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Abstract

Fault-tolerant computer networks rely on mechanisms supporting the
fast detection of link failures. Tomographic techniques can be used to
implement such mechanisms at low cost: it is often sufficient to deploy
a small number of tomography nodes exchanging probe messages along
paths between them and detect link failures based on these messages. Our
paper studies a practically relevant aspect of network tomography: the
impact of the routing model. While the relevance of the routing model on
path diversity and hence tomography cost is obvious and well-known on
an anecdotal level, we lack an analytical framework to quantify the influ-
ence of different routing models (such as destination-based routing) exists.
This paper fills this gap and introduces a formal model for asymmetric
network tomography and a taxonomy of path routing models. This facil-
itates algorithmic reasoning about tomographic placement problems and
quantifying the difference between routing models. In particular, we pro-
vide optimal and near-optimal algorithms to deploy a minimal number of
asymmetric and symmetric tomography nodes for basic network topologies
(modelled as graphs) under different routing model classes. Interestingly,
we find that in many cases routing according to a more restrictive routing
model gives better results: compared to a more general routing model,
computing a good placement is algorithmically more tractable and does
not entail high monitoring costs, a desirable trade-off in practice.

1 Introduction

Computer networks often constitute a critical infrastructure and have to meet
strict requirements in terms of availability. Accordingly, modern computer net-
works typically support robust routing and fast failover: upon a link failure,
traffic is quickly rerouted along an alternative path. For instance, MPLS net-
works include different link and path protection schemes [1], and OpenFlow
networks support conditional rules for inband local fast failover [5].

A crucial prerequisite for any resilient routing network is the ability to de-
tect link failures. If not supported directly by the network itself, a dedicated
monitoring infrastructure needs to be set up to actively check the health status
of the network. Network tomography is a well-known approach to implement
such a monitoring infrastructure at low cost: Rather than deploying and oper-
ating monitors at all nodes in a network, tomographic techniques can be used
to probe paths only between a small number of tomography nodes.
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Given the appealing properties of network tomography, tomographic tech-
niques in general and the placement (deployment) of tomography nodes to mon-
itor (multiple) links between them, have been studied intensively over the last
years, in various settings. The classic optimization problem is to minimize the
number of deployed tomography nodes: a tomographic infrastructure involves
the development, installation, debugging, operation, and maintenance of spe-
cialized software/hardware on each tomography node. Usually in the literature,
tomography nodes play a symmetric role: they serve both as sender and receiver
of probes.

This paper considers the problem of deploying a minimal number of (passive)
observability points and (active) beacons in a network. We explicitly distin-
guish between observability points and beacons, which have asymmetric roles:
in many cases, observability points and beacons have different implementations,
require different resources, or come with different placement constraints or costs.
For example, a beacon (an active sender) typically consumes more (network-
ing) resources than an observability point (a passive receiver). On the other
hand, deploying dedicated (passive) measurement nodes in the Internet core
can be non-trivial and entail a significant investment compared to the deploy-
ment of light weight (active) measurement agents on the network edge (as e.g.,
in community-driven Internet measurement projects like DIMES [28]). Simi-
larly, reading advertised routes from various BGP monitoring points may be
significantly simpler than injecting new routes. To give an example in the con-
text of enterprise networks, Ethernet root bridges naturally distribute distance
information as part of the Spanning Tree Protocol (STP). Since root bridges
can be configured by setting the bridge IDs, beacons are simple to deploy. On
the other hand, observability points capturing and leveraging the STP packets
for the detection of (and reaction to) link failures require changes in the net-
work hardware and/or protocol headers. Such changes are typically infeasible in
traditional, vertically integrated communication networks, and hence additional
hardware needs to be deployed for observability points: for example, systems
such as SHEAR [26] rely on OpenFlow switches to capture STP packets and
render failover faster.

We are particularly interested in the formal study of the impact of the rout-
ing model on the efficiency of link failure detection. Interestingly, while the
relevance of the routing model on path diversity [31] and hence tomographic
power is intuitively clear, we lack a quantitative and formal evaluation. As we
will show in this paper, the routing model has an impact already if we constrain
ourselves to shortest paths with unit link weight only (routing inside most net-
works today is based on shortest paths, while inter-network routing usually is
subject to complex policies). Indeed, modern computer networks often impose
various constraints on the choice of shortest paths that can be selected for rout-
ing. For instance, in traditional communication networks, routing is typically
destination-based : packets are forwarded according to the most specific desti-
nation prefix. Inter-domain routing is usually valley-free. Using Multiprotocol
Label Switching (MPLS) or Software-Defined Network (SDNs) based Traffic
Engineering, more general routing paths can be defined, e.g., routes which also
depend on the source or which are (semi-)oblivious [20, 21]. In the presence
of a load-balancer or Equal Cost Multi-Path (ECMP) control plane, multiple
shortest paths may be monitored simultaneously between a beacon and an ob-
servability point. However, there also exist settings (e.g., in the Ethernet use
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case discussed above [26]) where only the distance (but not the path) between
beacons and observability points can be monitored. Accordingly, we will ex-
plore a spectrum of shortest path routing schemes in this paper, and present a
taxonomy of routing protocols.

1.1 Our Contributions

This paper makes the following contributions:

1. Asymmetric network tomography: We introduce a natural network to-
mography model, which differentiates between probe senders and receivers
(called beacons and observability points). While asymmetric tomography
is a reality, we are not aware of any explicit and formal study.

2. Impact of routing model: We study the relationship between, and quantify,
monitoring costs (the number of tomography nodes, i.e., beacons and ob-
servability points) and the routing model. In particular, we observe that
knowledge of the network topology alone is insufficient to reason about
the coverage of a given tomographic deployment. While in principle, this
implies that a different optimal deployment needs to be computed for each
routing model, we introduce a natural taxonomy for a canonical family of
routing models with suitable algorithms to compute a deployment in this
article.

3. Empirical motivation: We report on a small empirical study on Rocketfuel
and Internet Topology Zoo networks, which confirms the impact of the
routing model.

4. Optimal and approximative algorithms: We present optimal and near-
optimal algorithms to deploy a minimal number of tomography nodes for
link failure detection in different models for relevant sparse families of
network topologies, namely cactus and outerplanar graphs (as we encoun-
tered them frequently in our empirical study). Moreover, we show that
our results have implications on symmetric tomography as well.

5. Computational hardness: We show that the deployment problem is NP-
hard in general. Moreover, we show that for some routing models, the
problem is already computationally hard on simple and sparse network
topologies such as cactus graphs.

6. Attractive trade-offs: We identify an interesting tradeoff between different
routing schemes, in terms of monitoring power and the computational
complexity. For example, one takeaway from our work is that it can
sometimes be good to artificially restrict the routing model: while the path
diversity does not suffer much from such a restriction, the computational
complexity of deploying monitoring equipment can be reduced significantly
(from NP-hard to polynomial-time solvable).

1.2 Organization

We provide intuition about asymmetric tomography and its limitations in Sec-
tion 2 with some examples. Section 3 shows that the routing model critically
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affects the complexity of tomography. We present optimal and approximative
algorithms in Section 4. After reviewing related work in Section 5, we conclude
our contribution in Section 6.

2 Asymmetry Matters

Before we highlight the difference between symmetric and asymmetric network
tomography, we introduce some terminology. We model the network topology
as a (connected) graph G = (V,E), interconnecting nodes V with undirected
links E (|V | = n, |E| = m). In order to be able to detect link failures, we deploy
two types of tomography nodes, in the literature often also called monitoring
equipment (shorthand ME), at different nodes of the network G: beacons and
observability points. Formally, we describe the deployment as a mapping µ :
V → {OP,BC,OP+BC, ∅} which assigns to each node either an observability
point, a beacon, both, or neither. In the following, we will refer to BCµ ⊆ V as
the set of nodes selected in µ to function as beacons, and to OPµ ⊆ V as the set
of nodes selected in µ to function as observability points. Let µ|G′ refer to the
deployment restricted to the nodes of the subgraph G′ of G. By slightly abusing
notation, we will write |µ| to denote the total deployment cost, i.e., the total
number of beacons and observability points. Moreover, we write µ∗ to denote
an optimal deployment, a deployment of minimum cost |µ∗|.

We assume that each observability point can monitor links along some short-
est paths, to all beacons. Which shortest paths are routing-model consistent and
can be used for monitoring, depends on the routing model, discussed in the next
section. In particular, we will show that simply knowing the network topology
(the adjacency matrix) and the “routing rules” (e.g., symmetric, shortest path
routing) is ambiguous and insufficient: we need additional knowledge on how
packets are routed on the network topology.

