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ABSTRACT
When the residents of Flint learned that lead had contaminated
their water system, the local government made water-testing kits
available to them free of charge. �e city government published
the results of these tests, creating a valuable dataset that is key
to understanding the causes and extent of the lead contamination
event in Flint. �is is the nation’s largest dataset on lead in a
municipal water system.

In this paper, we predict the lead contamination for each house-
hold’s water supply, and we study several related aspects of Flint’s
water troubles, many of which generalize well beyond this one city.
For example, we show that elevated lead risks can be (weakly) pre-
dicted from observable home a�ributes. �enwe explore the factors
associated with elevated lead. �ese risk assessments were devel-
oped in part via a crowd sourced prediction challenge at the Uni-
versity of Michigan. To inform Flint residents of these assessments,
they have been incorporated into a web and mobile application
funded by Google.org. We also explore questions of self-selection
in the residential testing program, examining which factors are
linked to when and how frequently residents voluntarily sample
their water.
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1 INTRODUCTION
We now understand the Flint Water Crisis as a disaster with many
facets: environmental, socio-economic, political, and infrastruc-
tural, among others. �e dire problems a�ecting the city’s water
started in April 2014 when, as a short-term cost-saving measure,
city o�cials opted to switch the water supply from Lake Huron to
the Flint River. Not long a�er the switch, residents began to notice
an unpleasant odor and discoloration in the water �owing from
their taps. While water testing data reported by state government
o�cials passed regulations from the U.S. Environmental Protection
Agency (EPA), data collected by outside academics from Virginia
Tech suggested otherwise. �is independent academic work found
water lead levels dramatically higher than the threshold allowed
by the EPA’s Lead And Copper Rule. It was not until September
2015, following a report by a pediatrician observing a dramatic rise
in lead levels1 in the blood of Flint children [10], that the water
crisis began to receive serious a�ention from government o�cials.
In December 2015, Flint’s mayor declared a state of emergency,
and agents from both the Michigan Department of Environmental
�ality (DEQ) and the EPA embarked on thorough investigations.
By late 2015 and early 2016, the media had elevated the Flint Water
Crisis into a major national and international news story.

Eventually, the immediate cause was understood: the water from
the Flint River was signi�cantly more corrosive than local o�cials
had thought. �is, and other governmental failures, resulted in
improper water treatment. Central to the problem was that, like
many U.S. cities, Flint’s water infrastructure contains tens of thou-
sands of lead pipes. �ese pipes typically are treated with bene�cial
chemicals to develop thick layers of deposits, which protect wa-
ter against contamination from heavy metals. Treated incorrectly,
however, Flint’s corrosive water began to erode these protective
layers and ultimately, lead particles leeched from the pipes into the
city’s drinking water. �ough Flint returned to Lake Huron’s water
supply in October 2015, the damage was done, and pervasive lead
contamination continued to be detected through 2016. While the
EPA determined the water was safe to drink with a �lter by mid
2016, many issues remain and citizens continue to rely on bo�led
water [7]. �e city’s most vulnerable residents, namely children,
1It is now well established that lead-contaminated water poses signi�cant health risks,
particularly for children [3]
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pregnant women, and the elderly, have likely been exposed to lead
in the water, and many questions about the lasting impact remain
unanswered.

As Flint’s water crisis has continued to unfold, a�ecting as many
as 35,000 homes, both city and state o�cials have been faced with
daunting questions: what is the best way to direct scarce resources?
How can bo�led water and water �lter technology be e�ciently
distributed? Where should volunteers be sent to educate residents?
As the city has embarked on a highly expensive pipe removal pro-
gram, where a replacing a single home’s water service line can cost
around $5,000, o�cials have asked the obvious question: which
homes are most at risk for lead contamination? Flint’s recovery
depends greatly on isolating which properties are most in need of
a�ention. �is question is important beyond Flint, as other cities
and towns with aging infrastructure continue to address lead and
other heavy metal abatement.

