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When testing data processing systems, software engineers often use real world data to perform system level
testing. However, in the presence of new data requirements software engineers may no longer benefit from
having real world data with which to perform testing. Typically, new test inputs complying with the new
requirements have to be manually written.

We propose an automated model-based approach that combines data modelling and constraint solving to
modify existing field data to generate test inputs for testing new data requirements. The approach scales in
the presence of complex and structured data, thanks to both the reuse of existing field data and the adoption
of an innovative input generation algorithm based on slicing the model into parts.

We validated the scalability and effectiveness of the proposed approach using an industrial case study.
The empirical study shows that the approach scales in the presence of large amounts of structured and
complex data. The approach can produce, within a reasonable time, test input data that is over ten times
larger in size than the data generated with constraint solving only. We also demonstrate that the generated
test inputs achieve more code coverage than the test cases implemented by experienced software engineers.
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1. INTRODUCTION

When testing data processing systems, software engineers often take advantage of the
availability of a huge quantity of real world data to perform system-level testing. For
example, when developing a web crawler, software engineers can rely upon existing
web pages to verify the robustness of the system. However, in the presence of new re-
quirements, where there is a need to deal with new data formats, software engineers
may no longer have the benefit of having existing real world data with which to per-
form testing. Typically, new test inputs that comply with the new format would have
to be written.

This situation is very common in industry, where requirements are continuously
changing. For example, this paper was motivated by the needs of SES, a satellite op-
erator. SES develops data acquisition systems for satellite transmissions. One such
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system has been developed for the European Space Agency Sentinel series of satel-
lites [ESA 2015]. The first of the Sentinels is already in orbit and more Sentinel satel-
lites will be launched in the coming years. Real transmission data for the first of the
Sentinel mission types is available for testing the data acquisition system. For other
Sentinel mission types, real transmission data is not yet available. Additionally, during
the development process it is not uncommon for the transmission data specifications
to continue to change. Hence, an approach that supports the automatic generation of
valid synthetic transmission data files is necessary to ensure that the data acquisition
system can be thoroughly tested throughout development.

In practice, testing data processing systems involves the handcrafting of inputs,
which requires the creation and editing of large and complex data structures saved
in binary files. Furthermore, given available time and resources, test files should be as
realistic as possible in terms of size and content, as large sizes will stress the system
more and are more likely to reveal faults. The size and complexity of the test inputs
makes this process error-prone and expensive, especially in the presence of changing
requirements that force software engineers to modify or rewrite already defined com-
plex test inputs.

Most existing approaches for the automatic generation of test inputs cannot be used
because they require extensive specifications in the form of context free grammars,
which cannot capture all the complex relationships between data fields. A few ap-
proaches that use extended grammars to capture such relationships exist (e.g. [Xiao
et al. 2003])); however, these approaches are limited in the types of relationships they
can express.

Constraint solvers that process constraints expressed using the OCL language [Ali
et al. 2013, Alloy [Anastasakis et al. 2007, or constraint programming [[Cabot et al.
2008] can be used to generate test inputs from scratch. However, existing approaches
do not scale in the presence of numerous constraints and complex and highly struc-
tured data, as visible for Alloy in our empirical study. An additional limitation of these
approaches is that they require software engineers to model all the constraints on in-
put data, which may require a lot of time.

To limit the modelling effort, other approaches generate test inputs by mutating ex-
isting field data [Shan and Zhu 2009; Di Nardo et al. 2015all. The technique described
in [Di Nardo et al. 2015all, for example, generates test inputs by mutating available
field data represented by a data model. This technique does not require exhaustive
modelling of all the characteristics of the test inputs; however, it is not applicable
when existing field data do not comply with new data requirements.

In this paper, we propose an approach that modifies existing field data to generate
test inputs for testing new requirements. The approach combines data modelling and
constraint solving. Models of both the original data format as well as the updated data
format must be provided as inputs to the approach, along with field data complying
with the original data model. The approach scales in the presence of complex and
structured data, thanks to both the reuse of existing field data and the adoption of an
innovative input generation algorithm based on slicing the model into parts; it reuses
field data for parts unaffected by requirements changes, and then iteratively updates
parts that are affected, by using data generated by means of constraint solving.

The approach proposed in this paper makes use of previous work in which we
proposed a modelling methodology dedicated to modelling the structure and content
of complex input/output data stores (e.g. files), and their relationships for systems
where the complexity lies in these elements, such as data acquisition (DAQ) sys-
tems [Di Nardo et al. 2013]l.

Given that the solution proposed in this paper creates valid synthetic field data
that complies with an updated data model, test engineers can proceed to use this
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synthetic field data to test the updated target system. Although in our experiments
we evaluated the effectiveness of the approach on a case study where test inputs for
the system under test are bytestreams, the underlying data modelling methodology
is generic, and enables the adoption of the proposed approach to test systems that
process different data formats (e.g. structured text files or XML files). Additionally,
the newly generated test inputs can be further processed by other automated testing
techniques. For example, the mutation technique that we introduced in [Di Nardo
et al. 2015a] can be used to automatically modify the synthetic field data generated
to perform robustness testing. Also, the outputs that result from the execution of
the software under test against the synthesised field data can be automatically
evaluated by relying upon a technique that makes use of data constraints in the data
model [Di Nardo et al. 2013].

The contributions of this paper are:

— An automated, model-based approach to modify field data to fit new data require-
ments for the purpose of testing data processing systems.

— A scalable test generation algorithm based on data slicing that allows for the in-
cremental invoking of a constraint solver to generate new or modified parts of the
updated field data.

— An industrial empirical study demonstrating (1) scalability in generating new field
data and (2) coverage of new data requirements by generated field data in addition
to a comparison with expert, manual testing.

The paper is structured as follows. Section [2| describes the data modelling approach
adopted to capture the characteristics of the input data. Section [3| summarises the
challenges of the research problem addressed in this paper. Section [4] overviews the
approach. Sections 5] and [6] present the details of the core contributions of the paper:
reuse of existing data and generation of missing or invalid data with constraint solv-
ing. Section [7| shows, by means of an example, how the algorithm proposed by this
article correctly generates a complete solution. Section (8| discusses the empirical re-
sults obtained. Section [9| summarises related work. Section[I0| concludes the paper.

2. BACKGROUND ON DATA MODELLING

To define data requirements, we rely upon a data modelling methodology described
in [Di Nardo et al. 2013; IDi Nardo et al. 2015al] that uses UML class diagrams to
capture the structure of inputs and outputs, relies upon Object Constraint Language
(OCL) [OMG 2015] expressions to define relationships between the inputs and outputs,
and uses UML stereotypes and OCL expressions to capture a fault model.

To briefly present the methodology, we show how it can be applied to model Sentinel-
1 mission transmission data processed by SES-DAQ, a DAQ system developed by SES.
SES-DAQ processes bytestreams of transmitted satellite data. The Sentinel-1 mission
is the first of several planned Sentinel missions. One Sentinel-1 satellite is already in
orbit.

Fig. [1| shows a simplified example of a satellite transmission processed by SES-
DAQ. Each transmission consists of a sequence of Virtual Channel Data Units (VC-
DUs) [CCSDS 2006]. Each VCDU contains a Header and a packet zone that contains
a sequence of Packets [CCSDS 2003]. The VCDUs in a transmission may belong to dif-
ferent virtual channels; a unique virtual channel identifier (VCID) number identifies
each virtual channel. VCDUs can be active (i.e. they transmit data) or idle (i.e. they
do not transmit anything). A special VCID is used to transmit idle data. Fig. [1| shows
a transmission with six VCDUs: four belonging to virtual channel 1; one belonging to
virtual channel 2; and one belonging to virtual channel 0, which indicates idle data.

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00, Pub. date: 2016.



00:4 D. Di Nardo et al.

VCDU 1

‘Header VCID:I‘ Packet 1 ‘PackelZ‘ Packet 3 ‘ Packet 4 ... ‘
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Packet that continues in Packet that continues
Packet ... ... Packet
the following VCDU from a previous VCDU

Fig. 1. A simplified example of the transmission data processed by the SES data acquisition system. The
keyword VCID indicates the virtual channel each Virtual Channel Data Unit (VCDU) belongs to.

To create the data model for the Sentinel-1 mission, we first studied the SES-DAQ
system using design and test documents and held several modelling sessions with the
system testers and developers. The data model and constraints for the system were
implemented by the first author of this paper, in an iterative manner, following the
modelling methodology. Although the proposed approach has been used only in one
pilot project, it is currently being disseminated in the organisation.

Fig. 2| shows how we model the Sentinel-1 input data. The model captures the struc-
ture of a transmission: we use UML classes to represent elements that contain mul-
tiple fields, while we use UML attributes to model elements that cannot be further
decomposed. For example, it shows that each transmission consists of a sequence of
VCDUs. Each VCDU begins with a VeduHeader, followed by a PacketZone that con-
tains a sequence of Packets (if the packet zone is active). The VCDUs in a transmission
may belong to different virtual channels.

Class attributes are used to represent the transmitted binary information (e.g.
checksums, frame counters, or data). For example, attribute sequenceCount of class
Packet is used to store information about the packet order.

Associations are used to represent containment relationships. In Fig. [2| the classes
that model the VCDU and its VeduHeader are connected by an association. We use
generalisations to indicate when a data field can have multiple different definitions.
For example, each Packet has a PacketHeader whose content may vary according to the
type of packet. Note that for Sentinel-1, the PacketHeader has two possible values: (1)
the SarPacketHeader is used by packets containing data generated by the Synthetic
Aperture Radar (SAR) instrument and (2) the GpsrPacketHeader is associated with
packets containing Global Positioning System Receiver (GPSR) data.

Data models also capture the structure of configuration files. In the case of SES-
DAQ, the structure of configuration files is captured by classes Configuration and Vc-
duConfig. The configuration files specify how the SES-DAQ software should process
data and also define what data values are valid for received transmissions. For exam-
ple, the attribute checkCrc of class Configuration indicates whether or not the software
should check for packet correctness by using cyclic redundancy check information. A
Configuration also contains a collection of VeduConfig instances, one for each valid
virtual channel. Class VeduConfig provides run-time information characterising the
expected contents of a valid virtual channel, for example: a valid VCID value, vcid
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Fig. 2. Simplified data model for the SES-DAQ working with Sentinel-1 satellites.

context Packet inv:
( self.apidValue.value=0 ) or
( self.apidValue.value=1 and self.pHeader.oclIsTypeOf(SarPacketHeader) ) or
( self.apidValue.value=2 and self.pHeader.oclIsTypeOf(GpsrPacketHeader) )

WM

Fig. 3. Mapping of packet type numbers to specific PacketHeader subclasses.

in Fig.[2} and a collection of valid packet identifiers (specifically, application identifier
(APID) values), apids in Fig.

The outputs of SES-DAQ are modelled by classes OutputLog and Event that capture
the event messages reported by the application in the output log file.

A data model also captures the characteristics of valid data by means of constraints
written using the OCL language. Fig. [3| shows a simple input constraint specific to the
Sentinel-1 data model that indicates that a PacketHeader is of type SarPacketHeader
only if the APID value of the packet is equal to 1. Fig. [4] shows a more complex input
constraint—one having collection operators; the constraint indicates that the apid-
Value for a given Packet must either be equal to (1) an active apid value, as specified
by VeduConfig entries that indicate the valid apids for a given vcid value (Lines 3 and
4) or (2) the idle apid value, as specified by the idleApid entry of the Configuration
(Line 6). For the SES-DAQ, there are 4 complex input constraints (having collection
operators) and 17 simpler ones. Output constraints might be defined as well. An out-
put constraint may, for example, indicate that an error event PKT_JMP should exist
in the system output log file if the frame count of a VCDU is not greater by one than
the frame count of the previous VCDU on the same virtual channel.
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1 context ActivePacketZone inv:

2 self.packets—forAll(x : Packet |

3 self.vedu.trans.config.veduConfigs—select(y : VeduConfig |

4 y.veid = self.vedu.veduHeader.virtualChannelld).apids—exists(z : Apid | z = x.apidValue)
5 or

6 (x.apidValue = self.vcdu.trans.config.idleApid)

7 )

Fig. 4. OCL constraint that indicates the allowed apidValue entry for a given Packet according to the con-
figuration.

PacketHeader

>“

[ I

«InputData, Replacement» «InputData, Replacement»
MsiPacketHeader Gpsr2PacketHeader
«Measure» coarseTime : Integer «Identifier» destinationld : Integer
«Measure» fineTime : Integer «Identifier» type : Integer
«Identifier» operationMode : Integer «Identifier» subtype : Integer
«Identifier» compressionStatus : Integer

Fig. 5. Portion of the data model for SES-DAQ that handles new data requirements specific for Sentinel-2
satellites.