We will assume that a link can be monitored if and only if it lies on at
least one routing model-consistent shortest path between a beacon and an ob-
servability point. The set of all links monitored by a deployment µ is denoted
by Mµ. Our objective hence will be to deploy beacons and observability points
in such a manner that all links in G are monitored using the minimum number
of monitoring equipment (sum of observability points and beacons) necessary,
i.e., Mµ = E(G). We refer to this task as the asymmetric tomographic node
placement problem. In other words, a deployment that monitors all links is
called valid, if it also minimizes the cost, it is called optimal. For simplicity, we
restrict ourselves to shortest paths with respect to unit link lengths; however
our work can be extended for more general paths.

In this paper, we will show that the choice of shortest paths which can
be used for tomography can influence the deployment cost significantly. In
principle, there is always a trivial solution to the asymmetric tomographic node
placement problem, on any graph and for any routing model: we can simply
place both an OP and a BC at each node, i.e., ∀v ∈ V : v → OP + BC. Since
each node has a unique shortest path to each neighbor, namely the direct link,
each link is monitored by a (OP,BC) pair. However, obviously, the resulting
deployment can be far from minimal.

Note that intuitively, the asymmetric tomographic node placement problem
can also be seen as some kind of graph covering problem [27]: Given a bipartite
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graph of OP nodes and BC nodes, can we map the links of this bipartite graph
on G (i.e., the routes between OP and BC nodes) such that all physical links are
covered? We aim to minimize the number of nodes in the bipartite graph which
cover the links (not requesting the graph to be complete bipartite gives more
freedom, e.g., a valid embedding can assign both types of monitoring equipment
to one vertex).

To provide intuition about asymmetric tomography and highlight some of its
key features, in this section, we will abstract from the effects of the routing model
and focus on simple networks where there is a unique shortest path between a
given observability point and a given beacon. We will only later discuss how to
refine the tomography problem if routing paths are not unique.

Graphs featuring unique shortest paths are called geodetic in graph theory.
The canonical example are trees. However, the class also includes other graphs,
for example ring graphs with an odd number of nodes (or equivalently, edges).
To gain intuition we focus on these two graph classes in this section.

Theorem 1. A tree T with ` leaves is monitored optimally with a total of ` BC
and OP nodes (at least one each).

Proof. We prove the lower and upper bounds in turn; finally we discuss the
symmetry in the solutions.

Lower bound: We observe that if v is a node of degree 1 and w is its neighbor,
a beacon or an observability point needs to be located at v to monitor link (v, w).
It follows that for a graph G and a valid deployment µ, monitoring equipment
must be available on each degree-one node: ∀v ∈ V,deg(v) = 1 → µ(v) 6= ∅.
There are ` such leaf nodes in a tree.

Upper bound: A single OP is sufficient to monitor the tree. Let l1, . . . , l`
be an arbitrary ordering of the leaves of T . We define the following deploy-
ment: µ(l1) = OP,∀i ∈ [2, `], µ(li) = BC,∀v ∈ V (T ) \ {l1, . . . , l`}µ(v) = ∅.
Let (i, j) be an edge of T , whose removal will divide the tree into two trees:
subtree Ti which contains i and subtree Tj which contains j. W.l.o.g., as-
sume l1 ∈ V (Ti), and observe that there must exist k ∈ [2, `] s.t. lk ∈ V (Tj), in
order to monitor edge (i, j).

Symmetry: The tomography problem exhibits symmetry in the tree: as long
as there is at least one observability point located at a leaf, it will monitor all
(unique) shortest paths to all leaves hosting beacons. I.e., optimal deployments
on the tree are symmetric: OP and BC can be exchanged arbitrarily, as long
as there is at least one of each kind left.

We note that deploying monitoring functionality at tree leaves is particularly
attractive in the context of modern datacenters which are often tree shaped (e.g,
fat-trees, Clos, multi-rooted trees): the leaves are the servers, where function-
ality can be deployed easily and in software.

On the other hand, asymmetry quickly influences the placement of monitor-
ing equipment, even in simple geodetic graphs.

Theorem 2. Already in simple geodetic ring graphs (connecting nodes in a cir-
cular manner), the OP and BC roles are asymmetric: it is not always possible
to switch the roles of an OP and a BC node.

Proof. Consider a ring graphG(V,E) with V = {v0, . . . , vn−1} and E = {(vi, v(i+1) mod n)|i ∈
[0, n − 1]} of odd size n: it is easy to see that this graph is geodetic. Let k =
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(n− 1)/4 and assume k is integer. The following deployment is valid: µ(v0) =
OP, µ(vk) = BC, µ(v2k) = OP, µ(v3k) = BC, as all links between each OP and
its closest BC on both sides (at distance k or k+ 1) are monitored. If v0 and vk
swap their roles, i.e., if we change µ(v0) to BC and µ(vk) to OP, then the links
between v0 and v3k are not on the shortest path between any possible moni-
toring pair. Thus these links are not monitored, demonstrating the asymmetry
and concluding the proof.

We also note the importance of asymmetry in terms of costs. Clearly, if the
costs of the different equipment types is similar, symmetric tomography yields a
good approximation for asymmetric placements as well: we can simply replace
each symmetric device with two asymmetric ones, which gives a 2-approximation
for two types (asymmetric nodes need at least as many locations). However, in
general, the approximation can be arbitrarily bad (namely linear in the number
of nodes): For example, we only need one observability point in the tree, and
can add beacons to the remaining leaves.

3 The Routing Model Matters

For many applications, the routing model plays a crucial role: knowledge of the
topology alone is insufficient to reason about path diversity or the coverage of
a given tomographic deployment. Indeed, in principle, for each concrete con-
figuration of forwarding and routing rules, a different optimal deployment of
network tomography equipment might exist. In this section, we will introduce
a basic taxonomy of routing models. We will later study algorithms and mon-
itoring deployments for these different models. Interestingly, we will also show
that different routing models come with different computational complexities:
there are routing models for which optimal tomographic deployments can be
computed efficiently, while for others it is NP-hard. We will also show that the
additional deployment cost for models that are easier to solve is sometimes very
small. This introduces an interesting tradeoff.

3.1 Taxonomy and Hierarchy

We explore a spectrum of routing schemes, ranging from very low path diversity
(the intersection model, short ∩, allows to monitor only links belonging to all
shortest paths) to very high path diversity (the union model, short ∪, allows to
monitor all links on all shortest paths), with two natural intermediate models
called confluent (>) and any (exactly one, !). Let us first introduce some nota-
tion. Let G be a graph. Let MR

xy be the edges on paths between x and y which
are used to forward messages from x to y according to a given routing model R.
Thus, MR

xy is also the set of edges that are monitored if µ(x) = BC, µ(y) = OP,
and µ(v) = ∅ for all other nodes v ∈ V \ {x, y}. In a general form, the selection
of paths is a function of x, y, the observability points and the beacons, and
the routing model. We restrict ourselves to symmetric routing: MR

xy = MR
yx.

Henceforth, if the routing model is clear from the context or irrelevant, we will
sometimes not explicitly state it in the superscript.

We focus on shortest path routing: for any two nodes x, y ∈ V (G), let
SP (x, y) be the set of shortest paths (abbrv. sp) between x and y. For s ∈
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SP (x, y) we denote by E(s) the edges of the shortest path s: Mxy ⊆ E(s).
More generally, we use E(X) for the edges of the subgraph of G induced by the
set X. We identify the following canonic routing strategies:

Definition 1 (Routing Models). We distinguish between four routing models
which determine the shortest paths messages take and hence which links can be
monitored:

1. Union ∪: In the union model, all edges belonging to one or several short-
est paths between x and y are monitored: M∪xy = ∪s∈SP (x,y)E(s).

2. Any (i.e., exactly one) !: In the any model, a single shortest path is
monitored: ∃s ∈ SP (x, y) s.t. M !

xy = E(s). This path is arbitrary and
given for each source-destination pair, and forms part of the input to the
problem.

3. Confluent >: In the confluent model, the shortest path choice is de-
termined by the message destination: ∃s ∈ SP (x, y) s.t. M>

xy = E(s)
and ∪z∈VMzy is a tree, given as part of the input to the problem.

4. Intersection ∩: In the intersection model, only links which belong to all
shortest paths are monitored: M∩xy = ∩s∈SP (x,y)E(s).

At one end of the extreme, it is possible to observe all shortest paths
between an observability point and all beacons: the ∪ model. For example,
imagine a load-balancing network or a network with an Equal Cost Multi-Path
(ECMP) [15] control plane (where, e.g., hash functions can be reverse engi-
neered), or a network supporting source routing [18]. With MPLS Traffic En-
gineering or in a Software-Defined Network (SDN), monitoring packets can be
forwarded along arbitrary paths [2, 29]: the exactly one ! model. Internet rout-
ing is typically destination-based (confluent >): packets are forwarded according
to the most specific destination prefix. On the other end of the spectrum, there
exist settings (e.g., our Ethernet example above [26]) where only the distance
(i.e., the number of hops, but not the path) between beacons and observability
point can be used to conclude if links have failed. This corresponds to the most
restrictive model, intersection ∩: only if a link that is on all shortest paths fails,
a link failure affects the distance between the monitoring equipment. Thus we
can only derive that a link failure occurred from the hop-distance measurement
for the links that belong to all shortest paths.

