
On the Use of Trace Sampling for
Architectural Studies of Desktop Applications

Patrick Crowley and Jean-Loup Baer

University of Washington Technical Report UW-CSE-98-12-05

Department of Computer Science & Engineering
Box 352350

University of Washington
Seattle, WA 98195-2350

fpcrowley, baerg@cs.washington.edu

Abstract

This paper examines the feasibility of performing ar-
chitectural studies with trace sampling for a suite of
desktop application traces on Windows NT. This pa-
per makes three contributions: we compare the ac-
curacy of several sampling techniques to determine
cache miss rates for these workloads, we present vic-
tim cache and branch prediction architecture studies
that demonstrate that sampling can be used to drive
such studies, and we show how sampling may be used
to accurately and efficiently derive the parameters for
Agarwal's analytical cache model [1]. Of the sam-
pling techniques used for the cache miss ratio deter-
minations, stitch, which assumes that the state of the
cache at the beginning of a sample is the same as
the state at the end of the previous sample, narrowly
outperforms the more complex INITMR technique of
Wood et al. [11] for these workloads. These two tech-
niques are more accurate than the others and are reli-
able for caches up to 64KB in size.

This work was supported in part by NSF Grant MIP-9700970
and by a gift from Intel Corporation.

1 Introduction

Trace-driven simulation is a common approach for
evaluating memory systems. Unfortunately, it also de-
mands large amounts of space and time, particularly
for large caches and long running applications. These
demands can be greatly reduced by employing sam-
pling techniques at the expense of providing only a
statistical estimate of the properties of a full trace.
Previous studies [9, 6, 5] contain results for other
workloads and caches and discuss the conditions un-
der which sampling may, or may not, be used.

Our interest in using sampling is three-fold. First,
we are interested in the behavior of commonly used
desktop applications. When compared to benchmarks
such as SPEC95, these applications have larger work-
ing sets, are feature rich, and, of course, can run for
billions and billions of instructions. Hence, traces
based on exhaustive or elaborate executions of such
applications will be extremely large. In this work,
we consider the usefulness and limitations of trace
sampling for a suite of five publicly available desk-
top application traces for Windows NT on the Intel
X86 platform. Second, we want to demonstrate the
utility of these sampling techniques for architectural
studies. Although it has been shown that trace sam-
pling is not very accurate for metrics such as hit rate
when simulating large, multi-megabyte caches [5], we

1

want to demonstrate that sampling is useful to assess
trends not only for caches but also for other architec-
tural structures whose state depends on the processing
of past references. Such techniques permit the testing
of a wide range of architectural parameters in a rela-
tively short amount of time. Third, we want to show
that we can use sampling to estimate parameters for
analytical cache models in a manner at least as precise
as estimates based on whole reference traces and at a
much lower computational cost.

In order to determine the feasibility of sampling for
the desktop application traces, we present cache miss
rate results for a large set of cache sizes and sam-
pling techniques. Most of our results are derived from
traces of limited size (from 0.1 billion to 1.5 billion
references) so that we can compare sampling results
to “true” results. We have also performed sampling
experiments on much longer traces and, in general,
they show the same trends as those based on a smaller
number of samples. Two architectural studies are pre-
sented here that apply sampling techniques. The first
study demonstrates how sampling, while only an ap-
proximation of actual miss rate, may be used to assess
trends in victim cache performance [4], and the sec-
ond study uses sampling to assess trends in branch pre-
diction techniques. Finally, we demonstrate that sam-
pling may be used to accurately estimate parameters
for Agarwal's analytical cache model [1].

The remainder of the paper is organized as follows.
Section 2 briefly reviews the details of trace sampling
and previously published results. Section 3 introduces
the benchmarks and sampling techniques used in this
study. Section 4 presents and discusses a selection
of sampled cache miss rate results. The victim cache
and branch prediction architectural studies are given in
Section 5. The application of sampling techniques to
the estimation of parameters for the analytical model
is presented in Section 6. The paper concludes in Sec-
tion 7.

2 Trace sampling

In trace sampling an observation, or sample, is ob-
tained by recording a fixed number, the sample size, of

consecutive references from a reference stream1. An-
other fixed number of references are ignored before
the next observation is made. The sampling ratio is
the percentage of total references used in all the obser-
vations.

Sampling theory states that sets of random, unbiased
observations from a population may be used to make
inferences about that population. As described above,
observations in trace sampling are not random; they
are systematic since they are evenly spaced throughout
the trace. This non-random pattern is not a problem,
though, since systematic observations can be used to
make even more precise inferences than random obser-
vations under certain circumstances [2] (that is, when
the variance of systematic observations is greater than
the variance of the population). Unfortunately, how-
ever, trace sampling neither involves unbiased obser-
vations nor a sufficient alternative. The problem is that
the state of the cache is unknown at the start of each
observation. In other words, since portions of the trace
are unexamined between observations, it is unknown
whether the first reference to each cache block will be
a hit or a miss. Such references are referred to as un-
known [11] or cold-start [6] references.

A number of techniques have been employed to mit-
igate the bias due to unknown references. One ap-
proach is to make assumptions about, or construct, the
state of the cache at the start of each sample. These as-
sumptions may include: assuming an empty cache(i.e.,
assume that a complete context switch occurred be-
tween samples; hereafter denoted cold), assuming the
state at the end of the previous sample [1] (stitch),
and using some number of references to prime the
cache [3] (e.g., 20% of the sample, denoted prime-20,
and 50%, denoted half). The efficacy of these assump-
tions depends on workload, cache organization, and
choice of sampling parameters(i.e., sample size and
sampling ratio.) If complete context switches occur in
a cache between samples from a given trace, then as-
suming an empty cache at the start of each sample, as
is the case with cold, will be an accurate assumption.
If most misses are due to conflicts in a small number
of cache lines, then stitch may work well since only a

1In statistics, the term sample is used to denote an entire col-
lection of observations. Like most other studies, we eschew this
usage.