1 context Packet inv:

2 ( self.apidValue.value=0 ) or

3 ( self.apidValue.value=1 and self.pHeader.oclIsTypeOf(SarPacketHeader) ) or
4 ( self.apidValue.value=2 and self.pHeader.oclIsTypeOf(GpsrPacketHeader) ) or
5 ( (self.apidValue.value=3 or self.apidValue.value=4) and

6 self. pHeader.ocllsTypeOf(MsiPacketHeader) ) or

7 ( (self.apidValue.value=5 or self.apidValue.value=6) and

8 self.pHeader.ocllsTypeOf(Gpsr2PacketHeader) )

Fig. 6. New OCL constraint that replaces the one in Fig. 3| The constraint is updated to include the new
packet header types.

3. RUNNING EXAMPLE

New data requirements potentially result in changes to both the data model and the
contents of the configuration files of the system. A change to the data model corre-
sponds to a modification of the class diagram or the OCL constraints, while changes in
configuration files consist of changes in the values assigned to configuration parame-
ters.

Fig. |5| shows a portion of the data model of SES-DAQ that has been updated to
process data transmitted by Sentinel-2 mission satellites. In the case of Sentinel-2, a
PacketHeader can be either of type MsiPacketHeader or Gpsr2PacketHeader. These two
kinds of packet headers contain information that is different from the packet headers
transmitted by Sentinel-1 satellites. If we compare, for example, the GpsrPacketHeader
transmitted by Sentinel-1 and the Gpsr2PacketHeader transmitted by Sentinel-2 we
notice that both provide information about the destinationld, and the type of the con-
tent being sent, while only the latter provides a subtype field that provides additional
information characterising the content.

Data constraints might change as well. Fig. [6|shows an example for SES-DAQ where
the OCL constraint in Fig. [3| has been modified by specifying the new mappings be-
tween the packet type and the two new PacketHeaders.
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1 context VcduHeader inv:

2 self.virtualChannelld = self.vcdu.trans.config.idleVcid

3 or

4 self.vcdu.trans.config.veduConfigs.veid—exists(x | x = self.virtualChannelld)

Fig. 7. OCL constraint involving configuration parameters.

Original Original Incomplete Valid 4. Data
£ Data -] Model Model Model Writing
1] Model Instance 77, Instance “7J Instance I

o N
Q a Q a Z Q a Test Input
1. Data 2. Automatic 3. Update Model for Updated
Loadin Model Instance Instance using Software
@ Transformation Constraint Solving D

T T S

] Dgta

Field data ¥ Model

Fig. 8. Automatic generation of test inputs for new data requirements.

In addition to changes in the data model, new data requirements often imply
changes in the configuration files used to run the software. Different software versions
may require different configuration parameters, although changes in the content of the
configuration files may not imply changes in the structure (or the related constraints)
of the configuration classes captured by the data model (e.g. the configuration file for
SES-DAQ has the same structure whether it is used to process Sentinel-1 or Sentinel-
2 data). The configuration values to be used with a given version of the software are
typically set in the field, before executing the software. When generating test inputs
for the new requirements, it is thus necessary to properly set the values appearing in
configuration files, because they are referenced by OCL constraints involving config-
uration parameters. An example is given by the constraint in Fig. [7|that states that
the virtual channel identifier specified in a Vedu header (attribute virtualChannelld of
class VeduHeader) must either be equal to the idle virtual channel identifier (attribute
idleVcid of class Configuration) (line 2) or to one of the active virtual channel iden-
tifiers (attribute idleVcid of class Configuration) (line 4) present in the configuration
file.

4. AUTOMATIC GENERATION OF TEST INPUTS FOR NEW DATA REQUIREMENTS

We automatically generate test inputs for new requirements by adapting existing field
data. To this end, we combine model transformations with constraint solving. Model
transformations enable the partial reuse of existing field data, while constraint solving
allows for the generation of missing data that fulfils the updated constraints. Fig.
shows the four steps of the approach.

In step 1 we load a chunk of field data in memory as an instance of the original data
model (Original Model Instance). In the case of SES-DAQ, the process is automated
by using a parser that follows the approach described in [Di Nardo et al. 2015all. The
parser uses stereotypes in the UML class diagram to determine the mapping between
class attributes and the bytes stored on disk.

In step 2, we generate an instance of the Updated Data Model by means of a model
transformation applied to the Original Model Instance. The result of the model trans-
formation is an instance of the Updated Data Model that is incomplete (Incomplete
Model Instance). The Incomplete Model Instance contains only the information that
can be directly derived from the Original Model Instance: instances of classes and at-
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Fig. 9. Example of an instance of the Original Data Model of SES-DAQ visualised using the object diagram
notation.

tributes that have been introduced in the Updated Data Model are missing from the
Incomplete Model Instance (these instances are the ones generated in the next steps
of the algorithm).

In step 3 we generate a valid instance of the updated data model by means of con-
straint solving. As the underlying solver we use the Alloy Analyzer [Jackson 2015].
Alloy is a modelling language for expressing complex structural constraints [Jackson
2002]], which has been successfully used to generate test inputs for testing object-
oriented programs [Khurshid and Marinov 2004]]. We rely upon UML2Alloy [Anas-
tasakis et al. 2007] to generate an Alloy model that corresponds to the class diagram
and the OCL constraints of the data model.

Finally, in step 4, to generate the concrete test inputs to be processed by the software
under test (e.g. a binary file in the case of SES-DAQ), the content of the Valid Model
Instance is written in the format processed by the software under test. For example,
to produce test inputs for SES-DAQ, we rely upon a toolset that we already used in
previous work [Di Nardo et al. 2015all; this toolset writes the content of the Valid
Model Instance back to a file as a stream of bytes.

The following sections describe in detail Steps 2 and 3, which are the core contribu-
tions of this paper.

5. AUTOMATIC MODEL TRANSFORMATIONS TO GENERATE INCOMPLETE MODEL
INSTANCES

The proposed technique is able to automatically generate an incomplete instance of
the updated data model in the presence of changes that alter the information provided
by the data model. These changes correspond to removals, additions and replacements
of classes and attributes.

The technique does not deal with model refactoring (i.e. changes that alter the struc-
ture of the data model but preserve the information provided by the data model). Model
refactoring can be effectively implemented by means of model transformations [Mens
and Tourwé 2004].

The technique initially requires an instance of the original data model. For example,
using the original data model of the SES-DAQ given by Fig. 2| and some sampled field
data, an original model instance is generated as shown in Fig.[9] The example of Fig.[9]
shows an instance of class Transmission (t1) that contains an instance of class Vedu
(v1). The instance v1 contains an instance of class ActivePacketZone (al), which in turn
contains three Packet instances (p1, p2, p3), and so on.
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Fig. 10. Incomplete Model Instance derived from the Original Model Instance in Fig. @ Incomplete in-
stances are blue and dotted, attribute values invalidated by modified constraints are italic and red.

To create an instance of the updated data model, the technique copies and adapts
the instance of the original data model. When attributes or classes have been removed,
the technique simply ignores the deleted attributes or classes when creating the copy.
To deal with classes added to the data model, the technique creates an instance of
each new class along with a new association instance linking the new class instance to
its containing class instance. The new class instances are tagged as being incomplete.
Similarly, the technique tags as incomplete the instances of classes with attributes
that have been introduced in the updated data model. In the case of the replace-
ment of classes, we rely upon a stereotype, named «Replacement», that is used by soft-
ware engineers in the data model to indicate that a class replaces another one. Fig. [5]
shows that the stereotype «Replacement» is used for classes MsiPacketHeader and
Gpsr2PacketHeader. The stereotype «Replacement» also enables software engineers to
specify, for each replacement class, the name of the class whose instances should be
replaced. For example, to generate a Sentinel-2 input, class MsiPacketHeader replaces
class SarPacketHeader in the field data of Sentinel-1 satellites.

Fig. [10] shows the Incomplete Model Instance derived from the Original Model In-
stance of Fig.[9] Since class MsiPacketHeader replaces class SarPacketHeader, each in-
stance of class SarPacketHeader in the Incomplete Model Instance has been replaced
by an instance of class MsiPacketHeader. Each instance of class MsiPacketHeader has
been tagged as incomplete.

An instance of the updated data model also often differs from an instance of the
original data model by the parameter values used in the configuration file. To deal
with this case, the technique automatically updates the Incomplete Model Instance to
include the content of the new configuration file. To this end, the technique automati-
cally loads the content of the configuration file into memory and replaces the instances
of the configuration classes in the Incomplete Model Instance with instances that cap-
ture the new given configuration. The instance c2 of class Configuration appearing in
the Incomplete Model Instance of Fig. [10] replaces the instance cI appearing in the
Original Model Instance of Fig. [9}

Fig. also shows that the updates related to the Configuration and the Packet
classes lead to invalid attributes. According to the OCL constraints of Figs. 4 and [6]
the attribute apidValue of class Packet is expected to be either equal to apid3 or apid4,
while the field virtualChannelld of class VeduHeader is now expected to be equal to
veid2. Invalid attributes are automatically detected by our proposed solution while
generating an instance of the Updated Data Model.
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6. GENERATION OF VALID MODEL INSTANCES

To generate a Valid Model Instance, the technique updates the Incomplete Model In-
stance with values generated by means of constraint solving. The technique uses con-
straint solving both to generate data that is completely missing from the Incomplete
Model Instance (i.e. classes or attributes tagged as incomplete) and to replace data that
no longer satisfies the constraints of the Updated Data Model.

In principle, constraint solvers can be used to automatically generate in a single
run a solution that matches the shape of the Incomplete Model Instance and satisfies
all of the constraints. Unfortunately, constraint solvers often present scalability issues
if the data model includes multiple collections of items with constraints among their
elements, which is often the case when dealing with the data models of data process-
ing systems. For this reason, we built an algorithm, IterativelySolve, that, instead of
generating a complete valid model instance in a single run, iteratively generates valid
instances of a portion (i.e. a slice) of the updated data model, and assigns the gener-
ated values to the attributes in the updated model instance. This iteratively leads to a
valid instance of the updated data model.

A slice contains a subset of the class instances that belong to a data model instance.
Slices are defined by traversing a graph that corresponds to the data model instance.
Let Gpys be a graph that corresponds to an instance of a given data model Ip,, if it
contains a set of nodes N, such that for each class instance in Ip ), there exists a unique
corresponding node n in Gp)s, and for each pair of class instances i.; and i.o connected
by an association, there exists an edge connecting the corresponding nodes n.; and n.s.
We assume that the data model has a single root node r. Slices are built by means of
a depth-first visit of the graph Gpj,;. Each branch of the of the graph corresponds to a
slice; a slice is a sequence of nodes that belong to the path between the root r and a
leafnode n,;. Leaf nodes are identified during the depth-first graph visit and correspond
to class instances without any association edges that point to class instances not yet
visited. Slices contain nodes sorted according to the order in which they are traversed
in the depth-first visit. We define a parent-child relationship between two nodes in a
slice, n1 and n2, such that n1 = parent(n2) if n1 and n2 are connected by an association
link, and nl was visited before n2. The depth-first graph visit does not traverse again
nodes already visited so far. For this reason, by construction, a slice cannot contain two
nodes with the same parent.

In the case of Fig. we can identify eight slices, whose nodes are grouped as follows
having node ¢I selected as the root (we use the identifiers of the instances in Fig. [10]to
denote the corresponding nodes): {t1, v1, al, p1, phl}, {t1, v1, al, pl, pd1}, {t1, v1, al,
p2, ph2}, {t1, v1, al, p2, pd2}, {t1, v1, al, p3, ph3}, {t1, v1, al, p3, pd3}, {t1, v1, vhi},
{t1, c2, vc2}. Please note that although the node p1 can be reached both from nodes a1
and p2, node pI does not belong to any slice containing node p2 (a slice cannot contain
two nodes with the same parent).

IterativelySolve relies upon a constraint solver to modify the assignments of the at-
tributes in the slices such that the constraints of the data model are satisfied. We use
the expression slice solving to indicate the process of executing a constraint solver to
identify the values to assign to the attributes of a slice in order to satisfy the con-
straints of the data model.

The consistency of the solution is guaranteed by the incremental nature of the al-
gorithm: items of collections are generated assuming that previously generated items
are valid.

Figs. and show, respectively, the algorithm IterativelySolve, function
SolveSlice, and function EnableFactsAndSolve, which implement the logic for the in-
cremental solving of slices.
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Require: IMI, the incomplete model instance
Require: DM, the data model with the OCL constraints
Require: rootImiClass, the name of the class that specifies the root node of the IMI
Require: configClass, the name of the class that captures the content of the configuration file
Ensure: V M1, a valid model instance generated by means of constraint solving (i.e. the test input data)
1 defined + new List()
. toRegenerate < null
VMI <+ null
: slices < depthFirstVisit(IMI,rootImiClass, configClass)
odg < buildOCLDependencyGraph(IMI, DM)
alloyModel + uml2Alloy(DM)
repeat
used < new List()
for slice in slices do
10: IMI,used,defined, toRegenerate <
11: SolveSlice(alloyModel, odg, slice, IM I, used, de fined, toRegenerate)
12: if toRegenerate # null then
13: break
14: end if
15: end for
16: until toRegenerate = null
17: if IMT # null then
18: VMI < IMI
19: end if

CPIFTR WO

Fig. 11. The algorithm IterativelySolve.