Note that these models form a hierarchy of increasingly flexible routing.

Theorem 3. Let µ∗(G,R) denote the optimal deployment on network G ac-
cording to routing model R. It holds that |µ∗(G,∪)| ≤ |µ∗(G, !)| ≤ |µ∗(G,>)| ≤
|µ∗(G,∩)|.

Proof. Let µ∗(G,R) be an optimal deployment of G with routing model R.
Let R′ be another routing model such that ∀x, y ∈ V,MR

xy ⊆MR′

xy . Since µ(G,R)

is a deployment, we have ∪x∈OP,y∈BCM
R
xy = E. Thus, ∪x∈OP,y∈BCM

R′

xy = E
holds: µ(G,R′) is also a valid deployment on G. The theorem then follows from
the fact that M∩xy ⊆M>

xy ⊆M !
xy ⊆M∪xy.

The routing model can hence be seen as a knob allowing to adapt the path
diversity and hence monitoring power. On one end of the spectrum we have ∪:
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a model where all paths are observable. The ! model allows to observe an
arbitrary but single route, > restricts paths to destinations, and ∩ models a
scenario where shortest paths must be unique. The latter is relevant in settings
where only distances between beacons and observability points are given, and
hence, failures can only be observed when the distance between BC and OP
changes.

A

s t. . .

B

s t

C s

t

Figure 1: Three graphs illustrating the impact of the choice of routing policies
on the cost of optimal monitoring. The top graph is a bipartite graph, the middle
graph a one-connected cactus graph (a “sausage graph”), and the bottom graph
an outerplanar graph (a “ladder graph”). In all these graphs the path diversity is
high which also implies a high variance in the tomography costs for the different
routing models. For example, ∪ requires two ME, one of each kind, placed on s
and t, while more restrictive models like ∩ require up to a linear number of ME
for the same graphs. See the text for more details.

To illustrate the impact of the routing model on monitoring efficiency, let
us consider a few basic examples. In the best case, the entire network can be
monitored with one BC and one OP (i.e., |µ∗| = 2), and in the worst-case
we need each kind of tomography node on each node. We will show that the
different routing models can span the whole spectrum. Let us first consider
bipartite graphs. Graph A depicted in Figure 1 is B2,k: the complete bipartite
graph connecting two nodes of the first node set with k nodes of the second
node set. Between the two nodes of the first node set, k disjoint shortest paths
exist. If the routing model is not ∪, each of the k shortest paths will have to be
monitored separately, for a total monitoring cost of k+ 2 ME. Graph B in the
same figure is a chain of f planar faces. It is a one-connected graph belonging
to the class of cactus graphs. Even though there exist 2f different shortest
paths between s and t, only two carefully selected such shortest paths allow
to monitor all the edges between s and t. We therefore have |µ∗(GB ,∪)| = 2,
|µ∗(GB , !)| = 4 (with one BC and one OP on s and on t, if the any-path is
choosable, otherwise if it is given we have ≥ 4). For the other two routing models
we need at least two ME per cycle, as will be proven in Corollary 1 later, thus
|µ∗(GB , >)| = |µ∗(GB ,∩)| = Θ(f). Finally, graph C in the same figure is an
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Graph class ∪ > ! ∩
Cactus 13.76% 1.49% 1.64% 1.98%

Outerplanar 15.96% 1.24% 2.43% 3.40%
General 17.06% 2.80% 3.16% 6.45%

Table 1: Percentage of nodes assigned OP for ∪ routing model, and percentage
of additional OP compared with union when using the >, ! or ∩ routing model
respectively. Results of a graph are counted towards the numbers for all graph
classes it belongs to (and not just the most specific one).

outerplanar graph of f faces (see later for more details on outerplanar graphs),
but these faces are connected through f − 1 inner edges. It is 2-connected, and
features f+2 different shortest paths between s and t. We have |µ∗(GC ,∪)| = 2,
i.e., all paths can be monitored by placing a BC at s and an OP at t. For the
model !, we can monitor at most x · y different paths with monitoring pairs
composed out of x BC and y OP. Thus we need at least

√
f + 2 monitoring

equipment for this scenario |µ∗(GC , !)| ≥
√
f + 2 deploying half of the ME

as BC on the lower left nodes and the other half as OP on the upper right
nodes. For the other routing models the amount of monitoring equipment we
need is linear in the number of faces, |µ∗(GC , >)| = |µ∗(GC ,∩)| = Θ(f), see
Theorem 11 proved later.

Theorem 4. Depending on the model, the optimal deployment cost can vary by
a factor Ω(n). This is worst possible.

Proof. The outerplanar graph C in Figure 1 consists of n/2 − 1 faces with 4
edges each. As discussed above, the optimal monitoring cost is |µ∗(GC ,∪)| =
2, |µ∗(GC , !)| ≥

√
n/2 + 1, |µ∗(GC , >)| = |µ∗(GC ,∩)| ≥ n/2− 1.

3.2 Empirical Results

We have seen that the routing model can in principle have a large impact on the
tomography cost. In order to study whether this is only the case for contrived
examples and when computing an optimal deployment, we conducted a small
empirical study using a simple greedy algorithm (see Algorithm 3) and consid-
ering two sets of real-world topologies: the Internet Topology Zoo [19] and the
Rocketfuel graphs [30].

For our empirical evaluation, we implemented the routing restrictions for the
any ! model and the confluent > model as follows. For the any ! model, we select
the first shortest path between two nodes computed by the Python NetworkX
library. For the confluent > model, we use the breadth-first tree computed using
the Python NetworkX library for each observability point o, to ensure that the
monitored paths from all beacons are confluent.

As a first and independent observation, we find that the studied graphs are
often sparse. In fact, almost a third (32%) of the parseable graphs belong to the
family of cactus graphs: A cactus graph (sometimes also called a cactus tree)
is a connected graph in which any two simple cycles have at most one node in
common. In other words, in a cactus graph, any link belongs to at most one
cycle, and hence, a cactus graph can be decomposed such that every link is
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either a part of a single cycle or a part of a single tree (the line is treated as
an atrophied tree). By definition, different cycles and trees may share at most
one node. We call the articulation points connecting cycles and/or trees nexus
nodes. A unicyclic graph is a cactus with exactly one cycle.

Besides cactus graphs, roughly half of the graphs (49%) are outerplanar : an
outerplanar graph is a planar graph which can be drawn in such a manner that
each node touches the outer-face. Outerplanar graphs are hence a generalization
of cactus graphs.

When analyzing the the deployment cost, we find that both the graph class
and the routing model indeed influence the number of required monitoring equip-
ment. Table 1 summarizes our results. Using the ∪ model as the baseline, the
table shows for the different routing models what percentage of nodes are OP
according to the computed deployment for this model, and what the additional
percentages of monitoring nodes are for the other models. Not surprisingly, we
can see that the number of equipment assigned grows for more general graph
classes and for more restrictive models from around 13% to around 23%. The
percentage of BC varies similarly at around 70%.

We also find that between some models the difference may not be large
(below 3.5% on average for most models and classes). This could be exploited,
as some routing models are cheaper to implement than others (e.g., due to
number of routing rules needed at each node).

3.3 Complexity

In addition to the differences mentioned above, the computational complexity
of the underlying algorithmic tomography problem can vary as well. For ex-
ample, the !-routing model is NP-hard on cactus graphs, however, as we will
see, cactus graphs can be solved efficiently for other routing models. More-
over, a destination-based routing model may require less forwarding rules than
oblivious routing models which also depend on the traffic source.

Theorem 5. The asymmetric tomographic node placement problem on cactus
graphs is NP-hard under the any !-routing model.

Proof. We provide a reduction from the NP-hard problem Set Cover [13]. The
input of the set cover problem is a set of n elements and m subsets S1, . . . , Sm
containing some of the elements, and an integer k. The output should be true
iff there is a selection of k of the subsets such that their union includes all n
elements.

Given a set cover problem instance, we demonstrate how to construct a
cactus graph G(V,E) and a shortest path routing on it such that a solution
of the asymmetric tomographic node placement problem on G can be used to
derive a solution to the set cover problem.

