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As-You-Type Social Aware Search

PAUL LAGREE, Université Paris-Sud, France
BOGDAN CAUTIS, Université Paris-Sud, France
HOSSEIN VAHABI, Pandora Media Inc., US

Modern search applications feature real-time as-you-type query search. In its elementary form, the problem consists in re-
trieving a set of k search results, i.e., performing a search with a given prefix, and showing the top ranked results. In this paper
we focus on as-you-type keyword search over social media, that is data published by users who are interconnected through
a social network. We adopt a “network-aware” interpretation for information relevance, by which information produced by
users who are closer to the user issuing a request is considered more relevant. This query model raises new challenges for
effectiveness and efficiency in online search, even when the intent of the user is fully specified, as a complete query given
as input in one keystroke. This is mainly because it requires a joint exploration of the social space and traditional IR in-
dexes such as inverted lists. We describe a memory-efficient and incremental prefix-based retrieval algorithm, which also
exhibits an anytime behavior, allowing to output the most likely answer within any chosen running-time limit. We evaluate
our approach through extensive experiments for several applications and search scenarios. We consider searching for posts
in micro-blogging (Twitter and Tumblr), for businesses (Yelp), as well as for movies (Amazon) based on reviews. We also
conduct a series of experiments comparing our algorithm with baselines using state-of-the-art techniques and measuring
the improvements brought by several key optimizations. They show that our solution is effective in answering real-time
as-you-type searches over social media.

1. INTRODUCTION
Web search is the main tool used today to access the enormous quantity of information available
on the Web, and in particular in the social media. Starting from simple text-based search ranking
algorithm, it is now an interdisciplinary topic involving data mining, machine learning, knowledge
management, just to mention a few. Significant improvements have been done on how to answer
keyword queries on the Web in the most effective way (e.g., by exploiting the Web structure, user
and contextual models, user feedback, semantics, etc). However, answering information needs in
social media applications (such as Tumblr, Twitter, or Facebook) often requires a significant de-
parture from socially-agnostic approaches, which generally assume that the data being queried is
decoupled from the users querying it.

While progress has been made in recent years to support this novel, social and network-aware
query paradigm – especially towards efficiency and scalability – more remains to be done in order
to address information needs in real applications. In particular, providing the most accurate answers
while the user is typing her query, almost instantaneously, can be extremely beneficial, in order to
enhance the user experience and to guide the retrieval process.

Figure 1 shows an example of as-you-type search in Tumblr. A user is typing a query as-you-type
“as yo”. In the first part of the results (section “Search”), candidates are selected among queries
within the query log and correspond to prefix based query auto-completion (such as “as you are”).
In the second part though (“Blogs”), search results are presented for the partial query “as yo”
(search result such as the blog “love everybody”). This suggestion framework is referred to as as-
you-type search and is the focus of our work.

In this article, we extend as-you-type search – a functionality by now supported in most search
applications, including Web search – to social data. In particular we extend existing algorithms
for top-k retrieval (where k is the number of results returned, typically k = 10) over social data.
Our solution, called TOPKS-ASYT (for TOP-k Social-aware search AS-You-Type), builds on the
generic network-aware search approach of [Maniu and Cautis 2013b; Schenkel et al. 2008], and
deals with three systemic changes:

(1) Prefix matching: answers must be computed following a query interpretation by which the last
term in the query sequence can match tag / keyword prefixes.

(2) Incremental computation: answers must be computed incrementally, instead of starting a com-
putation from scratch. For a query representing a sequence of terms Q = [t1, . . . , tr], we can
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follow an approach that exploits what has already been computed in the query session so far, i.e.,
for the query Q′ = (t1, . . . , tr−1, t

′
r), with t′r being a one character shorter prefix of the term tr.

(3) Anytime output: answers, albeit approximate, must be ready to be outputted at any time, and in
particular after any given time lapse (e.g., 50 − 100ms is generally accepted as a reasonable
latency for as-you-type search).

We consider a generic setting common to a plethora of social applications, where users produce
unstructured content (keywords) in relation to items, an activity we simply refer to as social tagging.
More precisely, our core application data can be modelled as follows: (i) users form a social network,
which may represent relationships such as similarity, friendship, following, etc, (ii) items from a
public pool of items (e.g., posts, tweets, videos, URLs, news, or even users) are “tagged” by users
with keywords, through various interactions and data publishing scenarios, and (iii) users search for
some k most relevant items by keywords.

We devise a novel index structure for TOPKS-ASYT denoted CT-IL which is a combination
of tries and inverted lists. While basic trie structures have been used in as-you-type search scenarios
in the literature (e.g., see [Li et al. 2012] and the references therein), ranked access over inverted
lists requires an approach that performs ranked completion more efficiently. Therefore, we rely on
a trie structure tailored for the problem at hand, offering a good space-time tradeoff, namely the
completion trie of [Hsu and Ottaviano 2013], which is an adaptation of the well-known Patricia trie
using priority queues. This data structure is used as access layer over the inverted lists, allowing us
to read in sorted order of relevance the possible keyword completions and the items for which they
occur. Importantly, we use the completion trie also as a key internal component of our algorithm, in
order to speed-up the incremental computation of results.

In this as-you-type search setting, it is necessary to serve in a short (fixed) lapse of time, after
each keystroke and in social-aware manner, top-k results matching the query in its current form,
i.e., the terms t1, . . . , tr−1, and all possible completions of the term tr. This must be ensured in-
dependently of the execution configuration, data features, or scale. This is why we ensure that our
algorithms have also an anytime behaviour, being able to output the most likely result based on all
the preliminary information obtained until a given time limit for the TOPKS-ASYT run is reached.

1.1. Comparison with previous publication
We extend in this article a preliminary study published in [Lagrée et al. 2015], introducing the fol-
lowing novel contributions, which allow us to give a complete picture on our algorithmic solutions:

(1) Supernodes optimization: We introduce and evaluate experimentally a novel feature, denoted
supernodes, which consists in clustering users in groups of chosen size in order to speed up graph
exploration. The goal is to improve the precision of TOPKS-ASYT when the time allocated to
serve responses is greatly constrained.

(2) Baselines: We describe three baseline methods using state-of-the-art algorithms and we evaluate
the gains of TOPKS-ASYT with respect to them.

(3) SimRank proximity: We also consider a path-based similarity measure (as opposed to the
neighborhood-based one used before), namely SimRank, as the proximity indicator in the so-
cial network, and we evaluate the performance of our algorithm under this model assumption.

(4) Model for multi-word queries: When dealing with multi-word queries, we noticed that the last
term (seen as a potential prefix in the algorithm) yields consistently higher scores compared with
those of the terms preceding it. We propose a calibration of the prefix score to smooth this effect
and have each query term’s score contribution (including the prefix one) similar.

(5) New datasets: We add experiments based on data from an entirely different social media, the
one of movie reviews in Amazon, which allows us to verify the robustness of TOPKS-ASYT to
keyword search with medium-size tagging contributions from users. This new dataset completes
the previous pool composed of Twitter and Tumblr, two of the most popular micro-blogging
platforms today, and Yelp, a website where users write reviews on local businesses.
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As-You-Type Social Aware Search A:3

Fig. 1. An as-you-type search example (“Search”: autocompletion, “Blogs”: as-you-type results).

(6) New experiments: Besides new experiments concerning the novel aspects (supernodes, baselines,
SimRank proximity), we also add new experiments to assess (a) the benefit of the incremental
computation, and (b) the performance of our algorithm for multi-word queries.

(7) Analysis: We characterize the computational complexity for the main data structures and algo-
rithmic steps of our method.

The paper is organised as follows. In Section 2 we discuss the main related works. We lay out
our data and query model in Section 3. Our technical contribution is described in Section 4 and is
evaluated experimentally in Section 5. We conclude and discuss follow-up research in Section 6.
2. RELATED WORK
Top-k retrieval algorithms, such as the Threshold Algorithm (TA) and the No Random Access algo-
rithm (NRA) [Fagin et al. 2001], which are early-termination and exploit the textual similarity, have
been adapted to network-aware query models for social applications, following the idea of biasing
results by social relevance [Yahia et al. 2008; Schenkel et al. 2008; Maniu and Cautis 2013b] and
even time freshness [Li et al. 2015]. For more details on personalized search in social media we
refer the interested readers to the references therein.

As-you-type search (also known as type-ahead search) and query auto-completion are two of the
most important features in search engines today, and belong to the broader area of instant search
(see [Venkataraman et al. 2016] for a recent tutorial on the topic). They can be seen as facets of the
same paradigm: providing accurate feedback to queries on-the-fly, i.e., as they are being typed (pos-
sibly with each keystroke). In as-you-type search, feedback comes in the form of the most relevant
answers for the query typed so far, allowing some terms (usually, the last one in the query sequence)
to be prefix-matched. In query auto-completion, a list of the most relevant query candidates is to
be shown for selection, possibly with results for them. We discuss each of these two directions sep-
arately. Also, instant search shares many challenges with exploratory search, for settings dealing
with under-specified, undirected, and even interactive search tasks (see [Ahukorala et al. 2015] and
the references therein).