In the present paper, we consider the problem of estimating
the risk of lead contamination in home drinking water. �is work
relies on a large collection of water samples taken by residents and
government o�cials throughout the crisis. Beginning in late 2015,
the State of Michigan initiated program allowing any resident to
submit a tap water sample for testing. �is dataset is a publicly
available collection of over 25,000 tests, and it provides a glimpse
into the causes and extent of water lead contamination in Flint; it
is indeed the largest dataset collected on lead in a municipal water
system. We combine these measurements with several other data
sources, including census data, property a�ributes, geographical
information, and infrastructure records, and we use the combined
data to answer several statistical and analytical questions. Among
these are:

• To what extent can we predict elevated lead in a home’s
drinking water?

• What a�ributes of a home are associated with lead contami-
nation?

• How can we address the sampling bias of volunteer residential
testing?

We present a number of additional results, and we conjecture that
many of these observations will generalize beyond Flint.

Flint’s Water Contamination: A Birds-Eye View
Before we begin our analysis, let us give an overview of the lead
testing data and a brief analysis. When a resident takes a water
sample and submits this water sample for testing, the state deter-
mines the lead content (typically by mass spectrometer) and reports
the result in parts per billion (ppb). �e data released by the state
rounded these values down to the nearest integer. �us when we
say that a sample had “no detectable lead” we mean less than 1 ppb.
It is important to note that, despite what one may infer from head-
lines, nearly half of all homes had no detectable lead, and around
80% of measurements from the residential testing program were
below 5 ppb.

�ese lead levels still warranted a�ention according to the law.
�e US Congress passed what is known as the Safe Drinking Wa-
ter Act in 1986, which instructed the EPA to develop regulations
limiting heavy metals in drinking water. Pursuant to the act, the
EPA developed what is now known as the Lead and Copper Rule

(LCR), issued in 1991, requiring municipal water utilities to enforce
a set of guidelines for allowable levels of lead and copper. More
precisely, the LCR requires that at regular intervals a municipality
must take a set of water samples from a range of properties, and
that the 90th percentile lead measurement must fall below 15 ppb.
As a result of these EPA requirements, throughout the paper we
emphasize this 15 ppb threshold.

It is worth noting that, from the perspective of public health, this
value of 15 ppb is rather arbitrary. It is very challenging to deter-
mine precisely the risks to human health from lead contamination
in water, and most epidemiological work aimed at understanding
adverse e�ects from consuming dissolved lead can provide only
coarse answers [12]; public health experts typically say that “no
level of lead is safe.” �e current guidelines should be viewed only
as a workable regulatory framework.

Figure 1: Comparing the 90th percentile of lead readings, on
the sentinel data vs. the voluntary residential testing data.

Based on this law, the key quantity is the estimate of the 90th
percentile of lead readings. We describe this quantity in Figure 12
for eachmonth of 2016, drawing from both the government-run sen-
tinel program and the larger voluntary residential testing program.
Using data from the state’s sentinel program, we found during a
period in February only between 8 and 15 percent of homes had lead
above the federal action level of 15 ppb. Lead measurements are
confounded by weather and temperature, which is likely the reason
behind the summer rise in lead levels. But in general it is hard to
draw simple conclusions about the trend of lead contamination in
Flint.

Despite the statistical issues, a result of these guidelines has been
signi�cant political a�ention paid to what percent of homes that test
at or below the 15 ppb threshold. �is was especially true in Flint
where it was alleged that government o�cials manipulated data
to achieve compliance. At the height of the political �restorm, the
emba�led Governor Rick Snyder put out a tweet (seen in Figure 2)
celebrating good news about the elevated lead levels. �e tweet was
deletedwithin a day, but wewere able to grab a screenshot. Our own
analysis, as displayed in Figure 12, however, rejects the conclusion
of Governor Snyder’s deleted tweet about the distribution of lead
levels over time.



Figure 2: Governor Rick Snyder announcing improved Flint
water testing results onApril 22, 2016. �e tweetwas quickly
deleted, and results then worsened over the summer. Note
that the plotted points of the line do not correspond to the
y-axis labels, and x-axis is not linear in time.