2

small portion of the working set is likely to change be-
tween samples. Priming the cache will be effective if
unknown references are few relative to the sample size
and are mostly included in the priming set.

Another approach is to directly determine or approx-
imate the miss ratio of unknown references, which
we denote here as �. For example, cold can also be
thought of as an estimator that assumes all unknown
references miss. In [6], unknown references are not
included in the estimate of overall miss rate. That is,
unknown references are used to prime the cache but
are not counted as hits or misses. As noted in [11],
this implicitly assumes that the miss ratio for unknown
references is equivalent to the miss ratio for all other
references. By employing a renewal-theoretic model
that depends on the percentage of time a given cache
block frame is alive or dead, Wood et al. show that �
is higher than the overall miss rate [11].

This model is used to estimate � by observing the
probability that a reference to a cache line occurs
within a dead time (where time is measured in total ref-
erences, and dead time implies that the next reference
to that cache line will miss). This suggests that if a ran-
dom time t has probability P of occuring within a dead
time for a given cache line, then P is also the probabil-
ity that an unknown reference will miss in that cache
line. This probability can be measured in a full trace
by observing the average live and dead time lengths
for each cache line in a cache. In a sampled trace, this
probability must be estimated with observations within
each sample. This sampled probability is the basis for
INITMR, the miss rate estimator described in [5] and
[11].

Accurately coping with unknown references is particu-
larly important when sampling for large caches, where
the number of unknown references can easily domi-
nate the number of known misses. Very large caches
typically correspond to a very small number of misses,
and, hence, are inherently at odds with sampling [5].
As we will see, however, when known misses domi-
nate unknown references, several approaches will be
effective.

3 Methodology

3.1 Benchmarks

Table 1 describes the 5 personal desktop applications
that we used as benchmarks and their corresponding
workloads. Table 2 presents the size of the original
binaries as well as DLL usage. A comparison between
the execution characteristics of these applications with
those of the integer SPEC95 suite can be found in [8].

3.2 Sampling Techniques

After experimenting with various sample sizes and
sampling ratios, we settled on a sample size of 500,000
references and a sampling ratio of 0.1. The process of
tuning these parameters for a given workload is im-
portant [9, 5]. The rationale for our choice for these
Windows NT desktop application traces is briefly dis-
cussed in Appendix A.

Table 3 describes the sampling techniques considered
in this study. As noted in the previous section, they dif-
fer by the state of the cache at the beginning of a sam-
ple, or, alternatively, by the method of estimating �.
The techniques not mentioned earlier are true-sample,
non-uniform, hot and tepid. true-sample simulates the
caches over the full trace and reports the miss ratio ob-
served over the regions that are sampled with the other
techniques. It is therefore an unbiased estimator of the
miss ratio for the entire trace. Its accuracy depends
on how “fine-tuned” our sampling parameters, sample
size and sampling ratio, are to a given cache and work-
load. While true-sample is not a practical method, it is
however the basis for comparisons with the other tech-
niques which, in addition to the same sampling errors,
will have unknown reference biases. non-uniform is
similar to cold but uses non-uniform sampling inter-
vals. hot assumes that all unknown misses hit; that is,
an unknown miss rate of 0%. Note that hot and cold
form definite bounds for the other unknown reference
miss rate estimators. tepid is simply the arithmetic
mean of cold and hot, which is equivalent to assum-
ing a 50% miss rate for unknown references.

3

Application Description Instructions
Executed
(millions)

acrord32 Adobe Acrobat Reader 3.0: Reader for portable document format (PDF) files. The bench-
mark loads acrobat.pdf (a 277 KB file) from the standard acrobat reader distribution, and
navigates through the document three different ways: through the hyperlinks in the docu-
ment itself, through the forward and back button provided by acrobat reader, and through a
view of the document outline provided by acrobat reader. Finally, the benchmark searches
for the word “buy” in the document before closing the program.

408

netscape Netscape Navigator 3.1 web browser. The benchmark opens four web
pages: www.cs.washington.edu, www.cnn.com, www.mtv.com, and
www.washington.edu. These pages were viewed on March 18, 1998. The java
module for netscape was turned off because Etch (our instrumentation tool) does not
handle the dynamically generated code generated by the java just-in-time compiler.

92

photoshp Adobe Photoshop 4.0 image editing package. The benchmark loads fruit.jpg (a 591 KB
still-life photograph of fruit) from the standard distribution and applies the color pencil,
accented edges, diffuse glow, and add noise photo filters to the image.

1,511

powerpnt Microsoft PowerPoint 7.0b slide preparation package. The benchmark loads in a 311 KB
18-page presentation (the presentation included five pages of graphs and six pages of fig-
ures in addition to text) in slide mode, scrolls through 3 pages, edits a figure, and continues
scrolling through until the end of the document. The benchmark then goes into the out-
line mode and creates a new page and goes back into the slide mode to move text around.
Finally, the benchmark goes into slide sorter mode and moves some slides around.

209

winword Microsoft Word 7.0 word processor. The benchmark simulates a user typing in seven para-
graphs in an eight page document (document size is 29K). The benchmark then performs
four search and replace commands on the document before saving a text version of the file.
The interactive spell checker was turned on.

351

Table 1. Benchmarks used for this study. The traces of these applications were produced on a dual Pentium Pro 200
system running Windows NT Workstation 4.0 service pack 3.