We take the “sausage” graph depicted as graph B in Figure 1 with n even
length cycles and add a “line” of length m+ 1 nodes connected to their left and
right neighbor on the right end. Each of the n cycles stands for an element. A
shortest routing path from node vl at distance l from the right end to the left-
most node encodes the subset Sl: for each element that is in the set, the path
on the top of its corresponding cycle is taken, whereas the lower path is used
otherwise. For all other shortest path pairs the lower path is taken whenever
feasible.
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Figure 2: Illustration of construction of G′(V ′, E′) (right) given a graph G(V,E)
(left). The nodes of V and W are shown as white circles, nodes of W ′ and W ′

are gray, nodes of three-hop chains are blue and nodes of four-hop chains are
orange. In the proof we show that a k-node cover of G is equivalent to a (2n+k)
deployment in G′.

Without loss of generality we can put an OP on the left-most node and a
BC on the right. This monitors all edges of the lower from left to right. To
monitor the top edges, either a ME has to be placed on the corresponding top
node, or on one of the nodes at distance 1 to l from the right. It is easy to see
that iff there is a valid deployment with k ME, there is also a solution to the set
cover problem: a valid deplyoment with a BC on node vl corresponds to a set
cover solution with set Sl. For an ME on the cycle corresponding to element i
pick any set Sl which contains i.

While we will present fast and optimal algorithms for some sparse graphs
later in this paper, we note that the problem is NP-hard on general graphs for
all routing models.

Theorem 6. The asymmetric tomographic node placement problem is NP-hard,
under all our routing models ∪, !, >, and ∩.

Proof. We consider the decision problem, where we are given a deployment cost
threshold k. We provide a reduction from the NP-hard Node Cover problem [13].
The node cover problem asks whether for a given graph G(V,E) and a thresh-
old k, there exists a subset S ⊆ V (G) such that ∀(vi, vj) ∈ E(G), {u, v}∩S 6= ∅
and |S| ≤ k.

Given such a node cover problem instance, we show how to efficiently build
a graph G′(V ′, E′) such that a solution of the asymmetric tomographic node
placement problem on G′ can be used to derive a solution to the node cover
problem. In order to prove the hardness for all routing models ∪, !, ≤, and ∩
simultaneously, we build a problem instance where all breadth first shortest
path trees are either unique, or where the branches needed to monitor additional
edges are unique.

Given G(V,E), construct G′(V ′, E′) as follows. Add the node sets W , con-
sisting of 3n vertices, wi, w

′
i and w′′i for each vi ∈ V . Add edges between the
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vertices wi, w
′
i, w
′′
i so each triple forms a triangle. Build a clique among the

nodes wi. Connect wi with vi. Then replace each edge (vi, vj) ∈ E with a 3-hop
chain, replace each edge (wi, wj) where (vi, vj) ∈ E with a 4-hop chain, and
replace each edge (wi, wj) where (vi, vj) /∈ E with a 3-hop chain. An example
for a small graph G(V,E) is depicted in Figure 2.

We will now show that in this constructed graph G′, a deployment with
2n + k monitoring equipment exists if and only if there is a node cover of G
with k nodes.

To this end, note that all triangles require at least one beacon and one
observability point, otherwise the edge between w′i and w′′i is not monitored: it
is on the shortest path between any other pairs of nodes. W.l.o.g., let us put
equipment of one type (say a beacon) on w′i and the other one (the observability
point) on w′′i for all i. This deployment monitors all edges on paths among nodes
in W . Adding further monitoring equipment on nodes of W , or on nodes on
paths between nodes in W , does not increase the number of edges monitored.
Thus nodes in V or on paths between V need to be equipped.

Observe that there is a unique shortest path from vi to wj of length four
if (vi, vj) ∈ E, going through vj . If (vi, vl) /∈ E then there is a unique shortest
path from vi to wl of length four, not passing any other node vl ∈ V . Thus,
assigning monitoring equipment on a node vi helps to monitor paths correspond-
ing to edges to neighbors of vi in G and the edges from vi and its neighbors
to W . Paths corresponding to two-hop neighbors in G cannot be monitored by
this deployment. Next, let us consider, a node u on a three-hop path between vi
and vj where (vi, vj) ∈ E. Without loss of generality, we can assume that u is
at distance one from vi. Assigning monitoring equipment to u lets us monitor
exactly the same edges as assigning it to vi, because the union of the short-
est paths SP (u,wi), SP (u,wj) and SP (u,wl) where (vi, vl) /∈ E use the same
edges as the union of SP (v, wi), SP (v, wj) and SP (v, wl). Hence u and vi are
equivalent with regards to monitoring; edges of E′ which only appear on paths
to nodes vw, where (vi, vw) /∈ E, are not monitored.

As a consequence, choosing a node cover set of G(V,E) and assigning equip-
ment to it, guarantees that all edges are monitored. On the other hand, any
set of nodes that does not cover all edges, also fails to monitor all edges of E′.
Given a valid deployment of G′(V ′, E′) with 2n + k nodes the assigned mon-
itoring equipment can be used to construct a node cover for G(V,E) with k
nodes. Let S be the set of nodes corresponding to V and the nodes on the
shortest paths in G′ between V with a monitoring equipment deployment. For
each node x in S, add the node v ∈ V closest to x to the node cover.

4 Optimal and Approximative Algorithms

Given our insights into the properties of asymmetric tomography and the de-
pendency on the routing model, and motivated by the sparse structure of the
topologies collected in the previous section, we now devise deployment algo-
rithms for two sparse graph families: cactus graphs and outerplanar graphs.

12



ALGORITHM 1: EquipCycle(C,µ)

1 Let P be the subgraph of C where edges monitored by µ are removed:
P = (V (C), E(C) \ ∪o∈OPµ,b∈BCµMob)

2 Let µ′ be an empty assigment
3 while unmonitored edges exist, E(P ) 6= ∅ do
4 (v,me) = arg maxx∈V (P ),m∈ME |{newly monitored links in P}|
5 µ′(v) = me
6 P = P \ {all new edges monitored by me on v}.
7 return µ′

4.1 Cactus Graphs

This section presents polynomial-time optimal deployment algorithms for cactus
graphs and the models ∪, >,∩.

Lemma 1. Let µ be a deployment with at least one OP and one BC on a
cycle C. If there are edges which are not monitored by µ, then they form a
(single) connected path.

Proof. Let S = E(C) \Mµ, where Mµ is the set of all edges monitored by the
deployment µ. For the sake of contradiction, assume that the set S of not (yet)
monitored edges is not a path. Then there are at least two connected compo-
nents which are not monitored. Since S ⊆ C and C is a cycle, at least two pairs
of monitoring equipment partition C in two parts. Let (O1, B1) and (O2, B2)
be these pairs. In this case, paths from O1 to B2 and O2 to B1 are monitored
and thus there are no edges which are not monitored.

From Lemma 1 it follows that two MEs are required for ∪ in even-length
cycles. In all other models, four equipments are required: with three equipments,
there always exists an edge between two nodes of the same equipment which is
not monitored. We have the following corollary:

Corollary 1. On a cycle, two or four MEs are required for even and odd cycle
lengths respectively. For the models > and ∩, four MEs are necessary, for any
cycle length.

Using the above, we can devise an algorithm that adds equipment in a greedy
fashion for the routing models ∪, > and ∩. Given a deployment µ for a cycle C,
with an unmonitored path P , an additional equipment m is assigned to v such
that the maximum number of previously unmonitored links is now monitored,
i.e., (v,me) = arg maxx∈V (P ),m∈ME |{newly monitored links in P}|, breaking
ties arbitrarily.

Theorem 7. Let µ be a possibly empty deployment of ME on a cycle C. Algo-
rithm 1 determines a valid deployment for all models and an optimal completion
of the deployment in a greedy fashion for the models ∪, >,∩.

The proof is technical and postponed to the Appendix (Section 7.1).

As a next step we show that for graphs consisting of two subgraphs “merged”
at a common nexus node, their deployments can be computed separately under
certain conditions. This is very useful, as it enables a “divide and conquer”
approach in loosely connected graphs.
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Definition 2 (Graph merging). Let G1, G2 be two arbitrary graphs, and let v ∈
V (G1), v′ ∈ V (G2). We define the graph merging operation G1vv

′G2 = G as the
contraction of vertices v and v′ into a single node, thus connecting G1 and G2.
For deployments µ|G1 and µ|G2 , we write µ = µ|G1 + µ|G2 to refer to their
composition.
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Figure 3: Illustration of the Partial Deployment approach (Lemma 2): a graph
G (above) is decomposed into two subgraphs G1 and G2 which are equipped
independently. In these intermediary steps, nexus nodes are virtually equipped
with the monitoring equipment deployed in the subgraph they connect to. This
approach preserves optimality (see Lemma 3).