IterativelySolve performs 5 main activities:

— Slices detection: identifies a set of slices of the Incomplete Model Instance that can
be solved separately and then recomposed to obtain a Valid Model Instance.

— Solving with Alloy: for each slice, derives an Alloy model that is given to the Alloy
Analyzer to produce assignments for the attributes that (a) satisfy the constraints
of the data model and (b) reflect the actual values observed in the Incomplete Model
Instance (this is implemented by function SolveSlice).

— Removal of invalid values: iteratively removes from the Alloy model the assignments
that prevent the solving of slices—that is, attribute values that invalidate OCL con-
straints (this is implemented by function EnableFactsAndSolve).

— Consistency check: in order to generate consistent solutions, the algorithm may solve
a same slice multiple times—this occurs when the solution of a slice changes a value
used by previously solved slices.

— Update of Incomplete Model Instance: reads the values generated by the Alloy Ana-
lyzer from the Alloy solution, and copies them into the Incomplete Model Instance
(implemented by function SolveSlice).

The last four activities are repeated for all the slices. By iteratively updating the
Incomplete Model Instance, IterativelySolve attempts to obtain a Valid Model Instance.
The following paragraphs provide a detailed explanation of the algorithm.

6.1. Slices detection

IterativelySolve first identifies a set of slices of the Incomplete Model Instance by per-
forming a depth-first visit of the Incomplete Model Instance (Line 4] Fig. [11). Slices
are identified while performing the visit; more specifically, the algorithm keeps track
of each path (i.e. each slice) traversed from the root to the leaf nodes of the Incomplete
Model Instance (cyclic paths are not traversed).

The software engineer is expected to specify the root node of the Incomplete Model
Instance (e.g. class Transmission in Fig. [10). Engineers also specify the name of the
class that captures the contents of the configuration file (e.g. class Configuration in
Fig. [10). This is required to avoid the generation of slices containing configuration
items because configuration values are specified by the software engineer and are not
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Require: alloyM odel, the initial Alloy model that corresponds to the data model
Require: odg, the OCL Dependency Graph
Require: slice, a slice generated from the IMI
Require: 7M1, the incomplete model instance
Require: used, a list of variables appearing in the facts used to solve previous slices
Require: defined, a list of variables whose values have been previously defined using the results generated by the solver
Require: toRegenerate, a list of attributes (if any) that need to be regenerated
Ensure: 1M, the incomplete model instance with values updated to satisfy the constraints for each slice
Ensure: used, an updated list of variables used in the facts
Ensure: defined, an updated list of the variables defined by the Alloy solver
Ensure: toRegenerate, a list of attributes that have been modified in the current execution and need to be regenerated
by restarting the incremental solving from the first slice
1: function SOLVESLICE(alloyM odel, odg, slice, IM I, used, de fined, toRegenerate)
: prunedO DG <+ pruneODG(odg, slice)
a < generateAugmentedSlice(prunedODG, slice)
instanceM, facts < augmentAlloyModel(alloyModel, a)

2

3

4

5: if slice.processed = true then

6: // this is a re-execution of SolveSlice

7 // this slice only needs to be solved if it contains one of the variables to regenerate
8 if toRegenerate.contains(DefinedVars(facts)) = false then

9: return IMI,used, defined, toRegenerate
10: end if

11: end if

12: solution < ExecuteAlloy(instanceM)

13: if solution # null then

14: used + SetAllFactVariablesAsUsed(facts, used)

15: end if

16: if solution = null then

17: solution, used, de fined, modified <

18: EnableFactsAndSolve(instanceM, facts, used, de fined)
19: end if

20: if solution = null then

21: return null, used, de fined, null

22: end if

23: IMI <+ update(IMI, solution)

24: slice.processed = true // simply trace that slice has been solved at least once
25: if modified.size > 0 then

26: return IMI,used, defined, modified

27: end if

28: return IMI,used, de fined, null
29: end function

30: function SETALLFACTVARIABLESASUSED(facts, used)
31: for fact : facts do

32: if isCon figuration(fact) = false or isShape(fact) = false then
33: used < used U DefinedVar(fact)

34: end if

35: end for

36: return used

37: end function

function DefinedVar returns the variable defined in a fact (i.e. the left hand side of the assignment in the fact).

Fig. 12. Function SolveSlice.

to be generated by means of constraint solving. For example, in the case of Fig.
it is the software engineer who specifies the value of the attribute spaceCraftld in
the configuration file; the constraint solver is not expected to change the given identi-
fier. To prevent the generation of slices containing configuration items, function depth-
FirstVisit does not traverse the configuration class during the depth-first visit.

After generating the slices, IterativelySolve builds the OCL Dependency Graph
(ODG, see Line [ Fig.[1I). An ODG is a directed graph whose nodes correspond to
the class instances in the Incomplete Model Instance, while its edges connect all the
instances that are traversed when evaluating the OCL constraints (please note that a
given OCL constraint might traverse multiple paths in the ODG@G). Fig.|14|shows an ex-
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Require: instanceM, the alloy model that captures the content of a single slice
Require: generatedFacts, a list of facts generated from the instance M
Require: wused, a list of variables appearing in the facts used to solve previous slices
Require: defined, a list of variables whose values had been previously defined using the results generated by the solver
Ensure: solution the result generated by Alloy, or null if the formula cannot be satisfied
Ensure: used, an updated list of variables used in the facts
Ensure: defined, an updated list of the variables defined by the Alloy solver
Ensure: modified, a list of variables used in previous iterations that had been redefined to solve the current slice
1: function ENABLEFACTSANDSOLVE(instance M, generatedFacts, used, defined)

2 modified < new List()
3 for fact : generatedFacts do
4: if isCon figuration(fact) = false or isShape(fact) = false or DefinedVar(fact) C defined then
5: instanceM < disable(instanceM, fact)
6: end if
7 end for
8 solution <+ ExzecuteAlloy(instanceM)
9 if solution = null then
10: return solution, used, de fined, modi fied
11: end if
12: for fact : generatedFacts do
13: if isDisabled(fact) then
14: instanceM < enable(instanceM, fact)
15: tempSolution < ExecuteAlloy(instanceM)
16: if tempSolution = null then
17: instanceM < disable(instanceM, fact)
18: if DefinedVar(fact) in used then
19: modified < modified U DefinedVar(fact)
20: end if
21: defined < defined U DefinedVar(fact)
22: else
23: used < used U DefinedV ar(fact)
24: solution <+ tempSolution
25: end if
26: end if
27: end for
28: return solution, used, de fined, modi fied

29: end function

Fig. 13. Function EnableFactsAndSolve.

ample ODG built from the Incomplete Model Instance of Fig. the figure also shows
the constraints used to produce the ODG. Observe, for example, that nodes pl, al, v1,
t1, ¢2, and ve2 in Fig.[14] are connected by edges because they are traversed to evaluate
constraint C3. By looking at the associations in Fig. 2| we can observe that association
end zone allows for navigation to the ActivePacketZone instance al from the Packet
instance pI. The association end vedu allows for navigation to the Vedu instance vl
from al. Association end trans allows for navigation to the Transmission instance t1
from v1. Association ends config and veduConfigs allow for navigation to instances c2
(Config) and vc2 (VeduConfig), respectively.

6.2. Solving with Alloy

Lines [7]to[16] of Fig.[11]implement the logic to solve the slices of the incomplete model
instance; the function SolveSlice is invoked in Line to incrementally generate a
valid model instance.

SolveSlice calls the function generateAugmentedSlice (Line[3] Fig. to generate an
augmented slice for each slice s identified in the previous steps. The augmented slice
includes all the class instances that are required to evaluate if the class instances in
the slice s violate the constraints of the data model.

To build the augmented slice, the function generateAugmentedSlice first traverses
the ODG to identify all the nodes that can be reached from each node in the slice
s. The augmented slice contains all the class instances that correspond to the nodes
traversed in the ODG. For example, the slice AugmentedSlicel in Fig.|14]includes the
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ODGypryneds Slicel AugmentedSlicel Slice3 AugmentedSlice3
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OCL Constraints

C1: context Packet inv: ( self.apidValue.value=0 ) or
( self.apidValue.value=1 and self.pHeader.oclIsTypeOf(SarPacketHeader) ) or
( self.apidValue.value=2 and self.pHeader.oclIsTypeOf(GpsrPacketHeader) ) or
( (self.apidValue.value=3 or self.apidValue.value=4) and self.pHeader.oclIsTypeOf(MsiPacketHeader) ) or
( (self.apidValue.value=5 or self.apidValue.value=6) and self.pHeader.oclIsTypeOf(Gpsr2PacketHeader) )

C2: context Packet inv: self.sequenceCount = self.prev.sequenceCount + 1

C3: context Packet inv: self.zone.vcdu.trans.config.veduConfigs.apids->exists(a | a = self.apidValue)

Fig. 14. Example of the artefacts generated to perform slicing: ODG, pruned ODQG, slices, and augmented
slices. These artefacts are built from the Incomplete Model Instance of Fig. The figure also shows the
constraints used to produce the ODG; colours are used to show which attributes are related to the different
edges in the ODG.

class instances ¢2 and vc2, which are reached when traversing the ODG starting from
pl. Note that ¢2 and vc2 are required to evaluate the constraint C3.

Constraints on the items of collections may lead to a huge set of nodes that can be
reached from a slice s. To generate smaller sets of reachable nodes, SolveSlice prunes
the ODG (Line 2] Fig. by removing all the edges that connect collection items with
their predecessors with the exception of the items belonging to the current slice, which
remain linked to their predecessor. ODGyyneq3 in Fig. @ shows the result of the prun-
ing operation performed when processing Slice3. ODG ,yneqs contains only the edge
that links p3 with its predecessor (p2), but not the edge that connects p2 with pl. Ac-
cordingly, the OCL constraints written for the model must still be valid following the
pruning operation. Our approach assumes that, at most, only a single predecessor of
a given instance type be required to reach a solution. For example, in constraint C2
of Fig. [14) a packet instance needs only an association with its immediate predecessor
(via the association prev); should additional predecessor packets have been required
for the constraint, then the given approach would fail.

The augmented slice contains both data belonging to the original field data and
incomplete data (i.e. incomplete class instances or attributes). SolveSlice executes the
solver to generate valid class instances or attributes in place of the missing data.

IterativelySolve uses UML2Alloy to generate an initial Alloy model that corresponds
to the data model. Since the same Alloy model can be used to solve multiple slices,
IterativelySolve generates the Alloy model before invoking SolveSlice (Line 6] Fig. [T1).
UML2Alloy implements a model transformation that maps UML class diagrams and
OCL constraints to the Alloy format. UML2Alloy generates an Alloy signature for each
class and its contained attributes, facts capturing the associations between classes,
and a predicate for each OCL constraint.

Given a model specified using the Alloy language, the Alloy Analyzer can generate
a valid instance of the data model; however, to reuse existing field data, we need to
generate a solution that also has the same ‘shape’ as the Incomplete Model Instance
(i.e. the Incomplete Model Instance and the Alloy solution must be isomorphic). This
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abstract sig Vedu { abstract sig PacketZone { //declarations for class instances //facts for associations
trans:one Transmission, vedu:one Vedu} one sig p2 extends Packet {} fact { ve2.config=c2 }
packetZone:one PacketZone } . - one sig p3 extends Packet {} fact { c2.veduConfig = ve2 }

abstract sie Transmissi dbm‘m& “lsg zi\kcu%ePdcketZone one sig apid0 extends Apid {} fact { tl.config=c2 }

@ Str"‘u.s'c r‘ms‘mls?lgn { ei(ten s Fac et 'one { one sig apid1 extends Apid {} fact { c2.trans = t1 }
cqnhg.one Co‘nhgumtlon, packets:some Packet } one sig apid3 extends Apid {} fact { tl.vedu=v1 }
vedu:some Vedu } abstract sig Packet { one sig apid4 extends Apid {} fact { vl.trans =t }

abstract sig Configuration { apidValue:one Apid, one sig apid5 extends Apid {} fact { vl.packetZone = al }
trans:one Transmission sequenceCount:one Int, one sig apid6 extends Apid {} fact { al.vedu=vl }
spaceCraftld:one Int, pHeader:lone PacketHeader, one sig c2 extends Configuration {} fact { al.packets =p2 +p3 }
checkCrc:one Bool, prev:lone Packet } one sig ve2 extends VeduConfig {} fact { p2.zone = al }
idleApid:one Apid, ) . one sig t1 extends Transmission {} fact { p3.zone =al }
idleVcid:one Vcid, abstracl‘mg PacketHeader {  one sig v1 extends Vedu {} fact { p2.pHeader = ph2 }
veduConfigs:some VeduConfig } Packet:one Packet } one sig al extends ActivePacketZone {} fact { s2.packet =p2 }

abstract sig MsiPacketHeader One sig ph2 extends MsiPacketHeader {} fact { p3.pHeader = ph3 }

abstract sig VeduConfig { extends PacketHeader { one sig ph3 extends MsiPacketHeader {} fact { s3.packet = p3 }

config:one Configuration,

veid:one Veid, qoarnglmezone Int, //facts for data types //facts for config variables
apids:some Apid } fineTime:one Int } fact { apidl.value =0 } fact { vc2.apids = apid3 +
. . fact { apidl.value=1} apid4 + apid5 + apid6 }
abstract sig Apid { fact { apid3.value =3 } facts f onfiz variables
value:one Int } fact { apidd.value =4 } //facts for non-config variables

fact { p2.apidValue = apid3 }

abstract sig Veid { fact { apid3.value =5 3 fact { p3.apidValue = apid1 }

value:one Int } fact { apid6.value = 6 }

Fig. 15. Portion of the Alloy model generated to capture the part of the Incomplete Model Instance contain-
ing AugmentedSlice3 (shown in Fig. [T4).

way we can easily copy values from the Alloy solution to the corresponding Incom-
plete Model Instance. Function augmentAlloyModel (Line (4] Fig. modifies the Alloy
model in order to enforce the generation of a solution that fits the shape of the slice.
Fig. (15| shows a portion of the Alloy model generated by function augmentAlloyModel
from the Incomplete Model Instance of Fig. The keyword sig indicates a signature;
that is, a set of atomic definitions (atoms) that we use to model classes with Alloy. Sig-
natures share similar properties with classes of UML class diagrams; in fact, they can
be abstract, if they cannot be instantiated, and can be used to extend other signatures
(see the keyword extends). The keyword one is used to indicate singletons (i.e. signa-
tures for which only a single instance can exist). The keyword fact is used to indicate
a property that must hold in the Alloy solution.

