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ABSTRACT
Location entropy (LE) is a popular metric for measuring
the popularity of various locations (e.g., points-of-interest).
Unlike other metrics computed from only the number of
(unique) visits to a location, namely frequency, LE also cap-
tures the diversity of the users’ visits, and is thus more ac-
curate than other metrics. Current solutions for computing
LE require full access to the past visits of users to locations,
which poses privacy threats. This paper discusses, for the
first time, the problem of perturbing location entropy for a
set of locations according to differential privacy. The prob-
lem is challenging because removing a single user from the
dataset will impact multiple records of the database; i.e., all
the visits made by that user to various locations. Towards
this end, we first derive non-trivial, tight bounds for both
local and global sensitivity of LE, and show that to satisfy
ε-differential privacy, a large amount of noise must be in-
troduced, rendering the published results useless. Hence,
we propose a thresholding technique to limit the number
of users’ visits, which significantly reduces the perturbation
error but introduces an approximation error. To achieve bet-
ter utility, we extend the technique by adopting two weaker
notions of privacy: smooth sensitivity (slightly weaker) and
crowd-blending (strictly weaker). Extensive experiments on
synthetic and real-world datasets show that our proposed
techniques preserve original data distribution without com-
promising location privacy.

Categories and Subject Descriptors
H.2.4 [Database Management]: Database Applications—
Spatial databases and GIS ; H.1.1 [Models and Princi-
ples]: Systems and Information Theory—Information the-
ory
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Due to the pervasiveness of GPS-enabled mobile devices
and the popularity of location-based services such as map-
ping and navigation apps (e.g., Google Maps, Waze), or spa-
tial crowdsourcing apps (e.g., Uber, TaskRabbit), or apps
with geo-tagging (e.g., Twitter, Picasa, Instagram, Flickr),
or check-in functionality (e.g., Foursquare, Facebook), nu-
merous industries are now collecting fine-grained location
data from their users. While the collected location data can
be used for many commercial purposes by these industries
(e.g., geo-marketing), other companies and non-profit orga-
nizations (e.g., academia, CDC) can also be empowered if
they can use the location data for the greater good (e.g.,
research, preventing the spread of disease). Unfortunately,
despite the usefulness of the data, industries do not publish
their location data due to the sensitivity of their users’ lo-
cation information. However, many of these organizations
do not need access to the raw location data but aggregate
or processed location data would satisfy their need.

One example of using location data is to measure the pop-
ularity of a location that can be used in many application
domains such as public health, criminology, urban planning,
policy, and social studies. One accepted metric to measure
the popularity of a location is location entropy (or LE for
short). LE captures both the frequency of visits (how many
times each user visited a location) as well as the diversity
of visits (how many unique users visited a location) with-
out looking at the functionality of that location; e.g., is it a
private home or a coffee shop? Hence, LE has shown that
it is able to better quantify the popularity of a location as
compared to the number of unique visits or the number of
check-ins to the location [4]. For example, [4] shows that LE
is more successful in accurately predicting friendship from
location trails over simpler models based only on the number
of visits. LE is also used to improve online task assignment
in spatial crowdsourcing [12, 23] by giving priority to work-
ers situated in less popular locations because there may be
no available worker visiting those locations in the future.

Obviously, LE can be computed from raw location data
collected by various industries; however, the raw data can-
not be published due to serious location privacy implica-
tions [10, 5, 21]. Without privacy protection, a malicious ad-
versary can stage a broad spectrum of attacks such as phys-
ical surveillance and stalking, and breach of sensitive infor-
mation such as an individual’s health issues (e.g., presence
in a cancer treatment center), alternative lifestyles, political
and religious preferences (e.g., presence in a church). Hence,
in this paper we propose an approach based on differential
privacy (DP) [6] to publish LE for a set of locations without
compromising users’ raw location data. DP has emerged as
the de facto standard with strong protection guarantees for
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publishing aggregate data. It has been adapted by major in-
dustries for various tasks without compromising individual
privacy, e.g., data analytics with Microsoft [15], discovering
users’ usage patterns with Apple1, or crowdsourcing statis-
tics from end-user client software [8] and training of deep
neural networks [1] with Google. DP ensures that an adver-
sary is not able to reliably learn from the published sanitized
data whether or not a particular individual is present in the
original data, regardless of the adversary’s prior knowledge.