If we “move” all ME from one subgraph G2 to the nexus node, we can
determine a valid deployment of the other subgraph G1 without considering
G2’s structure. Figure 3 illustrates this approach: the nexus node connecting
the two cycles of G (above) is represented in each subgraph G1 (bottom left) and
G2 (bottom right). Nexus nodes are then virtually equipped with monitoring
equipment contained in the subgraph they connect; here as both G1 and G2

contain both equipment types, v and v′ are each equipped with a beacon and
an observability point. To compute a deployment for one of the subgraphs when
the other subgraph has been equipped already, the virtual deployment on the
nexus node can be taken into account. The intuition for the correctness of this
approach relies on the fact that any shortest path between nodes of G1 and
nodes of G2 will necessarily cross the nexus nodes. From G1’s perspective the
precise location of monitoring equipment in G2 does not matter –only knowledge
about the existence is important. This allows the deployment of both subgraphs
to be optimized independently.

Lemma 2 (Partial Deployment). Let G1, G2 be two arbitrary graphs, and v ∈
V (G1), v′ ∈ V (G2). Let µ be a deployment on G = G1vv

′G2. Let µr be the
deployment that assigns all ME-types deployed on G2 to node v: µr(v) =
∪x∈V (G2)µ(x). Let µ1 be an deployment on G1. It holds that E(G1)∩Mµ1+µr =
E(G1) ∩Mµ1+µ|G2

: all edges monitored in G1 by µ1 are still monitored when
merging with G2 using µ|G2 under ∪, >,∩.

Proof. Let µC = µ1 + µ|G2
. Assume there are edges in G1 which are monitored

by µ1 + µr but not by µ1 + µ|G2
, i.e., ∃e ∈ E(G1) ∩Mµ1+µr s.t. e 6∈ E(G1) ∩
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Mµ1+µ|G2
. Since e is monitored by µ1+µr, ∃x ∈ BCµ1+µr , y ∈ OPµ1+µr , s.t. e ∈

Mxy. If x ∈ BCµ1
∧ y ∈ OPµ1

, then necessarily x ∈ BCµc ∧ y ∈ OPµc . There-
fore x ∈ BCµr ∨ y ∈ OPµr . Assume w.l.o.g., y ∈ OPµr , then necessarily y = v,
and e ∈Mxv.

However since µr = ∪v∈V (G2)µ(v), ∃y′ ∈ V (G2) s.t. y′ ∈ OPµ2
. Because

all shortest paths from G1 to G2 go through v, we have that v is an endpoint
of an edge in Mxv and Mxy′ , and due to definition x is an endpoint of any edge
in Mx·, e ∈ Mxy′ for the routing models >,∩ : e is monitored. Of course,
as e ∈ SP (x, v), it is also monitored in the ∪ routing model.

Now assume the opposite situation ∃e 6∈ E(G1) ∩Mµ1+µr ∧ e ∈ E(G1) ∩
Mµ1+µ|G2

. Edge e is necessarily on a monitored path from a ME in G1 on u
to a ME in G2 on w. This path must go through v, which is equipped with
all the monitoring equipment of G2 by µr. Therefore e must be in M∪µ1+µr
as all shortest paths in M∪uv are contained in M∪uw. Analogously it holds
that M∩uv ⊆ M∩uw. For the confluent model with symmetric routes, it holds
that M>

xy = M>
yx and hence M>

uv ⊆M>
uw. Since u ∈ V1, w ∈ V2, v ∈ V1 ∩ V2, we

deduce Muw ∩ E(G1) = Muv. The fact that e ∈ E(G1) and e ∈ Muw, implies
that e ∈ Muv. Since any ME in G2 is deployed on v, µC(w) ⊆ µr(v), and thus
e ∈Mµ1+µr .

Such a partial deployment does even preserve optimality: an optimal de-
ployment for G1 can be computed separately from G2 by assuming equipment
on the nexus node connecting them.

Lemma 3 (Partial Deployment Optimality). Consider two arbitrary graphs G1, G2

and v ∈ V (G1), v′ ∈ V (G2). Assume µ∗ is an optimal deployment on G =
G1vv

′G2 and µr assigns all ME of µ|G2
on v as in Lemma 2. If µ1 + µr is an

optimal deployment on G1, it must hold that µ1+µ|G2 is an optimal deployment
of G under ∪, >,∩.

Proof. Let µC = µ1 + µ|G2
. Thanks to Lemma 2, we know that µC is a valid

deployment of G. Assume that µC is not optimal. Since µ is optimal we have
|µC | > |µ|. Both µ and µC are identical on the G2 part: |µ| = |µ|G1

|+ |µ|G2
| <

|µC | = |µ1|+|µ|G2 |. Thus a difference in the number of equipment must manifest
in G1.

Thus necessarily |µ|G1
| < |µ1|. Since µ is valid, it monitors all edges of G,

and in particular all edges of G1, we thus conclude Mµ|G1
+µr = E(G1). Thus

µ|G1
+ µr defines a valid deployment on G1 of size |µ|G1

|+ |µr| < |µ1| + |µr|:
this contradicts the definition of µ1 + µr as optimal on G1.

We can apply Lemma 3 recursively to compute an optimal deployment for
cacti. This is the approach followed by Algorithm 2: it first assigns monitoring
equipment to leaves, and then processes the cycles in a specific order. Processing
cycles in a bottom up approach from the leaves gradually towards the center
allows us to take decisions on each individual cycle separately while only one
of its nexus nodes is not yet equipped (πu in the algorithm), since other nexus
nodes either connect to leaf nodes or to lower cycles that are already equipped.

Lemma 4. Algorithm 2 produces a valid deployment µ for a cactus graph G
under the routing models ∪, !, > and ∩.
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ALGORITHM 2: Optimal Deployment for Cactus G(V,E)

1 Let T be the contracted tree of G (for each cycle with k nexus nodes, the
nexus nodes are kept and the cycle is replaced with a node connected to
the cycle’s nexus nodes)

2 C ⊂ V (T ): set of vertices of T corresponding to cycles in G
3 L0: set of leaves of T . Inductively define Li as the leaves of the tree

induced by V (T ) \ (∪j<iLj), for i > 0
4 h = arg maxj>0{Lj 6= ∅}

/* Process leaves */
5 if G contains more than one cycle, |C| > 1 then
6 Let r be a node located between two cycles of G
7 else /*G has a single cycle*/
8 Let r be a nexus with the most leave nodes.
9 for each leaf node v in depth-first order from r, respecting the clockwise

order of a given embedding do
10 Alternatingly assign µ(v) = OP or µ(v) = BC

/* Process cycles */
11 for i = 0..h do
12 for each cycle Cj on layer Li do
13 Let µ′ be a temporary virtual deployment on Cj , µ

′(Cj) := ∅
14 for each nexus π of Cj do
15 Let Gπ be the subgraph connected to π
16 if Gπ contains a cycle on Li+1 then
17 µ′(π) = OP + BC
18 else
19 π is virtually equipped with all ME in Gπ,

µ′(π) = ∪v∈V (Gπ)µ(v)

20 µ = µ ∪ EquipCycle(Cj , µ′)

21 return µ
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Proof. Edges of G are either part of cycles or part of T . Since by construction
a valid deployment on T is realized, all non-cycle edges of G are monitored.
Since every cycle belongs to a layer Li, it will be processed by EquipCycle.
Due to Lemma 2, edges that are monitored as a result of EquipCycle will still
be monitored in G, provided the nexus nodes are correctly represented for the
models ∩,∪, >.

Thanks to the bottom-up approach, knowing what a nexus will monitor is
simple: in every cycle at most one nexus (say πu) connects to the upper layer.
Thus for all the other layers below, the ME deployment is already known. Let
Gu be the subgraph connected to πu. If Gu contains a cycle, necessarily Gu
will contain OP + BC for all routing models different from ∪, and πu will
receive a correct deployment in Line 17. Otherwise, Gu does not contain any
cycle, therefore it only contains leaf nodes that are already assigned: πu will be
correctly initialized in Line 19. To compute a valid deployment for the ! model,
we can execute the algorithm for the ∩ model and apply Theorem 3 to derive
the correctness.

In case of > and ∩, the computed deployments are also optimal.

Theorem 8. Algorithm 2 is optimal for models > and ∩.

The proof is technical and appears in the Appendix (Section 7.2).

We have so far discussed asymmetric placement algorithms for scenarios where
different equipment types are of the same cost. In order to account for asym-
metric costs, we can postprocess the deployment µ computed by Algorithm 2,
and swap more expensive with cheaper types, while preserving the monitoring
properties. First, all ME in the deployment µ are replaced by the cheaper equip-
ment, BC. Subsequently, each cycle is processed separately to equip it optimally
with at most two OP. To this end, all nexus nodes are virtually equipped with
BC + OP if there is another cycle in the connected subgraph, and with BC
otherwise. Given this equipment, for a cycle with k nodes, there are at most

(
k
2

)
options to consider when deciding where to replace a BC with an OP. Thanks
to Lemma 3, this leads to an optimal deployment for the models ∩ and ¿.