To be isomorphic, the Alloy solution and the Incomplete Model Instance must share
the same number and types of instances. To this end, the function augmentAlloyModel
sets all the signatures in the Alloy model as abstract, and then creates a specialisation
(i.e. a signature that extends another one), for each class instance in the augmented
slice. Each specialised class is a singleton (this way we create the same exact instances
observed in field data). The third column of Fig. [15| shows the declarations generated
for the different class instances appearing in the Incomplete Model Instance; for ex-
ample, the first two lines declare p2 and p3, the two instances of class Packet present
in the portion of the Incomplete Model Instance of Fig. that are present in Aug-
mentedSlice3 (Fig.[14). Signature Packet is abstract; consequently, the solver will not
generate any instance of class Packet other than p2 and p3.

To preserve associations, function augmentAlloyModel generates a fact (i.e. a con-
straint) for each association between the class instances in the data model. For ex-
ample, the fact ‘al.packets = p2 + p3’ in the top block of the fourth column of Fig.
indicates that p2 and p3 belong to the collection packets.

Finally, function augmentAlloyModel also generates Alloy facts that capture the ac-
tual values present in the Incomplete Model Instance (e.g. the facts in the bottom block
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of the fourth column of Fig. [15)[ This is done to obtain a solution that reuses the data
values observed in the original field data.

6.3. Removal of invalid values

Facts reflect the values observed in the field data (e.g. fact ‘p3.apidValue = apidI’ in
Fig.[15|that states that the apidValue of Packet 3 is apid1). In the presence of updated
(or new) OCL constraints that do not match the data used in the original test inputs,
the solver cannot generate a solution (fact ‘p3.apidValue = apidl’ breaks constraint
C1). For this reason, when the solver determines that the set of given constraints
is unsatisfiable, IterativelySolve relaxes the Alloy model by disabling the facts that
prevent the identification of a solution (see function EnableFactsAndSolve in Fig. [13).
The disabling of a fact is performed by adding a comment at the beginning of the line;
this way facts can be easily disabled and re-enabled. The disabling of facts is what
enables IterativelySolve to replace existing values with new ones.

Function EnableFactsAndSolve proceeds by disabling all the facts (Lines (3| to
Fig. [13), and then iteratively enabling facts one by one to identify the ones that al-
low for the generation of a new solution (Lines [12] to [27] Fig. [13). Facts that prevent
the generation of a solution are left out (Line [17| Fig. [13). EnableFactsAndSolve dis-
ables facts that capture actual values of the field data but not facts that preserve the
shape of the solution. Additionally, the facts that capture configuration data (i.e. data
that is not meant to be regenerated by the solver) are also not considered for removal.

For example, to create a solution from the Alloy model of Fig. it is necessary to
relax the model. In fact, this model cannot be used to generate an instance that sat-
isfies the constraints C1, C2, and C3. In particular, constraint C1 cannot be satisfied
because the apidValue of p3 is apidl but its packet header is of type MsiPacketHeader
(see the facts ‘p3.apidValue = apidl’ and ‘apidl.value = I’). IterativelySolve will solve
this constraint only after disabling the fact apid1 in p3.apidValue, and will then gen-
erate a solution with p3.apidValue equal to either apid3 or apid4. If a solution is not
found even after removing all the facts, IterativelySolve terminates without generating
a test input (see Lines [20| to Fig.[12). In this case, the technique simply continues
the test generation process by sampling a new chunk of field data (Step 1 in Fig.[8).

6.4. Update of incomplete model instance

Once a solution is found, SolveSlice updates the data in the Incomplete Model Instance
(see Line Fig.[12). In particular, SolveSlice uses the values generated by constraint
solving to update both the incomplete attributes of the Incomplete Model Instance,
and any values that break the updated OCL constraints. By updating the Incomplete
Model Instance, SolveSlice can incrementally generate a consistent solution: each aug-
mented slice contains an item of a collection and its immediate predecessor (if any);
this guarantees that the item is populated with data consistent with the previously
generated item.

Although multiple values are valid for some of the attribute instances being reas-
signed, when generating multiple instances of the same type (e.g. packet instances
containing packet headers of type MsiPacketHeader), the same data (e.g. for apidValue)
is always generated by the Alloy solver for a given attribute. If deemed important, a
strategy to randomise attribute solving outcomes could be devised.

1To minimise execution time, function augmentAlloyModel creates facts only for those attributes that appear
in the OCL constraints.
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6.5. Consistency check

To enforce data consistency, when relaxing a model, function EnableFactsAndSolve
checks if the disabled fact regards a variable that has been already observed when
solving a previous slice. Lines[18|to[20|in Fig. [13|show that EnableFactsAndSolve adds
to the list modified the names of the variableg”, used by previously solved slices, that
have been modified during the current execution of EnableFactsAndSolve. If a solution
for a slice is generated by changing a value used by previous slices, the algorithm
restarts the solving from the beginning (see the loop in Lines [7] to[16] of Fig. [11). This
is done to ensure that the slices already solved will still satisfy the constraints of
the data model. To prevent infinite loops, EnableFactsAndSolve does not disable facts
that define variables whose values have already been redefined by Alloy in previous
iterations (see the clause ‘DefinedVar(fact) C defined in Llnelof Fig.[13).

Lines [5] to [I] of Fig. [12] are an optimisation. Since SolveSlice is executed multiple
times, it should only call the Alloy Analyzer to solve slices that contain one of the
variables that have been redefined or slices that have not yet been solved.

7. ANALYSIS OF TERMINATION, CORRECTNESS AND COMPLETENESS

This section shows, by means of an example, how the incremental solving of slices
combined with the consistency check contributes to the generation of a correct solution.
A discussion on termination and completeness follows.

7.1. Termination and Correctness

The algorithm proposed in this paper, IterativelySolve, incrementally updates the In-
complete Model Instance by modifying the values assigned to the attribute instances of
each slice. The Alloy Analyzer guarantees that all the values assigned to a slice satisfy
the constraints of the data model.

In the unlikely case the data model instance contains only a single slice, the result
given by the algorithm is correct by definition: the solver is executed once and it pro-
vides a set of assignments that satisfy all the constraints. The generated solution is
trivially correct also whenever the data model instance contains only two slices with-
out any shared variables. In this case, the final solution is the union of the two separate
sets of assignments generated by the solver.

In the case of two slices with a shared variable, an incorrect solution may be gener-
ated if the values assigned when solving the second slice invalidate constraints that
were true for the first slice. By means of an example, we show that, with our incre-
mental, slice-based approach, no incorrect solution can be generated. To simplify the
discussion, we model each slice by considering only the attributes belonging to the class
instances in the slice, thus ignoring the associations between classes. Associations are
not modified by IterativelySolve.

Let us take an example of a data model instance containing two slices. The two slices
can be represented by the sets of variables {b,a} and {c,a}, representing class attributes,
where a is shared by the two slices.

In our example we consider two simple inequalities as constraints, Cy : ¢« >= b and
Cy : a <= c. Let us assume that the field data contains the values x1, x5, and x3
assigned to variables a, b, and ¢, respectively. In our demonstration, we distinguish
two cases that we identified by considering the possible valuations of the constraint
a >=b:in case 1, r1 < w9, while in case 2, x1 >= 1.

2We use the generic term variable to indicate an attribute instance of the data model instance. The name of
a variable is the name used in the facts of the generated Alloy model to assign values to attribute instances.
An example variable name is apidl.value in Fig. which refers to the attribute value of the Apid instance
apidl.
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Case 1: 71 < x2

Solving the first slice. To solve the slice {b,a/, our algorithm generates an Alloy model
that corresponds to the formula a >= b AND b =29 AND a = ;.

If 1 < x4, the formula cannot be satisfied. As a consequence, the algorithm will in-
voke function EnableFactsAndSolve (Line[18] Fig.[12). Function EnableFactsAndSolve
starts by disabling facts that correspond to variable assignments (Lines[3|to[7] Fig.[13),
and then solves the Alloy formula that contains the remaining facts (Line |8 Fig. |13).
In this case, the formula contains just constraint C; (i.e. a >= b); the formula can be
solved. Then the algorithm proceeds by enabling the facts one by one (Lines [12|to
Fig.[13).

After enabling the first fact, function EnableFactsAndSolve solves a >=b AND b =
2o, which results in a solution where a = y;, b = x5 and y; >= x,. After enabling the
second fact, the algorithm tries to solve a >= b AND b = x5 AND a = x1, which is not
feasible. Function EnableFactsAndSolve thus keeps the previous solution and updates
the Incomplete Model Instance (Line Fig.[12). The Incomplete Model Instance will
thus contain the assignments a = y1, b = 3, ¢ = x3 (with y; >= x5). The algorithm
then starts solving the second slice.

Solving the second slice. The formula built by the algorithm to solve the second slice is
a<=cANDc=1x3 AND a = y;. If y; <= z3, the solution is immediately generated by
the Alloy Analyzer in Line[12|(Fig. and the algorithm returns with a correct model
instance.

However, we are interested in understanding if the algorithm can generate an in-
correct solution, which happens if the algorithm assigns to a a value lower than b. The
values assigned to the model instance are updated by function EnableFactsAndSolve,
which is executed if y; > x3.

During the execution of function EnableFactsAndSolve, the fact a = y; cannot be
disabled because variable a« was assigned when generating data for the first slice. The
formula to be solved in Line [§] (Fig. [13) is thus « <= ¢ AND a = y;, which leads to a
solution with the assignments a = y1, ¢ = ys with y; <= y». This solution is returned
and used to update the Incomplete Model Instance, which will then satisfy all the
constraints (this is trivial since when solving slice 2 the algorithm did not replace any
value belonging to slice 1).

Case 2: z1 >= 2

Solving the first slice. If ©1 >= x5, the field data already contains values that satisfy
the formula a >= b AND b = 29 AND a = z1, and the algorithm will proceed with
the solving of the second slice without changing any variable values. Please note that
in this case the algorithm variable used, which is a list data structure, is populated
with all the variables appearing in the facts (see function SetAllFactVariablesAsUsed,

Lines[30|to[37] in Fig. [12).

Generating data for the second slice. The formula built to solve the second slice is a <=
cAND c=2x23 AND a = x;.

If 1 <= x3, the solution is immediately generated by the Alloy Analyzer and the
algorithm returns with a correct model instance.

A more interesting case occurs when x; > z3. In this case, function EnableFactsAnd-
Solve is executed.

Function EnableFactsAndSolve disables all the facts and then re-enables them one
by one. After enabling the first fact, EnableFactsAndSolve solves the formula a <=
¢ AND ¢ = z3 (Line Fig. [13), which leads to the assignments a = y3, ¢ = 3
with y3 <= z3. After enabling the second fact, EnableFactsAndSolve tries to solve the
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formula ¢« <= ¢ AND ¢ = 23 AND a = x1, which cannot be satisfied because z; > z3.
The algorithm thus keeps the previously generated solution and adds variable a to
the list modi fied (Line [19] Fig.[13) to indicate that the value of variable a, which was
used to solve a previous slice (the variable belongs to the list used), had been modified.
Variable a is also added to the list de fined (Line [21] Fig.[13).