Related Work. Much of the work up until this point was con-
ducted by Marc Edwards’ team from Virginia Tech, who indepen-
dently monitored of lead water levels 2. �eir e�orts have helped
raise awareness and reveal the severity of the problem. In addition,
[4] provides an overview of the water crisis and discusses strategies
for risk management in Flint. Further, there is some work analyzing
some similar trends that we observe in lead levels over time [8, 9].
But to the best of our knowledge, we are the �rst to apply predictive
modeling techniques to help with the Flint Water Crisis.3

2 DATA
�is paper incorporates a diverse range of datasets related to prop-
erties in the city of Flint. One of the main contributions of our
work is acquiring and merging these datasets into a single dataset.
Some of these datasets are publicly available from the state of Michi-
gan, and others were provided by the city and other sources at our
request, as noted. We detail each dataset.

2.1 Residential Water Testing
�e vast majority of the lead water level data in Flint comes from
water samples submi�ed voluntarily by residents. �e city of Flint
provides free water testing services to all of its residents, who are
able to pick up testing kits from a local distribution center. Residents
then collect water from their own homes and submit the samples to
be analyzed by the Michigan Department of Environmental�ality.
Since this program began in September 2015, over 25,000 tests have
been conducted from 15,000 unique locations (as of May 2017). �e
results are available on the State’s website 4. For each sample we are
given the date the sample was submi�ed, the lead and copper levels,
and the address of the residence. In Figure 3, we show the locations
and lead readings for these tests. Measuring lead contamination is a
highly noisy process, and even repeated measurements at the same
source produce highly variable results. We can observe this directly

2h�p://www.�intwaterstudy.org
3�e authors recognize some of their own work has been presented elsewhere [2].
4h�p://www.michigan.gov/�intwater/

Figure 3: Locations of voluntary residential water tests in
Flint. Color corresponds to the level of lead contamination
(parts per billion). We observe that elevated lead readings
are highly geographically diverse.

in the data because a subset of homes had their water tested on
multiple occasions. 5 �e correlation in (log) lead levels between
�rst and second samples is modest (Pearson correlation coe�cient
0.465 for voluntary residential testing and 0.522 for the sentinel
program.

�is noisy measure has an e�ect on performance of our predic-
tions, as we will see later. �ere are many causes for this noise, but
one major source is the delicate nature of sampling a home’s water.
Residents are asked to sample the �rst liter of water from their
tap �rst thing in the morning, with the hope of ge�ing water that
has been stagnant in the plumbing, but a toilet �ush or running
the shower can signi�cantly a�ect the concentration of various
contaminants.

2.2 Sentinel Water Testing
As news of the crisis broke, Michigan DEQ initiated what is called
the “sentinel program,” in which over 400 homes were selected to
be tested multiple times over many months. �ese were homes
that were considered to be especially at risk of lead contamination—
manywere known to have a lead service line, for example—and they
were drawn from diverse neighborhoods around the city. �ese sites
were chosen to be a representative sample, and the state received
some guidance from other academics for selecting these homes.

5In Section 4, we address some of the reasons for residents testing their water more
than once.

http://www.michigan.gov/flintwater/


Data from the sentinel program has been made publicly available
at h�p://michigan.gov/�intwater.6

One of the challenges with determining lead contamination lev-
els is determining which homes to test. �e EPA requires water
systems to select homes that are at greater risk of elevated lead in
their tap water, according to the Lead and Copper Rule, but this
leaves much to the discretion of o�cials who can seek data points
in order to produce more optimistic (or pessimistic) estimates. In-
deed, investigators have questioned the selection of homes in Flint,
for instance some were in a more newly-developed neighborhood
[9, 11].

Sentinel sites were visited for water tests a varying number of
times, with some homes tested fewer than 5 times, while others
were tested more than 10 times. �e samples were taken at roughly
weekly intervals, early in 2016, and then less frequently as the
year went on. While the sentinel data represents a smaller set of
homes than the voluntary residential testing program, we generally
assume the sentinel data to be much more reliable as the residents
in these homes are given more direct instructions, by workers and
other o�cials, on how to correctly take a water sample. �e bo�les
are picked up by DEQ o�cials and others for chemical testing.

