
HAL Id: hal-01383833
https://hal.science/hal-01383833v1

Submitted on 19 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

TraceViz: a Visualization Framework for Interactive
Analysis of Execution Traces

Rémy Dautriche, Renaud Blanch, Alexandre Termier, Miguel Santana

To cite this version:
Rémy Dautriche, Renaud Blanch, Alexandre Termier, Miguel Santana. TraceViz: a Visualiza-
tion Framework for Interactive Analysis of Execution Traces . Actes de la 28ième conférence
francophone sur l’Interaction Homme-Machine, Oct 2016, Fribourg, Switzerland. pp.115-125,
�10.1145/3004107.3004127�. �hal-01383833�

https://hal.science/hal-01383833v1
https://hal.archives-ouvertes.fr

TraceViz: a Visualization Framework for Interactive
Analysis of Execution Traces

Rémy Dautriche

1, 3
, Renaud Blanch

1
, Alexandre Termier

2
, Miguel Santana

3

1Université Grenoble Alpes, LIG 2Université Rennes 1, IRISA 3STMicroelectronics
F-38000 Grenoble, France F-35042 Rennes, France F-38920 Crolles, France

first.last@imag.fr first.last@irisa.fr first.last@st.com

RÉSUMÉ
Les plateformes matérielles pour systèmes embarqués de-
viennent plus puissantes à chaque nouvelle génération
grâce à l’intégration de système sur une puce (System-
on-Chip ou SoC). Développer des applications pour la
lecture de contenu multimedia sur systèmes embarqués de-
vient une tâche de plus en plus complexe. Les applications
modernes sont massivement parallèles et doivent décoder
un flux multimédia en temps réel pour éviter l’apparition
d’artéfacts audio et video. Le débogage de ce type de pro-
blème ne peut pas être fait avec les outils traditionnels qui
interromptent le décodage et perturbent la synchronisa-
tion des différents fils d’exécution. Une solution consiste
à enregistrer tous les évènements apparus durant le dé-
codage dans une trace et à procéder à l’analyse a poste-
riori. Il existe de multiples outils de visualisation pour
analyser de telles traces d’exécution. Cependant, leurs li-
mites sont atteintes lorsque de grosses quantités de don-
nées générées telles que celles au cours de l’exécution
d’applications modernes doivent être analysées. Les outils
existants fournissent tantôt une vue trop haut niveau pour
être réellement utile, tantôt une vue trop détaillée rendant
l’exploration des données fastidieuse. Nous proposons une
nouvelle plateforme de visualisation interactive pour ré-
soudre ces problèmes. Notre contribution consiste en deux
volet : (a) nous présentons un nouveau système de stockage
pour trace d’exécution suffisamment rapide pour permettre
l’exploration interactive de traces volumineuses et (b) un
nouvel outil de visualisation pour explorer interactivement
les traces à différents niveaux de détails.

Mots Clés
Visualisation ; Interactions ; Trace d’exécution ; Systèmes
embarqués ; Débogage ; Application multimedia

ABSTRACT
Hardware platforms of embedded systems are more pow-
erful at each new generation thank to the integration of
System-on-Chip (SoC). Developing streaming multimedia
applications on embedded systems becomes an increas-
ingly complex process. Modern applications are highly
multi-threaded and have to decode the multimedia stream

© ACM, 2016. This is the author’s version of the work. It is posted here by permis-
sion of ACM for your personal use. Not for redistribution. The definitive version
was published in Actes de la 28ème conférence francophone sur l’Interaction Homme-
Machine, 2016.
http://dx.doi.org/10.1145/3004107.3004127

in real time to prevent the apparition of audio and video
artifacts. Debugging this kind of issue cannot be done
with traditional debuggers that interrupt the decoding and
perturb the synchronization of the different threads. The
solution is to record all the events that occurred during the
decoding in a trace and perform the analysis post-mortem.
There exists many visualization tools to analyze execution
traces but they have reached their limits with the amount
of data generated by modern applications. They either
provide a too generalized representation to be useful, or
they show too much details leading to a fastidious data
exploration. We propose a novel interaction visualization
framework to address these problems. In particular, our
contribution is in two parts: (a) we present a new fast back-
end suitable for the interactive browsing of huge traces and
(b) a new visualization tool to explore the trace at different
level of details.

Author Keywords
Visualization ; Interactions ; Execution trace ; Embedded
Systems ; Debugging ; Multimedia applications

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation (e.g. HCI):
User Interfaces

INTRODUCTION
Smartphones, tablets, set-top boxes and connected televi-
sions are some examples of devices broadly used on a daily
basis to consume multimedia content. Every few years,
a new generation is released making these devices more
powerful with a lower energy consumption to improve
the quality of the user experience and the overall com-
fort. These increased performances are possible thanks to
highly integrated System-on-Chip (SoC) that embed many
specialized chips for audio and video decoding. To fully
use the potential of the new platforms, multimedia applica-
tions become increasingly complex, raising the challenge
of developing bug-free software. The need of efficient
debugging tools is critical for companies which sell those
platforms to keep the time and cost of developing multime-
dia applications as low as possible.

Execution traces are the most popular method to debug
such applications. Typically, a trace is recorded while the
application is running and the developers proceed to a post-
mortem analysis of the data. The complexity of modern
platforms and streaming multimedia applications impact
the size of execution traces. Their size is growing at each
new generation up to a point where traditional analysis
tools deployed in the industry are no longer able to tackle

115

115

IHM'16: Visualisation de l'information 25-28 oct. 2016, Fribourg, Suisse

this volume of data. This problem already exists and will
accentuate as the time goes.

To address this issue, one of the solution consists in propos-
ing new visualization tools that enable an efficient inter-
active exploration and filtering of a large amount of data.
In this paper, we propose TraceViz, a novel interactive
visualization framework able to tackle the aforementioned
problems. TraceViz allows the developers to explore in-
teractively huge execution traces from high-level using ag-
gregation techniques all the way down to a single event. It
makes possible to visually spot regular patterns and trends
in the trace, guiding the analyst in the filtering process.