Repetition of the main loop of lterativelySolve. After function EnableFactsAndSolve re-
turns, SolveSlice updates the Incomplete Model Instance with the generated values
(Line [23] Fig. [12) and then checks if the list modified has a size greater than zero
(Line |25} Fig. [12), which is true in this case. SolveSlice then returns the updated In-
complete Model Instance and the contents of the list modi fied.

Since toRegenerate # null is true (in Line [12] of Fig. [11)), IterativelySolve re-executes
the loop in Lines [7 to [16]in Fig. which means that it again invokes the function
SolveSlice. This time the Incomplete Model Instance contains the following assign-
ments a = y3, b = x9, ¢ = z3 (With y3 <= x3).

Solving the first slice, second iteration. To generate data for the first slice, the solver must
satisfy the formula a >=b AND b= x5 AND a = ys3. If y3 >= x5, the formula trivially
evaluates to true and the algorithm proceeds by solving the next slice.

If y3 < x9, SolveSlice invokes function EnableFactsAndSolve. Variable a has already
been set in previous iterations, so EnableFactsAndSolve ends up by solving the formula
a >=b AND a = y3, which leads to the assignments a = y3, b = y4 with y3 >= y4.

Solving the second slice, second iteration. To solve the second slice, EnableFactsAndSolve
builds the formula « <= ¢ AND ¢ = 23 AND a = y3, which trivially evaluates to true
(y3 <= z3, according to the previous iteration of IterativelySolve).

The solution generated for the first slice might have lead to y; >= x5, or to y; < z-.
If y3 >= x4, the assignments in the Incomplete Model Instance are thus a = y3, b = 2,
¢ = x3, which satisfy the constraints C, (with y3 >= x5) and C5 (with y3 <= z3). If
ys < w2, the assignments in the Incomplete Model Instance are thus a = y3, b = ya4,
¢ = x3, which also satisfy the constraints C; (with y3 >= y4) and Cs (with y3 <= x3).

General case

The example presented in this section shows that the algorithm is able to guarantee
that all the constraints are satisfied even in the presence of variables contained in
slices that are redefined while solving subsequent slices. For this to be true in the
general case, we need to show that the algorithm always terminates and that, at any
given step, solving yields correct results, when it can return a result (see completeness
discussion in section[7.2).

Termination. The example has shown that IterativelySolve does backtracking (i.e. it
restarts the solving process from the first slice) every time EnableFactsAndSolve rede-
fines a variable included in a slice solved by a previous iteration. However, given that
EnableFactsAndSolve is allowed to modify the value assigned to a variable only once,
we can guarantee the termination of the algorithm. EnableFactsAndSolve behaves the
same way in the presence of one or more variables. Thus, the termination of the al-
gorithm is guaranteed also in presence of multiple constraints working on multiple
shared variables.

Correctness. We can guarantee that the final result generated by IterativelySolve is
correct if we can guarantee that the union of the results generated for the single slices
satisfies all the constraints. The Alloy Analyzer gives guarantees about the correctness
of the results generated for a single augmented slice, while the backtracking mecha-
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nism of IterativelySolve guarantees that slice solving does not invalidate previously
validated constraints.

We provide a formal proof of correctness for constraints that capture binary relations
by relying upon set theory. A data model instance can be seen as a set M whose ele-
ments are the variables (attribute instances) belonging to the model instance. Given
an OCL constraint, we may express it in terms of a relation defined over a subset S of
M, S C M, whose elements are all the variables of the model instance referenced in the
OCL expression. If a constraint holds for M and is formalised as a relation R C Sx S, it
means that the corresponding relation R is total for S, so that, Va,b € S, the constraint
is true for either (a,b) or (b,a). An augmented slice is a subset 7; of M, with T; C M.

By construction IterativelySolve builds n augmented slices of M such that M = U T,.

For every slice T;, IterativelySolve identifies a set of assignments that satlsfy the
given constraint. This means that IterativelySolve identifies a set R; C R that is total
for a subset S; of S, with S; C T;. The backtracking part of IterativelySolve guarantees
that if all the slices are solved, then all the R; are total. The final solution produced
by IterativelySolve is the union of all the R; generated by Alloy and IterativelySolve is

correct if this union yields R, e.g., R C U R;. This is what we need to prove.

We prove by contradiction that the result produced by I teratwelySolve is correct for
binary relations. The result produced by IterativelySolve is not correct if there exists

a pair (a,b) € R such that (a,b) ¢ U R;. However, IterativelySolve guarantees that if
=1

a,b € M then a,b belongs to at least one augmented slice 7; (recall that an augmented
slice includes all the variables reachable by traversing the ODG). Since R; is total for
S; € T;, then there must exist an R; such that any pair a, b belonging to .S; also belongs
to R;. This implies that for all a,b € M there must exist at least an R; such that
(a,b) € R; Therefore, we have shown that the union of R;s yields R.

Beyond binary relations, in the general case we observe that a constraint that holds

on the individual slices 77 ... T,, may not hold for the whole model M only if S ¢ |J S;

i=1
(i.e. when the constraint applied on the whole model refers to variables not referenced
in at least one augmented slice). However, this is not possible because IterativelySolve
uses the ODG to build the individual augmented slices: it includes in a single aug-
mented slice all the instance variables that are required to validate the OCL con-
straints on a single slice. The only exception occurs with collections; augmented slices
only contain predecessors of collection items. This implies that we can give guarantees
about the correctness of the algorithm if it is used to solve constraints that follow our
restrictions (see section [6.2); for example, they do not refer to arbitrary collection el-
ements. The algorithm may not provide correct results, for example, in the presence
of constraints that restrict the number of collection items with a given property, e.g.,
in the case of SES-DAQ, having at most five Packet instances with apidValue equal
to zero. According to our experience these types of constraints are seldomly used. The
test inputs generated by IterativelySolve can be validated against the OCL constraints
of the data model. In the rare cases where some of the constraints do not hold, soft-
ware engineers can manually modify the generated test input to obtain a valid one and
overcome the current restrictions of IterativelySolve.
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7.2. Completeness

The discussion in the previous paragraphs has shown that IterativelySolve, our iter-
ative, slice-based approach, generates data that can only result in a solution that is
valid or it will generate no solution at all.

IterativelySolve is thus incomplete; that is, it does not guarantee the generation of
an instance of the Updated Data Model even if it exists. This is mostly due to the
fact that EnableFactsAndSolve is allowed, in our current implementation, to modify
the value assigned to a variable only once. The modification of variable values is what
enables EnableFactsAndSolve to modify an Incomplete Model Instance to satisfy the
constraints for the Upgraded Data Model; that is, EnableFactsAndSolve modifies the
value assigned to a variable when it does not satisfy an existing constraint. The limit
on the number of times a variable can be reassigned is what guarantees the termina-
tion of the algorithm.

IterativelySolve may not be able to identify a solution if the OCL constraints lead
to circular dependencies between the attributes in the data model instance; however,
the conditions under which this happens are not frequent in practice. IterativelySolve
does not identify a solution when, in the presence of two augmented slices, for example
Slicel and Slice2, IterativelySolve reassigns a value to variable v when solving Slicel,
and then the same variable needs to be reassigned when solving Slice2. To figure out
the context under which this happens we must recall that the augmented slices gener-
ated by IterativelySolve include all the variables of the Incomplete Model Instance that
are related by the OCL constraints in the Data Model, except for variables belonging
to collections. Collection items never belong to the same slice, except for immediate
predecessors. Thus, IterativelySolve may not identify a solution if there are two con-
straints Cyo(v,i4), €.8. v > i, and Cyy(v,1p), €.8. v > ip, relating two pairs of variables
(v,1,) and (v, i) belonging to Slicel and Slice2, respectively, and v is a variable shared
between the two augmented slices. Please note that to belong to different slice vari-
ables, i, and i, should be collection items belonging to the same collection, and neither
of these collection items should be an immediate predecessor of the other.

Let us investigate further the type of complex circular dependencies among OCL
constraints that may render IterativelySolve unsuccessful. In the above example, note
that variable v needs to be reassigned when solving Slice2 if a valid value for i, cannot
be found given the current value of v. This case occurs only if there is a constraint
C.(ip, ), e.g. i, > x, with x being a variable that cannot be reassigned. Variable x
cannot be reassigned in two cases: either because it belongs to a configuration item
(i.e. it is a constant value) or it has been reassigned in a previously solved slice (i.e.
there is a circularity in the OCL dependencies). If variable z is a constant it is very
likely that the constraint C, is defined over all the items of the collection (i.e. we may
have a generic constraint ¢ > x for all the items i of the collection), which implies that
the two slices should satisfy exactly the same constraints and thus a result is always
generated by IterativelySolve. A simple and common case of circular dependency is one
in which C, relates i, with i,, but this case cannot occur because we require that con-
straints involving collection items affect immediate predecessors only (and these are
always included in the same slice). More complex circular dependencies ( e.g. involving
multiple collections) might occur but they are rare in practice.

In some cases, even in the presence of complex circular dependencies, Iteratively-
Solve may be able to find solutions for shared variables. Both the characteristics of
the data model instance and the criteria used to select the variables to be reassigned
using Alloy results determine whether this is possible. The choice of the variables to
be reassigned depends on the order in which EnableFactsAndSolve re-enables disabled
facts (see Fig.[13). EnableFactsAndSolve does not implement any complex heuristic for
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selecting the facts that should be re-enabled—it simply processes facts in their order
of appearance in the Alloy model. However, since facts are added in the Alloy model
according to the order of appearance in the slice, in practice, EnableFactsAndSolve
tends to reassign variables that belong to the leaf nodes in the augmented slices, while
it tends to keep values of parent and root itemsﬂ This heuristic is meaningful in our
context because of the hierarchical structure of the data model considered in our case
study. The development of heuristics that work better on case studies with different
characteristics is part of our future work.

Two distinct characteristics of the data model instance may ease the identification
of proper values for shared variables. The first is the presence of field data that re-
main valid even in the presence of new data requirements, thus limiting the number
of shared variables that need to be reassigned with the solver. The second is that the
variables that are shared across multiple slices are often constant configuration pa-
rameters that cannot be altered by EnableFactsAndSolve, and thus do not lead to any
conflict when two different slices are solved.

Last, IterativelySolve could be easily extended to enable EnableFactsAndSolve to
reassign variable values more than once, thus augmenting the probability of building
a solution. This might be done by introducing a counter for each variable that keeps
track of the number of times a variable is reassigned.

8. EMPIRICAL EVALUATION

We performed an empirical evaluation to answer four research questions: the first two
questions address the scalability and performance of our approach, while the remain-
ing two questions address whether the data generated by the approach can, in fact, be
used to effectively test new requirements. The research questions are:

— RQ1: Does the proposed approach scale to a practical extent?

— RQ2: How does the proposed approach compare to a non-slicing approach?

— RQ3: Does the proposed approach allow for the effective testing of new data require-
ments?

— RQ4: How does the use of the proposed approach compare to a manual approach?

The following subsections overview the subject of the study and the experimental
setup, and describe, for each research question, the measurements performed and the
achieved results.

8.1. Subject of the study and experimental setup

We implemented our approach as a Java prototype that: (a) relies upon the Eclipse
UML2 Library for the processing of data models (i.e. class diagrams), (b) implements
wrapping code to integrate UML2Alloy and the Alloy Analyzer (using the integrated
SAT4d solver [Le Berre and Parrain 2010]), and (c) implements IterativelySolve and
all the supporting functionality.

As subject of our study, we considered SES-DAQ), the industrial data processing sys-
tem introduced in Section [2| that processes satellite input data. Recall from Section
that the data model originally created to represent the Sentinel-1 satellite input data
is updated to reflect the new data requirements of the Sentinel-2 satellite input data.
SES-DAQ is a non-trivial system written in Java having 32,469 bytecode instructions,
whose data model contains 82 classes, 322 attributes, and 56 associations. To capture
the constraints of the SES-DAQ data model we defined 52 OCL constraints (28 input
constraints, 24 input/output constraints).

3Please recall that a variable is reassigned if its current value prevents the generation of a solution that
satisfies the data model constraints.
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As an input for our approach, we considered a large transmission file containing
Sentinel-1 mission field data provided by SES. The size of the transmission file is about
2 gigabytes, containing 1 million VCDUs belonging to four different virtual channels.

Because of the large number of runs performed for this experiment and considering
that some runs took up to 110 hours (each of which had to be repeated ten times), we
used a large cluster of computers to run these experiments [Varrette et al. 2014]. To
allow for a fair comparison between the different techniques and the various file sizes
considered, the experimental runs were each executed on computing nodes having the
same characteristics. The experiments were run on a bullx B500 blade system [Atos
2016]] with each node having two processors (2 x Intel Xeon L5640 @ 2.26 GHz). Alto-
gether, the experiments took over 143 days of run time to execute.

8.2. RQ1: Does the proposed approach scale to a practical extent?

8.2.1. Measurements and setup. RQ1 deals with the practical applicability of the pro-
posed approach.

The generation of new data should be fast enough and scale effectively as file sizes
increase. For this reason, to respond to RQI1, we applied the proposed approach to
automatically generate test input files of various sizes. More specifically, we randomly
sampled chunks of field data used by SES to test Sentinel-1 satellite requirements, and
used those data chunks to generate inputs that cover the data requirements related to
the processing of Sentinel-2 satellite data.