The problem we study in this paper, namely top-k as-you-type search for multiple keywords, has
been considered recently in [Li et al. 2012], which mainly differs from our work in the absence
of social dimension in data. There, the authors consider various adaptations of the well-known
TA/NRA top-k algorithms of [Fagin et al. 2001], even in the presence of minor typing errors (fuzzy
search), based on standard tries. A similar fuzzy interpretation for full-text search was followed
in [Ji et al. 2009], yet not in a top-k setting. The techniques of [Li et al. 2010] rely on precomputed
materialization of top-k results, for values of k known in advance. In [Bast et al. 2008; Bast and
Weber 2006], the goal is finding all the query completions leading to results as well as listing
these results, based on inverted list and suffix array adaptations; however, the search requires a full
computation and then ranking of the results. For structured data instead of full text, type-ahead
search has been considered in [Feng and Li 2012] (XML) and in [Li et al. 2013] (relational data).
Finally, [Zhong et al. 2012] study location-aware as-you-type search by providing location-biased
answers, instead of socially-biased ones.
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Query auto-completion is the second main direction for instant response to queries in the typing,
by which some top query completions are presented to the user (see for example [Zhang et al.
2015; Shokouhi and Radinsky 2012; Shokouhi 2013; Cai et al. 2014] and the references therein).
This is done either by following a predictive approach, or by pre-computing completion candidates
and storing them in trie structures. Probably the best known example today is the one of Google’s
instant search, which provides both query predictions (in the search box) and results for the top
prediction. In [Fafalios and Tzitzikas 2015], the authors discuss in depth various systems choices
involving index partitioning or caching, for query auto-completion under typo-tolerant and word-
order tolerant assumptions. Query suggestion goes one step further by proposing alternative queries,
which are not necessarily completions of the input one (see for instance [Vahabi et al. 2013; Jiang
et al. 2014]). In comparison, our work does not focus on queries as first-class citizens, but on instant
results to incomplete queries.

Person search represents another facet of “social search”, related to this paper, as the task of
finding highly relevant persons for a given seeker and keywords. Usually, the approach used in
this type of application is to identify the most relevant users, and then to filter them by the query
keywords [Potamias et al. 2009; Bahmani and Goel 2012]. In this area, [Curtiss et al. 2013] describes
the main aspects of the Unicorn system for search over the Facebook graph, including a typeahead
feature for user search. A similar search problem, finding a sub-graph of the social network that
connects two or more persons, is considered under the instant search paradigm in [Wu et al. 2012].

Several space-efficient trie data structures for ranked (top-k) completion have been studied re-
cently in [Hsu and Ottaviano 2013], offering various space-time tradeoffs, and we rely in this paper
on one of them, namely the completion trie. In the same spirit, data structures for the more general
problem of substring matching for top-k retrieval have been considered in [Hon et al. 2009].

3. MODEL
We adopt in this paper a well-known generic model of social relevance for information, previously
considered among others in [Maniu and Cautis 2012; 2013b; Yahia et al. 2008; Schenkel et al. 2008].
In short, the social bias in scores reflects the social proximity of the producers of content with respect
to the seeker (the user issuing a search query), where proximity is obtained by some aggregation of
shortest paths (in the social space) from the seeker towards relevant pieces of information.

3.1. Notations and context
We consider a social setting, in which we have a set of items (could be text documents, blog posts,
tweets, URLs, photos, etc) I = {i1, . . . , im}, each tagged with one or more distinct tags from
a tagging vocabulary T = {t1, t2, . . . , tl}, by users from U = {u1, . . . , un}. We denote our set
of unique triples by Tagged(v, i, t), each such triple saying that a user v tagged the item i with
tag t. Tagged encodes many-to-many relationships: in particular, any given item can be tagged by
multiple users , and any given user can tag multiple items. We also assume that a user will tag a
given item with a given tag at most once.

While social media applications can adopt for their explicit social links either the directed graph
model (e.g. , Twitter or Tumblr) or the undirected one (e.g., Yelp or Facebook), we assume in the
following that users form a social similarity network, modeled for our purposes as an undirected
weighted graph G = (U , E, σ), where nodes are users and the σ function associates to each edge
e = (u1, u2) a value in (0, 1], called the proximity (social) score between u1 and u2. Proximity may
come either from explicit social signals (e.g., friendship links, follower/followee links), or from
implicit social signals (e.g., tagging similarity), or from combinations thereof.1

To illustrate, one σ instantiation, i.e., similarity measure, we rely on in our experiments is the
Dice’s coefficient: given two users u and v, we compare their friends (respectively vocabulary,

1A key model and experimental choice in our paper is to define the social dimension by implicit links, using similarity-
based (thus reciprocal) proximity metrics. This choice is orthogonal to whether we get directed or undirected edges and our
techniques extend easily to settings in which the input social dimension has directed edges instead of the undirected ones.
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items) to compute a local social (respectively tag, item) similarity. For example, denoting by Nu

and Nv the set of users connected to u and v, the Dice’s social coefficient is computed as follows:

σDice(u, v) =
2|Nu ∪Nv|
|Nu|+ |Nv|

(1)

3.2. General keyword search problem
The general (not as-you-type) keyword search can be formulated as follows: given a seeker user s,
a keyword query Q = (t1, . . . , tr) (a set of r distinct terms/keywords) and a result size k, the top-k
keyword search problem is to compute the (possibly ranked) list of the k items having the highest
scores with respect to s and the query Q. We describe hereafter the model ingredients on which
we rely to identify query results in a social media context, and then we present in Section 3.4 the
particular search problem instance we study in this paper.

3.3. Social and textual relevance
We model by score(i | s, t), for a seeker s, an item i, and a tag t, the relevance of that item for the
given seeker and query term t. Generally, we assume

score(i | s, t) = h(fr(i | s, t)), (2)

where fr(i | s, t) is the frequency of item i for seeker s and tag t, and h is a positive monotone
function (e.g., could be based on inverse term frequency, BM25, etc).

Given a query Q = (t1, . . . , tr), the overall score of i for seeker s and Q is simply obtained by
summing the per-tag scores:

score(i | s,Q) =
∑
tj∈Q

score(i | s, tj). (3)

(Note that this naturally corresponds to an OR semantics, where items that do not necessarily match
all the query tags may still be selected; for an AND one, each term’s score should be non-empty.)

Social relevance model. In an exclusively social interpretation, we can explicitate the fr(i | s, t)
measure by the social frequency for seeker s, item i, and one tag t, denoted sf(i | s, t). This measure
adapts the classic term frequency (tf) measure to account for the seeker and its social proximity to
relevant taggers. We consider that each tagger brings her own weight (proximity) to an item’s score,
and we define social frequency as follows:

sf(i | s, t) =
∑

v∈{v | Tagged(v,i,t))}

σ(s, v). (4)

Note that, under the frequency definition of Eq. (2), we would follow a ranking approach by which
information that may match the query terms but does not score on the social dimension (i.e., is
disconnected from the seeker) is deemed entirely irrelevant.

Network-aware relevance model. A more generic relevance model, which does not solely depend
on social proximity but is network-aware, is one that takes into account textual relevance scores as
well. For this, we denote by tf(t, i) the term frequency of t in i, i.e., the number of times i was
tagged with t, and IL(t) is the inverted list of items for term t, ordered by term frequency.

The frequency score fr(i | s, t) is defined as a linear combination of the previously described
social relevance and the textual score, with α ∈ [0, 1], as follows:

fr(i | s, t) = α× tf(t, i) + (1− α)× sf(i | s, t). (5)

(This formula combines a global popularity of the item with one among people close to the seeker.)
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Fig. 2. Running example: social proximity and tagging.

Remark. We believe that this simple model of triples for social data is the right abstraction for
quite diverse types of social media. Consider Tumblr [Chang et al. 2014]: one broadcasts posts to
followers and rebroadcasts incoming posts; when doing so, the re-post is often tagged with chosen
tags or short descriptions (hashtags). We can thus see a post and all its re-posted instances as repre-
senting one informational item, which may be tagged with various tags by the users broadcasting it.
Text appearing in a blog post can also be interpreted as tags, provided either by the original author
or by those who modified it during subsequent re-posts; it can also be exploited to uncover implicit
tags, based on the co-occurrence of tags and keywords in text. Furthermore, a post that is clicked-
on in response to a Tumblr search query can be seen as being effectively tagged (relevant) for that
query’s terms. All this data has obviously a social nature: e.g., besides existing follower/followee
links, one can even use similarity-based links as social proximity indicators.