In this paper, we draw a state-of-the-art of the tools used
in industry to analyze execution traces and we explain the
limitations that developers have with these tools (Section
2) and we study the previous research about visualization
tools for execution traces (Section 3). We describe the
underlying back-end we have implemented for support-
ing interactive exploration in TraceViz (Section 4). We
continue by detailing its design principles and goals (Sec-
tion 5). Next, we describe the graphical interface and the
user interactions to efficiently explore the trace (Section
6). Finally, we describe two industrial use cases where
TraceViz allows to identify patterns and was used to find
bugs (Section 7).

BACKGROUND
In this section, we describe the specificities of debugging
a multimedia application on embedded systems and the
existing tools to record execution traces. We explain the
typical analysis workflow used by the developers when
working with traces.

Debugging Multimedia Applications on Embedded
Systems
Multimedia applications have several specificities that in-
duce the need of a very different debugging methods. In
traditional applications, the classical debugging workflow
uses breakpoints. The execution stops at the breakpoints
from which the developer can investigate the state of the
application. Then, there are two different execution strate-
gies available: continue the execution normally or enter
in a step-by-step mode where the execution stops at each
instruction. This debugging method can not be used in the
context of multimedia applications on embedded systems.

At high-level, a multimedia application receives one or sev-
eral encoded streams and has to decode it in real time be-
fore sending it to a peripheral that will display the content.
The decoding process has to respect some QoS properties
so that no audio glitches or video artifacts appear [15].
In this context, using breakpoints to debug the applica-
tion would break the real time constraint, modifying the
behavior of the decoding.

To circumvent this phenomenon, developers use execu-
tion traces to debug multimedia applications. Using traces
allows to do a post-mortem analysis of the execution, there-
fore not to break the QoS properties to respect. There are
different softwares to capture traces. Some are directly
provided by the operating system such as KProbes that
comes with the Linux kernel [17]. STMicroelectronics has

implemented its own stack, named KPTrace [24] and is
able to capture kernel-land events such as context switches,
interrupts, system calls, etc. as well as user-land events
that can be any function call at the application level. Ex-
ecution traces are text files in which the events are saved
sequentially. An entry in the trace corresponds to one event
with relevant information such as the timestamp, the event
type, the actor that produced the event and more. In com-
plex application executions, such events occur many times
resulting on a huge amount of data generated in a short
amount of time (106 events per minute). Developers need
performant tool to analyze such data.

Developer Analysis Workflow
In this paragraph, we describe the typical analysis work-
flow that developers use to debug streaming applications
based on observations made in real situations at STMicro-
electronics.

To debug multimedia applications, developers use a large
variety of tools. The most basic technique is to instru-
ment the kernel function using the printk function in a
similar way than introducing printf calls in the source
code of classical application. When working with develop-
ment boards, the output of printk is directed on the serial
port for minimal intrusiveness. While this method is very
primitive, developers still heavily use it for its simplicity.

In addition, tracing tools allow to record more precise infor-
mation about the system. Many options are available from
free tools such as LTTng [4] and Ftrace [3] or proprietary
solutions such as KPTrace [24], developed by STMicro-
electronics. In case of Multiprocessor System-on-a-Chip
(MPSoC), the platform embeds many different specialized
chips involved in different stages of the decoding process.
The tracing system has to be able to trace all those special-
ized components to obtain an accurate representation of
the system behavior during the execution, increasing the
amount of data to analyze.

In this context, developers have adapted an iterative
methodology to minimize the volume of data to analyze.
When starting, they may only have a rough approximation
of the source of the problem. Thus, the tracing system is
configured to record events of all the components, produc-
ing a non-detailed overview of the whole system. After
investigation, an other trace is recorded, targeting more
specifically a subset of the components. This iterative pro-
cess is repeated until having the source of the issue. This
analysis workflow tends to minimize the size of the trace
but also requires efficient tools to quickly explore and filter
the data.

In this paper, we propose a new visualization tool, Trace-
Viz, to address the interactivity and scalability requirement
for exploring and filtering an execution trace in the con-
text of debugging multimedia application on embedded
systems.

RELATED WORK
Visualization of Execution Traces
There exists many different tools that give a trace overview.
To be meaningful, we claim that the overview of an execu-
tion trace has to provide data aggregation for both time and

116

116

IHM'16: Visualisation de l'information 25-28 oct. 2016, Fribourg, Suisse

event producers hierarchy (e.g. processes, interrupts, etc.),
to show insights on the system load using well-known
statistics and to provide user interactions to support fast
data exploration and filtering. We describe below the dif-
ferent approaches and their drawbacks.

A large panel of visualization tools for traces is based
on Gantt charts [11]. When visualizing execution traces,
the 2D time series visualization represents the active time
windows for each actor. It gives a detailed view of the con-
nections between the actors. One of the earliest work to
use Gantt Chart for representing traces in parallel systems
is Paragraph [13] and many later work do so, from pro-
prietary industrial solution [24, 1] to various open source
projects such as Eclipse Trace Compass [2] and Frame-
SoC [9]. However, due to the high visual clutters of Gantt
Charts, aliasing problems quickly arise as the amount of
information to represent on the screen increases. Pajé [7]
and Eclipse Trace Compass [2] have implemented simple
aggregation mechanisms to address this problem. Aggre-
gated temporal windows are encoded using different visual
attributes such as the shape or the color. By doing so, the
developer can be misled in the analysis since the algorithm
only compute a visual aggregation instead of data aggrega-
tion, and can result in information loss. Smart Traces [20]
uses multiple views to show different hierarchical aggrega-
tions (threads, modules), minimizing the limitations of the
other tools.