4.2 Outerplanar Graphs

Our optimal algorithm for cactus graphs raises the question whether good
polynomial-time solutions also exist for more general graph classes. A natu-
ral generalization of cactus graphs are outerplanar graphs: a graph is called
outerplanar iff it can be drawn in the plane without crossings, in such a way
that all of the vertices belong to the (unbounded) face of the drawing. In other
words, no node is totally surrounded by edges. Clearly, cactus graphs are out-
erplanar: when cycles are merged into a single node, a cactus graph becomes a
tree. Recall that in the Internet Topology Zoo [19], nearly half of all topologies
are outerplanar.

We now show that there exists a simple greedy approximation algorithm for
outerplanar graphs. More precisely, we devise an algorithm that produces a
valid deployment for arbitrary graphs and then derive its approximation ratio
for outerplanar graphs. The algorithm picks an arbitrary node r and builds a
breadth-first tree B from there, such that the routing model M ∈ {∪, !, >} is
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adhered to, i.e., messages are forwarded according to B (and potentially other
links in addition). The root r is assigned an OP and all leaves of B are assigned
a BC. This guarantees that all edges of B are monitored. For the remaining
edges, i.e., the edges which close cycles put one ME on one of the incident
nodes and one ME of the other type on the other incident node if necessary. A
description in pseudocode is provided in Algorithm 3.

ALGORITHM 3: Valid deployment for arbitrary graphs

1 Construct Breadth-First Tree (BFT) B from arbitrary node r according to
model M

2 µ(r) = OP
3 for each leaf node v of B do
4 µ(v) = BC
5 while ∃ unmonitored edge e = (u, v) ∈ E do
6 µ(u) = µ(u) + BC, µ(v) = µ(v) + OP

Theorem 9. Algorithm 3 computes a deployment for any given graph with at
most min(2n,m+ 1) equipment cost for routing models ∪, ! and >.

Proof. Since the breadth-first tree B has been produced in line with the routing
model, all its edges are on legal shortest paths between ME of different kinds
after Line 3. Subsequently, executing the while loop for each edge ensures
that all remaining edges are monitored as well. Equipping the tree B uses
at most n − 1 BC and one OP. On the remaining k = m − n + 1 edges at
most kBC and kOP nodes are deployed. Thus the total cost of the deployment
is (n− 1)BC + min(n,m− n+ 2)OP = min(2n,m+ 1)ME.

Despite its simplicity, Algorithm 3 provides good results. To show this,
we evaluate its cost and compare it to the cost of an optimal deployment µ∗.
For confluent routing, it is easy to show that this algorithm computes a 2-
approximation for cactus graphs.

Theorem 10. Algorithm 3 computes a 2-approximation for cactus graphs for
the models ∪ and >.

Proof. Note that µ∗(G,>) assigns at least one ME to each leaf and to each cycle
with one or two nexus nodes. Cycles with more than two nexus nodes result
in either another leaf or another leaf cycle with one nexus node. On the other
hand, µ constructed by Algorithm 3 assigns at most two ME to each cycle,
thus |µ|/|µ∗| ≤ 2.

Let us now turn to outerplanar graphs. They provide interesting insights
into the impact of routing on monitoring cost. Evaluating the cost of an optimal
deployment µ∗ for outerplanar graphs on the other hand is challenging, and we
resort to lower-bound the cost of an optimal deployment: we decompose an
outerplanar graph into a set of faces, and show that peripheral faces need at
least one monitoring equipment (Lemma 5), while inner faces require a different
counting strategy, as presented in Lemma 6.

Technically, our proof approach heavily relies on the tree structure the outer-
planar faces produce. More precisely, we make use of the concept of weak planar
duality : The dual graph of a planar graph G is a graph that has a node for each
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face of G; the dual graph has an edge whenever two faces of G are separated
from each other by an edge. Thus, each edge e of G has a corresponding dual
edge, the edge that connects the two faces on either side of e. The weak dual
of a planar graph is the subgraph of the dual graph whose vertices correspond
to the bounded faces of the primal graph. A planar graph is outerplanar if and
only if its weak dual is a forest. An example graph and its weak planar dual is
depicted in Figure 4.

We begin by proving that a valid monitoring deployment places at least one
ME on faces of degree one in the weak dual forest.

i

d e

f

g h

a

b
c

Figure 4: Outerplanar graph G with its weak dual tree T depicted using dotted
vertices, representing the faces of the graph G, and using dotted edges between
neighboring faces. In this example, the faces a, c, h, i are of degree 1 in the tree
T , while b, e, f, g are ”chain“ faces of degree 2. Face d is of degree 4.

Lemma 5. Let G be an outerplanar graph, where the corresponding weak planar
dual is a tree T , degT (F ) ≥ 1 for all faces F . Let µ be an optimal deployment
for ∪, >, or ∩. Let F be a leaf face, deg(F ) = 1. Then necessarily ∃v ∈ V (F )
s.t. µ(v) 6= ∅.

Proof. The proof is by contradiction: assume that ∀v ∈ V (F ), µ(v) = ∅ and
that F is nevertheless monitored. Let (l, r) be the two nexus nodes connecting F
to the rest of G. Since G is outerplanar, we have (l, r) ∈ E(G).

Let e ∈ E(F ) \ {(l, r)} be an edge of the face that is not in G. Since F is
monitored (i.e., all links making up the boundary of the face are monitored), e
must be on a shortest path between two nodes with ME: ∃(x, y) ∈ V (G\F )
s.t. µ(x) = BC, µ(y) = OP and e ∈ Mxy, thus e ∈ SP (x, y). W.l.o.g., we can
decompose the shortest path between x and y as follows: SP (x, y) = SP (x, l)+
Pa+e+Pb+SP (r, y) with Pa and Pb in F . Let P ′ = SP (x, l)+(l, r)+SP (r, y):
since |Pa|+ |Pb| > 1, we have |P ′| < |SP (x, y)|: P ′ is a path connecting y and y
that is shorter than the shortest path, a contradiction

At this point, an important observation is that no single shortest path be-
tween a BC and an OP can monitor a complete face alone, since a face by
definition creates a loop that cannot exist in shortest paths. A second simi-
lar observation is the following: if a face is monitored by two paths, then these
paths necessarily intersect. Both observations can be translated into constraints
on the minimum number of equipment on the parts of G that form “chains” in
the dual tree T . More formally, let Cx be a chain of x faces in T : there exist

19



two trees L,R s.t. T = LCxR and each face of Cx is of degree 2. In Figure 4,
the faces e, f, g form a chain of length 3, as an example.

Lemma 6. Let G be an outerplanar graph, where the corresponding weak planar
dual is a tree T , degT (F ) ≥ 1 for all faces F . Let Cx be a chain of x faces
in T : ∃L,R two trees s.t. T = LCxR and each face of Cx is of degree 2. For an
optimal deployment µ it holds that |µ∗| ≥ 2 for the routing model ∪, |µ∗| ≥

√
x

for the model ! and |µ∗| > (x− 3)/2 for the model >.

Proof. Let (cl, c
′
l) = E(L)∩E(Cx) and (cr, c

′
r) = E(R)∩E(Cx) the edges of the

faces connecting Cx with L and R respectively (if L or R must contain at least
one additional node each, otherwise Cx could not contain faces of degree two
only). We can partition E(Cx) in three groups. Let Fj be the jth face of Cx
from L’s side and I = {i1, . . . , ix−1} = {e s.t. j < x ∧E(Fj) ∩E(Fj+1) = {e}}
be the set of inner edges shared by more than one face. Observe that Cx −
(I ∪ {(cl, c′l), (cr, c′r)}) contains two chains (one being possibly empty). Let U
and D refer to one of the chains each, and let Ui and Di be the corresponding
subchains for each face; in case a face Fi does not contain any edge on a side,
we slightly abuse the notation and write Ui = {(v, v)} or Di = {(v, v)}.

Let l ∈ L and r ∈ R be two arbitrary nodes of the left and right subtrees.
Observe for a given shortest path p ∈ SP (l, r) between these nodes that Ui∩p 6=
∅ ⇔ Di ∩ p = ∅ and vice-versa. It is thus possible to decompose p as a set K =
{k1, k2, . . . , } of |K| < x side switches from U to D or vice-versa, taking place us-
ing edges ik1 , ik2 etc. Hence s.t. p∩Cx = [U1, . . . , Uk1 , ik1 , Dk1+1, . . . , Dk2 , ik2 , Uk2+1, . . .]
or its “complement” path [D1, . . . , Dk1 , ik1 , Uk1+1, . . . Uk2 , ik2 , Dk2+1, . . .]. This
allows us to express the impact of the routing model: any two shortest paths
between L and R monitoring edges of I must intersect. If this is not restricted
by the routing model (under the ∪ routing model all shortest paths are mon-
itored), there are configurations where only one pair of monitoring equipment
is necessary to monitor all edges of Cx. If the routing path intersections are
constrained as in the ! model, a distinct (l, r) pair is needed for each edge of I.
In the best case, using m monitoring equipment, it is possible to create m2

distinct shortest paths, thus |µ∗| ≥
√
x. Observe that in the confluent > model,

all monitoring paths between l and r use either M>
cl,cr

, M>
c′l,cr

, M>
cl,c′r

, or M>
c′l,c

′
r
.