Example 3.1. We depict in Figure 2 a social network and the tagging activity of its users, for a
running example based on popular tags from the fashion domain in Tumblr. There, for seeker Alice,
we have for instance, for α = 0.2, tf(glasses, i6) = 2, and then

sf(i6 | Alice, glasses) = σ(Alice,Bob) + σ(Alice, Carol) = 0.9 + 0.6 = 1.5,

fr(i6 | Alice, glasses) = 0.8× 1.5 + 0.2× 2.

Extended proximity. The model described so far takes into account only the immediate neighbour-
hood of the seeker (the users it connects to explicitly). In order to broaden the scope of the query
and go beyond one’s vicinity in the social network, we also account for users that are indirectly con-
nected to the seeker, following a natural interpretation that user links and the query relevance they
induce are (at least to some extent) transitive. To this end, we denote by σ+ the resulting measure
of extended proximity, which is to be computed from σ for any pair of users connected by at least
one path in the network. Now, σ+ can replace σ in the definition of social frequency Eq. (4).

For example, one natural way of obtaining extended proximity scores is by (i) multiplying the
weights on a given path between the two users, and (ii) choosing the maximum value over all the
possible paths. Another possible definition for σ+ can rely on an aggregation that penalizes long
paths, via an exponential decay factor, in the style of the Katz social proximity [Katz 1953]. More
generally, any aggregation function that is monotonically non-increasing over a path, can be used
here. Under this monotonicity assumption, one can browse the network of users on-the-fly (at query
time) and “sequentially”, i.e., visiting them in the order of their proximity with the seeker.

Hereafter, when we talk about proximity, we refer to the extended one, and, for a given seeker
s, the proximity vector of s is the list of users with non-zero proximity with respect to it, ordered
decreasingly by proximity values (we stress that this vector is not necessarily known in advance).

Example 3.2. For example, for seeker Alice, when extended proximity between two users is
defined as the maximal product of scores over paths linking them, the users ranked by proximity
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w.r.t. Alice are in order Bob : 0.9, Danny : 0.81, Carol : 0.6, F rank : 0.4, Eve : 0.3, George :
0.2, Ida : 0.16, Jim : 0.07, Holly : 0.01.

3.4. The as-you-type search problem
With respect to the general keyword search problem formulated before, we consider in this paper
a specialized and potentially more useful level of search service for practical purposes, in which
queries are being answered as they are typed. Instead of assuming that the query terms are given all
at once, a more realistic assumption is that input queries are sequences of terms Q = [t1, . . . , tr], in
which all terms but the last are to be matched exactly, whereas the last term tr is to be interpreted
as a tag potentially still in the writing, hence matched as a tag prefix.

We extend the query model in order to deal with tag prefixes p by defining an item’s score for p
as the maximal one over all possible completions of p:

sf(i | s, p) = max
t∈{p′s completions}

sf(i | s, t) (6)

tf(p, i) = max
t∈{p′s completions}

tf(t, i) (7)

(Note that when we compute the importance of an item, we might consider two different tag com-
pletions, for the social contribution and for the popularity one.)

Example 3.3. If Alice’s query is hipster g, as g matches the tags gloomy, glasses,
goth and grunge, we have sf(i4 | Alice,g) as

max
t∈{g completions}

sf(i4 | Alice, t)

= max[sf(i4 | Alice,gloomy), sf(i4 | Alice,glasses), sf(i4 | Alice,grunge), sf(i4 | Alice,goth)]

= max[0.2, 0.3, 0.81, 0.41] = 0.81

4. AS-YOU-TYPE SEARCH ALGORITHMS
We revisit here the network-aware retrieval approach of [Maniu and Cautis 2013b; Schenkel et al.
2008], which belongs to the family of early termination top-k algorithms known as threshold algo-
rithms, of which [Fagin et al. 2001]’s TA (the Threshold Algorithm) and NRA (No Random-access
Algorithm) are well-known examples.

In the social-aware retrieval setting, when social proximity determines relevance, the data explo-
ration must jointly consider the network (starting from the seeker and visiting users in descending
proximity order), the per-user/personal tagging spaces, and all available socially-agnostic index
structures such as inverted lists. It is thus important for efficiency to explore the social network
by order of relevance/proximity to the seeker, as to access all the necessary index structures, in a
sequential manner as much as possible. We favor such an approach here, instead of an incomplete
“one dimension at a time” one, which would first rely on one dimension to identify a set of candidate
items, and then use the scores for the other dimension to re-rank or filter out some of the candidates.

4.1. Non-incremental algorithm
We first describe the TOPKS-ASYT approach for exclusively social relevance (α = 0) and without
incremental computation, namely when the full sequence of terms is given in one keystroke, with
the last term possibly a prefix, as Q = (t1, . . . , tr). We follow an early-termination approach that
is “user-at-a-time”: its main loop step visits a new user and the items that were tagged by her with
query terms. Algorithm 1 gives the flow of TOPKS-ASYT.

Main inputs. For each user u and tag t, we assume a precomputed selection over the Tagged
relation, giving the items tagged by u with t; we call these the personal spaces (in short, p-spaces).
No particular order is assumed for the items appearing in a user list.
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Fig. 3. The CT-IL index.

We also assume that, for each tag t, we have an inverted list IL(t) giving the items i tagged by
it, along with their term frequencies tf(t, i)2, ordered descending by them. The lists can be seen as
unpersonalized indexes. A completion trie over the set of tags represents the access layer to these
lists. As in Patricia tries, a node can represent more than one character, and the scores corresponding
to the heads of the lists are used for ranked completion: each leaf has the score of the current entry
in the corresponding inverted list, and each internal node has the maximal score over its children
(see example below). This index structure is denoted hereafter the CT-IL index.

Example 4.1 (CT-IL index). We give in Figure 3 an illustration of the main components of CT-
IL, for our running example. Each of the tags has below it the inverted list (the one of the hippie
tag is explicitly indicated). The cursor positions in the lists are in bold. By storing the maximal score
at each node (in brackets in Figure 3), the best (scoring) completions of a given prefix can be found
by using a priority queue, which is initialized with the highest node matching that prefix. With each
pop operation, either we get a completion of the prefix, or we advance towards one, and we insert
in the queue the children of the popped node.

For comparison, we also illustrate in Figure 4 the CT-IL index that would allow us to process
efficiently Alice’s top-k queries, without the need to resort to accesses in social network and p-
spaces. Obviously, building such an index for each potential seeker would not be feasible.

While leaf nodes in the trie correspond to concrete inverted lists, we can see each internal node
of the trie and the corresponding keyword prefix as described by a “virtual inverted list”, i.e., the
ranked union of all inverted lists below that node. As defined in Eq. (6-7), for such a union, for an
item appearing in entries of several of the unioned lists, we keep only the highest-scoring entry. In
particular, for the query term tr, by IL(tr) we refer to the virtual inverted list corresponding to this
prefix. There is a notable difference between the concrete inverted lists and the virtual ones: in the
former, entries can be seen (stored) as pairs (item, score) (the tag is implied); in the latter, entries
must be the form (item, tag, score), as different tags (completions) may appear in such a list.

For each t ∈ {t1, . . . , tr}, we denote by top item(t) the item present at the current (unconsumed)
position of IL(t), we use top tf(t) as short notation for the term frequency associated with this
item, and, for IL(tr), we also denote by top tag(tr) the tr completion in the current entry.

Example 4.2 (Virtual lists). The virtual inverted list for the prefix st is given in Fig. 3. The
top tag(st) is street, for top item(st) being i2, for its entry scored 4 dominates the one scored

2Even when α = 0, although social frequency does not depend directly on tf scores, we exploit the inverted lists and the
tf scores by which they are ordered, to better estimate score bounds.
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(i4,0.61)

(i6,0.6)

(i2,0.2)

(i3,0.16)

(i4,0.7)

(i2,0.54)

(i2,0.4)

(i3,0.16)

(i5,0.07) (i3,0.9)

(i4,0.81)

(i1,0.08)

(i5,0.07)

(i1,0.4)

(i4,0.2)

(i6,1.5)

(i4,0.3)

(i4,0.4)

 (i2,0.21)
(i2,1.48)

(i4,0.81)

(i1,0.5)

(i6,0.4)

(i5,0.16)
(i5,0.81)

(i1,0.31)

(i6,0.9)

(i4,0.77)

(i2,0.2)

IL(hipster)

(i6, style, 0.9)

(i5, stylish, 0.81)

 (i4, style, 0.77)

(i2, street, 0.54)

(i1, stylish, 0.31)

virtual IL(st)

Fig. 4. Alice’s personalized CT-IL index.

only 2, hence with a top tf(st) of 4. A similar one, for the “personalized” CT-IL index for seeker
Alice is given in Fig. 4.