4 Determination of Miss Ratios

We simulated direct mapped and 4-way set-associative
instruction and data caches with sizes ranging from
8KB to 128KB and direct-mapped and 4-way set-
associative combined caches with sizes ranging from
256KB to 4MB. Due to space considerations, select
examples from these configurations will be presented
here, but complete results are available in Appendix B.
In the figures to follow, each data point is the arith-
metic mean of the miss ratios observed with one sam-
pling method over each of the samples taken from the
trace. The error bars for each data point correspond to
the 90% interval of confidence based on the distribu-
tion of miss ratios of the systematic samples [2]. The
actual miss ratio for the entire trace is indicated by the
solid bar.

Figure 1 and Figure 2, respectively, display the
miss rates corresponding to the simulations of direct-

mapped instruction caches for the acrord32 applica-
tion and of 4-way set-associative data caches for pow-
erpnt. These figures are representative of the complete
set of simulations. The following observations can be
made:

1. true-sample sometimes underestimates the true
miss rate (cf. Figure 1) and sometimes overesti-
mates it (cf. Figure 2). Recall that true-sample's
accuracy is linked to the choices of sample size
and sampling ratio. By choosing a single (sam-
ple size, sampling ratio) pair for all applications,
we cannot tune these parameters for each applica-
tion. Note however that when true-sample under-
estimates (resp. overestimates), it does so consis-
tently for all cache sizes for a given application.
Also, in all cases, the real miss rate is within the
90% interval of confidence of true-sample.

2. All techniques work well, i.e., give results within

4

Application Executable Size with # DLLs used
Size (MB) DLLs (MB) (shared)

acrord32 2.26 9.73 34 (24)
netscape 3.17 9.95 28 (24)
photoshp 3.65 13.5 44 (25)
powerpnt 4.36 12.5 26 (21)
winword 3.78 11.2 26 (21)

Table 2. Application object file characteristics.

Technique Description

true-sample starts each observation with correct cache state
cold assumes that the cache is empty at the beginning of each observation (i.e.,

each unknown reference misses)
hot assumes that each unknown reference hits
tepid arithmetic mean of cold and hot
INITMR calculates the miss rate based on the �split estimator from [11]
prime-20 uses the first 20% of each observation to prime the cache
half uses the first 50% of each observation to prime the cache
stitch uses the end state of the previous observation as the initial cache state for

the current observation
non-uniform same as cold, except the observations are not evenly spaced (jittered by

20% of the sample size

Table 3. Sampling techniques for coping with unknown references.

the 90% interval of confidence for caches up to 32
KB. Among these techniques, stitch works best
and, stitch and INITMR both give good, reliable
results on all traces for caches up to 64 KB. All
techniques, except those priming the cache and
hot, tend to overestimate the true-sample miss ra-
tio as a result of underestimating the miss ratio
of the unknown references. With larger caches,
the bias gets larger since the number of unknown
references is also larger. The priming techniques
have a slightly different behavior since the statis-
tics are gathered on a smaller number of refer-
ences. Nonetheless, their accuracy for caches
of 32 KB and more is always inferior to that of
stitch.

3. A general trend is that confidence intervals de-
crease with cache size. It is not the case though
that we are more confident with the results for

larger caches, rather, the miss rates are simply
smaller and, hence, so are the confidence inter-
vals. To make comparisons between confidence
intervals of different cache sizes, it is necessary to
consider the confidence interval as a percentage
of the miss rate. We see here that this percentage
remains roughly constant.

4. cold and non-uniform yield the same results, sug-
gesting that completely systematic samples are
sufficient and there is no need to inject random-
ness in intervals between samples.

Figure 3 depicts the results based on the winword trace
for large, direct-mapped combined data and instruc-
tion caches. In this case, we see that the errors due to
the choice of the sampling parameters are very small:
true-sample is highly accurate. However, the bias due
to unknown references is extremely high for all tech-
niques except stitch, hot, and INITMR. What we had

5

8 16 32 64 128

Cache Size (KB)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

M
is

s
R

at
e

(%
)

acrord32 (direct, icache) sampling results

True
true-sample
cold
hot
tepid
INITMR
prime-20
half
stitch
non-uniform

Figure 1. Simulation results for acrord32.

8 16 32 64 128

Cache Size (KB)

0.0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3.0
3.3
3.6

M
is

s
R

at
e

(%
)

powerpnt (4-way, dcache) sampling results

True
true-sample
cold
hot
tepid
INITMR
prime-20
half
stitch
non-uniform

Figure 2. Simulation results for powerpnt.

256 512 1024 2048 4096

Cache Size (KB)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

M
is

s
R

at
e

(%
)

winword (direct, ccache) sampling results

True
true-sample
cold
hot
tepid
INITMR
prime-20
half
stitch
non-uniform

Figure 3. Simulation results for winword.

6

seen for the larger caches in Figure 1 becomes even
more pronounced. For these larger caches, no tech-
nique has a confidence interval that consistently over-
laps that of true-sample, although stitch comes closest
overall. If one were satisfied with a 95% rather than a
90% confidence interval, stitch might be sufficient.