We automatically generated test inputs containing from 50 to 500 VCDUs, in steps
of 50 VCDUs. We chose these values because of our experience with SES-DAQ. Our
previous research results, in fact, show that test inputs with 50 VCDUs can be effec-
tively used to perform conformance testing [Di Nardo et al. 2015a]. Test inputs with
500 VCDUgs, instead, have been effectively adopted for robustnes{f] testing, to stress
the behaviour of the software in the presence of inputs containing multiple invalid
data values [Di Nardo et al. 2015b]l. In general, software engineers aim to generate
test files that are as realistic as possible in terms of size and content, as large sizes
will stress the system more and are more likely to reveal faults. For example, in the
case of SES-DAQ, larger input data files are more likely to be able to accommodate
more diversity of patterns in the data and reveal faults related to the handling of large
amounts of data.

For each given VCDU value, we generated ten test inputs using our approach. We
measured the execution times for creating test inputs with the proposed approach;
specifically, we analysed the relationship between execution time and input size.

In this paper we do not deal with the problem of automatically generating test or-
acles. However, in the presence of input/output constraints defined in the data model
by means of OCL, the approach that we presented in [Di1 Nardo et al. 2015all can be
adopted to automatically determine if the output generated by the system after pro-
cessing an automatically generated test input is wrong; that is, if the output invali-
dates some of the OCL constraints in the data model (see [Di Nardo et al. 2015a] for
more details).

8.2.2. Results. Fig. shows a plot with the average execution time (in hours) re-
quired to generate a test input versus the number of VCDUs contained in each test
input (see the curve named Solving time); box plots are also shown to demonstrate
that the variance across runs is low in most cases. Fig. also shows that the ap-
proach scales to a practical extent. In the case of test inputs containing 50 VCDUs, the

4Robustness is “the degree to which a system or component can function correctly in the presence of invalid
inputs or stressful environmental conditions" [ISO/IEEE 2010].

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00, Pub. date: 2016.



00:24 D. Di Nardo et al.

approach requires on average 35.6 minutes to generate a single test input. In the case
of test inputs containing 500 VCDUs, the approach requires on average 108.2 hours
to generate a test input. A test input containing 500 VCDUs is particularly complex
to generate because of the presence of multiple collections, each containing items with
multiple references to other data items contained in the test input (e.g. in the case
of SES-DAQ, test inputs with 500 VCDUs contain on average 24,861 class instances
and 28,827 association instances). Such big inputs cannot be handcrafted by software
engineers, which highlights the usefulness of our approach.

We consider the time required to generate big inputs to be acceptable in practice.
The approach provides the benefit of automated test generation (i.e. no human effort
is required to generate the test cases) and, furthermore, thanks to its model-based na-
ture, does not negatively impact on the deadlines of the software testing process even
if test generation may require days to complete. Given that the proposed approach re-
quires only an updated data model and existing field data, the test input generation
process can be started immediately after new data requirements are defined. Test gen-
eration can be executed while the requirements are implemented; for this reason, the
generated test inputs are likely to be available before the system is ready to be tested.

120 T T ; . . . . T —— 20000
— Salving time (hours)
- - Number of Slices
100
415000
7 80}
3 D
[} Y]
- =
— w
v —
E 60F 410000 °
pus 3
£ £
2 3
a 40}
__‘_,
L7 45000
20t 7=
——4—’
0 I L L I L L L L 0
5_)0 ‘\90 ‘\4)0 ,]9(5 {)Q A,QC) ";,)0 QQ 0‘90 c-PQ
Number of VCDUs

Fig. 16. Average execution time required to generate test inputs and average number of slices versus
number of VCDUs in each generated test input. Boxplots are given for each data point. Minimum whisker
value is Q1 - 1.5*IQR, maximum whisker value is Q3 + 1.5*IQR; where IQR is the interquartile range.

The curve for solving time in Fig. [16| shows an exponential growth. This is mainly
due to the nature of the input data processed by SES-DAQ. To better understand this
behaviour we also report in Fig.[I6|the average number of slices per test input size, and
in Fig. we show the average number of calls to function SolveSlice and the average
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number of times function ExecuteAlloy (i.e. the Alloy Analyzer) had been invoked dur-
ing the generation of a test case. The plot in Fig. shows that the number of slices
grows linearly with the number of inputs. Recall that the iterative process restarts the
slice solving loop if EnableFactsAndSolve alters the value of a variable used in a pre-
vious slice. Consequently, SolveSlice can be invoked multiple times—as was the case
for our experiments—against the same slices when generating a test input. A direct
consequence of this is that the average number of calls to function SolveSlice grows
exponentially with the size of the inputs (Fig.[17). This trend depends on the presence
of several data items shared by multiple slices, and constitutes an indirect indicator of
complexity of the input data. Although the average number of calls to function SolveS-
lice grows exponentially, the average numbers of calls to the Alloy Analyzer does not,
which means that function SolveSlice often does not invoke the Alloy Analyzer; this
is an effect of the optimisation implemented in Lines [5] to [11] of SolveSlice (Fig. [12).
Therefore, the most plausible explanation for the exponential growth in solving time
(Fig. is the exponential growth in calls to SolveSlice (Fig. [17), which consumes
computation time, even though it does not always invoke the Alloy Analyzer.

To collect empirical evidence that the repeated calls to SolveSlice (Line Fig.
are responsible for the exponential growth in execution time, we inspected some of
the 500 VCDU executions. For example, in one of them 4,600,848 calls to SolveSlice
were made: in 376,250 of these calls, the slice contained no constrained attributes and
the function returned in a fraction of a millisecond; in 14,413 of these calls, the slice
already satisfied the constraints of the model—the Alloy Analyzer was called once
(the function returned in, on average, 572 ms); in 3,966 of these calls, the slice did
not initially satisfy the constraints of the model—the initial call to the Alloy Analyzer
failed, EnableFactsAndSolve was executed, and as a result multiple additional calls
were made to the Alloy Analyzer (this process took on average 17 s); in 4,206,219 of
these calls, the slice was being re-executed and contained no modified attributes—
the Alloy Analyzer was not called (in this case, the function took on average 75 ms);
this corresponds to ‘toRegenerate.contains(De finedV ars(fact)) being false in Lineof
Fig.[12). Even in cases where the Alloy Analyzer was not called, the combined calls to
SolveSlice took over 87 hours to execute.

8.3. RQ2: How does the proposed approach compare to a non-slicing approach?

8.3.1. Measurements and setup. To be justified, the proposed approach should provide
an advantage over a more straightforward approach that does not use slicing. To re-
spond to RQ2, we thus compared the performance of the approach proposed in this
paper with an approach that generates test inputs from scratch without relying upon
a slicing algorithm.

We built a solution that uses a modified version of IterativelySolve that does not
apply slicing. We refer to this approach as NonSlicingSolving. NonSlicingSolving pro-
cesses the entire Incomplete Instance Model to derive an Alloy model that captures
the shape of the input data but not the actual values of attributes. All of the attribute
values are thus generated from scratch through a single execution of the Alloy Ana-
lyzer. To compare the scalability of the two approaches, we apply them to generate test
inputs containing different numbers of VCDUs and we measure the execution time
required to generate new test inputs.

NonSlicingSolving does not scale; in fact, it cannot generate test inputs containing
50 VCDUs because of out of memory errors. In 10 separate executions performed to
generate test inputs with 50 VCDUs, the Alloy Analyzer always crashed because of
out of memory errors, even when 16 GB of RAM had been dedicated to the Alloy Ana-
lyzer process. NonSlicingSolving is thus useless for performing robustness testing; it
is unable to generate sufficiently large augmented field data files.
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Fig. 17. Average number of calls to functions SolveSlice and ExecuteAlloy versus the number of VCDUs in
each generated test input. Boxplots are given for each data point. Minimum whisker value is Q1 - 1.5*IQR,
maximum whisker value is Q3 + 1.5*IQR; where IQR is the interquartile range.

To better compare the two approaches and study the effect of input size on execution
time, we ran several experiments to generate test inputs containing 1 to 40 VCDUs. We
used both IterativelySolve and NonSlicingSolving to generate 10 different test inputs
for each possible input size containing from 1 to 40 VCDUs. To perform the experi-
ment, we randomly sampled chunks of Sentinel-1 field data. Each sample contained
the required number of VCDUs (i.e. 1 to 40 VCDUs), and we then applied the two
approaches to generate a test input to validate Sentinel-2 requirements. As a metric
of performance, we measured the solving time to generate a valid model instance for
the two approaches. For the NonSlicingSolving approach, we studied the performance
using maximum heap sizes of both 8 and 16 GB. For the approach proposed in this
paper we used a maximum heap size of 8 G

8.3.2. Results. Fig. |18/ shows the obtained results for both NonSlicingSolving and It-
erativelySolve; the x-axis reports the input size measured in number of VCDUs and
the y-axis reports the execution time taken in minutes. Fig. shows that the Non-
SlicingSolving is more efficient for very small test inputs, but it becomes increasingly
inefficient with a growing number of VCDUs. IterativelySolve always performs better
than NonSlicingSolving with test inputs containing more than 17 VCDUs. NonSlic-
ingSolving shows an exponential growth, this result is in line with research indicat-
ing that the Alloy Analyzer shows an execution time that grows exponentially in the
presence of relations that involve thousands of elements [Leuschel et al. 2011]]. When

5Recall that the approach proposed in this paper always terminated, while NonSlicingSolving crashed be-
cause of out of memory errors.
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NonSlicingSolving is executed using an 8 GB maximum heap size, out of memory fail-
ures begin to occur at 22 VCDUs, and no solution is possible with 23 VCDUs or more.
When executing NonSlicingSolving using a 16 GB maximum heap size, out of memory
failures begin to occur at 29 VCDUs; no solution is possible with 29 VCDUs or more.
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— slicing {max. heap size: 8 GB) ,
non-slicing (max. heap size: 8 GB) J -
— - non-slicing (max. heap size: 16 GB) Q
40 .
)
2
2307 1
E
1]
E
220} ]
=
©
v
10} R
P
0 C ++++I+I-T- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]
5 10 15 20 25 30 35 40

Number of VCDUs

Fig. 18. Comparison of the performance of IterativelySolve (that uses slicing) with a non-slicing approach.
Average execution time required to generate test inputs versus number of VCDUs in each generated test
input. Boxplots are given for each data point. Minimum whisker value is Q1 - 1.5*IQR, maximum whisker
value is Q3 + 1.5*IQR; where IQR is the interquartile range.

8.4. RQ3: Does the proposed approach allow for the effective testing of new data
requirements?

8.4.1. Measurements and setup. RQ3 aims to evaluate the effectiveness of the
approach—that is, the ability of the approach to generate test inputs that are effec-
tive to test the new requirements of the software system.

One of the key features of SES-DAQ, our case study system, is the ability to auto-
matically identify and discard invalid inputs (e.g. the system should be able to auto-
matically identify and discard data units containing out-of-order packets); more im-
portantly, the system is expected to be robust enough in the presence of invalid inputs
to continue functioning without failing. For this reason, robustness testing (i.e. test-
ing the capability of the system to deal with invalid data) plays a fundamental role in
evaluating whether the software meets its requirements.
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To respond to RQ3, we thus applied the approach proposed in this paper to auto-
matically generate new data intended for use in robustness test cases targeting new
data requirements. Since robustness testing deals with the generation of invalid test
data, we must adapt the proposed approach to automatically generate invalid test in-
puts for Sentinel-2 requirements. To this end, we integrated the proposed technique
with an approach that we developed previously, which generates robustness test cases
by automatically mutating chunks of valid field data [Di Nardo et al. 2015al. Fig.
shows how the technique presented in this paper is integrated with our previously de-
veloped data mutation approach [Di Nardo et al. 2015all. In practice, since field data
for the new requirements are not available, we relied upon the approach proposed in
this paper to generate valid chunks of augmented field data that meet the new data
requirements.

------------------------------ iginal .- TestInput Test Input
gglt%lmal I?/lr(;%ilerid 'g‘esblné)u[ d TWeSthIInpml d\\ With Valid With Invalid
] Model Instance or Update ith Invali . Data Data

Software Data
a - 3. Data
1. Data 2. Test Adaptation p . a @@
Loadin E‘> D E> D

With Mutation
ﬁ IterativelySolve !
E 4. System
[ [ ] ] [ Updated ] i |Executions
T I [ Data ; s
Field data 4 Model 5. Output
S 3 Validation

Repeat until each mutation operator has been applied
once on every possible target.

Fig. 19. Testing process followed to respond to research questions RQ3 and RQ4.