Ocelotl [21, 9] proposes a visualization that aggregates
both the actors and the time dimension to obtain an
overview of the execution. It comes with user interactions
that allow to choose the aggregation level enabling the
analyst to explore the macro-behaviors at different scale.
However, it lacks interactions to navigate the trace and
does not represent meaningful statistics for the developers.
Viva [18] has a similar approach by aggregating data of
both the actors and the time axis but uses a treemap to
show both software and hardware hierarchies. The time
dimension is visualized using animation. While this ap-
proach is suitable to spot load balancing issues, it is not
appropriate in the context of multimedia application where
detecting synchronization is crucial.

Other visualizations rely on statistics computed from the
trace. KPTrace [24], with the Outline view, and Eclipse
Trace Compass [2] propose a bar chart where the whole
trace has been aggregated using a statistic like the event
density or the CPU load. This kind of view perfectly shows
the overall behavior of the system across time but hides
the actors details, preventing the developer to observe the
behavior of individual actor over time. These tools also
provide other views to give the detail of the statistic by
actor. However the time space is aggregated making the
temporal exploration impossible.

Trace Visualization Tools in the Industry
Despite many visualization tools, developers still largely
rely on textual tools to analyze the data. As described
above, the visualization tools available are either too high-
level, such as the Outline Views [24], or too detailed, such
as the Gantt Chart family of tools. The first family of tools
gives a good overview of the behavior of the system but it

does not provide enough information to find the source of
an issue as the hierarchy is hidden. The Gantt chart family
allows to precisely visualize the individual events making
possible to spot the problematic suite of events. However,
they quickly display a high-level of aliasing as the number
of events increase and are not suitable to provide a more
general view of the trace. The gap between those two
categories is large and there is a need of a new generation
of tools to fulfill this need. Such tools must provide a
seamless transition from high-level to low-level of details
using controlled data aggregation techniques for both the
temporal dimension and the hierarchy.

Multiple Time Series Visualization
In this paragraph, we briefly analyze the state of the art
of visualization techniques for time series based on line
graphs.

Line charts, introduced by Playfair [23], became the most
popular visualization technique for time series. The aspect
ratio significantly impact their legibility. When represent-
ing multiple time series, some legibility problems appear
due to the limited screen space. For an optimal legibility,
Cleveland recommends an average slope of 45 degrees [8],
constraining the aspect ratio but this condition may be
satisfied in small space.

Javed et al. [16] discuss the graphical perception of multi-
ple time series visualizations derived from the line graph
and identified two categories: the split-screen and the
shared-screen techniques. The split-screen techniques rely
on the principle of small multiples introduced by Tufte [26].
It consists in splitting the screen space S into N smaller
areas of size S/N for each time series. To improve the rep-
resentation of the line graphs in limited amount of space,
several techniques have been developed [14, 16, 22, 25].
The shared-screen techniques use a different approach:
the time series are all represented in the same space and
are differentiated using the color visual attribute. Exam-
ples of such techniques are ThemeRiver [12], Stacked
Graph [5] and Braided Graph [16]. Javed et al. found
that split-screen techniques are more suitable for reading
global values while shared-screen techniques are better
when working on local area of the graphs [16].

DATA
Execution traces contain huge amount of data (⇡ 106

events). For an efficient analysis of the trace, the user must
be able to interactively explore the data. Modern com-
puters are able to render complex visualizations quickly.
Therefore, the limiting factor to provide interactive brows-
ing tools when working with huge amount of data is the

Shared-screen Split-screen

Figure 1: With shared-screen techniques, the graphs share
the space and with split-screen techniques, the space is
equally divided between the graphs.

117

117

IHM'16: Visualisation de l'information 25-28 oct. 2016, Fribourg, Suisse

time for data access. In this section, we describe the back-
end developed for TraceViz to enable interactive explo-
ration of large execution traces and present its performance
measured with an experiment. We finish by detailing the
statistics implemented in TraceViz.

Data Storage
Execution traces are composed of a large series of events.
Each event has a timestamp at which it occurred, the actor
which produced it, typically processes and interrupts, and
a type. An event type can be an entry/exit of a system call,
an application function or an interrupt, a context switch,
etc. As seen previously, developers use an incremental
workflow that involves many tools where analysis of ex-
ecution traces is part of it. In this context, traces need
to be stored in a performant back-end that guarantees a
minimal time for data access and processing. Traditional
tools use a SQLite database [24, 21]. With recent hard-
ware platforms and increased trace size, such database
does not scale and developers experience slow data access.
Deploying complex architecture with powerful severs is
also prohibited since it requires streaming data over the
network and remains too complex to achieve in the context
of streaming multimedia decoding applications on MP-
SoC. To address those constraints, we have developed a
back-end based on HDF5, Hierarchical Data Format [10].
HDF5 allows to store huge files in a hierarchical format
and comes with powerful memory management for fast
access to huge amount of data. Supported by the the HDF
Group1, HDF5 is widely used in scientific applications
where high performance and robustness is necessary like
in meteorlogy2.

TraceViz stores a trace as follows:

• /events contains an array of all the events in the trace,
chronologically sorted,

• /actors is an array of all the active actors,

• /types stores all the event types.

Running through the whole trace is done by accessing
the array of events. The HDF5 driver handles the main
memory and the page faults, providing a high performance
data access.

We study the TraceViz back-end performance for import-
ing, reading and querying a trace. We compare the results
with an SQLite back-end largely used by analysis tools for
execution traces. We ran the experiment on a workstation
equipped with an quad-core i7 Intel CPU at 3 GHz, 16
GB of RAM and a 256 GB SSD. The design of our experi-
ment is largely inspired by the evaluation of the FrameSoC
back-end performance conducted by Pagano et al. [21].