Candidate buffers. For each tag t ∈ {t1, . . . , tr−1}, we keep a list Dt of candidate items i,
along with a sound score range: a lower-bound and an upper-bound for sf(i | s, t) (to be explained
hereafter). Similarly, in the case of tr, for each completion t of tr already encountered during the
query execution in p-spaces (i.e., by triples (u, i, t) read in some u’s p-space), we record in a Dt list
the candidate items and their score ranges. Candidates in these D-buffers are sorted in descending
order by their score lower-bounds.

An item becomes candidate and is included in D-buffers only when it is first met in a Tagged
triple matching a query term.

For uniformity of treatment, a special item ∗ denotes all the yet unseen items, and it implicitly
appears in each of the D-lists; note that, in a given Dt buffer, ∗ represents both items which are not
yet candidates, but also candidate items which may already be candidates but appear only in other
D-buffers (for tags other than t).

Main algorithmic components. When accessing the CT-IL index, inverted list entries are con-
sumed in some IL(t) only when the items they refer to are candidates (they appear in at least one
Dt′ buffer, which may not be Dt itself)3. We keep in lists called CILt (for consumed IL entries)
the items read (known candidates) in the inverted lists (virtual or concrete), for t being either in
{t1, . . . , tr−1} or a completion of tr for which a triple (item, t, score) was read in the virtual list of
tr. We also keep by the set C all tr completions encountered so far in p-spaces. Note that tr com-
pletions encountered in p-spaces may not necessarily coincide with those encountered in IL(tr).

For each t being either in {t1, . . . , tr−1} or a completion of tr already in C, by
unseen users(i, t) we denote the maximal number of yet unvisited users who may have tagged
item i with tag t. This number is initially set to the maximal possible term frequency of t over all
items. unseen users(i, t) then reflects at any moment during the run of the algorithm the difference
between the number of taggers of i with t already visited and one of either

— the value tf(t, i), if this term frequency has been read already by accessing CT-IL, or otherwise
— the value top tf(t), if t ∈ {t1, . . . , tr−1}, or
— the value top tf(tr), if t is instead a completion of tr.

3The rationale is that our algorithm does not make any “wild guesses”, avoiding reads that may prove to be irrelevant and
thus leading to sub-optimal performance.
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ALGORITHM 1: TOPKS-ASYT (non-incremental, for α = 0)
Input: seeker s, query Q = (t1, . . . , tr)
forall the users u do

σ+(s, u) = −∞;
end
forall the tags t ∈ {t1, . . . , tr−1} do

sf(i | s, t) = 0; Dt = ∅, CILt = ∅;
set IL(t) position on first entry;

end
set IL(tr) position on first entry, σ+(s, s) = 0, C = ∅ (tr completions);
H ← priority queue on users; init. {s}, computed on-the-fly;
while H 6= ∅ do

u=EXTRACT MAX(H);
PROCESS P SPACE(u);
PROCESS CT-IL;
if termination condition then

break;
end

end
return top-k items;

For known candidates i of some Dt, we accumulate in sf(i | s, t) the social score (initially 0).
Each time we visit a user u having a triple (u, i, t) in her p-space (Algorithm 2), we can

(1) update sf(i | s, t) by adding σ+(s, u) to it, and
(2) decrement unseen users(i, t); when this reaches 0, the social frequency sf(i | s, t) is final.

The maximal proximity score of yet to be visited users is denoted max proximity. With this
proximity bound, a sound score range for candidates i in Dt buffers is computed and maintained as

— a score upper-bound (maximal score) MAXSCORE(i | s, t), by max proximity ×
unseen users(i, t) + sf(i | s, t).

— a score lower-bound (minimal score), MINSCORE(i | s, t), by assuming that the current social
frequency sf(i | s, t) is the final one (put otherwise, all remaining taggers u of i with t, which
are yet to be encountered, have σ+(s, u) = 0).

Consuming the inverted list entries (Algorithm 3) in CT-IL, whenever top items become candi-
dates, allows us to keep as accurate as possible the worst-case estimation on the number of unseen
taggers. When such a tuple (i, t, score) is accessed, we can do adjustments on score estimates:

(1) if i ∈ Dt, we can mark the number of unseen taggers of i with t as no longer an estimate but
an exact value; from this point on, the number of unseen users will only change whenever new
users who tagged i with t are visited,

(2) by advancing to the next best item in IL(t), for t ∈ {t1, . . . , tr−1}, we can refine the
unseen users(i′, t) estimates for all candidate items i′ for which the exact number of users
who tagged them with t is yet unknown,

(3) by advancing to the next best item in IL(tr), with some t = top tag(tr) completion of tr, if
t ∈ C, we can refine the estimates unseen users(i′, t) for all candidate items i′ ∈ Dt for which
the exact number of users who tagged them with t is yet unknown.

Termination condition From the per-tag Dt buffers, we can infer lower-bounds on the global
score w.r.t. Q for a candidate item (as defined in Eq. (3)) by summing up its score lower-bounds
from Dt1 , . . . , Dtr−1

and its maximal score lower-bound across all Dt lists, for completions t of
tr. Similarly, we can infer an upper-bound on the global score w.r.t. Q by summing up score upper-
bounds from Dt1 , . . . , Dtr−1

and the maximal upper-bound across all Dt lists, for completions t.
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ALGORITHM 2: SUBROUTINE PROCESS P SPACE(u)
forall the tags t ∈ {t1, . . . , tr−1}, triples Tagged(u, i, t) do

if i 6∈ Dt then
add i to Dt, sf(i | s, t)← 0;
unseen users(i, t)← top tf(t);

end
unseen users(i, t)← unseen users(i, t)− 1;
sf(i | s, t)← sf(i | s, t) + σ+(s, u);

end
forall the tags t completions of tr , triples Tagged(u, i, t) do

if t 6∈ C then
add t to C, Dt = ∅ ;

end
if i 6∈ Dt then

add i to Dt, sf(i | s, t)← 0;
unseen users(i, t)← top tf(t);

end
unseen users(i, t)← unseen users(i, t)− 1;
sf(i | s, t)← sf(i | s, t) + σ+(s, u);

end

After sorting the candidate items (the wildcard item included) by their global score lower-bounds,
TOPKS-ASYT can terminate whenever (i) the wildcard item is not among the top-k ones, and (ii)
the score upper-bounds of items not among the top-k ones are less than the score lower-bound of
the kth item in this ordering (we know that the top-k can no longer change).

As in [Maniu and Cautis 2013b], it can be shown that TOPKS-ASYT visits users who may be
relevant for the query in decreasing proximity order and, importantly, that it visits as few users as
possible (it is instance optimal for this aspect, in the case of exclusively social relevance).

Example 4.3. Revisiting our running example, let us assume Alice requires the top-2 items
for the query Q = (style,gl) (α = 0). The first data access steps of TOPKS-ASYT are
as follows: at the first execution of the main loop step, we visit Bob, get his p-space, adding i6
both to the Dstyle buffer and to a Dglasses one. There may be at most two other taggers of
i6 with style (unseen users(i6,style)), and at most one other tagger of i6 with glasses
(unseen users(i6,glasses)). No reading is done in IL(style), as its current entry gives the
non-candidate item i4, but we can advance with one pop in the virtual list of the gl prefix, for can-
didate item i6. This clarifies that there is exactly one other tagger with glasses for i6. After this
read in the virtual list of gl, we have top item(gl) = i1 (if we assume that items are also ordered
by their ids). At this point max proximity is 0.81. Therefore, we have

MAXSCORE(i6 | Alice,style) = 0.81× 2 + 0.9,MINSCORE(i6 | Alice,style) = 0.9

MAXSCORE(i6 | Alice,glasses) = 0.81× 1 + 0.9,MINSCORE(i6 | Alice,glasses) = 0.9

We thus have that score(i6|Alice,Q) is between 1.8 and 4.23.
At the second execution of the main loop step, we visit Danny, whose p-space does not contain

relevant items for Q. But a side-effect of this step is that max proximity becomes 0.6, affecting
the upper-bound scores above: score(i6 | Alice,Q) can now be estimated between 1.8 and 3.6.

At the third execution of the main loop step, we visit Carol, and find the relevant p-space entries
for i4 (with tag style) and i6 (with tag glasses). Now max proximity becomes 0.4. Also,
we can advance with one pop in the inverted list of style. This clarifies that there are exactly 2
other taggers with style on i4, and now we have top item(gl) = i1 and top item(style) = 2.
This makes score(i6 | Alice,Q) to be known precisely at 2.4, score(i4 | Alice,Q) to be estimated
between 0.6 and 0.6 + 3 × 0.4 = 1.8, and score(∗ | Alice,Q) is at most 0.8. At this point the
algorithm has reached the termination condition.

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



A:12 P. Lagrée et al.