Long Trace Sampling Results: For the previous re-
sults we have used traces of limited size (from 0.1 bil-
lion to 1.5 billion references) in order to compare sam-
pling results to “true” results. We have constructed a
set of longer traces (based on billions of references) of
the same suite of applications to test a greater range of
features more exhaustively and to determine whether
it is necessary or instructive to use larger workloads
to drive these applications. Figure 4 gives results for
three of the sampling techniques based on a “long”
trace of netscape. This trace contains samples amount-
ing to 10% of the original reference stream which con-
tained approximately 2.5 billion instruction and data
references. Figure 4 compares the true miss rates for
the original short trace to some of the sampled miss
rates. Since we know stitch to be an accurate sampling
technique for these workloads and since our emphasis
is on minimizing simulation time, we report only those
techniques that involve the minimum amount of com-
putation. For netscape and these data caches, the dif-
ferences are not dramatic. This suggests that while the
longer trace contains more instructions corresponding
to more features, they are not substantially different,
with respect to the cache, from the features represented
in the shorter trace. The full set of results for long
traces and cache configurations contains cases where
differences are either insignificant or pronounced (e.g.,
the sampled miss ratios for data caches based on the
longer acrord32 trace were found to be nearly 70%
higher.)

5 Using trace sampling for architectural
studies

Trace-driven simulation is used not only for the eval-
uation of cache parameters but also for studying hard-
ware assists to the memory hierarchy or to the proces-
sor core. Often these hardware assists contain struc-
tures which, like caches, have states that depend on

the recent history of data references or instruction ex-
ecution. In this section, we show that trace sampling
is sufficient to give accurate trends on the efficiency
of these assists and thus can save considerable simula-
tion time. The two hardware assists that we choose
to demonstrate this effect on are victim caches and
branch prediction mechanisms.

5.1 Victim caches

The scenario we consider here is that of an architect
who wishes to gather an efficient estimate of the ex-
pected decrease in miss ratio for data caches when
those caches are augmented with victim caches with
between one and five entries. Our purpose here is not
to study victim cache trends, as that has been done
elsewhere [4], but to demonstrate how sampling tech-
niques may be efficiently used in this regard.

The results are presented in Figure 5 for the netscape
trace. Figure 5 compares the true results for the vic-
tim cache simulation to the stitch sampled results. The
sampled results were obtained in one tenth of the time
required to generate the true miss rates since only one
tenth of the original trace was used. In addition to the
actual miss rates being very similar, the true miss rate
is always either within the 90% confidence interval
or slightly outside, the trends are precisely the same.
Even if the actual miss rates didn't agree as well, the
predicted trends would be correct. In particular, the
trends would be accurately represented even for large
caches.

5.2 Branch prediction

Trace sampling has traditionally been used in cache
memory simulations and the previous experiment on
victim caches falls into that category. The benefits
of trace sampling can be extended to other architec-
tural studies that may involve large workloads and ex-
pensive simulation. Branch prediction is one such
technique that is typically simulated over the same
workloads used to drive cache memory simulations.
As these techniques increase in complexity, so do the
costs of simulation.

7

8 16 32 64 128

Cache Size (KB)

0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
4.0
4.4
4.8
5.2
5.6
6.0
6.4
6.8

M
is

s
R

a
te

 (
%

)

netscape (direct, dcache) long trace sampling results

True (short trace)
cold
half
stitch

Figure 4. Simulation results for the long netscape trace. true-sample was not available since we did not record all
references, and prime-20 and non-uniform are omitted due to their their similarities to half and none, respectively.

8 16 32 64 128

Cache Size (KB)

0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
4.0
4.4
4.8

M
is

s
R

at
e

(%
)

netscape-stitch (direct, dcache) victim cache sampling results

True Miss Rate
 1 entry
 2 entries
 3 entries
 4 entries
 5 entries

Figure 5. Victim Cache Simulation results for netscape.

Branch prediction mechanisms rely on one or more
tables that encode the result of previous branch out-
comes and that are used to predict the outcome of the
current branch instruction. The number of branch out-
comes n necessary to “warm” up the predictor depends
on the particular implementation. Note that the sit-
uation is different from that of a “cold” miss in the
cache. In a cache, the first reference to a cache line
within each sample is an unknown reference because
the result of the reference (hit or miss) depends on
the previous reference; all the remaining references to
that cache line within that sample are correctly identi-
fied. In the branch predictors, the first n references to
a given entry in a branch predictor will be unknown,
given that a prediction depends on the previous n refer-
ences. The first n references to an entry will still yield
a prediction, and that prediction may be correct, but
we won't know if that prediction is the one the branch

predictor would have made in the absence of unknown
references.

In this section, we investigate the accuracy of trace
sampling for two conditional branch predictors with
different values of n and with various predictor table
sizes. The first predictor is a simple bimodal predictor
that uses a two-bit saturating counter per branch. Here,
n = 1 since it takes two wrong predictions before
changing the prediction from “taken” to “non-taken”
and vice-versa. The second is a gshare predictor that
uses a global shared history of branch patterns XOR'd
with the program counter to obtain the index into a ta-
ble of two-bit saturating counters [12, 10]. It is more
difficult to assess the value of n because of the dual ef-
fects of the history of branches and the value of the PC
but it is certainly significantly greater than one. We
consider predictor tables ranging in size from 512 to

8

32,768 entries.

The results from the acrord32 trace for some of the
sampling techniques for the bimodal predictor are
found in Figure 6. Again, since we know stitch to be an
accurate sampling technique for these workloads and
since our emphasis is on minimizing simulation time,
we report only those techniques that involve the min-
imum amount of computation. As can be seen, the
results using stitch are extremely good even for large
tables. Because individual branches are most often ei-
ther always taken or always not taken, keeping the re-
sults of past predictions, even distant ones, is bene-
ficial. Starting from scratch, as in cold, might yield
an unacceptable number of false initial predictions al-
though the trend of almost no gain in prediction accu-
racy after the tables reach 8K entries is correct.