The technique described in [Di1 Nardo et al. 2015a]] is based on data mutation. The
technique samples a chunk of field data and loads it into memory as an instance of the
data model. The loaded data is then modified by applying a set of generic mutation op-
erators. The mutation operators enable the automatic generation of invalid test inputs.
There are six mutation operators defined in [Di Nardo et al. 2015a]: three working at
the class level (Class Instance Duplication, Class Instance Removal, Class Instances
Swapping), and three working at the attribute level (Attribute Replacement with Ran-
dom, Attribute Replacement using Boundary Condition, Attribute Bit Flipping).

To enable data mutation, software engineers use stereotypes in the data model to
configure the mutation operators in such a way that the generated invalid data fits
a given fault model. The stereotypes associated to the entities of the SES-DAQ data
model are shown in Fig. |2l Only instances of classes tagged with the stereotype In-
putData are mutated. The stereotype Identifier is used for attributes that should be
replaced with random values. The stereotype Measure is used to indicate attributes
that should be mutated by using the operator Attribute Replacement using Boundary
Condition. Attribute Bit Flipping is applied to other attributes. The mutation opera-
tors working at the class instance level are applied against instances of classes that
belong to collections of elements. For example (refer to Fig. [2), given an ActivePacket-
Zone instance that contains an ordered set of Packet instances, the mutation operator
Class Instances Swapping can be used to swap the positions of two of the contained
packets.

Fig.[19|shows that the test inputs generated by the technique presented in this paper
are given as input to the data mutation technique presented in [Di Nardo et al. 2015al
that randomly selects a mutation operator and a possible target for the mutation (i.e.
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Table I. Coverage of instructions/branches implementing Sentinel-2 specific data requirements.

S2 Instructions Covered S2 Branches Covered
Test suite Avg | Min | Max Avg | Min | Max || #Tests
Auto S1+S2 H 74 (77.9%) \ 74 (77.9%) \ 74 (77.9%) H 9 (81.8%) \ 9 (81.8%) \ 9 (81.8%) H 103.17
Manual S1+S2 || 68 (71.6%) | -] - [ 8(72.7%) | -] - [ 32

fAverage value. One of the 10 test suites generated contains an additional test case for an attribute that
only occurs very rarely in the field data.

Note: Auto, automatically generated test cases according to our methodology; Manual, test cases written
manually by SES; S1, Sentinel-1; S2, Sentinel-2

an attribute or a class instance) among the ones not already considered in previous
iterations. The process is repeated until all the mutation operators have been applied
on one instance of every attribute (or class) on which they can be applied. The gen-
erated test inputs are then executed against the software, and the OCL input/output
constraints included in the data model are used to verify if the resulting outputs are
correct.

To answer RQ3, we used test inputs generated with the process in Fig. Since the
latest version of SES-DAQ implements both Sentinel-1 and Sentinel-2 data require-
ments, we created test suites containing both test cases for the original Sentinel-1
data requirements (i.e. input data generated using data mutation only) and test cases
for the new Sentinel-2 data requirements (i.e. input data generated with the process
in Fig.[19). Though not targeting new code written to implement the new data require-
ments, the Sentinel-1 test cases serve as additional regression tests that might execute
code modified to accommodate the new Sentinel-2 data requirements. We generated
ten test suites to assess the impact of the randomness of the process. For example,
different samples of field data are used; also, the same mutation operator might target
different locations within the sampled transmission data. Each generated test input is
50 VCDUs in size (i.e. the same size adopted in [Di Nardo et al. 2015al).

The ten test suites were then executed against the SES-DAQ system. No faults
were detected during our test suite executions. This was no surprise as the version
of the SES-DAQ we tested had already successfully undergone testing using an exist-
ing manually written test suite. Therefore, we relied on code coverage as a surrogate
measure for fault detection effectiveness [Ammann and Offutt 2008]. Note that max-
imising test suite code coverage is a common requirement in industry and for our part-
ner, and is therefore an important aspect to consider. We used a code coverage tool,
EclEmma [Mountainminds 2006[, to measure and evaluate code coverage in terms of
bytecode instructions and branches. An analysis by Li et al. [2013]] has determined that
the implementation of branch coverage in EclEmma, which measures the branches
covered at the bytecode level, provides the equivalent of clause coverage (i.e. it checks
that each clause of a predicate evaluates to both true and false, and, for switch state-
ments, each branch is considered to end with a break statement). We measured the
number of instructions and branches implementing Sentinel-2 data requirements that
were covered by the test inputs generated with the proposed approach; the instruc-
tions and branches implementing the new data requirements were determined via a
manual code analysis. Branch coverage captures the effectiveness of the test suite to
spot failures that depend on specific values for certain clauses.

8.4.2. Results. The top section of Table [ shows the results of the different test suites
considered for our evaluation. Column Test suite lists the name of the test suites,
Auto S1+S2 is the test suite automatically generated to cover both Sentinel-1 and
Sentinel-2 data requirements. Column S2 Instructions Covered reports the average,
minimum and maximum number of bytecode instructions implementing Sentinel-2
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data requirements that have been covered by the generated test suites. Column S2
Branches Covered reports the average, minimum and maximum number of Sentinel-2
specific branches covered by the generated test suites.

The new data requirements related to the processing of Sentinel-2 data have been
implemented in 11 branches, for a total of 95 bytecode instructions. The results show
that, for each automatically generated test suite, the proposed approach covers 9
(81.8%) of the branches related to the new data requirements (see column S2 Branches
Covered). The proposed approach does not cover two branches because these branches
have been written to handle a particular error that cannot be introduced through the
data mutation operators of the technique presented in [Di Nardo et al. 2015all. How-
ever, the proposed approach proved to be able to cover most, 77.9%, of the instructions
implementing the new data requirements in a fully automated manner. Uncovered
instructions correspond to the two uncovered branches mentioned above.

8.5. RQ4: How does the use of the proposed approach compare to a manual approach?

8.5.1. Measurements and Setup. In general, the costs of software testing depend on the
time required to design test cases and prepare the test suites, and the time required to
execute the test cases. In our approach, the former corresponds to the cost of modelling
while, for manual testing, this is the cost of defining and writing test cases. As for
execution time, in many situations it is sufficiently small to have no practical impact
on the test process and is then of negligible importance.

Another important aspect is that, in our context, manual testing was performed by
highly experienced engineers, with domain expertise. In a context where change is
frequent, versions are many, and test engineer turnover is high, this expertise may
not always be available. In such situations, automation brings a significant advantage
as test cases can be automatically regenerated. However, changes must be made to the
model and the assumption is that such changes are less expensive than reviewing and
possibly changing every test case in a test suite.

In the case of SES, for example, software engineers have to handcraft test inputs
(i.e. binary files) containing proper values so that they resemble a valid satellite trans-
mission. We report here some data that shows that manually written test inputs are
expensive to produce. Although each manually written test input contains only 6 VC-
DUs, it has a complex structure that is labour intensive to produce manually. On aver-
age, the manually written test inputs for SES-DAQ contain the equivalent of 130 class
instances of the data model, and 261 attribute values. The complexity of the inputs
does not depend only on the structure of the file, but also on the constraints that a
test input must satisfy to be a valid input for SES-DAQ. On average, each test input
contain 36 attribute values that must satisfy at least one constraint, for a total of 1152
attribute values that are constrained within the whole test suite. This data clearly
shows that manually writing and maintaining test inputs is not straightforward.

On the contrary, data modelling is a software engineering practice that can play a
key role when designing the software, which means that the model required by the
proposed approach may coincide with the models already produced by software engi-
neers without any additional cost. Furthermore, in the case of engineering companies
like SES, data modelling has additional benefits. SES engineers, for example, find data
modelling particularly useful because it allows for the structure of data and data con-
straints to be characterised with a high level notation that facilitates discussions with
the management of the company (usually engineers who can read class diagrams and
constraints written in OCL).

Last, when comparing two testing approaches, it is particularly important to take
into account the fault detection effectiveness of the test cases. As for RQ3, we use in-
struction and branch coverage as a surrogate measure for fault detection effectiveness.
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Table II. Coverage of instructions/branches of SES-DAQ.

Bytecode Coverage Branch Coverage
Test suite Avg / Min / Max Avg / Min / Max
Auto S1+S2 || 23,432.1 (72.2%) / 23,273 (71.7%) / 23,529 (72.5%) || 978.7 (61.3%) / 957 (50.2%) / 987 (51.8%)
Manual S1+S2 23,046 (71.0%) 950 (49.8%)

Note: In total, SES-DAQ has 32,469 bytecode instructions and 1,907 branches.

To answer RQ4, for each of the automatically generated test suites (the same as
those used for the evaluation of RQ3) and the test suite written manually by SES
software engineers with a high degree of domain expertise: we measured test suite
size and test execution time; furthermore, to measure test suite effectiveness, we mea-
sured the branch and instructions coverage. We specifically considered the coverage
of branches and instructions implementing the functionality that deals with new data
requirements. The manually written test suite for SES-DAQ tests both Sentinel-1 and
Sentinel-2 data requirements; there are 32 test cases in the test suite, three of which
were specifically written to test Sentinel-2 data requirements.

We compared the size of the manually written SES test suite with the number of test
cases in the automatically generated test suites. We also compared the average time
required to execute the test suites. These measurements are useful because if execu-
tion time does not introduce important delays in the testing process, which is common
for this type of system, it would suggest that the test suite size is not practically rel-
evant in our context. Finally, we compared the coverage of the manual test suite for
SES-DAQ with the ten test suites automatically generated to respond to RQ3.

8.5.2. Results. The bottom section of Table [I| shows the coverage results for the test
suite written manually by SES software engineers (see line Manual S1+S2). Column
# Tests shows the number of test cases of the two test suites.

When using the approach proposed in this paper, the number of test cases (103.1,
on average) is larger than in manual testing (32), and is determined by the testing
strategy. In our context, the complete automatically generated test suite can be run in
under 31 minutes, and, therefore, executing the test suite can easily be accommodated
on a daily (or even more frequent) basis; the additional execution time required by
the automatically generated test suite has little practical impact. Test execution is
therefore a negligible cost factor and we will focus on test design. This is likely to be
the case for many data processing systems because they are built to process megabytes
of data in few seconds.

What matters most for our evaluation is thus whether the automated approach
proposed in this paper covers as many or more Sentinel-2 specific instructions and
branches than the manual test cases, written by experts. The results show that the
Manual S1+S2 test suite covers 8 (72.7%) of the branches related to the new data
requirements and 68 (71.6%) instructions, while the automated approach covers 9
(81.8%) branches and 74 (77.9%) instructions. Automated testing therefore performs
slightly better than manual testing in terms of coverage. Although small, the differ-
ence in the number of instructions/branches covered is of practical importance for in-
creasing confidence in the reliability of the system—uncovered branches may trigger
critical faults (e.g. runtime exceptions), while the software is running in the field.

As an additional note, we report in Table [II| the overall number of instructions (see
column Bytecode Coverage) and branches (see column Branch Coverage) covered by the
automated and manual test suites. Results show that the proposed approach covers
more bytecode instructions overall; comparing Auto S1+S2 with Manual S1+S2 we
observe that, on average, 386.1 additional bytecode instructions are executed in the
case of the test suites generated with the proposed approach. The test suites generated
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according to our technique take approximately 21 minutes more to execute compared
with manual testing; in practice, 21 minutes are negligible.

To conclude, our model-based, automated approach fares slightly better than man-
ual testing, as performed by experts, in terms of instruction and branch coverage cor-
responding to new requirements. It also achieves better coverage overall, when con-
sidering all requirements. In terms of cost, though this is very context dependent, in a
situation like the one at SES, where data processing systems incur frequent changes
and new versions must be produced, relying on the availability of experts is not always
possible or easy. Our model-based approach is therefore a valuable alternative.

8.6. Threats to Validity

To limit the threats to the internal validity of the empirical evaluation—that is, a
faulty implementation of our toolset that may lead to erroneous results—we carefully
inspected a subset of the generated test inputs to look for the presence of errors: data
values of the original field data not preserved in the updated model instance, a shape of
the updated model instance that did not coincide with the shape of the original model
instance, or values that did not satisfy data constraints. To further validate all the
generated test inputs, we performed two additional validation activities: (1) we relied
upon the Eclipse UML2 library [Eclipse Foundation 2016]] to automatically verify that
all the generated test inputs satisfied the OCL constraints of the SES-DAQ data model,
and (2) we checked that SES-DAQ error handling code was not covered when SES-DAQ
was executed to process the valid test inputs generated with the proposed approach.

Threats to the external validity regard the generalisability of results. The algorithm
IterativelySolve may show different performance when executed to generate test in-
puts for other case studies. Factors that affect the performance of IterativelySolve are
the size of the test inputs to generate and the characteristics of the data model (.e.
number of classes, attributes, associations, and OCL constraints). We have run experi-
ments considering an industrial and complex case study system as benchmark for our
evaluation. We have shown that the data model is complex: it contains 82 classes, 322
attributes, 56 associations, and 52 OCL constraints. Working with a nontrivial system
that is already in use, gives some confidence that the scalability results can generalise
to many of the industrial data processing systems on the market. Furthermore, we
studied the effect of input size on the algorithm performance, dealing with test inputs
that correspond to model instances containing up to 24,861 class instances and 28,827
association instances, which gave us confidence about the general scalability of the
algorithm with respect to test input size.