ALGORITHM 3: SUBROUTINE PROCESS CT-IL
while ∃t ∈ Q s.t. i = top item(t) ∈

⋃
xDx do

if t 6= tr then
tf(t, i)← top tf(t) (t’s frequency in i is now known);
advance IL(t) one position;
∆← tf(t, i)− top tf(t) (the top tf drop);
add i to CILt;
forall the items i′ ∈ Dt \ CILt do

unseen users(i′, t)← unseen users(i′, t)−∆;
end

end
if t = tr then

t′ ← top tag(tr) (some tr completion t′);
tf(t′, i)← top tf(tr) (t′’s frequency in i known);
advance IL(tr) one position;
∆← tf(t′, i)− top tf(tr) (the top tf drop);
add i to CILt′ or set CILt′ to {i} if previously empty;
forall the t′′ ∈ C and items i′ ∈ Dt′′ \ CILt′′ do

unseen users(i′, t′′)← unseen users(i′, t′′)−∆;
end

end
end

4.2. Adaptations for the network-aware case
We sketch in this section the necessary extensions to Algorithm 1 for arbitrary α values, hence for
any textual-social relevance balance. When α ∈ [0, 1], at each iteration, the algorithm can alternate
between two possible execution branches: the social branch (the one detailed in Algorithm 1) and a
textual branch, which is a direct adaptation of NRA over the CT-IL structure, reading in parallel in
all the query term lists (concrete or virtual). Now, items can become candidates even without being
encountered in p-spaces, when read in inverted lists during an execution of the textual branch. As
before, each read from CT-IL is associated with updates on score estimates such as unseen users.
For a given item i and tag t, the maximal possible fr-score can be obtained by adding to the pre-
viously seen maximal possible sf -score (weighted now by 1 − α) the maximal possible value of
tf(t, i); the latter may be known (if read in CT-IL), or estimated as top tf(t) otherwise. Symmet-
rically, the minimal possible value for tf(t, i) is used for lower bounds; if not known, this can be
estimated as the number of visited users who tagged i with t.

The choice between the two possible execution branches can rely on heuristics which estimate
their utility w.r.t approaching the final result. Two such heuristics are explained in [Maniu and Cautis
2013b; Schenkel et al. 2008], guiding this choice either by estimating the maximum potential score
of each branch, or by choosing the branch that is the most likely to refine the score of the item
outside the current top-k which has the highest estimated score (a choice that is likely to advance
the run of the algorithm closer to termination).

4.3. Adaptations for incremental computation
We now describe the extension to perform the as-you-type computation incrementally, as follows:

(1) when a new keyword is initiated (i.e., tr is one character), we take the following steps in order:
(a) purge all Dt buffers for t ∈ C, except for Dtr−1

(tr−1 is no longer a potential prefix, but a
complete term),

(b) reinitialize C to the empty set,
(c) purge all CILt buffers for t 6∈ {t1, . . . , tr−1},
(d) reinitialize the network exploration (the queue H) to start from the seeker, in order to visit

again p-spaces looking for triples for the new prefix, tr. (This amounts to the following
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changes in Algorithm 1: among its initialization steps (1-12), steps (4-8) are removed, and
steps for points (a) and (c) above are added.)

(2) when the current tr is augmented with one additional character (so tr is at least two characters
long), we take the following steps in order:
(a) purge Dt buffers for t ∈ C s.t. t is not a tr completion
(b) remove from C all ts which aren’t completions for tr,
(c) purge all CILt buffers for t 6∈ {t1, . . . tr−1} ∪ C,
(d) resume the network exploration.

(This amounts to the following changes in Algorithm 1: among its initialization steps (1-12),
steps (4-8) and (10-12) are removed, and steps for points (a), (b), and (c) above are added.)

Note that, in the latter case, we can efficiently do the filtering operations by relying on a simple
trie structure for the C set and use it as the index for for directly accessing the other data structures
(D-lists and CIL-lists).

4.4. Complexity analysis
Recall that Tagged(v, i, t) denotes the set of unique triples and consider a query Q = (t1, . . . , tr).
Let f denote the average fan-out in the CT-IL index, dr the average depth of the trie subtree rooted
at the node corresponding to tr (models the size of tr completions), and p the average p-space size.

CT-IL is a space-efficient trie structure for sorted access, as a node can represent a sequence of
characters. Thus, the memory space to store the trie is reduced compared to the trie index of [Li
et al. 2012]. Given an item i and a tag t, there corresponds a unique entry (i, tf(i, t)) in IL(t).
In total, there are as many entries in inverted lists as unique pairs (i, t), leading to a total space
for the inverted lists at the leaves of CT-IL of O(|{unique (i, t)}|). The number of inverted lists
corresponds to the number of distinct tags in the vocabulary, |T |. For example, in the case of our
Yelp dataset, there are 177, 286 such lists and a simple computation reveals that in average each
would have approximately 70 entries.

For each user u, we store a p-space index containing all pairs (i, t) of u. Thus, each triple is
indexed in p-spaces exactly once. The shortest-path computations for exploring the social graph by
order of proximity is straightforwardly O(|E|+ |U| log |U|).

In the run of TOPKS-ASYT, we visit one user at a time in the social graph and, in the worst-
case, we may visit the entire network, unless an event like the termination condition, a keystroke,
or (most likely) the time limit occurs.4 While entries in inverted lists are read at most once (see
Algorithm 3), the situation is different for p-spaces, as they may need to be explored once for each
new word that is added to the query (see step (1)(d) from the previous section), leading to O(r)
network explorations.

A one-character search (i.e., expansion of tr) initially costs O(f) in CT-IL, and is followed by a
sequence of variable length of sorted accesses in the trie and in the social graph; their actual number
depends on the value of α and on the overlap between p-spaces and CT-IL. Individually, the former
accesses have a direct cost of O(dr log dr). However, compared with the compact-trie of [Hsu and
Ottaviano 2013], this direct cost we incur is roughly double (albeit reduced), since our leaves are not
necessarily single strings, but lists thereof, and thus a sorted access in a priority queue most often
will translate in a score update instead of a normal pop operation.

Just like the NRA algorithm of [Fagin et al. 2001], whose complexity is quadratic in the size
of its buffers, the bookkeeping steps are more expensive complexity-wise because score intervals
are maintained throughout the computation, so we cannot have bounded buffers for our candidates.
Whenever the p-space of some user u is visited (Algorithm 2), for a given completed tag t ∈ Q
used by u, the cost of the updates to be done on the buffer Dt is O(p|Dt|); an additional cost of
O(p

∑
t |Dt|), for t denoting tr completions, corresponds to the tag tr still in the typing. Regard-

ing accesses to CT-IL by Algorithm 3, the cost is of the order O(p(|Dt|2 + |CILt||Dt|)) for the
completed tags t, and O(p

∑
t(|Dt|2 + |CILt||Dt|)) for the completions t of tr. Overall, in the

4It is highly likely in practice that typing latency precludes most often a computation until termination conditions are reached.
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Table I. Statistics on the datasets we used in our experiments.

Twitter Amazon Tumblr Yelp
Number of unique users 458, 117 130, 098 612, 425 29, 293
Number of unique items 1.6M 252, 891 1.4M 18, 149
Number of unique tags 550, 157 91, 352 2.3M 177, 286
Number of triples 13.9M 24.7M 11.3M 30.3M
Average number of tags per item 8.4 53.8 7.9 685.7
Average tag length 13.1 6.9 13.0 6.5

most important case for our study – exclusively social, i.e., α = 0, for one prefix query, i.e., r = 1
– the worst-case time complexity of our algorithm is O(|E| + |U| log |U| + dr|U|p

∑
t(|Dt|2 +

|CILt||Dt|), for the completions t of tr.
Compared to the non-incremental version, the algorithm avoids to restart the graph exploration

from the seeker s and simply continues from the currently visited node. As described in Section 4.3,
the pruning of all unnecessary data structures Dt, CILt, and C – for t denoting here the previous
completions that do not match newly typed letter, can be done efficiently inO(f) by using a trie for
the C-set, which can act as the vocabulary index leading to the Dt and CILt buffers.
4.5. Supernodes
When visiting a user node, we need to explore its p-space – its tag contributions – by routine
PROCESS P SPACE (Algorithm 2). This can be costly overall if p-spaces are saved on disk, since
many p-spaces may be loaded in main memory. In the case of time-limited queries, when a budget
is imposed (e.g., in terms of random disk accesses) and results must be returned before budget expi-
ration, loading p-spaces from disk becomes therefore a core issue. In this section, we discuss a way
to make p-space exploration go deeper in the graph, under access budget constraints.

Most sequences of users visited by TOPKS-ASYT are unique to each seeker. Thus, unless each
possible sequence was materialised and cached on disk, p-spaces must be loaded one at a time.
To tackle this issue, we propose to cluster users into supernodes and apply TOPKS-ASYT on the
graph reduced to supernodes. Instead of loading one p-space at a time, several p-spaces included in
the same supernode can be loaded jointly, with the tradeoff of some limited “off-track” exploration.