Figure 7 displays the results for the gshare predictor
over the same trace. First we can observe that stitch is
still quite accurate up to 8K entries. Moreover, stitch
can lead to the correct conclusion that the gshare pre-
dictor is more accurate than the bimodal predictor only
when the predictor tables are sufficiently large (greater
than 8K entries for this particular example). On the
other hand, none of the other techniques are good in
that respect. This is due to the fact that the gshare
predictor makes predictions according to path history.
That is, each branch has multiple entries in the table
indicating the taken/not taken decisions made to ar-
rive at it. This effectively increases the number of un-
known references for branches seen early in a sample.
If the number of entries is sufficiently large and the
path history sufficiently long, there is not enough time
to build history, a history that was retained in stitch
and which, from our previous observation, should not
change much.

6 Sampling Techniques for Analytical Cache
Models

In this section, we investigate the use of sampling tech-
niques to estimate parameters that will subsequently
be used to solve equations in analytical models of
cache behavior. Our vehicle for experimentation is
Agarwal's analytical cache model [1].

Like many models based on Mean Value Analysis [7],
Agarwal's analytical cache model consists of equa-
tions whose inputs are characterized by the mean val-
ues of parameters measured from a reference trace. In-
stead of simulating many cache configurations for a
given reference stream, the reference stream is used to
collect these input parameter values. These parame-
ters, which are as independent of cache design param-
eters as possible, are plugged into the analytical model
to yield mean value predictions of performance for a
variety of cache configurations. Thus, the need for ex-
pensive functional simulations is avoided.

Analytical cache models are useful in the sense that
they provide a quick way to obtain high-level estimates
of cache behavior. They might also pin-point areas in
the design space where more accurate, and hence more
expensive, evaluation techniques need to be applied.
Because quick results are one of the main advantages
to analytical modeling, it is necessary that collecting
the input parameters to the model be done in a rapid
fashion. Even if collecting input parameters does not
take as long as a full-fledged simulation, the process
can become unwieldy for traces of several billion in-
structions. Our goal here is to show that these param-
eters can be gathered via sampling and when the sam-
pled parameters are fed back in the model, they pro-
vide answers as accurate as if the parameters had been
gathered on the full trace. Our goal, however, is not to
increase the accuracy of the model.

The analytical model on which we experiment pre-
dicts the miss ratio of associative caches of fixed
block size but with various cache capacities and set-
associativities. The miss ratio is computed as a com-
posite of effects due to cold misses, non-stationary
misses (i.e., misses which occur because of changes
in locality), and conflict misses. To gather the param-
eters necessary to solve for the overall miss rate, the
reference trace in [1] is partitioned into some number
of time granules of fixed size (e.g., 10,000 or 500,000
references.) The parameters derived from the entire
trace are:

� u, the average number of unique memory blocks
referenced per time granule, i.e., a reasonable es-
timate of the working set size

9

512 1024 2048 4096 8192 16384 32768

Predictor Size (# of entries)

0

2

4

6

8

10

12

14
B

ra
n

ch
 M

is
p

re
d

ic
t

(%
)

acrord32 bimodal predictor

True
true-sample
cold
prime-20
half
stitch

Figure 6. Bimodal Branch prediction sampling results for the acrord32 trace.

512 1024 2048 4096 8192 16384 32768

Predictor Size (# of entries)

0

2

4

6

8

10

12

14

B
ra

n
ch

 M
is

p
re

d
ic

t
(%

)

acrord32 gshare predictor

True
true-sample
cold
prime-20
half
stitch

Figure 7. gshare Branch prediction sampling results for the acrord32 trace.

10

� U , the total number of unique memory blocks ref-
erenced over the entire trace, i.e., the footprint of
the program in main memory

� c, the collision rate, i.e., the average number of
times within a time granule that a block that will
be referenced in the future is purged from the
cache. Agarwal reports that this rate is more or
less constant for caches with a given block size
provided that the cache size is greater than half
the working set size u.

The cold miss effects are proportional to u, the non-
stationary effects are proportional to
(U � u)=number of granules, and the conflict ef-
fects proportional to c and the cache architectural pa-
rameters. When we use samples instead of the whole
trace, we observe that:

� The average us of unique memory blocks refer-
enced per sample is very close to u

� Us � us � (U � u) � sampling ratio, i.e., the
term corresponding to non-stationary effects will
be similar (Us is the total number of unique mem-
ory blocks referenced over all samples)

� cs measured on the sample trace is almost the
same as c measured on the whole trace.

We obtain the miss rate estimates yielded by the ana-
lytical cache model in the manner originally suggested
in [1] for input parameters derived from both the en-
tire trace and samples. We used time granule sizes of
10,000 and 500,000 references, but found that, as indi-
cated in [1], the results were insensitive to this parame-
ter. Figure 8 gives the results of applying the model to
the netscape trace for various cache sizes and two sep-
arate estimations of c. The first bar gives the true miss
rate, the next two bars give the miss rates for the model
using the entire trace and the sampled trace respec-
tively when c is computed with a 16KB direct-mapped
cache, while the last two bars are for c computed with
a 32 KB direct-mapped cache. The most important ob-
servation for the thesis of this paper is that the results
from the model using parameters derived from the en-
tire trace and those derived from the sample trace are
indistinguishable. Thus, sampling is efficient in that

regard. A secondary observation is that the model is
most accurate when c is computed for the target size
of the cache (this is of course no surprise). Finally, it
appears that the larger the cache for which c is com-
puted, the better the accuracy. We have observed that
for these workloads, and these working set sizes in par-
ticular, c is stable for cache sizes 32 KB and greater.
This agrees with the expectation described in [1], that
c should be stable for cache sizes greater than half the
working set size.