Thus at most three faces can be fully monitored by ME exclusively in L or R.
For each pair of other faces, at least one ME on Cx needs to be deployed. Thus
the number of MEs on Cx is at least (x−3)/2, thus |µ∗(G,>)| ≥ (x−3)/2.

With both the leaf face and the chained face cases bounded, we can now
establish a lower bound:

Theorem 11. Given an outerplanar graph G and its weak planar dual graph T ,
deg(F ) ≥ 1∀F ∈ T , let µ∗ be an optimal deployment and di = |{F ∈ T, deg(F ) =
i}|. For the any routing model !, |µ∗(G, !)| ≥ max(

√
d2, (|T | − d2)/2). If routing

is confluent >, then |µ∗| ≥ max(2, (|T | − 3)/2).

Proof. Observe that d1 = 2 +
∑
i>2(i − 2) · di ≥

∑
i>2 di. Since |T | = d1 +

d2 +
∑
i>2 di, we have d1 ≥ (|T | − d2)/2. The theorem follows since |µ∗| ≥ d2

and |µ∗| ≥ d1 due to Lemmata 5 and 6.

We use this theorem to prove a bound on the approximation ratio of Algo-
rithm 3 for the confluent routing model >.
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Theorem 12. Algorithm 3 computes an 8-approximation for the confluent rout-
ing model >.

Proof. According to Theorem 10, for a face F ∈ T with deg(F ) = 0, Algorithm 3
achieves an approximation ratio of 2. Hence a higher approximation ratio can
only be reached on parts of outerplanar graphs where deg(F ) ≥ 1,∀F ∈ T . Let
us analyze the cost of a deployment produced by Algorithm 3 for this case more
precisely. Note that the Breadth-First Tree (BFT) B constructed in Line 1 has
n nodes and n − 1 links, and thus exactly one link per face is missing (each
additional link of G creates one of the faces of G). Thus x = |T | = m − n + 1
and in the worst case, B has 2x leaves, as each missing link can create at most
two leaves. Line 4 will be executed exactly x times, for a total deployment cost
of |µ| ≤ 2x + 1 + 2x = 4x + 1. Since |µ∗| ≥ max(2, (x − 3)/2) according to
Theorem 11, it holds for x > 7 that |µ|/|µ∗| ≤ (8x+ 2)/(x− 3) = Θ(1).

Finally, to support asymmetric cost models, we suggest to replace the more
expensive monitoring node type with the cheaper one greedily, as long as the
validity of the deployment is preserved.

4.3 Remark on Symmetric Deployments

Our work also has implications on symmetric deployments. Let φ : V 7→ {∅,M}
be a deployment of symmetric monitoring equipment. We consider G to be
monitored iff all edges are on a shortest path according to routing model R
between nodes with ME, ∪{MR

xy|φ(x) = φ(y) = ME} = E(G).

Theorem 13. Let φ? and µ? be optimal deployments on G for the symmetric
and asymmetric case respectively. We have: |µ?|/2 ≤ |φ?| ≤ |µ?|.

Proof. The upper bound of |φ?| is obtained by defining φ′ : v 7→ME iff µ? 6= ∅, ∅
otherwise. Since φ′ necessarily monitors all the links monitored by µ? , it
monitors G.

By contradiction assume |φ?| = |µ?|/2− 1. Let µC : V 7→ OP+BC iff φ? =
ME, ∅ otherwise. We have |µC | = 2|φ?| = |µ?| − 2. Let e ∈ E(G). Since G
is monitored by φ?, ∃a, b ∈ V (G) s.t. φ?(a) = φ?(b) = ME and e ∈ SP (a, b).
Since µc(a) = µc(b) = OP + BC and necessarily e ∈ M(a, b,OP,BC), e is
monitored by µc. Since this holds for any e ∈ E(G), µc monitors G with |µc| <
|µ?| which contradicts the definition of µ?.

This upper bound is notably tight on trees [4]. Thanks to φ′s construc-
tion, our outerplanar approximation algorithm therefore translates into the first
known 16-approximation of symmetric deployments on outerplanar graphs.

5 Related Work

Today we have a fairly good understanding of the requirements to detect and
localize single [14, 16] and multiple [7, 8, 9, 17, 24] failures, using symmetric
monitoring equipment, also e.g., for building a network tomography infrastruc-
ture for the Internet [24]. Some works also go beyond, and aim to estimate
the failure severity (e.g., congestion level) [32]. Oftentimes, the algorithms pre-
sented in these papers provide probabilistic guarantees, optimizing for the most
likely failure event.
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To the best of our knowledge, we are the first to rigorously study network
tomography for settings where monitor equipment falls into two classes: beacons
and observability points. While there have been previous works studying the
asymmetric roles of monitoring nodes, e.g., in the context of “multicastbased
network tomography” and ‘’beacon placement problems” [22], we are not aware
of any work on the joint optimization of the placement of the two tomographic
types, under different routing types.

A main focus of our paper is on the routing model. It is known that routing
policies substantially restrict which paths are permissible and constrain the
effective path diversity [12]. Erlebach et al. [10, 11] study valid s-t- paths and s-
t-cuts in the valley-free model and prove the NP-hardness of the node-disjoint
min-cut problem. Teixeira et al. [31] study node- and edge-disjoint paths in
undirected Internet topology models, but without taking routing policies into
account.

There have also been previous works studying different routing models in
the context of network tomography, e.g., arbitrary routing [6], routing with cy-
cles [3], and others [23, 25]. In this respect, the paper closest to ours is by
Boothe et al. [4] who initiate the study of shortest path monitoring problems
similar to ours but in the symmetric setting. The authors consider two routing
models (union and intersection), and provide optimal algorithms for grid and
cactus graphs as well as hardness results for general graphs. Their exact solu-
tion for the union model also provides a 2-approximation for our model, in the
case that different types of tomography nodes have the same cost. Besides our
focus on asymmetry, we extend [4] to additional routing models and develop
algorithms for more general graph families. Moreover, we aim to quantify the
impact of the routing model.

Graph class / Tree Cactus Outerplanar General
Routing model
Union ∪ optimal Alg 2: valid Alg 3: valid NP-hard

Alg 3: 2-approx Alg 3: valid
Any ! optimal NP-hard NP-hard NP-hard

Alg 2+3: valid Alg 3: valid Alg 3: valid
Confluent > optimal Alg 2: optimal Alg 3: 8-approx NP-hard

Alg 3: 2-approx Alg 3: valid
Intersection ∩ optimal Alg 2: optimal Alg 3: valid NP-hard

Alg 3: valid Alg 3: valid

Table 2: Overview of algorithms and complexity results.

6 Conclusion

Table 2 provides an overview of the results presented in this paper. We hope that
our formal model and approach can guide the deployment of future tomographic
monitoring systems. We consider our work as a first step to understanding the
influence of asymmetry in tomographic deployments and of routing models, and
there is a wide range of interesting questions for future research. In particular,
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it will be interesting to gain deeper insights into the impact of the introduced
routing models, also in terms of the offered path diversity. On the technical side,
it will be interesting to chart a more comprehensive landscape of the computa-
tional complexity and approximability of the underlying optimization problem.
In particular, a main open question regards the exact characterization of the
graph classes which permit a polynomial-time optimal deployment.

We thank Michael Markovitch for many discussions in the early stage of this
work. We are also grateful for the feedback and support from our SIGMETRICS
shepherd Paul Barford. This research was partially supported by the Danish
Villum project ReNet as well as by an Aalborg University talent management
grant.
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7 Deferred Proofs

7.1 Proof of Theorem 7

Due to Lemma 1, the edges of P selected in Line 1 form a connected path or
a cycle. In case there is no ME yet, an arbitrary one will be added: no single
ME can monitor links. If the routing model allows to monitor the cycle with
only two MEs (namely if the cycle length is even and under ∪, cf Corollary 1),
then the second ME will be inserted diametrically opposed to the first one: C
is completely monitored.