Reading Performance
TraceViz aims to provide interactive exploring and filtering
techniques for traces. It largely depends on the back-end
performance which has to respond in a delay inferior to 100
milliseconds independently on the query to feel interactive
to the users [19, 6]. We measured the response time of
1The HDF Group, <https://www.hdfgroup.org>
2NASA scientific satellite Terra, <http://terra.nasa.gov>

Trace size (MB) 2 21 150 431
TraceViz BR (ms) 0.416 0.385 0.383 0.376
TraceViz RR (ms) 0.369 0.301 0.564 0.616
SQLite (ms) 62.09 312.77 1822.95 5800.63

Tableau 1: Read time of 10000 events for different trace
size. The first row reports the time to read a block of 10000
consecutive events (BR time). The second row reports the
time to read 10000 events randomly chosen in the trace
(RR time). The third row is the time to read a block of
10000 events in SQLite.

the data storage for both reading (Table 1) and querying
operations to study if this requirement is fulfilled.

We measured the reading time in traces of different sizes
under two conditions. Firstly, we read blocks 10000 con-
secutive events in a randomly chosen part of the trace. We
repeated 10 times this step and compute the average time
(BR time in Table 1). SQLite performance has been mea-
sured under these conditions. Secondly, to minimize the
impact of the cache effect of HDF5 and to simulate the
result of complex queries we also measured the reading
time of 10000 non-consecutive events randomly chosen
on the whole trace. (RR time in Table 1). We notice a
slight increase for bigger traces but the response time is
still under the millisecond.

For both BR and RR measurements, the response time
is constant at below 100 milliseconds. For SQLite, the
response time grows linearly and shows it cannot provide
interactive read time. The performance of the TraceViz
back-end allows to browse the trace interactively.

Query Performance
To better measure the back-end performance for filtering
tasks, we measured the time to read 20000 events in the
result of a query on a time window, an actor and an event
type. The results are presented in Figure 2. Querying a
time window is constant in time (Figure 2a). This comes
from the format used to store the events: they are naturally
sorted by their timestamp and indexed by their location
in the array, allowing to use fast search algorithms. This
shows that the back-end can support interactive pan and
zoom. The query performance on the actor and the event
type are similar. Both of the query time increase linearly
with the trace size (Figure 2b and 2c), shown by a co-
efficient of determination respectively equal to 0.99 and
0.97 for the actors and the event types. The response time
remains lower than a second under all the conditions, guar-
anteeing the users’ cognitive model remains unbroken.

Conclusion on Back-end Performance
The results of the different benchmarks shows that the
back-end provides performance suitable for usage in an
interactive context. It guarantees an interactive response
time for the exploration of a trace and returns the result of
a query in a time short enough so that it does not interfere
with the users’ understanding.

Statistics and Data Computation
Execution traces are a list of raw low-level events from
which different metrics can be computed according to the

118

118

IHM'16: Visualisation de l'information 25-28 oct. 2016, Fribourg, Suisse

Q
ue

ry
 T

im
e

(m
s)

T S T S T S T S

2 MB 21 MB 150 MB 431 MB

1
10

10
0

10
00

TraceViz
SQLite

(a) Time Window
Q

ue
ry

 T
im

e
(m

s)

T S T S T S T S

2 MB 21 MB 150 MB 431 MB

1
10

10
0

10
00

TraceViz
SQLite

(b) Actor

Q
ue

ry
 T

im
e

(m
s)

T S T S T S T S

2 MB 21 MB 150 MB 431 MB

1
10

10
0

10
00

TraceViz
SQLite

(c) Event Type

Figure 2: Read time of 20000 events when filtering on the time window, the actor and the event type.

goal of the developers. During our collaboration with the
software developers at STMicroelectronics, we noticed
that the analysis mainly involves three metrics: the event
density, the activity time and the delay between events.

The event density describes the event distribution over time.
Using this statistic, the developers can spot an abnormal
number of interrupts, system calls or function calls in the
application.

The activity time gives insight on the task scheduling on
the CPU. For example, the analysts can check if a task
has been executed for a abnormally long period blocking
other processes. This can result in the violation of QoS
constraints [15].

The delay between events allows the checking of QoS con-
straints more accurately. Using their domain knowledge,
the developers know which calls or interrupts are critical
in the decoding process and can check their call frequency.
As an example, the video decoder has to decode 25 frames
per second to avoid glitches or blanks. Checking the call
frequency of the function starting the decoding of a frame
is a simple way to approximate the frame rate before fur-
ther checking.

In TraceViz, the developers can interactively switch be-
tween these statistics. Each statistic is computed separately
for every actor present in the execution trace. While it al-
ready gives meaningful low-level insights, it is sometimes
relevant to perform the checking at higher level of abstrac-
tion, requiring to aggregate several actors. The developers
may need to check at a component level in charge in a
particular step of the decoding process. To do so, it is
necessary to aggregate all the actors of this component
which can include tasks and interrupts. TraceViz provides
simple user interactions to create such aggregates before
computing a chosen statistic on its data.

TRACEVIZ DESIGN
Based on the related work and our observations in STMi-
croelectronics, we propose TraceViz, a new interactive
visualization tool for execution traces.

Design Rationale
• Provide an overview of the trace. Most of the time,

developers begin to visualize the global behavior of the
system during the execution. TraceViz has to provide an
easily understandable overview, yet with enough details
to begin the filtering process.

• Support domain related statistics. When debugging, de-
velopers use well-established statistics. It is primordial
to integrate them into the tool to maximize the semantic
of the representation.

• Integrate well-known visualization techniques. To miti-
gate the learning curve, we decided to use visualizations
for time series based on line graphs, the most widely
used time series representation.

• Provide user interactions to explore and filter the data.
For an efficient browsing, TraceViz has to support inter-
active zooming, sorting, aggregating and filtering.