7 Conclusion

Commonly used Windows NT desktop applications
can run for billions of instructions. Performing archi-
tectural studies on traces of billions of references is not
feasible from both time and space perspectives. An al-
ternative methodology is to use trace sampling.

In this paper we have studied the use and accuracy of
trace sampling for architectural studies of five Win-
dows NT desktop applications. We have shown that
among the choices of sampling techniques for the de-
termination of cache miss ratios, stitch (which assumes
that the state of the cache at the beginning of a sam-
ple is the same as the state at the end of the previous
sample) and the more complex INITMR are the best at
overcoming the difficulties inherent with the problem
of the unknown references at the beginning of each
sample. Using these sampling techniques resulted in
the accurate, i.e., within 90% confidence intervals, de-
termination of cache miss ratios for caches of sizes up
to 64 KB.

We also used trace sampling to successfully determine
the trends in the use of hardware assists such as vic-
tim caches and branch predictors. For these types of
time consuming studies, trace sampling can reduce the
computational effort by an order of magnitude with-
out loss of insight in the usefulness of the architectural
enhancements.

Finally, we have shown that trace sampling is ex-
tremely accurate in determining the parameters neces-
sary to drive analytical cache models. In this case also,
trace sampling provides large savings in computation
time without loss of precision.

11

netscape (direct, icache) analytical cache model results

0

0.5

1

1.5

2

2.5

3

3.5

8 16 32 64 128

Cache Size(KB)

M
iss

 R
at

e(
%

) True

whole 16K seed

sample 16K seed

whole 32K seed

sample 32K seed

Figure 8. Analytical Cache Model results for netscape. In this figure, the label 16K Seed implies that the collision
rate, c, was measured on this trace for a 16K Cache.

References

[1] A. Agarwal, J. Hennessy, and M. Horowitz.
Cache performance of operating system and mul-
tiprogramming workloads. ACM Transactions
on Computer Systems, 6(4):393–431, November
1988.

[2] Willaim G. Cochran. Sampling Techniques. John
& Wiley Sons, 1977.

[3] J. W. C. Fu and J. H. Patel. Trace driven simu-
lation using sampled traces. In Proceedings of
the Twenty-Seventh Hawaii International Con-
ference on System Sciences Vol. I: Architecture,
pages 211–220, January 1994.

[4] Norm Jouppi. Improving direct-mapped cache
performance by the addition of a small fully-
associative cache and prefetch buffers. In Proc.
of 17th Int. Symp. on Computer Architecture,
pages 364–373, 1990.

[5] R.E. Kessler, Mark D. Hill, and David A. Wood.
A comparison of trace-sampling techniques for
multi-megabyte caches. IEEE Transactions on
Computers, 43(6):664–675, June 1994.

[6] Subhassis Laha, Janak H. Patel, and Ravis-
hankar K. Iyer. Accurate low-cost methods
for performance evaluation of cache memory
systems. IEEE Transactions on Computers,
37(11):1325–1335, November 1988.

[7] E. Lazowska, J. Zahorjan, G. Graham, and
K. Sevcik. Quantitative System Performance.
Prentice-Hall, Inc., 1984.

[8] Dennis C. Lee, Patrick J. Crowley, Jean-Loup
Baer, Thomas E. Anderson, and Brian N. Ber-
shad. Execution characteristics of desktop ap-
plications on windows nt. In Proceedings of the
25th Annual International Symposium on Com-
puter Architecture, June 1998.

[9] Margaret Martonosi, Anoop Gupta, and Thomas
Anderson. Effectiveness of trace sampling for
performance debugging tools. In Proceedings
of ACM Sigmetrics Conf. on Measurement and
Modeling of Computer Systems, pages 248–259,
1993.

[10] Scott McFarling. Combining branch predictors.
Technical Report TN 36, DEC-WRL, 1993.

[11] David A. Wood, Mark D. Hill, and Richard E.
Kessler. A model for estimating trace-sample
miss ratios. In Proceedings of the ACM SIGMET-
RICS Conference for the Measurement and Mod-
eling of Computer Systems, pages 79–89, June
1991.

[12] T.-H. Yeh and Y. Patt. Alternative implemen-
tations of two-level adaptive branch prediction.
In Proceedings of the 19th Annual International
Symposium on Computer Architecture, pages
124–134, 1992.

12

A Sampling Parameters

The following characterizations target only a a single
cache configuration. Work is under way to consider
the variation of these sampling parameters across mul-
tiple configurations and determine ideal parameters
for each workload and cache configuration.

A.1 Sample Size

A number of studies [5] [9] demonstrate that different
cache sizes require different sample sizes to achieve
a given level of accuracy. Figure 9 shows how abso-
lute (i.e., unsigned) average miss rate error varies with
sample size for our 32KB direct-mapped data cache at
a fixed sampling ratio of 0.1.

As sample size increases, the error due to cold-start
misses decreases. However, because we are keep-
ing sampling ratio fixed, increasing sample size also
means that we decrease the number of regions sam-
pled. Doubling the sample size halves the number of
samples. The results in Figure 9 weakly suggest that
the number of samples is more important than sample
size for this cache size and organization.

These results certainly suggest that, in our later stud-
ies, the sampling results for photoshp and powerpnt
will be the least accurate at these parameter values.

A.2 Sampling Ratio

For a given sample size, varying the sampling ratio is
tantamount to varying the percentage of the full trace
that will be used for simulation. Figure 10 gives the
average miss rate percentage error for our tuning cache
with a fixed sample size of 0.5 million references.

The miss rate percentage error associated with a sam-
pling ratio of 0.1 is acceptable, and even desirable
since one of our goals is to use only one tenth of the
original number of references.