Results on the effectiveness of the proposed approach may not generalise as well.
We have shown that the technique allows for the generation of test inputs such that
most of the code implementing new data requirements is executed in the presence of
a nontrivial data model. In systems where repeated handcrafting of test inputs is sig-
nificantly less expensive than modelling, the benefits provided by our technique might
be less evident, even if the generated test cases are more effective in covering new
data requirements. However, in the general case of complex data processing systems,
we believe that the assumption of modelling costs being less expensive than manual
testing holds.

In addition, the characteristics of the data model may also affect the results ob-
tained with our algorithm—more specifically, both the operators and the data types
used in the data model constraints may slow down the performance of the underlying
constraint solver or prevent the solving of constraints. Known Alloy limitations, for
example, regard the solving of constraints involving integer variables that might be
assigned with big values or constraints with strings. The approach presented in this
paper aims to tackle the scalability issues of Alloy, and potentially other constraint
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solvers, that arise when the solver is used to generate a huge amount of instances of
classes (or user-defined data types) with multiple constraints among them. The ap-
proach does not aim to tackle Alloy scalability issues related to the management of
basic data types such as integers or strings since these issues have already been ad-
dressed by a complementary approach proposed by Ganov et al. [Ganov et al. 2012]
(see Section[9|for a discussion), and the extended Alloy solver proposed by Ganov et al.
could be integrated into IterativelySolve in case constraints involving big integers are
used in the data model.

In addition, to address scalability issues related to big integers and strings, our expe-
rience has shown that in practice it is much easier to implement domain-specific gener-
ators than resorting to constraint solving. As further discussed in Section[9] generators
are also employed by other test input generation approaches, such as UDITA [Gligoric
et al. 2010]. In our context, domain-specific generators can be executed in pre- or post-
processing steps where existing values of the input data are replaced with properly
generated values. The implementation of domain-specific generators comes at a cost,
but they tend to be simple compared to the problems related with constraint solving
(e.g. the solver does not terminate in useful time or it crashes). This is the case of our
case study where we did not include in the data model constraints relating variables
that might be assigned with big integer values or strings, but we had to deal with
the generation of correct big integer values for some of the data attributes (e.g. packet
checksums). For these attributes we relied upon the same generators implemented for
the data mutation approach integrated into our experiments [Di1 Nardo et al. 2015all;
that is, we regenerated these attribute values in a post-processing step by means of
domain-specific functions that update the attribute values after input data generation
and mutation.

To address issues related to the generalisability of results in the presence of differ-
ent sets of operators used in the model constraints, we evaluated the approach using a
case study where different OCL operators expressing properties over collections were
used. In particular, our case study includes properties expressed with the operators
forAll (used to express properties of all the elements of a collection; please note that
the same properties expressed with forAll can be expressed also with the operator
iterate), and exists (used to indicate the existence of at least one instance of an ele-
ment satisfying a given property). Since we rely upon UML2Alloy to generate an Alloy
model from a given data model, evaluating the approach against all the possible Alloy
operators is outside the scope of this paper. For example, the Alloy models generated
in our experiments did not include the operators “*’ (reflexive transitive closure) and “”
(transitive closure). However, membership operators ’ and ‘in’ are included.

9. RELATED WORK

Most of the existing approaches that deal with the problem of testing evolving software
are based on static program analysis techniques that aim to achieve high source code
coverage [Cadar and Palikareva 2014} |Santelices et al. 2008; Xu et al. 2013]. These
approaches do not deal with the generation of complex structured inputs; furthermore,
although effective in achieving high code coverage, these approaches cannot guarantee
that the generated tests cover all the system requirements.

Existing work on the generation of test cases in the presence of evolving models is
related to the generation of test input sequences from evolving state machines [El-
Fakih et al. 2004} [Pap et al. 2007; Rapos and Dingel 2012] and does not deal with the
generation of complex data structures.

Most of the existing approaches for the generation of test inputs with complex data
structures deal with the problem of generating test inputs from scratch. Bounded ex-
haustive testing approaches generate all the possible test inputs that match the struc-
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ture of a given data model up to a given bound, and work with models specified in
different formats: Java classes [Boyapati et al. 2002]], constraint logic [Senni and Fio-
ravanti 2012]], Alloy [Khurshid and Marinov 2004], or Z specifications [Horcher 1995].
These techniques have been proven to be effective for testing software systems that
process classical data structures like trees, but they may not scale once adopted to
generate more complex structures like the ones required to test SES-DAQ. Other ap-
proaches generate class diagram instances that satisfy a set of given OCL constraints
by executing appropriate constraint solvers after having transformed the OCL con-
straints into other formalisms such as Alloy models [Anastasakis et al. 2007]l, con-
straint satisfaction programs [Gonzalez et al. 2012], SMT [Przigoda et al. 2016], or
SAT problems [Soeken et al. 2011]. In principle all of these approaches can be used
to automatically generate test input data in the presence of a data model. However,
with the exception of Alloy, we found that the transformation tools that implement
the techniques presented in most of these papers are not usable in practice, either
because they are not available [Soeken et al. 2011} |[Przigoda et al. 2016]] or they are
outdated [Gonzalez et al. 2012]]. The results achieved in this paper show that (1) Alloy
can be effectively used as the underlying formalism to represent the data model in
a format that can be processed by a constraint solver, and (2) the solution proposed
in this paper makes the Alloy solver scale when complex input data has to be gener-
ated. The study of the applicability of the approach proposed in this paper using other
solvers such as SMT is part of our future work.

An efficient black-box test generation technique is UDITA [Gligoric et al. 2010].
What contributes to the efficiency of UDITA is the combination of both generator meth-
ods and predicates. Generator methods are used to build instances of the data struc-
ture, while predicates are used to validate the generated instances. UDITA relies upon
the Java Path Finder model checker [Visser et al. 2004]] to generate all the instances
that satisfy the given predicates. The implementation of these generator methods that
define the complete structure of a complex data model instance and lead to realistic
test inputs can be quite expensive. In the case of SES-DAQ, the use of UDITA would
require for the implementation of generators that lead to sequences of VCDUs that
belong to different channels, and packets that span over multiple VCDUs with a given
frequency. In our case study, we also resorted to (domain-specific) generators, but their
scope and complexity was very limited and focused on the generation of values for a
few specific attributes that were difficult to handle for Alloy. With UDITA, one would
need to define a complete set of predicates, which is unrealistic in practice, and would
lead to time-consuming constraint solving. In contrast, in our approach, we rely on
field data to limit the number of constraints to be solved.

Existing approaches use context free grammars to generate both valid and invalid
input data structures, but the existing approaches do not model the complex relation-
ships among data fields [Hoffman et al. 2009; |Zelenov and Zelenova 2006]]. Context
free grammars, for example, cannot be used to model the SES-DAQ relationship that
indicates that the sequenceCount of a Packet must be greater by one than the sequence-
Count of the previous Packet.

Other model-based approaches only focus on the generation of invalid test inputs.
These techniques focus on security testing and use models to capture the character-
istics of typical malicious (and invalid) inputs that should be properly handled by the
software under test. Models like attack trees [Morais et al. 2011f], UML state ma-
chines [Hussein and Zulkernine 2006], and transition nets [Xu et al. 2012], are used to
generate sequences of illegal actions, which are not relevant for testing data processing
systems where the complexity of the testing process lies in the definition of the input
data and mappings to complex, structured outputs. Mutation-based approaches in-
stead alter valid field data or existing test inputs to generate invalid test inputs [Shan
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and Zhu 2009; Bertolino et al. 2014; De Jonge and Visser 2012]. The main limitation
of these approaches is that they cannot generate test inputs from scratch to test new
data requirements.

Fuzz testing approaches rely upon random inputs [Miller et al. 1990; Miller et al.
1995; Forrester and Miller 2000] or random permutations of valid inputs generated
by means of grammar-based specifications [Xiao et al. 2003; |Godefroid et al. 2008].
Similarly to grammar-based approaches, fuzz testing cannot deal with inputs with
a complex data structure and constraints leading to many trivially invalid inputs—
unlike the ones generated by the approach presented in this paper.

In this paper, we introduced an algorithm that relies upon model slicing to improve
the performance of constraint solving. Slicing is a solution known to be effective for
making constraint solving scale [Xie and Aiken 2007]. Other approaches that rely
upon model slicing to improve the performance of constraint solvers exist, but they
focus mostly on the slicing of static models for satisfiability purposes (i.e. to verify
whether it is possible to create instances of the class diagram without violating any
constraint [Shaikh et al. 2010; Balaban and Maraee 2013]). The generated slices typ-
ically contain a subset of the elements belonging to the static models. The approach
proposed in this paper instead performs slicing on an instance of a class diagram; fur-
thermore, the proposed approach does not simply verify satisfiability but also supports
the incremental augmentation of incomplete model instances.

Kato [Uzuncaova and Khurshid 2008] is a tool that incrementally builds a solution
for an Alloy model by grouping the predicates in two formulas (i.e. slices). A solution
for the Alloy model is generated by solving the base slice first, and then by conjoining
the solution with the predicates in the other slice. This approach has also been used to
speed up the generation of test cases for testing product lines [[Uzuncaova et al. 2010].
Kato deals with performance issues that depend on the presence of several constraints
in a same Alloy model but it does not deal with the scalability problems related to the
generation of large collections of elements. The approach proposed in this paper is thus
complementary to Kato.

Ganov et al. extended Alloy to include a slicing procedure that identifies multiple
slices each including constraints related to specific data types, in particular integer
and string, to build satisfiability formulas that can be solved by domain-specific solvers
that perform better than Alloy [[Ganov et al. 2012]|. This Alloy extension could be clearly
integrated into the solution presented in this paper to efficiently deal with performance
issues related to constraints involving integer and string data types.

Finally, data structure repair approaches have a goal similar to that of the approach
proposed in this paper—the regeneration of a portion of an invalid data structure in-
stance (by relying upon ad hoc search [Demsky and Rinard 2003]l, by using symbolic
execution [Elkarablieh et al. 2007, or SAT solving [Nokhbeh Zaeem et al. 2012]). For
example, Cobbler generates an Alloy model that captures the content of an invalid data
structure along with its invariants and method post-conditions, and then uses Alloy to
reassigning the data structure fields that appear in the Alloy subformulas and are not
satisfied by the invalid data [Nokhbeh Zaeem et al. 2012]]. Different from data struc-
ture repair approaches, the approach proposed in this paper does not simply modify
an existing invalid model instance, but also integrates a slicing algorithm that makes
the approach scale in the presence of data structures with a large quantity of items.

10. CONCLUSION

In this paper, we presented an approach to automatically generate test inputs for test-
ing new data requirements of data processing systems. More specifically, we deal with
changes that regard the structure of the input data accepted by a data processing sys-
tem, or the constraints that regulate the content of the different data fields.
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When test inputs coincide with complex data structures containing thousands of
data items related with each other by multiple constraints, which is often the case
when dealing with data processing systems, traditional approaches based on con-
straint solving cannot be applied because of scalability issues.

The proposed technique makes use of existing field data, a data model describing
the original structure and content of the input data, and an updated data model re-
flecting the modifications to the structure and the content of the input data. The data
model is a class diagram capturing the structure of the inputs, with constraints among
classes and attributes. The proposed approach overcomes the limitations of traditional
approaches thanks to the integration of model slicing with constraint solving.

The proposed approach generates test inputs by augmenting and adapting existing
field data that matches the original data requirements. The reuse of existing field data
reduces the amount of data values that need to be generated by a constraint solver.
In particular, the approach uses constraint solving to generate only the data items
introduced by the new data requirements, or to regenerate data items that break new
or modified data constraints. As the underlying constraint solver, we rely upon the
Alloy Analyzer. The proposed technique also integrates a new slicing algorithm that
allows for the incremental invoking of the constraint solver to generate portions of the
new test input. The algorithm guarantees the consistency of the generated test input,
which results from the composition of the data belonging to the different slices.

We validated the scalability and effectiveness of the proposed approach using an
industrial case study, a satellite data acquisition system working with the European
Space Agency Sentinel series of satellites [ESA 2015]. In our study, we considered a
version of the system that had been modified to accept new packet types associated
with new missions. The empirical study shows that the proposed approach scales in
the presence of complex data structures. In particular, the study shows that the input
generation algorithm based on model slicing presented in this paper can produce, in a
reasonable amount of time, test input data that is over ten times larger in size than the
data that can be generated with constraint solving only. To evaluate the effectiveness of
the proposed approach, we generated test inputs to stress software robustness and we
measured the code covered when executing the generated test inputs against the soft-
ware. Robustness testing is critical for testing the case study system considered. The
results show that the generated test inputs cover most of the source code instructions
of the updated software written to implement new data requirements. The generated
test inputs also achieve more code coverage than the test cases implemented by expe-
rienced software engineers, thus highlighting the benefits of the proposed approach.
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