2.3 Parcel data
�e city provided us with detailed records of the 55,893 parcels of
land in Flint. �is data contains information on the property’s age,
location, and value, in addition to other characteristics. �is data is
not publicly available online in this exact form, but a very similar
dataset is freely in an ARCGIS format, known as Flint 2014 Housing
Data.7 We used the Google Maps API to merge noisy address
data.8 �ose samples that did not correspond to Flint parcels were
discarded. A�er merging and discarding non-Flint parcels, 55,857
parcels remained in our dataset.

�e key step was merging the parcel data with the lead testing
data. We matched the address of each lead test to the address of
the corresponding parcel of land in the city records. Because a
parcel can contain multiple residences and residents are free to
submit as many tests as they would like, we o�en have multiple
tests that correspond to a single parcel. On the other hand, because
many properties in Flint are vacant and residents are not required
to submit tests, most parcels have no associated lead test.

An important challenge working with residential data on Flint
is a striking fact: Flint has the highest rate of vacant homes in any
municipality across the US [1]. Figure 4 shows the density map of
vacant homes in on the Flint map. We have two variables serving as
weak signals of occupancy: does the home has an active U.S. Postal
Service account, and was the 2014 Housing Condition survey. In our
discussions to follow, in Section 4, we carefully consider vacancy,
and characterize the a household’s decision to submit a residential

6�e sentinel data omit the full addresses of the homes, but our team was able to get
access to these records with help from the Michigan Governor’s o�ce. �is allowed
us to link each home to the many variables describing each parcel of property.
7�e parcel data is made available online by Housing and Urban Development and
contains information taxpayer, ownership, land use, and vacancy and is accessible here:
h�ps://www.arcgis.com/home/item.html?id=bcd87aa254d34ae6b66475beaf17d59a#
overview. We initially received a version of this parcel data directly from the City of
Flint.
8�anks to a grant and API access from Google.org.

Figure 4: �ere aremany abandoned homes in Flint MI.�is
heatmap displays the density of (likely) unoccupied proper-
ties.

water test along with whether that test will have an elevated lead
reading.

2.4 Service line data
Water service lines are the pipes that connect each property in Flint
to the water distribution system, o�en called the “water main”. A
home’s water service line is typically composed of two di�erent
segments: public and private. �e public service line which is the
pipe connecting the water main to the property “curb box”, which
is an underground device owned by the municipality that contains
a shuto� valve. �e private service line connects the curb box
through front lawn and runs into the home’s water meter.

Service lines can be made out of any number of materials, includ-
ing lead, copper, galvanized steel, plastic, and other metal alloys.
Unfortunately, there is not a de�nitive record of the service line
material for every home. Initially, the City of Flint struggled to
produce any service line records. Eventually they discovered a set
of 45,000 3” × 5” index cards and a set of municipal maps from
the water department with handwri�en annotations [13]. �e in-
formation in these maps was painstakingly digitized by a group
of students at the University of Michigan, Flint, GIS center. �is
project was spearheaded by Dr. Marty Kaufman, the faculty direc-
tor of the center. It was noted that the city records are not always

http://michigan.gov/flintwater
https://www.arcgis.com/home/item.html?id=bcd87aa254d34ae6b66475beaf17d59a#overview.
https://www.arcgis.com/home/item.html?id=bcd87aa254d34ae6b66475beaf17d59a#overview.


accurate and reliable. For more details about the service lines see
[15].9

2.5 Census Block Level Data
�e previous data tell us much about the physical properties of
the homes in Flint, but they do not tell us much about the people
that live in them. �ey also provide a richer understanding of the
a�ected populations. �e census conducted by the U.S. Census
Bureau has precise, parcel-level demographic data, but this data is
not made available until many years a�er it is gathered to protect
citizens’ privacy. �eAmerican Community Survey (ACS), however,
is a survey conducted by the U.S. Census Bureau that supplements
their census data with demographic and economic data. �e results
are provided at the level of census block groups.