• Visualize behavioral patterns between actors. By nature,
a streaming application repeats the same operations on a
regular period. Understanding which actors are synchro-
nized as well as visualizing the patterns will help the
analyst to quickly spot trends and abnormal behaviors
without using complex algorithms.

TraceViz Visualization Principles
Javed et al. stated that the users perform better for global
tasks using split-screen techniques and are more effi-
cient for local tasks with shared-screen visualizations [16].
TraceViz mixes both to easily visualize overall behavior
and make local comparison between actors: it embeds a
timeline view and an outline view that share the same time
axis (Figure 3).

The timeline area relies on the principle of small multi-
ples [26] and belongs to the split-screen techniques. The
goal of the timeline area is to visualize the macro-behavior
of each actor such as its periodicity or a particular behav-
ioral pattern. It also serves to represent the synchronization
between different actors and to spot potential patterns at
component-level of the application. For m actors in a trace
T , m graphs are represented in the timeline view, one graph
per actor (see Figure 3). The vertical resolution H (in pixel)

119

119

IHM'16: Visualisation de l'information 25-28 oct. 2016, Fribourg, Suisse

actorm

actor2

actor1

p0 p1 p2 p3 pn�1 pn

Timeline area width W

H
m

H
m

H
m Ti

m
el

in
e

ar
ea

he
ig

ht
H

t ime
Ti

m
el

in
e

O
ut

lin
e

Figure 3: TraceViz visualization principles.

is sliced into m horizontal areas of height H
m pixels, where

the graphs are rendered. The horizontal resolution W (in
pixels) gives the number of time slices to use to segment
the trace. By doing so, the data is aliased at pixel-level, the
smallest aliasing achievable on current display technolo-
gies. For each actor a, we compute an histogram hista of
W bins, each bin corresponding to a pixel (see Figure 4).
For each pixel pi, we compute the two timestamps ti1 and
ti2 at its boundaries and extract data contained in this time
window. We have Va = Ta[ti1 . . . ti2] with Ta being all the
events produced by the actor a in the trace T . Next, we
compute hista[pi] so that:

hista[pi] = f (ti1, ti2,Vai)

with f being the statistics chosen by the analyst (event
density, activity time or delay between events).

The outline area provides a more general overview of the
execution to spot local peaks of activity on the system,
hard to visualize on the timeline since the information is
spread over m graphs. Instead of being juxtaposed, the m
graphs are stacked so that the value at pixel pi is:

histoutline[pi] =
actorm

Â
a=actor1

hista[pi]

The integration of the timeline and the outline views pro-
vides to the analyst a global overview of the execution,
yet with details on the actors while showing temporal pat-
terns. It combines the advantages of the existing high and
low-level tools. Using the already established statistics as
basis for the computation of the histograms minimizes the
learning phase and ensures a good readability.

Slick Graphs
By nature, decoding multimedia applications execute peri-
odically the same instructions and visualizing this period
can help to detect time windows when it has not been re-
spected. We developed a novel interactive visualization
technique for time series, called Slick Graphs (SLG), to ex-
plore the variations of a time series at different frequencies.
We integrated SLG to the outline view. SLG is composed

hista

p0 p1 pi�1 pi pi+1 pn�2 pn�1

ti1

Va = Ta[ti1 . . . ti2]

ti2 Ta

Figure 4: Building of the histogram hista for an actor a

of an algorithm that smooths a time series and a represen-
tation based on a line graph.

The smoothing algorithm applies a Gaussian filter on the
data and takes three parameters as entry point: a histogram
H, the width in number of pixels p of the space available
to display the graph and a smoothing factor s which will
determine the strength of the smoothing to apply and cor-
responds to the Gaussian kernel width. This will define the
overall shape of a Slick Graph and shows variations at a
given frequency. The value for each pixel influences the
neighboring pixels according to a Gaussian convolution
centered on that pixel. Thus, the histogram H is convo-
luted by a sampled Gaussian kernel, giving the value at
each pixel pi:

SLG(ti) = (T ⇤G)(ti) =
d3se

Â
n=�d3se

T (pi �n)G(n) (1)

with G(n) = 1p
2ps e�

n2
2s2 .

The computation of the convolution in Equation 1 is
bounded to the [d�3se;d3se] interval since 99.7% of the
values are in three standard deviations of the mean.

High Frequencies Encoding
A side effect of the smoothing step is to remove the high
frequencies contained in the data, giving the more general
tendency of the data across time. In the case of SLG, when
the smoothing factor s increases, the range of filtered out
frequencies increases and more information is removed
from the visualization. To mitigate the loss of this informa-
tion, SLG encodes the difference between the smoothed
value SLG(pi) and the real value H[pi] in the luminance
channel Lpi of each pixel pi:

Li =

8
><

>:

1

1+ SLG(i)
T (i)

if T (i) 6= 0

0 if T (i) = 0

It gives:

(Li = 0 if SLG(i)� T (i)
Li = 0.5 if SLG(i) = T (i)
Li = 1 if SLG(i)⌧ T (i)

Thus, the local extrema appear at the exact position as
bands of different shades of gray, white being for the local

120

120

IHM'16: Visualisation de l'information 25-28 oct. 2016, Fribourg, Suisse

minimum and black for the local maximum. Figure 7
shows the result of the high frequencies encoding.

TRACEVIZ
In this section, we present the user interface of TraceViz
with its components and describe the different interactions
implemented.

Layout
The TraceViz interface, shown in Figure 5, consists of
three main areas: the tree view, the outline view and the
timeline view.

The tree view shows the actors present in the trace initially
ordered as a hierarchy according their nature (hardware
interrupts, software interrupts and tasks). To visually make
corresponding a graph and its label, links are placed be-
tween the tree view and the timeline. Their visibility is
automatically updated according to the tree label to lever-
age the visual clutterness. Each category of the hierarchy
has its own color, reported on the links.