To build N supernodes, we first select N random users in the graph. Each user will correspond
to the centroid of a supernode. Every remaining vertex u is then assigned to the supernode whose
centroid is the closest to u. This method has the advantage of producing supernodes of relatively
balanced sizes, which is exactly the purpose of clustering users into supernodes. Obviously, if the
cluster sizes were unbalanced, that would make TOPKS-ASYT perform considerably worse when
having to load many small supernodes. (Indeed, in preliminary experiments, state-of-the-art com-
munity detection assigned most users to few supernodes, letting most other supernode cardinalities
far under the average number of users per cluster; this is why we followed a different user grouping.)

5. EXPERIMENTS
We evaluate in this section the effectiveness, scalability, and efficiency of TOPKS-ASYT. We used
a Java implementation of our algorithms, on a low-end Intel Core i7 Linux machine with 16GB of
RAM. We performed our experiments in an all-in-memory setting, for datasets of medium size (10-
30 millions of tagging triples). We describe first the applications and datasets we used for evaluation.

5.1. Datasets
We used several popular social media platforms, namely Twitter, Tumblr, Yelp, and Amazon, from
which we built sets of (user, item, tag) triples. Table I reports some statistics about each dataset.

Twitter: tagging triples. We used a collection of tweets extracted during Aug. 2012. As described
in Section 3, we see each tweet and its re-tweet instances as one item, and the authors of the
tweets/re-tweets as its taggers. We include both the text and the hashtags as tags.

Amazon movies: tagging triples. We used a publicly available SNAP dataset of around 35 million
movie reviews, spanning a period of 18 years up to March 2013. In this social media scenario, in
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order to build the user-item-tag triples, we simply considered the movie as the item, the author of
the review as the tagger, and the keywords appearing in the review as the tags.

Tumblr: tagging triples and social links. We extracted a collection of Tumblr posts from Oct.-
Nov. 2014, following the same interpretation on posts, taggers, and tags as in Twitter. Among the
6 different types of posts within Tumblr, we selected only the default type, which can contain text
plus images. Moreover, in the case of Tumblr, we were able to access the follower-followee network
and thus we extracted the induced follower-followee network for the selected taggers.

Yelp: tagging triples and social links. Lastly, we considered a publicly available Yelp dataset,
containing reviews for businesses and the induced follower-followee network5. In this case, in order
to build the triples, we considered the business (e.g., restaurant) as the item, the author of the review
as the tagger, and the keywords appearing in the review as the tags.

For Twitter and Tumblr, to enrich the set of keywords associated to an item, we also expand each
tag by the at most 5 most common keywords associated with it by a given user, i.e., by the tag-
keyword co-occurrence. Finally, from the resulting sets of triples, we removed those corresponding
to (i) items that were not tagged by at least two users, or (ii) users who did not tag at least two items.

To complete the data setting for our algorithm, we then constructed the user-to-user weighted
networks that are exploited in the social-aware search. For this, we first used the underlying social
network (when available). Specifically, for each user pair in Tumblr or Yelp, we computed the Dice
coefficient corresponding to the common neighbors in the social network. To also study situations
when such a network may not be available (as for Twitter and Amazon), exploiting a thematic
proximity instead of a social one, we built two other kinds of user similarity networks, based on the
Dice coefficient over either (i) the item-tag pairs of the two users, or (ii) the tags of the two users.
We considered the filtering of “noise” links, weighted below a given cut-off threshold. Among
the resulting ten networks, the Amazon tag similarity one was discarded due to poor connectivity
coupled with high density and thus a less discriminative nature; we therefore report next on nine
different network configurations.

5.2. Experimental results: effectiveness
We present in this section the results we obtained in our experiments for effectiveness, or “prediction
power”, with the purpose of validating the underlying as-you-type query model and the feasibility of
our approach. In this framework, for all the data configurations we considered for effectiveness pur-
poses, we imposed wall-clock time thresholds of 50ms per keystroke, which we see as appropriate
for an interactive search experience.

To measure effectiveness, we followed an assumption used in recent literature, e.g. in [Pennac-
chiotti et al. 2012; Maniu and Cautis 2013b], namely that a user is likely to find his items – belonging
to him or re-published by him – more interesting than random items from other users. For testing
effectiveness, we randomly select triples (u, i, t) from each dataset. For each selected triple, we
consider u as the seeker and t as the keyword issued by this user. The aim is to “get back” item
i through search. The as-you-type scenario is simulated by considering that the user issues t one
letter at a time. Note that an item may be retrieved back only if at least one user connected to the
seeker tagged it. We picked randomly 800 such triples (we denote this selection as the set D), for
tags having at least three letters. For each individual measurement, we gave as input a triple (user,
item, tag) to be tested (after removing it from the dataset), and then we observed the ranking of item
when user issues a query that is a prefix of tag.

Note that we tested effectiveness using single-word search for Twitter, Tumblr, and Amazon. On
the contrary, for Yelp, due to its distinct features of having many triples per user, we did two-word
search: given a query q = (w1, w2), we first filtered items tagged by w1, we then processed the
remaining triples with query w2 in the same manner as we did for Twitter and Tumblr.

5http://www.yelp.com/dataset challenge
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Fig. 5. Impact of α on precision.
We define the precision P@k for our selected set D as

P@k =
#{triple | ranking < k, triple ∈ D}

#D

Since P@k can be seen as a function of the main parameters of our system, one goal was to under-
stand how it is influenced by them. We describe now the different parameters we took into account.

— l, length of the prefix in the query (number of characters).
— θ, the threshold used to filter similarity links keeping only those having a score above.
— α, the social bias (α = 0 for exclusively social score, α = 1 for exclusively textual score).
— ηi(u), the number of items tagged by user u, a user activeness indicator (for simplicity, hereafter

referred to as ηi).
— ηu(i), number of users who tagged item i, an item popularity indicator (ηu).

We present next the results we obtained for this experiment. (For space reasons, we only report here
on P@5, but we performed test with P@1 and P@20 as well, which showcase similar evolution and
improvement ratios, in the case of the latter, most often reaching precision levels of around 0.8-0.9.)
When parameters are not variables of a figure, they take the following default values: α = 0 (fully
social bias), θ is assigned the lowest value of the tested dataset, ηi and ηu are associated to active
users and popular items (ηi ≥ 3 and ηu ≥ 10).

Impact of α. As shown in Figure 5, α can have a major impact on precision. With a fully social
bias (α = 0), we obtained the best results for the four datasets and all the available similarity
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Fig. 6. Impact of θ on precision.
networks. Moreover, typing new characters to complete the prefix increases the precision. However,
the evolution for α = 0 can be quite slow, with the Tumblr or Yelp item-tag similarity network for
witness. In this case, one likely reason is that these networks are quite rich in information, and the
neighbors of the seeker are very likely to have the searched item, with the right tag, due to the way
this network was built. This can also explain why the precision for the item-tag networks is higher
in the case of Tumblr than those for tag and social similarity networks. The precision for the social
similarity network is the lowest for Tumblr, while in the case of the Yelp dataset the best results
are obtained using the social network. Recall that the tag and item-tag networks were built based
on the same content we were testing on, whereas the social similarity network only uses the links
between users to infer distances between them. Yelp and Amazon exhibit lower precision levels
overall, unsurprisingly, since they are denser datasets (more triples per user).

Interestingly and supporting our thesis for social bias, we obtain good precisions levels with such
networks of similarity in social links (the highest in the case of Yelp). For example, in the case of
Tumblr, we can reach P@5 of around 0.82 for the item-tag similarity network, 0.7 for the tag one,
and still 0.5 for the social one. This indicates that we can indeed find relevant information using a
content-agnostic network using TOPKS-ASYT. Importantly, it also indicates that we can always
search with the same social similarity network, even when the content evolves rather rapidly, with
the same precision guarantees.

Finally, we can see that the evolution curve for small α values, as new characters are added, varies
depending on the similarity network. In Tumblr for example, the precision for low α values does not
increase much using the item-tag similarity network. The items were found very close to the seeker
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Fig. 7. Precision for various types of users and items.
and a few characters already give the final score in most cases. Very likely, the average number of
items per user is too low to make the length of the prefix have an impact (most probably, users close
to the seeker would not have several items tagged with the same prefix, even if this prefix is short).
On the contrary, with the social similarity network, items with a tag matching the prefix are more
likely to be diverse around the seeker. The distribution of the searched item in the network should
thus be less concentrated around the seeker. Therefore, the number of result candidates with a high
score for short prefixes is larger, and increasing l has more impact on the precision. Whereas an
item-tag network tends to do so by definition, this can be seen as a clear consequence of the social
bias that motivated our work.