B Miss Rate Results

Figures 11- 15 contain the complete set of miss rate
results for the sampling techniques described earlier.

13

0.5 1.0 1.5 2.0

Sample Size

0

10

20

30

40

50

Pe
rc

en
t E

rro
r

acrord32

0.5 1.0 1.5 2.0

Sample Size

0

10

20

30

40

50

Pe
rc

en
t E

rro
r

netscape

0.5 1.0 1.5 2.0

Sample Size

0

10

20

30

40

50

Pe
rc

en
t E

rro
r

photoshp

0.5 1.0 1.5 2.0

Sample Size

0

10

20

30

40

50

Pe
rc

en
t E

rro
r

powerpnt

0.5 1.0 1.5 2.0

Sample Size

0

10

20

30

40

50

Pe
rc

en
t E

rro
r

winword

Figure 9. Average Miss Rate % Error vs. Sample Size (in millions). Results are shown for a 32KB direct-mapped
data cache and a fixed sampling ratio of 0.1., and the sample sizes are 0.1, 0.25, 0.5, 1.0, 1.5, and 2.0 (in millions).

0.1 0.2 0.3

Sampling Ratio

0

5

10

15

20

25

30

Pe
rc

en
t E

rro
r

acrord32

0.1 0.2 0.3

Sampling Ratio

0

5

10

15

20

25

30

Pe
rc

en
t E

rro
r

netscape

0.1 0.2 0.3

Sampling Ratio

0

5

10

15

20

25

30

Pe
rc

en
t E

rro
r

photoshp

0.1 0.2 0.3

Sampling Ratio

0

5

10

15

20

25

30

Pe
rc

en
t E

rro
r

powerpnt

0.1 0.2 0.3

Sampling Ratio

0

5

10

15

20

25

30

Pe
rc

en
t E

rro
r

winword

Figure 10. Average Miss Rate % Error vs. Sampling Ratio. Results are shown for a 32KB direct-mapped data cache
and a fixed sample size of 0.5 million instructions. The sampling ratios are: 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3.

14

8 16 32 64 128

Cache Size (KB)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
is

s
R

a
te

 (
%

)

acrord32 (direct, icache) sampling results

True
true-sample
cold
hot
tepid
INITMR
prime-20
half
stitch
non-uniform

8 16 32 64 128

Cache Size (KB)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
is

s
R

a
te

 (
%

)

acrord32 (4-way, icache) sampling results

True
true-sample
cold
hot
tepid
INITMR
prime-20
half
stitch
non-uniform

8 16 32 64 128

Cache Size (KB)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6

M
is

s
R

a
te

 (
%

)

acrord32 (direct, dcache) sampling results

True
true-sample
cold
hot
tepid
INITMR
prime-20
half
stitch
non-uniform

8 16 32 64 128

Cache Size (KB)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6

M
is

s
R

a
te

 (
%

)

acrord32 (4-way, dcache) sampling results

True
true-sample
cold
hot
tepid
INITMR
prime-20
half
stitch
non-uniform

256 512 1024 2048 4096

Cache Size (KB)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65

M
is

s
R

a
te

 (
%

)

acrord32 (direct, ccache) sampling results

True
true-sample
cold
hot
tepid
INITMR
prime-20
half
stitch
non-uniform

256 512 1024 2048 4096

Cache Size (KB)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65

M
is

s
R

a
te

 (
%

)

acrord32 (4-way, ccache) sampling results

True
true-sample
cold
hot
tepid
INITMR
prime-20
half
stitch
non-uniform

Figure 11. acrord32 Miss Rate Results. Direct-mapped caches are to the left, and 4-way set-associative caches are
to the right. Instructions caches are at the top row, data caches are at the middle row, and combined caches are at the
bottom row.

15

8 16 32 64 128

Cache Size (KB)

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

M
is

s
R

a
te

 (
%

)

netscape (direct, icache) sampling results

True
true-sample
cold
hot
tepid
INITMR
prime-20
half
stitch
non-uniform

8 16 32 64 128

Cache Size (KB)

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

M
is

s
R

a
te

 (
%

)

netscape (4-way, icache) sampling results

True
true-sample
cold
hot
tepid
INITMR
prime-20
half
stitch
non-uniform

8 16 32 64 128

Cache Size (KB)

0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
4.0
4.4
4.8

M
is

s
R

a
te

 (
%

)

netscape (direct, dcache) sampling results

True
true-sample
cold
hot
tepid
INITMR
prime-20
half
stitch
non-uniform

8 16 32 64 128

Cache Size (KB)

0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
4.0
4.4
4.8

M
is

s
R

a
te

 (
%

)

netscape (4-way, dcache) sampling results

True
true-sample
cold
hot
tepid
INITMR
prime-20
half
stitch
non-uniform

256 512 1024 2048 4096

Cache Size (KB)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

M
is

s
R

a
te

 (
%

)

netscape (direct, ccache) sampling results

True
true-sample
cold
hot
tepid
INITMR
prime-20
half
stitch
non-uniform

256 512 1024 2048 4096

Cache Size (KB)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

M
is

s
R

a
te

 (
%

)

netscape (4-way, ccache) sampling results

True
true-sample
cold
hot
tepid
INITMR
prime-20
half
stitch
non-uniform

Figure 12. netscape Miss Rate Results. Direct-mapped caches are to the left, and 4-way set-associative caches are
to the right. Instructions caches are at the top row, data caches are at the middle row, and combined caches are at the
bottom row.