The outline view in the top area represents the overall
activity of the system. The details of actors statistic are
represented using colors, each color encoding one actor.
The analyst can choose to switch to the SLG shading for a
more precise frequential analysis.

The timeline view visualizes the time series corresponding
to the actors. Their order is given by the hierarchy. All the
graphs and the outline view have the same time axis and
are aligned on the timestamp of the first event of the trace
by default. At the start up, the timeline shows the whole
trace: it begins on the left at the timestamp of the first
event of the trace and finishes on the right at the timestamp
of the last event.

The tool bar gives access to different configuration settings
of the view such as defining initial filter parameters, the
statistic being used to compute the data and the state of
the visual functionalities such as the smoothing factor s
applied on the outline view.

Initial View Configuration
At the beginning of the analytic process, the developer has
to choose a statistic to compute the input data used to feed
the graphs in the timeline and outline views. The statistics
implemented are event density, activity time and delay
between events, as described in section 4.2. To improve
the clarity of the timeline view and to increase the speed
of the filtering process, the developer can select which
actors are hidden in the initial configuration and which
trace points to ignore. By doing so, the view will directly
display the data of interest. This filtering process is also
quicker than navigating the tree hierarchy.

Trace Exploration
The hierarchy part of the view provides all the interactions
to navigate, reorder, hide, create groups and to aggregate
elements. The timeline area provides all the interactions
to explore the data. Hovering the timeline area with the
mouse cursor updates the hierarchy area. When hovering
a graph, the hierarchy automatically scrolls to align the
corresponding tree label and highlights it. When scrolling

out, the actors disappear but the labels and connection of
the upper levels in the hierarchy remain visible by stacking
on the top and bottom. By doing so, the developer always
has visible indicators that show the vertical position of
the tasks and the interrupts in the timeline helping the
exploration for large hierarchy sizes. When the graph of
an actor is highlighted, the value under the current pixel
is noted in the time cursor. Its corresponding layer in the
outline and its label in the hierarchy are focused.

Pan and zoom
Initially, the whole trace is displayed using filters defined
in the configuration settings. Depending on the trace size
and duration, a pixel can encode a large time window, mak-
ing apparent high-level recurrent patterns in the behavior
of the different actors. After having visually detected those
patterns, the developer may be interested to filter-out re-
dundant data to focus on one of those patterns. We provide
a drag interaction using the right button to select a time
window of interest that will fit the view. It is also possible
to continuously zoom in the trace using the mouse wheel.

A drag interaction using the left button allows to pan in
the trace. While using those interactions, both the timeline
and the outline views are refreshed to provide a continuous
feedback and to keep a consistent visualization.

The pan and zoom interactions provide a natural way to
explore behavioral patterns that can appear at high and low
frequencies.

Actor Selection and Aggregation
When hovering the hierarchy, it behaves like a classical
tree view with standard interactions: left-click to hide a
label and its graph, shift/mouse move to select several con-
secutive labels, control/left-click to select non-consecutive
labels, and right-click to access to different actions such
as grouping, aggregating and hiding tree labels and their
graphs.

After having selected actors, the user can create a group
and name it. From this point, different actions are pos-
sible when doing a right-click on the group’s tree label:
deleting the group, hiding it or aggregating it. When a
group becomes hidden, all the graphs of its children are
also hidden on the timeline area. The remaining graphs
spans vertically, increasing the vertical resolution. To ag-
gregate a group, several operators are available: maximum,
minimum, average and median. This operator is used on
each pixel to compute the resulting graphs of the aggrega-
tion. From this point, the group behaves as any actor in the
hierarchy.

Hierarchy Reordering
Besides execution patterns, actors’ graphs can reveal simi-
lar periodic behaviors. To better compare their graphs, it is
possible to place them side-by-side using a drag interaction
on their corresponding tree labels. While dragging, the hi-
erarchy stops scrolling automatically to ease the interaction
and a visual feedback is displayed as a blue line to indicate
where the actor would be moved when the interaction is
over. The layer in the outline view are reordered according
to the new position. TraceViz provides the possibility to
drag an actor, a group and an arbitrary selection of actors.

121

121

IHM'16: Visualisation de l'information 25-28 oct. 2016, Fribourg, Suisse

Figure 5: Overview of TraceViz. TraceViz interface consists of three main areas: the tree view (a), the outline view (b), the
timeline view (c) and the links that connect the actors and their corresponding graphs (d).

Implementation
TraceViz is implemented in Java 8 with JavaFX 8 as the
interface toolkit. As mentioned in section 4.1, HDF5 is
used for the back-end and the data extraction and filtering
is implemented using the Stream API of the JDK 1.8.

An operational version of TraceViz has been deployed
for the developers at STMicroelectronics. This version
implements fewer interactions than presented in this paper
as the back-end is an SQLite database for compatibility
reasons. It has been implemented as an Eclipse plug-in
and is internally shipped as a tool of the SoC Traces &
Profiling Toolkit (STPTK)3. Part of the interface relies on
the SWT toolkit while the rendering still relies on JavaFX
8.

INDUSTRIAL USE CASE
In this section, we present two use cases that happened
in industrial environment at STMicroelectronics. These
use cases have been reported to the division in charge of
developing the streaming application for set-top boxes.

Use Case 1: Zap
In this use case, we show how TraceViz makes apparent
patterns in a trace. The streaming multimedia application
is running under the STLinux4 operating system on the
STiH418 SoC for set-top boxes5. A multi-channel stream
is received from the network. The application decodes one
of the channel and sends it to an external display through
the HDMI port. Changing the channel being decoded is
3SoC Traces & Profiling ToolKit (STPTK), <http://www.

stlinux.com/devel/traceprofile/kptrace#STPTK>
4STLinux, <http://stlinux.com>
5STiH418 SoC description, <http://www.st.com/st-web-ui/

static/active/en/resource/technical/document/data_

brief/DM00123853.pdf>

called a zap. It basically corresponds to the scenario when
a user is changing of channel when watching the television,
commonly called zapping. When recording the trace, we
performed 30 zaps consecutively, separated by a delay of
10 seconds. In Figure 5, TraceViz all of the trace. At a
glance, patterns appear.