Impact of θ. In Figure 6, we can observe the impact of θ on the quality of results. We mention that
the two highest θ values lead to 33% and 66% cuts on the total number of edges obtained with the
lowest θ value. Unsurprisingly, removing connections between users decreases the precision. When
using the similarity network filtered by the lowest θ value, the seeker is almost always connected
to the network’s largest connected component, and we can visit many users to retrieve back the
targeted item. With higher θ values, the connectivity for certain seekers we tested with is broken,
making some of the tested items unreachable.

Impact of popularity / activeness. We show in Figure 7 the effects of item popularity and user
activity. For all similarity networks, the precision is better for popular items (high ηu). This is to be
expected, as a popular item is more likely to be found when visiting the graph, as it is expected that
it will score high since it has many taggers. Along with item popularity, we can observe that user ac-
tiveness has a different effect in both content-based and the social similarity networks. Active users
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Fig. 8. Precision for multiple-word queries without (top row) and with (bottom row) correction.
yield a better precision score when similarity comes from social links, whereas it is the opposite
with content-based similarity networks. Reasonably, retrieving back an item for a non-active seeker
in a content-based network is easier since his similarity with neighbors is stronger (Dice coefficient
computed on less content).

5.3. Experimental results: effectiveness with multiple words
We describe next an additional experimental evaluation for effectiveness, focusing on the case of
multiple word queries, in the densest dataset (Yelp). When dealing with multi-word queries, the
score of the prefix can have a highly disproportionate weight compared to other terms in the query.

As we take the maximal score over all the possible completions (Eq.(6), (7)), the score for short
prefixes is likely to be very high and render irrelevant the preceding terms. For example, if the
query is composed of two terms t1 and t2, since t2 is interpreted as a prefix, its length can influence
the expectation of its score (for any value of α). Say t2 is a prefix of length 2, it is very likely to
be the root of many possible completions; thus the expected value of the maximal score over all
completions will likely be much larger than the score of t1. Furthermore, note that short prefixes
bring little information about a seeker’s intent.

Figure 8 top row shows the values for precision for multi-word queries in Yelp, without correcting
the score of the last term. The first four letters (l = 1, . . . , 4) correspond to the last letters of the
first word. The following characters (l ≥ 5) correspond to the next word. As expected, due the
effect described above, we can see drops in the precision when starting a new word (l = 5) for any
value of α. The precision loss is particularly observable when measuring P@20. This motivated the
following model adjustment.

To make the score of a small prefix comparable to those of the preceding terms, we propose to
re-scale it by a data-dependent constant. Specifically, for each prefix length (l ≥ 1), we compute a
normalizer value that maximized the precision through cross-validation. For example, we computed
the parameter N1 (i.e., the normalizer of prefixes of length 1) to optimize the precision of queries of
the form q = (t1, p), where p is a prefix of length 1. Proceeding similarly for other prefix lengths,
in Yelp we obtained constants N1 = 103, N2 = 200, N3 = 50, N4 = 20, N5 = 8 and N6 = 2.

In Figure 8 bottom row, with the normalized scores, we can observe that the drop of precision
seen in Figure 8 has almost disappeared (see the case of P@20, where we had significant drops
when starting a new term, but the correction with N1 now preserves precision).
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Fig. 9. Impact of α (left), type of users / items (middle), multiple words with correction (right) with SimRank
proximity (for comparison with Figures 5, 7, and 8 bottom row respectively).
5.4. Experimental results: effectiveness with SimRank proximity scores
We conducted similar experiments for effectiveness using, instead of the neighborhood-based Dice
proximity extended to shortest paths, the well-known path-based proximity model SimRank. For
space reasons and to avoid repetition, we highlight the results over the densest dataset (Yelp), for
comparison with all the initial plots for effectiveness. This allowed us to observe how the chosen
similarity (local/single-path or global) impacts results. The SimRank model, introduced by [Jeh and
Widom 2002], gives a recursive definition of the similarity between users u and v as follows:

σSimRank(u, v) =
c

|Nu||Nv|
∑

u′∈Nu,v′∈Nv

σSimRank(u′, v′) (8)

for some decay factor c ∈ [0, 1]. (A similar definition can be given for directed graphs.) The thesis
is that “two objects are considered to be similar if they are referenced by similar objects”. Since this
definition is recursive, the SimRank score between two users depends on the whole graph.

In Figure 9, we used SimRank similarity computed on the social network instead of the Dice’s
coefficient used before. On the left figure, we display the impact of α on precision and observe the
best results using a fully social bias. Interestingly, we have a slight improvements using SimRank
similarity as it reaches a precision P@5 of 0.45 after typing 5 letters, which is to compare to the
value 0.35 observed with Dice’s coefficient. This supports the use of path-based similarity measures
that encompass the general relationships between nodes.

On the right figure, we observe the impact of user activeness and item popularity on precision.
Once again, results are better for popular items. Note that SimRank has no cut-off threshold pre-
venting us from experimenting the impact of θ.

5.5. Experimental results: efficiency and scalability
We now turn our attention to the efficiency and scalability aspects of our solutions. In Figure 10 top
row, we display the evolution of NDCG@20 vs. time, for the densest dataset (Yelp), for different α
values (where α is normalized to have similar social and textual scores in average). The NDCG is
computed w.r.t. the exact top-k that would be obtained running the algorithm on the entire graph.
This measure is an important indicator for the feasibility of social-aware as-you-type search, illus-
trating the accuracy levels reached under “typing latency”, even when the termination conditions are
not met. In this plot, we fixed the prefix length size to l = 4. The left plot is when a user searches
with a random tag (not necessarily used by her previously), while the right plot follows the same
selection methodology as in Section 5.2. Importantly, with α corresponding to exclusively social
or textual relevance, we reach the exact top-k faster than when combining these two contributions
(α = 0.5). Note also that this trend holds even when the user searches with random tags.

In Figure 10 bottom row, we show the evolution of NDCG@20 vs. time in Yelp, for different pre-
fix lengths (the left plot is for random tags). Results shows that with lower l values we need more
time to identify the right top-k. The reason is that shorter prefixes can have many potential (match-
ing) items, hence the item discrimination process evolves more slowly. For these prefix lengths, we
only mention here that we also analyzed the evolution of NDCG@20 when visiting a fixed number
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Fig. 10. Impact of α (top) or l (bottom) on NDCG vs time for random search (left) or personal search (right).
number of users, observing similar behavior. As expected, the more users we visit the higher NDCG
we reach and for longer prefixes it is necessary to visit more users. E.g., when l = 6, after visiting
500 users, we reach an NDCG of 0.8 while for l = 2 the NDCG after 500 visits is 0.9.

Finally, in the experiment illustrated in Figure 12 we observed the time to reach the exact top-k for
different dataset sizes. For that, we partitioned the Yelp triples sorted by time into five consecutive
(20%) chunks. For each dataset we perform searches using prefixes of l = 2, 3, 4, 5. While the time
to reach the exact top-k increases with bigger datasets and shorter prefixes, the algorithm scales
adequately when l is more than 2. For instance, for l = 3, the time to reach the result over the
complete dataset is just twice the time when considering only 20% of this dataset.
5.6. Experimental results: incremental versus non-incremental TOPKS-ASYT
We now analyze the impact of the incremental computation. In Figure 13, we display the time to
reach the exact top-k for both TOPKS-ASYT and its incremental counterpart. For that, we compare
the two algorithms on sequences of consecutive prefixes, e.g. sou, sour, sourc, and source. Let pt
and pt+1 be two consecutive queries differing by a single character. Whereas TOPKS-ASYT starts
a new query for each new letter, the incremental version calculates the answer for pt+1 relying on
computations for pt. Obviously, the time to reach the exact top-k for the first prefix p1 is the same
(the same algorithm is run). For l = 4, the time to reach the result is already slightly smaller for the
incremental version of the algorithm. We emphasize that the first part of the incremental algorithm,
which consists in filtering the previous candidate list explains the small improvement. For longer
prefixes (l = 5, 6), the candidate list is shorter and the incremental algorithm takes full advantage
of previous computations (speed increase from ×2 for l = 5 up to ×4 for l = 6).
5.7. Experimental results: TOPKS-ASYT versus state-of-the-art baseline methods
We compare TOPKS-ASYT with three different baselines methods. The first two methods respec-
tively build on the state-of-the-art social top-k search TOPKS algorithm from [Maniu and Cautis
2013b] and the type-ahead textual search algorithm NRA(HEAP) of [Li et al. 2012]6. The third
method relies on the online Yelp Search API with query-autocompletion.

6This method was implemented and made available by the authors, as part of an instant-search engine called SRCH2; its
source code is available at https://github.com/SRCH2/srch2-ngn.
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Fig. 11. TOPKS-ASYT vs. TOPKS-M (top), TOPKS-2D (middle) or Autocompletion + TOPKS (bottom)
baselines with fixed budget.