Using the American Fact Finder website10, we acquired data
about race, age, family structure, languages spoken, household
income and rent values for each block in Flint city limits. �e parcel
data includes census tract, block group, and block information for
each parcel, so these block-level census data were merged with the
other parcel-level data.

3 PREDICTING LEAD LEVELS
In the present section, we present our predictive models of water
lead levels, allowing us to understand the factors related to high
lead risk and to provide predictions for homes that had not yet
been tested. In the previous section, we discussed the challenges
associated with lead testing data, particularly due to the noisy
nature of the sampling process. But A closer look at lead level data
from Flint provides a much more nuanced picture, A number of
home features correlate quite strongly with elevated lead, and we
note one example that should not come as a great surprise: the
age of the property. In Figure 5 we report average log(lead levels
+1) grouped by the year of construction for these homes, and the
downward trend is quite stark.

Good lead risk predictions can inform public health policy in
Flint. �ey can also provide insight into what factors are producing
contaminated water. In this section we discuss classi�cation models
that predict whether a water sample submission will test above the
EPA action level of 15 ppb.

3.1 Model Selection and Optimization
To create our training data, we join the residential volunteer data
with themerged parcel data so that each sample has a corresponding
parcel. Note that not every home in Flint has submi�ed a water
sample to be tested. Similarly, several homes have submi�ed many
samples, and these will have a row in the training data for each
individual test.

For each row in our dataset, there are 71 features, coming from
the parcel dataset, service line dataset, and census dataset. One-
hot encoding is performed on all categorical features. �e target
variable is the binary classi�cation of homes with water tests above
15 ppb and below 15 ppb.
9�e replacement of lead and galvanized service lines became a top priority for the
City of Flint in February 2016. By May 2017, over $100 million in State and Federal
funds had been appropriated for Flint service line replacement, managed by by the
Flint Fast Action and Sustainability Team.
10h�ps://fact�nder.census.gov

Figure 5: When averaged over many parcels, lead levels dis-
play a number of very clear trends. Homes built a�er in the
1950s and later display signi�cantly lower lead levels than
homes built in the early 1900s.

Table 1: Grid search best parameters for XTBoost

Number of Trees 512
Training Subsample Ratio 0.9
Tree Column Sample Ratio 0.6

Max Depth 3
γ 0.1
α 0.5
λ 1

Training sets contained 75% of the samples while the test sets
were assigned the remaining 25%. We split the data carefully into
training and test sets creating two non-overlapping sets of parcels
to prevent data leakage stemming from parcels with multiple water
tests. Hyper-parameters for each model were chosen via a grid
search. Finally, the calibration module from the scikit-learn
was used to calibrate the predicted probabilities of the classi�er.

We constructed variousmodels using the scikit-learn libraries
and the XGBoost python package [6]. Tree based methods, such
as random forests, performed the best, with the XGBoost gradient
boosted tree classi�er achieving the best prediction result. �e cross
validation score a�er 250 runs for the classi�er was 0.72 ± 0.01. A
typical ROC curve is shown in Figure 6. �e XGBoost parameters
are found in Table 1.

�e learning curve for is shown in Figure 7. �e convergence
in the learning curve indicates that the model has been saturated
with data. �e initial steep decline in the training score indicates
inherent bias in the model without su�cient data, but it declines
with appropriate numbers of samples.

We also implemented various regression models, directly model-
ing the continuous non-negative value of lead levels (ppb). However,
compared to modeling the binary variable using the 15 ppb thresh-
old, these consistently produced inferior results. For example, a
collection typical xgboost regression models had a mean squared
error of 305 ± 72. When the predicted lead levels were converted

https://factfinder.census.gov


Figure 6: ROC curve of a typical train/test split.

Figure 7: �e learning curve was produced using 10-
fold cross validation and the scikit-learn model selection
module. �e convergence and small gap in the curve indi-
cate that adding more data is unlikely to improve predic-
tions.

into a < 15 ppb classi�er, AUC scores dropped to 0.63 ± 0.1. �is
lackluster performance of the continuous regression model is likely
driven by both the large range of target values and measurement
error, high variance in lead levels even within the same parcel.
�e perceived weakness of the regression models lead us to focus
exclusively on classi�cation.

