a) w = 2 (b) w = 3

(c) w = 4 (d) w = 5

Figure 11: Synthetic data (λ = 4.0,ρ = 1.0) with varying
number of sources (w). Bucket estimator performs better
with more independent sources (i.e., more overlaps).

In Figure 11, we illustrate this with a synthetic data (skewed
publicity correlated to item attribute values). In this partic-
ular example, more than 5 sources result in enough overlaps
for bucket to estimate accurately; however, the minimum
number of sources would vary with the date set. In addi-
tion, Monte-Carlo estimator converges faster as it does not
assume a sample sampled with replacement.

F. A TOY EXAMPLE
In this section, we walk through the different estimators

step by step using a simple toy example. Again, we use
the same query, SELECT SUM(employee) FROM K, from the
introduction but over a very simplistic data set, shown in
Figure 12. It should be noted, that this toy example can
not convey any statistical properties because of its small
size, but we can explain the general reasoning behind the
techniques using the example.

Figure 12 shows the data integration scenario of our ex-
ample. We assumes that the ground truth D consists of
5 companies {A,B,C,D,E} (the bubble on the top), with
different numbers of employees (e.g., company A has 1000,
whereas company B has 2000). In the beginning we have
four data sources {s1, s2, s3, s4} each mentioning some of
these companies, thus they sample without replacement from



(a) Multiple sources si sampled without replacement from the unknown
population D. s5 is added later to the original integrated database.

(b) Integrated Database K, before
(top) and after (bottom) adding s5

Figure 12: A toy example for SELECT SUM(employee) FROM K

before adding s5 after adding s5
(n = 7, c = 3, f1 = 1, γ̂2 = 0.1667) (n = 10, c = 4, f1 = 1, γ̂2 = 0)

Ground Truth φD = 1000 + 2000 + 900 + 10000 + 300 = 14200
Observed φK = 1000 + 2000 + 10000 = 13000 1000 + 2000 + 10000 + 300 = 13300

Naive

φK + ∆naive = φK +
φK · f1 ·

(
c+ γ̂2n

)
c · (n− f1)

= 13000 +
13000 · 1 · (3 + 0.1667 · 7)

3 · (7− 1)

≈ 16009

= 13300 +
13300 · 1 · (4 + 0 · 9)

4 · (9− 1)

≈ 14962

Freq

φK + ∆freq = φK +
φf1

(
c+ γ̂2n

)
n− f1

= 13000 +
1000 (3 + 0.1667 · 7)

7− 1

≈ 13694

= 13300 +
300 (4 + 0 · 9)

9− 1

= 13450

Bucket

φK + ∆bucket = φK + ∆b1:{A,B} + ∆b2:{D}

= φK + {∆naive}b1 + {∆naive}b2

= 13000 +
3000 · 1 · (2 + 0 · 3)

2 · (3− 1)

+
10000 · 0 · (1 + 0 · 4)

1 · (4− 0)

= 14500

= φK + ∆b1:{A,E} + ∆b2:{B} + ∆b3:{D}

= φK + {∆naive}b1 + {∆naive}b2 + {∆naive}b3

= 13300 +
1300 · 1 · (2 + 0 · 3)

2 · (3− 1)

+
2000 · 0 · (1 + 0 · 2)

1 · (2− 0)
+

10000 · 0 · (1 + 0 · 4)

1 · (4− 0)

= 13950

Table 2: SELECT SUM(employee) FROM K results with different unknown unknowns estimators: bucket estimator gives the most
accurate estimation of φD,

D. For instance data source s1 lists companies A, B, and
D. In the example we also assume a publicity-value corre-
lation; that is, the biggest company D appears in all data
sources ({s1, s2, s3, s4}), while smaller companies appear in
fewer sources. To show how the estimates improve, we as-
sume that the data source s5 is added later on (visualized
through the plus). The tables in Figure 12(b) show the inte-
grated database before (top) and after (bottom) adding the
fifth data source. For convenience, the last column shows,
how many times each company was observed across the mul-
tiple data sources.

Table 2 shows the estimates by different estimators before
and after adding the fifth data source. We exclude Monte-
Carlo estimator due to its simulation based nature. The top
row contains the relevant statistics of K. For instance, with
4 data sources, the number of observed items / sample size
is n = 7, the number of observed unique items is c = 3 (i.e.,
companies A, B, and D from the top table in Figure 12(b)),
the number of singletons f1 = 1 (i.e., company D as it is
the only company, which was observed exactly ones across

the data sources). and the calculated coefficient of variance
(CV ) γ = 0.1667 calculated over the sample.

Before adding the fifth data source, the observed total
sum is φK = 1000 + 2000 + 10000 = 13000, after adding the
fifth data source φK = 1000+2000+10000 = 13300. In this
example, the observed total sum does not converge to the
ground truth of 14200

Table 2 shows the values with calculations for the dif-
ferent estimators. As it can be seen, the näıve estimator
performs the worse; the estimator is quite far off, especially
with 4 data sources. The reason is the value estimator (mean
substitution ) used. The average number of employees is
φK/3 ≈ 4333. Thus all missing companies (i.e., unknown
unknowns) are also assumed to be that big. Now knowing
that bigger companies are more likely to be sampled, now
the näıve estimator heavily over-estimates.

In contrast, the frequency estimator performs much better
than the näıve estimator because it assumes that the miss-
ing companies have the average value over singletons, which
includes A, but not the extremely big company D; the miss-



ing companies are assume to have a value of φf1/1 = 1000.
Because less popular companies are more likely to be smaller
(i.e., the publicity-value correlation), this yields to a much
better estimate.

Finally, the bucket estimator performs the best. Before
adding the fifth source, the algorithm creates two buckets:
b1 : {A,B} and b2 : {D}. The estimate quality of bucket per-
sists even after we add s5 (i.e., Bucket is the best). In this
case, the bucket estimator generates b1 : {A,E}, b2 : {B}
and b3 : {D}. The bucket estimator automatically groups
the small companies (A and E) together and uses their av-
erage number of employees for the missing companies (all
other buckets have unknown count estimation of 0); in this
example, the bucket estimator has a smoothed value in be-
tween 300 and 1000. This is particularly more desirable
compared to the case of the frequency estimator: E is the
new one and only singleton and φf1 is now 300.
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