From now on, we only consider the case where at least one ME is present,
and where 2 ME of each type are required, see Corollary 1. We define µ(v)
as OP if µ(v) = BC, and vice-versa; if µ(v) = BC + OP, we can pick any. Let
the nodes of the path P of length k be denoted by l = v1, v2 . . . , vk+1 = r, and
let δ refer to the diameter of the cycle. If P = C, by convention we set r = l to
be the only equipped node. Let q = |C| − k be the size of the cycle part that
is already monitored by the current deployment (possibly q is 0). We proceed
by proving the theorem separately for three cases depending on q: (i) q > 1,
(ii) q = 1 and (iii) q = 0.

(i) q > 1: At least two edges of C are monitored already and thus there is a
ME on both r and l. There are two sub-cases to consider.

a) Assume µ(r) ∩ µ(l) 6= ∅. Both endpoints of the path contain at least
one common ME type. Since k < |C| − 1, we have d(r, vdk/2e) < δ.
Therefore for the newly monitored links between r and vdk/2e by
adding the tomography nodes it holds that {(vi, vi+1)|dk/2e − 1 ≤
i ≤ k}. Since a similar reasoning holds for d(l, vdk/2e) < δ, both
halves of P are monitored with one additional ME. Since no ME
deployment can monitor more, C is monitored after Line 4.

b) Assume µ(r) ∩ µ(l) = ∅. A different ME is on each side of the path.
If these are the only two ME on C, observe that necessarily two ad-
ditional MEs will be added, and that the two consecutive executions
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of Line 3 will ensure their optimal placement. If there are more MEs
on C, let r′ = arg min

c∈µ(r) d(r′, r) and l′ = arg min
c∈µ(l) d(l′, l).

W.l.o.g., assume r′ < l′. If r′ < m − 1, we have d(l, r′) > 1, using
the same arguments as in Case (i).a), we conclude that a single ME
of type µ(l) is placed at vk−d(r′,r))/2. Otherwise, if r′ = m − 1, we
have d(r′, l) = 1, and therefore the rest of the proof follows analo-
gously to Case (ii).

(ii) q = 1: If |C| is odd, the deployment is derived analogously to Case
(i). We cannot end up in an infinite proof loop, as r′ is decremented
in each repetition and thus the deployment according to Case (i).a) is
assigned in the next argumentation loop for Case (i).b). Otherwise, we
have d(r, vdk/2e) = d(l, vbk/2c) = δ−1, i.e., two candidate nodes which can
monitor the highest number of previously unmonitored links. The actual
paths taken by the messages depend on the routing model, and possibly
the edge (dk/2e, bk/2c) is left unmonitored. In this case, the use of an
additional ME is mandatory, and it will be deployed optimally during the
next loop execution.

(iii) q = 0: No edge is monitored yet. If both types are deployed on l, we can
use the derivation of case (ii). If the cycle contains only one ME type, three
additional MEs are required. Observe that the first execution of Line 3
will add a ME of the opposite type. Hence, after the first execution of
Line 4, at least one edge will be monitored. The theorem then follows by
Case (i) or (ii). On the other hand, if C contains more than one ME of
the same type, we have the following situation. Let ma,mb ∈ C be the
nodes with the highest ME distance in-between. If d(ma,mb) > 1, let vs
be (one of) the midpoint(s) on the shortest path from ma to mb, and v′s
the diametrically opposed node. Observe that the first execution of Line 3
will select at least v′s, which can monitor |C| − d(ma,mb) links. The next
execution, similar to Case (i).a) will select vs, monitoring the rest of C.
Again, if d(ma,mb) = 1, there are only two MEs of the same type on C. In
such cases, analogously to Case (ii), the deployment depends on C’s parity.
In the worst case, even if two MEs are present, three additional MEs are
required, which is optimal in this case.

In summary, an optimal deployment is found in all subcases, which concludes
the proof.

7.2 Proof of Theorem 8

Observe that all BC and OP equipment placed on leaf nodes (i.e., ∈ L0\C) is
required for the same reason they are required in a tree. Therefore, unneces-
sary monitoring equipment can only be added due to cycles. When assigning
the optimal set of equipment to nexus nodes, EquipCycle computes minimal
deployments to monitor a cycle thanks to Theorem 7. Thus we have to study
the deployment µ′ of equipment on nexus nodes. Intuitively, in order to mini-
mize the number of MEs inserted in EquipCycle, one must strive to have the
maximum diversity of ME at each nexus node.

If there are no cycles in L0 (i.e., C ∩ L0 = ∅ for the set of cycles C), L0

is optimally equipped. Otherwise, let Cj ∈ L0 ∩ C be a cycle (a node in the

26



contracted tree). Since Cj ∈ L0, Cj has a unique nexus πu connecting the cycle
to the upper layers. Let Gu be the subgraph of G connected to Cj through πu
(we will consider Gu = ∅ in the special case where C = {Cj}). If G contains
at least another cycle, it is in Gu. For all routing models other than ∪, we will
necessarily assign at least one OP and one BC in Gu to monitor cycles in Gu.
If G contains no other cycle, then Gu is a tree. Observe that due to the depth-
first ordering, if Gu has more than one leaf, necessarily µ′(πu) = OP + BC in
Line 19. Similarly to the above case, EquipCycle will only assign the minimum
number of monitoring equipment, two in this case. If Gu has one or zero leaves,
their equipment is already optimal, and EquipCycle will produce a minimal
monitoring, and thanks to Lemma 3 the result will be optimal.

By induction on i, assume that ∪j<iLj are optimally equipped. Since the
only place where monitoring equipment is added are cycles, if Li ∩ C = ∅,
then Li has no monitoring equipment, which is optimal. Otherwise, let Cj ∈
Li ∩ C. Using similar arguments as for the L0 layer, observe that all nexus
nodes connecting to subgraphs with cycles or two or more leaves are assigned
both OP + BC. Let π1, π2, . . . , πp be the set of Cj ’s nexus nodes in clockwise
order (>d) starting from an arbitrary nexus node such that k > l ⇔ πk >d πk.
Let d1 = d+(π1, π2), d2 = d+(π2, π3), . . . , dp = d+(πp, π1)}, where here d+ is the
hop distance in Cj using only the direction imposed by the clockwise order >d.
Let ` be half the cycle length: ` = b1/2

∑p
k=1 dkc, and let m = arg max1<k<p dk.

1. Case dm > `: We know that the shortest path between any monitoring
equipment in Gm and Gm+1[p] will not visit the cycle nodes between πm
and πm+1[p] in the depth-first search (DFS): additional monitoring equip-
ment in the cycle is required. If p > 2, we know by construction that
we have at least two members of one monitoring equipment type (say,
2 BCs: s1 and s2). Thanks to the DFS leaf ordering, we also know that
there exists at least one OP: o1 such that d+(s1, o1) < ` and d+(o1, s2) < `.
Since dm <

∑p
k=1 dk, putting the only required OP on a node v ∈ Cj such

that d+(πm, v) = d1/(2d+(πm, πm+1[p]))e optimally solves the problem.
If p = 2 and |C| = 1 Cj is on the only cycle of G that has two leaves.
Thanks to the DFS ordering, there is both an OP and a BC assigned vir-
tually to the nexus nodes. Hence it is necessary to add both an OP and
a BC, for instance at location v: d+(πm, v) = d1/(2d+(πm, πm+1[p]))e: G
is optimally monitored with four MEs as it contains a cycle. If p = 2 and
|C| > 1, at least one nexus node connects to the two monitoring equip-
ment types. Assume the second nexus node is connected to a BC, then
adding an OP at the same node v solves the problem optimally.

2. Case dm < `: Shortest paths from one nexus node to another naturally
explore all edges of Cj . To know which equipment to add (if any), mul-
tiple cases need to be considered. If p > 4 or p = 3 ∧ |C| > 1, all the
required monitoring equipment is already in the network, and since BC
and OP alternate around the cycle: Cj requires no additional monitoring
equipment, which is optimal. Since we cannot have p = 2 ∧ dm < `, the
only case to handle is p = 3 ∧ |C| = 1. In this case, we are processing G’s
only cycle that has 3 nexus nodes. If the graph has at least 4 leaves, π1
contains both an OP and a BC, and whatever π2 and π3 contain, will al-
low us to monitor Cj optimally (without any addition). If G has exactly 3
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leaves (it cannot have fewer leaves since p = 3), we need to add exactly one
element to monitor the cycle. Assume π1 has a BC, then necessarily π3
too. Adding an OP between those nexus nodes monitors the cycle, and
thus monitors Cj optimally (four elements for a graph with a cycle). This
concludes the induction step, and consequently G is monitored optimally
by µ computed by Algorithm 2.

3. Otherwise: If dm = `, one of the two cases discussed above applies, de-
pending on the routing model: if the route connects two nodes w.r.t. clock-
wise order: dm < `, otherwise dm > `.
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