16

8 16 32 64 128

Cache Size (KB)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
is

s
R

a
te

 (
%

)

photoshp (direct, icache) sampling results

True
true-sample
cold
hot
tepid
INITMR
prime-20
half
stitch
non-uniform

8 16 32 64 128

Cache Size (KB)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
is

s
R

a
te

 (
%

)

photoshp (4-way, icache) sampling results

True
true-sample
cold
hot
tepid
INITMR
prime-20
half
stitch
non-uniform

8 16 32 64 128

Cache Size (KB)

0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
4.0
4.4
4.8
5.2

M
is

s
R

a
te

 (
%

)

photoshp (direct, dcache) sampling results

True
true-sample
cold
hot
tepid
INITMR
prime-20
half
stitch
non-uniform

8 16 32 64 128

Cache Size (KB)

0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
4.0
4.4
4.8
5.2

M
is

s
R

a
te

 (
%

)

photoshp (4-way, dcache) sampling results

True
true-sample
cold
hot
tepid
INITMR
prime-20
half
stitch
non-uniform

256 512 1024 2048 4096

Cache Size (KB)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55

M
is

s
R

a
te

 (
%

)

photoshp (direct, ccache) sampling results

True
true-sample
cold
hot
tepid
INITMR
prime-20
half
stitch
non-uniform

256 512 1024 2048 4096

Cache Size (KB)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55

M
is

s
R

a
te

 (
%

)

photoshp (4-way, ccache) sampling results

True
true-sample
cold
hot
tepid
INITMR
prime-20
half
stitch
non-uniform

Figure 13. photoshp Miss Rate Results. Direct-mapped caches are to the left, and 4-way set-associative caches are
to the right. Instructions caches are at the top row, data caches are at the middle row, and combined caches are at the
bottom row.

17

8 16 32 64 128

Cache Size (KB)

0.0

0.6

1.2

1.8

2.4

3.0

3.6

4.2

M
is

s
R

a
te

 (
%

)

powerpnt (direct, icache) sampling results

True
true-sample
cold
hot
tepid
INITMR
prime-20
half
stitch
non-uniform

8 16 32 64 128

Cache Size (KB)

0.0

0.6

1.2

1.8

2.4

3.0

3.6

4.2

M
is

s
R

a
te

 (
%

)

powerpnt (4-way, icache) sampling results

True
true-sample
cold
hot
tepid
INITMR
prime-20
half
stitch
non-uniform

8 16 32 64 128

Cache Size (KB)

0.0

0.6

1.2

1.8

2.4

3.0

3.6

4.2

4.8

5.4

6.0

M
is

s
R

a
te

 (
%

)

powerpnt (direct, dcache) sampling results

True
true-sample
cold
hot
tepid
INITMR
prime-20
half
stitch
non-uniform

8 16 32 64 128

Cache Size (KB)

0.0

0.6

1.2

1.8

2.4

3.0

3.6

4.2

4.8

5.4

6.0

M
is

s
R

a
te

 (
%

)

powerpnt (4-way, dcache) sampling results

True
true-sample
cold
hot
tepid
INITMR
prime-20
half
stitch
non-uniform

256 512 1024 2048 4096

Cache Size (KB)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
is

s
R

a
te

 (
%

)

powerpnt (direct, ccache) sampling results

True
true-sample
cold
hot
tepid
INITMR
prime-20
half
stitch
non-uniform

256 512 1024 2048 4096

Cache Size (KB)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
is

s
R

a
te

 (
%

)

powerpnt (4-way, ccache) sampling results

True
true-sample
cold
hot
tepid
INITMR
prime-20
half
stitch
non-uniform

Figure 14. powerpnt Miss Rate Results. Direct-mapped caches are to the left, and 4-way set-associative caches are
to the right. Instructions caches are at the top row, data caches are at the middle row, and combined caches are at the
bottom row.

18

8 16 32 64 128

Cache Size (KB)

0.0

0.8

1.6

2.4

3.2

4.0

4.8

5.6

M
is

s
R

a
te

 (
%

)

winword (direct, icache) sampling results

True
true-sample
cold
hot
tepid
INITMR
prime-20
half
stitch
non-uniform

8 16 32 64 128

Cache Size (KB)

0.0

0.8

1.6

2.4

3.2

4.0

4.8

5.6

M
is

s
R

a
te

 (
%

)

winword (4-way, icache) sampling results

True
true-sample
cold
hot
tepid
INITMR
prime-20
half
stitch
non-uniform

8 16 32 64 128

Cache Size (KB)

0.0

0.8

1.6

2.4

3.2

4.0

4.8

5.6

6.4

M
is

s
R

a
te

 (
%

)

winword (direct, dcache) sampling results

True
true-sample
cold
hot
tepid
INITMR
prime-20
half
stitch
non-uniform

8 16 32 64 128

Cache Size (KB)

0.0

0.8

1.6

2.4

3.2

4.0

4.8

5.6

6.4

M
is

s
R

a
te

 (
%

)

winword (4-way, dcache) sampling results

True
true-sample
cold
hot
tepid
INITMR
prime-20
half
stitch
non-uniform

256 512 1024 2048 4096

Cache Size (KB)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

M
is

s
R

a
te

 (
%

)

winword (direct, ccache) sampling results

True
true-sample
cold
hot
tepid
INITMR
prime-20
half
stitch
non-uniform

256 512 1024 2048 4096

Cache Size (KB)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

M
is

s
R

a
te

 (
%

)

winword (4-way, ccache) sampling results

True
true-sample
cold
hot
tepid
INITMR
prime-20
half
stitch
non-uniform

Figure 15. winword Miss Rate Results. Direct-mapped caches are to the left, and 4-way set-associative caches are
to the right. Instructions caches are at the top row, data caches are at the middle row, and combined caches are at the
bottom row.

19