Firstly, temporal patterns are represented on both the out-
line and the timeline. On the outline, regular peaks of
activity are apparent. They correspond to the moments
when a zap occurred. Abnormal zap executions are quickly
detected thank to a suddenly much higher event density.
Using the SLG visualization, the zap appear as black ver-
tical bands (see Figure 7). The abnormal zaps appear as
larger black strips and local maximum on the curve. On
the timeline, we can visually recognize which actors are in
charge of the decoding process: the decoding is momen-
tarily stopped when zapping and the involved processes
are not scheduled during these short periods. It appears as
gaps on the timeline (see top rectangle in Figure 5, zoomed
in Figure 6a).

Secondly, behavioral patterns also appear on the timeline
(see bottom rectangle in Figure 5, zoomed in Figure 6b).
When a zap occurs, some of the decoding processes are
forked. The children will decode the requested channel
and the parents which decoded the previous one will stop.
This pattern appear 30 times on TraceViz on the timeline.

Based on both the temporal and behavioral patterns, the de-
veloper is able to efficiently compare different actors, time
windows and to filter-out redundant data to dramatically
reduce the amount of data to analyze.

122

122

IHM'16: Visualisation de l'information 25-28 oct. 2016, Fribourg, Suisse

(a) Temporal periodic patterns. The white gaps corresponds to an interruption of the decoding process.

(b) Execution patterns. At each zap, the decoding processes are forked and the children begin to decode the new channel.

Figure 6: Patterns appearing on the timeline for the use case Zap

Figure 7: Outline with SLG shading

Use Case 2: HDMI black-outs
This use case is a real issue that occurred at STMicroelec-
tronics6. The application is running in the same environ-
ment that the previous use case. It is in charge of decoding
a multimedia stream and sending it on an external display
via the HDMI output. The issue is reported as sporadic
audio and video blanking becoming more frequent under
heavy CPU load. It has been reported that the troubleshot
occurs independently of the source, whether it is the net-
work or the local hard drive.

After this observation, the issue has been artificially repro-
duced by decoding a multimedia source from the local disk
while loading it with some heavy I/O using the Unix dd

command. The execution trace has been recorded under
these conditions. As described in Section 2.2, the first
step of the developer workflow is to open the trace in a
synthetic view to check the global system behavior. In
Figure 8, the trace has been opened in TraceViz. The visu-
alization shows the event density over the whole execution.

The second step consists in using a more detailed view.
With TraceViz opened and set to represent the event den-
sity, we instantly spot on the timeline view the dd task
loading the system at regular periods (see Figure 8). The
task named jbd2/sda1-8 appears to be scheduled on the

6A video demoing TraceViz with this usecase is available at
<https://youtu.be/BmTDzoc70lw>

CPU directly after the dd task and heavily loads the system
(see bottom rectangle in Figure 8 and Figure 9).

The interesting time windows are the periods when the dd

task is not working. When zooming in one of these time
windows (see red rectangles in Figure 8 and Figure 10),
the task irq/140-vsync0 has its periodic behavior disturbed.

It is the callback of the interrupt request 140 (IRQ): the
vertical synchronization (VSync) IRQ on the main out-
put. This thread is in charge of the main decoding process.
TraceViz shows an abnormal scheduling delay resulting in
a delayed decoding of the stream. As consequence, it intro-
duces a delay between the frames and creates a starvation
on the output to finally result as a black screen. Having
found the source of the blackouts, the developers could
continue the debugging process by investigating the CPU
scheduling, particularly on focusing the task jdb2/sda1-8.

Coupled with the developers’ domain knowledge, we
showed how TraceViz has helped the discovery of a de-
layed issue.

DISCUSSION
We saw how TraceViz has been useful to debug real use-
cases that occurred during the development of STMicro-
electronics products for set-top boxes. Because Trace-
Viz addresses a real user need for its software developers,
STMicroelectronics has integrated TraceViz into their de-
velopment toolkit STPTK.

The real benefit of TraceViz is its capacity to clearly show
the periodic behaviors and synchronization between the
actors and to explore the behavioral patterns at different
levels of zoom.

123

123

IHM'16: Visualisation de l'information 25-28 oct. 2016, Fribourg, Suisse

jbd2-sda1-8

Figure 8: TraceViz showing an execution when video blanks appeared. The system is artificially loaded with heavy some
I/O using the dd Unix command (in orange). The task jbd2-sda1-8 (in blue) is scheduled directly after the dd task (detailed
on Figure 9), causing delays on the treatment of the VSync IRQ callback (shown in the red rectangles and zoomed on
Figure 10).

Figure 9: The jbd2/sda1-8 task (in blue) is scheduled after
the dd task (in brown).

(a) Event density. Delays are represented by visual gaps between the dots
(in the rectangles).

(b) Delay between events. After a horizontal gap, a peak appears indicating
a much longer delay between consecutive calls (in rectangles).

Figure 10: When the dd task (in brown) is unscheduled,
the jbd2-sda1-8 task (in blue) loads the CPU, causing a
delay on the treatment of the callback for the VSync IRQ
on the main output (in purple).

However, this work has some limitations. First, when the
number of actors becomes close to the vertical resolution
of the display, some legibility problems can occur: the
height of the histograms become close to 1 pixel and the
details become difficult to read due to their small size.

Second, no user evaluation could be conducted for this
work. The targeted users are the software developers work-

ing on set-top boxes at STMicroelectronics. It appears to
be very difficult to reach them, even for a quick interview.
However, the development of TraceViz has been made it-
eratively in collaboration with the team in charge of tools
development in STMicroelectronics and informal devel-
opers feedback could be collected to adjust the design of
TraceViz. Its industrial deployment is a form of validation
of this design.