It is sufficient to achieve ε-DP (ε is privacy loss) by adding
Laplace noise with mean zero and scale proportional to the
sensitivity of the query (LE in this study) [6]. The sensi-
tivity of LE is intuitively the maximum amount that one
individual can impact the value of LE. The higher the sen-
sitivity, the more noise must be injected to guarantee ε-DP.
Even though DP has been used before to compute Shan-
non Entropy [2] (the formulation adapted in LE), the main
challenge in differentially private publication of LE is that
adding (or dropping) a single user from the dataset would
impact multiple entries of the database, resulting in a high
sensitivity of LE. To illustrate, consider a user that has con-
tributed many visits to a single location; thus, adding or
removing this user would significantly change the value of
LE for that location. Alternatively, a user may contribute
visits to multiple locations and hence impact the entropy of
all those visited locations. Another unique challenge in pub-
lishing LE (vs. simply computing the Shannon Entropy) is
due to the presence of skewness and sparseness in real-world
location datasets where the majority of locations have small
numbers of visits.

Towards this end, we first compute a non-trivial tight
bound for the global sensitivity of LE. Given the bound,
a sufficient amount of noise is introduced to guarantee ε-
DP. However, the injected noise linearly increases with the
maximum number of locations visited by a user (denoted by
M) and monotonically increases with the maximum num-
ber of visits a user contributes to a location (denoted by C),
and such an excessive amount of noise renders the published
results useless. We refer to this algorithm as Baseline. Ac-
cordingly, we propose a technique, termed Limit, to limit
user activity by thresholding M and C, which significantly
reduces the perturbation error. Nevertheless, limiting an in-
dividual’s activity entails an approximation error in calculat-
ing LE. These two conflicting factors require the derivation
of appropriate values for M and C to obtain satisfactory
results. We empirically find such optimal values.

Furthermore, to achieve a better utility, we extend Limit
by adopting two weaker notions of privacy: smooth sen-
sitivity [16] and crowd-blending [9] (strictly weaker). We
denote the techniques as Limit-SS and Limit-CB, respec-
tively. Limit-SS provides a slightly weaker privacy guaran-
tee, i.e., (ε, δ)-differential privacy by using local sensitivity
with much smaller noise magnitude. We propose an efficient
algorithm to compute the local sensitivity of a particular lo-
cation that depends on C and the number of users visiting
the location (represented by n) such that the local sensitiv-
ity of all locations can be precomputed, regardless of the
dataset. Thus far, we publish entropy for all locations; how-
ever, the ratio of noise to the true value of LE (noise-to-true-
entropy ratio) is often excessively high when the number of
users visiting a location n is small (i.e., the entropy of a

1https://www.wired.com/2016/06/
apples-differential-privacy-collecting-data/

location is bounded by log(n)). For example, given a loca-
tion visited by only two users with an equal number of visits
(LE is log 2), removing one user from the database drops the
entropy of the location to zero. To further reduce the noise-
to-true-entropy ratio, Limit-CB aims to publish the entropy
of locations with at least k users (n ≥ k) and suppress the
other locations. By thresholding n, the global sensitivity of
LE significantly drops, implying much less noise. We prove
that Limit-CB satisfies (k, ε)-crowd-blending privacy.

We conduct an extensive set of experiments on both syn-
thetic and real-world datasets. We first show that the trun-
cation technique (Limit) reduces the global sensitivity of LE
by two orders of magnitude, thus greatly enhancing the util-
ity of the perturbed results. We also demonstrate that Limit
preserves the original data distribution after adding noise.
Thereafter, we show the superiority of Limit-SS and Limit-
CB over Limit in terms of achieving higher utility (measured
by KL-divergence and mean squared error metrics). Par-
ticularly, Limit-CB performs best on sparse datasets while
Limit-SS is recommended over Limit-CB on dense datasets.
We also provide insights on the effects of various parameters:
ε, C,M, k on the effectiveness and utility of our proposed al-
gorithms. Based on the insights, we provide a set of guide-
lines for choosing appropriate algorithms and parameters.

The remainder of this paper is organized as follows. In
Section 2, we define the problem of publishing LE according
to differential privacy. Section 3 presents the preliminaries.
Section 4 introduces the baseline solution and our threshold-
ing technique. Section 5 presents our utility enhancements
by adopting weaker notions of privacy. Experimental results
are presented in Section 6, followed by a survey of related
work in Section 7, and conclusions in Section 8.