3.2 Results
A�er we determined the best model for predicting the water tests,
we generated a prediction on all the parcels in the city of Flint.
Figure 8 summarizes the location of 1,000 homes predicted to be
most likely to have lead in their water which is above the EPA

Figure 8: �e 1000 parcels with the highest probability to
submit a water sample with lead above the EPA action level.

action level. �e homes in Figure 8 have not submi�ed lead tests
yet. �ese predictions serve an important purpose, as they provide
a risk assessment for homes that were never tested during the peak
of the crisis. �e analysis provides a predicted measure of lead
exposure via water during the years 2014-16 for every home in
Flint, which can be used for public health studies in the years to
come.

3.3 Predictive Factors
Feature importance with tree ensemble methods can be determined
by the number of times the individual trees in the forest split on each
feature. We break down the results into the following categories.

3.3.1 Home Value. Various measures of a property’s value were
determined to be important by the model. �e top two features
were consistently the value of the buildings and the value of the
land. Additionally, land improvements and state assessed value
were important.

3.3.2 Demographics. Demographic data from the census bureau
was also important. �e model divided the city down by lines
using age and race. Some of the less important features that still
contributed were whether homes had married parents and whether
or not only English is spoken in the home.



3.3.3 Property Age. Finally, the age of the property was one of
the most important features. �is was visible in Figure 5. Other
values that were correlated to property age also appeared, such
as the estimated age of the population and whether or not elderly
people were present.

3.4 Kaggle Challenge
We initiated a Kaggle prediction challenge to improve our predic-
tion accuracy. �is was hosted by https://inclass.kaggle.com/
and o�ered to people a�liated with the University of Michigan.
�e contest involved a dataset with over 17,000 water tests from
nearly 11,000 Flint homes de-identi�ed. Along with the lead test
results, some other de-identi�ed features of the home and lead test,
including property value, vacancy status, and time of test were pro-
vided. During two months of competition, over 150 students and
post-docs from various departments at the University of Michigan
participated, submi�ing over 500 times in the process. �e 1st, 2nd,
and 3rd place winners had the opportunity to present their classi-
�ers to the Michigan Data Science Team (MDST)11. �e result of
the challenge was a small improvement to our initial classi�cation
models. �e winning submission achieved this through ensembling
XGBoost models with other classi�cation models. However, the
second and third winning solutions used a Random Forest model.
We observed a high degree of variance between Random Forest
submissions, in part due to the intrinsic uncertainty in the predic-
tions. Moreover, we learned the most signi�cant improvements
came through adding additional data, rather than hyperparameter
tuning.

Figure 9: �e lead-level prediction problem was released as
a UM internal prize-drive challenge. �e competition was
facilitated by the MSDT.

3.5 �e MyWater-Flint App
Related to our modeling e�orts, we were involved in a project
funded by Google.org to develop a mobile app and website for the
11�e authors are members of MDST, h�p://midas.umich.edu/mdst/.

city of Flint to help the community and government agencies man-
age the ongoing water crisis. Figure 10 shows a screenshot of the
app. �e app development was a collaboration between Professor
Mark Allison at University of Michigan – Flint, his students, and
MDST, with support from Google.org.

Figure 10: Snapshot of the Mywater-Flint website.

�e Mywater-Flint App 12, uses the predictive model and fea-
tures described earlier to identify homes at high, medium, and
lows risk of lead contamination. �e users are also able to do the
following:

• access a citywide map of where lead has been found in
drinking water.

• discover where service line workers have replaced infras-
tructure that connects. homes to the water main, and
where they’re currently working.
• locate the nearest distribution centers for water and water

�lters.
• �nd step-by-step instructions for water testing.
• determine the likelihood that the water in a home or an-

other location is contaminated, among other features.

4 CHARACTERIZINGWATER SAMPLE
SUBMISSION BEHAVIOR

We �nd that of the 32,741 occupied homes, 10,998 submi�ed at
least one water test. Investigating the predictive factors behind
when and how o�en submissions occur can help us understand
the submission behavior of residents. We study this behavior and
investigate features which correlate with water test submission
variables.