TOPKS-M: social top-k baseline. We first compare TOPKS-ASYT to TOPKS-M (for
TOPKS-Merge), a baseline method that follows a natural idea relying on the social top-k state-
of-the-art (such as algorithm TOPKS from [Maniu and Cautis 2013b]), but does not benefit from
CT-IL (i.e., does not benefit from prefix-based retrieval). The approach of TOPKS-M works in two
stages, as follows: first, we load the inverted lists of all the possible completions of the final term
given in the query and merge them in a unique list. As a result, this step may be very costly for short
prefixes. Once the first step is completed, we can directly apply algorithm TOPKS, using prefixes
as complete words with their own inverted list.

In Figure 11 top row, we show the NDCG@20 of TOPKS-ASYT and TOPKS for various
budgets (50, 100, 200, 400 – each value corresponds to a color intensity, from lighter to darker)
and various α. A budget B corresponds to the maximal number of significant disk accesses we
allow the algorithm to do to answer a query. In our interpretation, a significant disk access can be
either a p-space exploration (visit of the next user in the algorithm) or the loading of an inverted
list. Our experiments show that the second is more costly (×12 in average), thus, we count a budget
consumption of 12 for a disk access corresponding to an entire inverted list. Similarly to Section
5.5, the NDCG is computed w.r.t. the exact top-k that would be obtained by running the algorithm
on the entire similarity graph without budget restrictions.

For α ranging from 0 to 1, we observe a similar behavior, when comparing TOPKS-ASYT to
the baseline method. Results show that the NDCG of TOPKS-M is much smaller than the one
of TOPKS-ASYT, even for relatively important budgets (e.g., B = 400). The cost of merging
inverted lists before applying TOPKS prevents the algorithm from providing high-quality answers
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fast. For example, for short prefixes (l = 3, 4), too many completions are possible and thus the
baseline loads too many inverted lists compared to the budget. Even for a budgetB = 400, TOPKS
cannot catch up with the precision of TOPKS-ASYT for a prefix length l = 3.

TOPKS-2D: textual search as-you-type baseline. We now compare TOPKS-ASYT to a
dimension-at-a-time approach, denoted TOPKS-2D (for TOPKS-2-Dimensions), which processes
social and textual contributions separately. First, we retrieve documents matching the query on the
textual dimension using the NRA(HEAP) type-ahead baseline from [Li et al. 2012]. That is, we
read inverted lists and build the candidate list, ignoring the social contribution (we do not use the
social graph and no p-space is explored). In a second stage, we then explore the similarity graph to
obtain the social contribution in the final score.

In Figure 11 middle row, for the same budget values and color code as before, we show the
NDCG@20 of TOPKS-ASYT and TOPKS-2D, for various values of α (α = 1 is not considered,
as it is a case where TOPKS-ASYT and the baseline are virtually the same). We can see that small
values of α highly favor TOPKS-ASYT: NRA(HEAP) spends useless budget on inverted lists,
since it runs without knowledge on the social scores. On the contrary, TOPKS-ASYT benefits from
simultaneous social and textual score computations to avoid using unnecessary inverted lists. When
α increases, the textual contribution becomes more significant and the baseline method becomes
more competitive, especially for longer prefixes that do not have many possible completions.

AUTOCOMPLETION+TOPKS baseline. We complete our performance comparison with AU-
TOCOMPLETE+TOPKS, a baseline method that relies on the Yelp Search API for query-
autocompletion7. This baseline method proceeds as follows: we obtain a set of queries that are
predicted by Yelp to complete the current query (prefix) the seeker is typing, without using any so-
cial information (the service is not “personalized”). We then use these queries to get the set of top-k
results over our data, by simply running for them the aforementioned state-of-the-art network-aware
top-k algorithm TOPKS from [Maniu and Cautis 2013b]. We give TOPKS-ASYT and the base-
line the same budgets as in previous experiments and, to avoid any potential evaluation bias in our
favor, any costs from the Yelp API auto-completion step are ignored.

In Figure 11 bottom row, we show the NDCG@20 of TOPKS-ASYT and AUTOCOM-
PLETE+TOPKS using the same display convention as before. We can see that for all values of
α, the NDCG of AUTOCOMPLETION+TOPKS is significantly smaller than the one of TOPKS-
ASYT. As the API does not use social information to construct autocompletions, the final top-k is
likely affected by the general query trend and this should explain the NDCG for low values of α.
Interestingly, we can however observe a similar behavior even for high values of α (textual score).

5.8. Experimental results: supernodes
In Figure 14, we show the impact of the supernode materialization feature, for supernodes of average
size d = 6 and d = 30. For three different budgets (B = 10, 30, 50), we run TOPKS-ASYT with
the original similarity network and the supernode-reduced graph. Similarly to the previous section,
the budget corresponds to the number of significant disk accesses we allow our algorithm to do until
it outputs a top-k result. For budget B = 50, supernodes do not increase the NDCG, in particular
for short prefixes. Small prefixes have many completions and thus are very common. This means
that most of the NDCG contribution is obtained with few visited nodes. When the budget given
to TOPKS-ASYT is smaller, supernodes improve the ranking quality. For instance, with budget
B = 10, very few nodes can be visited by TOPKS-ASYT and the supernodes become a key
feature. With supernodes of 6 users (resp. 30), the algorithm aggregates p-spaces of up to 60 people
(resp. 300), whereas it would visit at most 10 neighbors using the initial similarity network.

Main-memory vs. secondary memory considerations. We emphasize here that we performed our
experiments in an all-in-memory setting, for datasets of medium size (tens of millions of tagging

7https://github.com/Yelp/yelp-api-v3/blob/master/docs/api-references/autocomplete.md
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triples), in which the advantages of our approach may not be entirely observed. In practice, in real,
large-scale applications such as Tumblr, one can no longer assume a direct and inexpensive access to
p-spaces and inverted lists, even though some data dimensions such as the user network and the top
levels of CT-IL – e.g., the trie layer and possibly prefixes of the inverted lists – could still reside in
main memory. In practice, with each visited user, the search might require a random access for her
personal space, hence the interest for the sequential, user-at-a-time approach. Even when p-spaces
may reside on disk, a previous experiment shows that by retrieving a small number of them, less than
100, we can reach good precision levels; depending on disk latency, serving results in, for example,
under 100ms seems within reach. One way to further alleviate such costs may be to cluster users
having similar proximity vectors, and choose the layout of p-spaces on disk based on such clusters;
this is an approach we intend to evaluate in the future, at larger scale.

6. CONCLUSION
We study in this paper as-you-type query search in social media applications. In particular our aim
was to retrieve the top-k ranked results, under a network-aware query model by which information
produced by users who are closer to the seeker can be given more weight. We formalize this problem
and we describe the TOPKS-ASYT algorithm to solve it. Our solutions is based on a novel trie
data structure, CT-IL, allowing ranked access over inverted lists. In several application scenarios,
we perform extensive experiments for efficiency, effectiveness, and scalability, validating our tech-
niques and the underlying query model. As a measure of efficiency, since as-accurate-as-possible
answers must be provided while the query is being typed, we investigate how precision evolves
with time and, in particular, under what circumstances acceptable precision levels are met within
reasonable as-you-type latency (e.g., less than 100ms). Also, as a measure of effectiveness, we an-
alyze thoroughly the “prediction power” of the results produced by TOPKS-ASYT. We intend to
compare these results in the future with the ones from an online evaluation, which could illustrate
directly how the social bias in the retrieval process can affect CTR for search.

We see many promising directions for improving the TOPKS-ASYT algorithm. First, for op-
timizing query execution over the CT-IL index structure, we intend to study how CT-IL can be
enriched with certain pre-computed unions of inverted lists (materialized virtual lists). Assuming
a fixed memory budget, this would be done for chosen nodes (prefixes) in the trie, in order to
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speed-up the sorted access time, leading to a memory-time tradeoff. While similar in spirit to the
pre-computation of virtual lists of [Li et al. 2012], a major difference for our setting is that we can
rely on a materialization strategy guided by the social links and the tagging activity, instead of one
guided by a known query workload. Also, one difficult case in our as-you-type scenario is the one in
which tr is the initial character, following a number of already completed query terms. One possible
direction for optimization in TOPKS-ASYT is to avoid revisiting users, by recording the accessed
p-spaces for future reference. In short, within the memory budget, a naı̈ve solution would be to keep
these p-spaces as such (one per user). However, in order to speed-up the ranked retrieval, a more
promising solution is to organize the p-spaces in a completion trie as well, which would allow us to
access their entries by order of relevance.

Finally, it would be interesting to analyze our algorithm’s performance when using other
neighborhood-based methods for proximity, e.g., the one of [Adamic and Adar 2001] over the Tum-
blr or Yelp social graphs, or other path-based methods, such as SALSA [Lempel and Moran 2001],
which is known to be effective in the case of directed social graphs.
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