CONCLUSION AND FUTURE WORK
We have presented TraceViz, a novel interactive visual-
ization framework to analyze execution traces. First, we
described the back-end developed for TraceViz, based on
HDF5. Through an experiment, we showed the back-end
provides the performances to explore interactively huge
traces. Second, we introduce a tool that mixes two cate-
gories of visualization techniques for time series, maximiz-
ing the efficiency of both local and global analysis. We
have integrated the Slick Graphs, a line chart based rep-
resentation for exploring the data at different frequencies.
We have shown how TraceViz reduces the analysis time by
revealing patterns hidden by the existing tools.

We plan to integrate hierarchical clustering methods to
automatically group the actors by their similarities. We
are also interested by using data mining methods for the
detection of anomalies and incorporating the results in the
timeline and outline views.

124

124

IHM'16: Visualisation de l'information 25-28 oct. 2016, Fribourg, Suisse

BIBLIOGRAPHIE
1. Arm ds-5 development studio.

http://ds.arm.com/ds-5, Accessed on April 8th, 2016.

2. Eclipse trace compass. http://tracecompass.org,
Accessed on April 8th, 2016.

3. Ftrace. http://elinux.org/Ftrace, Accessed on April
8th, 2016.

4. Lttng. http://lttng.org, Accessed on April 8th, 2016.

5. L. Byron and M. Wattenberg. Stacked graphs:
Geometry & aesthetics. IEEE Transactions on
Visualization and Computer Graphics, 14:1245–1252,
2008.

6. S. K. Card, G. G. Robertson, and J. D. Mackinlay.
The information visualizer, an information workspace.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 181–186. ACM,
1991.

7. J. Chassin de Kergommeaux. Pajé, an interactive
visualization tool for tuning multi-threaded parallel
applications. Parallel Computing, 26(10), 2000.

8. W. Cleveland. Visualizing Data. Hobart Press, 1993.

9. D. Dosimont, G. Pagano, G. Huard, and
V. Marangozova-Martin. Efficient analysis
methodology for huge application traces. In
International Conference on High Performance
Computing & Simulation, pages 951–958, 2014.

10. M. Folk, G. Heber, Q. Koziol, E. Pourmal, and
D. Robinson. An overview of the hdf5 technology
suite and its applications. In Proceedings of the
EDBT/ICDT 2011 Workshop on Array Databases,
pages 36–47. ACM, 2011.

11. H. L. Gantt. Work, Wages, and Profits. New York:
The Engineering magazine co., 1913.

12. S. Havre, P. Whitney, and L. Nowell. Themeriver:
Visualizing thematic changes in large document
collections. IEEE Transactions on Visualization and
Computer Graphics, 8:9–20, 2002.

13. M. T. Heath and J. A. Etheridge. Visualizing the
performance of parallel programs. Software, IEEE,
8(5):29–39, 1991.

14. J. Heer, N. Kong, and M. Agrawala. Sizing the
horizon: The effects of chart size and layering on the
graphical perception of time series visualizations. In
ACM Human Factors in Computing Systems (CHI),
2009.

15. O. Iegorov, V. Leroy, A. Termier, J.-F. Mehaut, and
M. Santana. Data mining approach to temporal
debugging of embedded streaming applications. In

2015 International Conference on Embedded
Software (EMSOFT), pages 167–176. IEEE Computer
Society, 2015.

16. W. Javed, B. McDonnel, and N. Elmqvist. Graphical
perception of multiple time series. IEEE Transactions
on Visualization and Computer Graphics,
16:927–934, 2010.

17. R. Krishnakumar. Kernel korer: Kprobes - a kernel
debugger. Linux Journal, 2005(133), 2005.

18. R. Lamarche-Perrin, L. M. Schnorr, and J.-M.
Vincent. Evaluating trace aggregation for
performance visualization of large distributed systems.
In Proceedings of the 2014 IEEE Internation
Symposium on Performance Analysis of Systems and
Software, 2014.

19. R. B. Miller. Response time in man-computer
conversational transactions. In Proceedings of the
December 9-11, 1968, Fall Joint Computer
Conference, Part I, pages 267–277. ACM, 1968.

20. D. K. Osmari, H. T. Vo, C. T. Silva, J. L. D. Comba,
and L. Lins. Visualization and analysis of parallel
dataflow execution with smart traces. In 27th

Conference on Graphics, Patterns and Images
(SIBGRAPI), 2014.

21. G. Pagano, D. Dosimont, G. Huard, and
V. Marangozova-Martin. Trace management and
analysis for embedded systems. In Proceedings of the
IEEE 7th International Symposium on Embedded
Multicore SoCs, 2013.

22. C. Perin, F. Vernier, and J. D. Fekete. Interactive
horizon graphs: Improving the compact visualization
of multiple time series. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
pages 3217–3226, New York, NY, USA, 2013. ACM.

23. W. Playfair. The Commercial and Political Atlas.
London, 1786.

24. C. Prada-Rojas, F. Riss, X. Raynaud, S. De Paoli, and
M. Santana. Observation tools for debugging and
performance analysis of embedded linux applications.
In Conference on System Software, SoC and Silicon
Debug-S4D, 2009.

25. T. Saito, H. N. Miyamura, M. Yamamoto, H. Saito,
Y. Hoshiya, and T. Kaseda. Two-tone pseudo coloring:
Compact visualization for one-dimensional data. In
IEEE Symposium on Information Visualization, pages
173–180. IEEE Computer Society, 2005.

26. E. R. Tufte. The Visual Display of Quantitative
Information. Graphics Press, Cheshire, CT, USA,
1986.

125

125

IHM'16: Visualisation de l'information 25-28 oct. 2016, Fribourg, Suisse