4.1 Predicting Which Homes Make
Submissions

Despite the low cost of submi�ing a residential water test, a large
majority of the properties in Flint have not submi�ed any tests.
Many properties are simply vacant; these properties are discarded
from the analysis in this section. One hypothesis is that residents
working long hours may not have the ability to conduct and deliver
12h�p://www.mywater-�int.com/

http://midas.umich.edu/mdst/
http://www.mywater-flint.com/


the test. Another hypothesis is that some may not know where to
obtain one. In order to be�er understand why a property might
make a submission, we employ several classi�ers to predict whether
a property has submi�ed. Of these, we choose the best model
according to accuracy of the classi�cation. We then calculate the
feature importances to give insight into submission behavior.

4.1.1 Data Processing. �e dataset we use is the result of join-
ing block level census data, city of �int parcel information, and
the residential water testing dataset. Combined, the joined dataset
contains 60 features and 32,741 rows where each row represents
a parcel of land in Flint. As mentioned previously, vacant parcels
are discarded. �en one-hot encoding is performed on all categor-
ical features. �e target variable is a binary where 0 means no
submission and 1 means at least one submission.

Figure 11: �is �gure shows the 10 variables that an Ad-
aBoost classi�er deemed most important according to Gini
importancemetric. �e y-axis shows the the (normalized) to-
tal reduction of the criterion brought by that feature. Larger
values indicate more important features. Note that many of
these features are related to parcel value.

4.1.2 Model Selection and Training. We use an AdaBoost classi-
�er from the scikit-learn python package with num estimators
and learning rate set to 200 and 0.2 respectively. We chose the
AdaBoost model for it’s robustness to over��ing and its consistent
performance at this classi�cation task when compared to logistic
regression with L2 regularization.

A�er training the model, we evaluate our performance using
a 5-fold cross validation. �e model consistently achieved recall
accuracy of 0.65 with a standard deviation of ±0.03, meaning the

model correctly identi�ed 64% of the true positives in the cross-
validation set.

4.1.3 Predictive Factors. Of the the 60 features used in training
the model, proxies for property value are consistently the most
important features. We calculate feature importances with the Gini
importance metric [5]. Gini importance of a feature is computed by
averages the Gini decreases for that feature over all trees [14]. See
Figure 11 for a graph comparing the 10 most important features.

Table 2 describes the marginal distribution of some of the most
predictive features. Parcels which submit more than one test are
generally more valuable, as shown by increases in “Residential
Home Value”, “HomeSEV”, and “Parcel Acres”. We do not �nd that
homes which are old, which would typically be at greatest risk
for lead contamination, test less than other occupied properties.
However, as illustrated in table 3, the number of submissions from
a property tends to increase with its value.

We �nd that of the various parcel, census, and infrastructure
features considered by our models, features which describe the
value of the parcel are more predictive than census demographic
information. However, the census data available to us are reported
at the block level and may not be granular enough to inform the
classi�ers e�ectively.

5 HOW SELECTION BIAS AFFECTS
OBSERVED LEAD LEVELS OVER TIME

Goovaerts (2017, [9]) questioned the “generalizability” of sentinel
sites and argued that sentinel sites are less representative than
voluntary residential water test data. However, the residential
water test data could be biased due to the voluntary nature of the
data collection process. �e analysis in this work shows that the
important features in our water lead level prediction and water test
submission submissions overlaps heavily. One hypothesis is that
water tests are less likely to be submi�ed from houses built before
1930, but those old houses are also those more likely to be su�ering
from high level lead exposure. �us to investigate whether the
water lead level has improved over time quantitatively, we need to
carefully correct the selection bias incurred by the data collection
method [9]. We approach this problem by assigning correction
weights on the residential test data when we calculated the quantile
water lead level.

To get the weights, we take advantage of our predictive model for
water test submission in section 4.1. �e model provides the proba-
bility pi of each parcel i submi�ing at least one water test sample.
�is probability is used as a proxy quantity for over-representation.
Each observed sample should be given by a correction weight w
that is inversely proportional to the (predicted) probability that it
can be collected. Denote the set of collected samples in a given time
period as S,wi =

∑
i∈S pi
pi .

For anywater test that couldn’t match government parcel records,
we assign an median weight and then we normalize each month’s
total weight to 1. A�er the weighting procedure, we examine the
water lead level improvement over time. We note that that despite
the lack of sampling strategy, the correction doesn’t change the
conclusion that over the whole year of 2016, the water lead level
dropped a�er reaching the highest level at about May. Goovaerts



Parcel Features
A�ribute Number of Submissions Q1 Median Q3 % sample non-zero

HomeSEV
Zero $7,500 $10,500 $14,000 43%
One $8,600 $11,700 $16,500 67%
Two or more $9,000 $12,400 $17,600 69%

Land Value
Zero $787 $1,697 $5,039 99%
One $984 $2,652 $10,403 99%
Two or more $1,074 $2,793 $15,984 99%

Residential Building Value
Zero $17,271 $32,891 $62,430 92%
One $18,539 $36,294 $70,922 96%
Two or more $19,338 $40,541 $80,478 96%

Table 2: �is table gives the quartiles of the most predictive features. We �nd parcels with at least one submission are more
valuable. Because the parcel data has some missing values, we include a column that indicates the number of non-zero values
for the given category.

Demographic Features
A�ribute Number of Submissions Year Built Q1 Median Q3

Aggregate Income
Zero >1940 $37,416 $86,570 $127,476
One >1940 $38,803 $87,589 $135,879
Two or more >1940 $48,711 $100,411 $153,750

Aggregate Income
Zero <1940 $24,447 $62,301 $114,930
One <1940 $34,783 $83,408 $143,736
Two or more <1940 $34,783 $87,133 $214,893

Table 3: �is table presents the quartiles of the household income for parcels who submitted zero, one, or more than one
sample. We also separte the homes into two groups based on property age.

Figure 12: Comparing the 90th percentile of lead readings on
voluntary testing data without/with the reweighting correc-
tion procedure for the selection bias. �e error bar shows
the standard deviation of the estimator by bootstrapping.

(2017) adapted a weighted average of stratum-speci�c rates to es-
timate the e�ect of sampling bias and concluded that voluntary
testing capture the main characteristics of Flint properties much
more closely than the sentinel program [9]. �ough they are using
a di�erent approach their �ndings are consistent with �ndings in
this paper.

A�er the bias correction, the 90th percentile estimate of water
lead level in some months increase by a small amount, which is in
favor of our hypothesis that the selection bias mostly results from
the lack of submission from the old houses most a�ected by the

crisis. �is trend has been noticed elsewhere [9]. Modern correction
techniques may be able to provide be�er insights, which is beyond
the scope of this work.

6 CONCLUSIONS
�e lead contaminating Flint’s water systems poses a serious health
risk for all of the city’s residents. �ere are two major challenges
with assessing water contamination using samples tested for lead.
�e �rst is that the observed distribution of lead levels in water
fat tailed and highly skewed: the 95th percentile of Flint’s lead
readings is 28 ppb, the 99th percentile is 180 ppb, and the 99.9th
percentile is over 2,100 ppb. �e second challenge is that measuring
lead contamination is a highly noisy process.

We collaborated with the City of Flint and the Michigan Depart-
ment of Environmental �ality to acquire data and joined these
data with existing public data. We used these data to build a predic-
tive model to predict which homes are more likely at risk of high
lead contamination. �is model is employed in predictions shown
on the MyWater-Flint app and website. We identi�ed features
which are strong predictors of high lead levels and found that a
number of factors, not just the composition of service lines, are
important to consider in addressing the crisis. Knowing these risk
factors can help policy makers and community members be�er
allocate limited resources and prioritize action in this time of need.

Our lead predictions may also have future value. By establishing
each home’s chance of having had high lead during 2014-16 crisis,



this work provides a proxy for lead exposure to be used studies
tracking health outcomes for Flint residents in years to come.

�is work is ongoing and serves as a model for university-
community partnerships and for data-driven public policy decision
making.
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