2. PROBLEM DEFINITION
In this section we present the notations and the formal

definition of the problem.
Each location l is represented by a point in two-dimensional

space and a unique identifier l (−180 ≤ llat ≤ 180) and
(−90 ≤ llon ≤ 90)2. Hereafter, l refers to both the location
and its unique identifier. For a given location l, let Ol be
the set of visits to that location. Thus, cl = |Ol| is the to-
tal number of visits to l. Also, let Ul be the set of distinct
users that visited l, and Ol,u be the set of visits that user
u has made to the location l. Thus, cl,u = |Ol,u| denotes
the number of visits of user u to location l. The probability

that a random draw from Ol belongs to Ol,u is pl,u =
|cl,u|
|cl|

,

which is the fraction of total visits to l that belongs to user
u. The location entropy for l is computed from Shannon
entropy [18] as follows:

H(l) = H(pl,u1 , pl,u2 , . . . , pl,u|Ul|
) = −

∑
u∈Ul

pl,u log pl,u (1)

In our study the natural logarithm is used. A location has a
higher entropy when the visits are distributed more evenly
among visiting users, and vice versa. Our goal is to publish
location entropy of all locations L = {l1, l2, ..., l|L|}, where
each location is visited by a set of users U = {u1, u2, ..., u|U|},
while preserving the location privacy of users. Table 1 sum-
marizes the notations used in this paper.

2llat, llon are real numbers with ten digits after the decimal point.

https://www.wired.com/2016/06/apples-differential-privacy-collecting-data/
https://www.wired.com/2016/06/apples-differential-privacy-collecting-data/
https://www.wired.com/2016/06/apples-differential-privacy-collecting-data/


l, L, |L| a location, the set of all locations and its cardinality
H(l) location entropy of location l

Ĥ(l) noisy location entropy of location l
∆Hl sensitivity of location entropy for location l
∆H sensitivity of location entropy for all locations
Ol the set of visits to location l
u, U, |U | a user, the set of all users and its cardinality
Ul the set of distinct users who visits l
Ol,u the set of visits that user u has made to location l
cl the total number of visits to l
cl,u the number of visits that user u has made to location l
C maximum number of visits of a user to a location
M maximum number of locations visited by a user
pl,u the fraction of total visits to l that belongs to user u

Table 1: Summary of notations.

3. PRELIMINARIES
We present Shannon entropy properties and the differen-

tial privacy notion that will be used throughout the paper.

3.1 Shannon Entropy
Shannon [18] introduces entropy as a measure of the un-

certainty in a random variable with a probability distribu-
tion U = (p1, p2, ..., p|U|):

H(U) = −
∑
i

pi log pi (2)

where
∑
i pi = 1. H(U) is maximal if all the outcomes are

equally likely:

H(U) ≤ H(
1

|U | , ...,
1

|U | ) = log |U | (3)

Additivity Property of Entropy: Let U1 and U2 be non-
overlapping partitions of a database U including users who
contribute visits to a location l, and φ1 and φ2 are proba-
bilities that a particular visit belongs to partition U1 and
U2, respectively. Shannon discovered that using logarithmic
function preserves the additivity property of entropy:

H(U) = φ1H(U1) + φ2H(U2) +H(φ1, φ2)

Subsequently, adding a new person u into U changes its
entropy to:

H(U+) =
cl

cl + cl,u
H(U) +H

( cl,u
cl + cl,u

,
cl

cl + cl,u

)
(4)

where U+ = U ∪ u and cl is the total number of visits to l,
and cl,u is the number of visits to l that is contributed by
user u. Equation (4) can be derived from Equation (4) if we
consider U+ includes two non-overlapping partitions u and
U with associated probabilities

cl,u
cl+cl,u

and cl
cl+cl,u

. We note

that the entropy of a single user is zero, i.e., H(u) = 0.
Similarly, removing a person u from U changes its entropy

as follows:

H(U−) =
cl

cl − cl,u

(
H(U)−H

(cl,u
cl
,
cl − cl,u

cl

))
(5)

where U− = U \ {u}.

3.2 Differential Privacy
Differential privacy (DP) [6] has emerged as the de facto

standard in data privacy, thanks to its strong protection
guarantees rooted in statistical analysis. DP is a semantic
model which provides protection against realistic adversaries
with background information. Releasing data according to

DP ensures that an adversary’s chance of inferring any in-
formation about an individual from the sanitized data will
not substantially increase, regardless of the adversary’s prior
knowledge. DP ensures that the adversary does not know
whether an individual is present or not in the original data.
DP is formally defined as follows.

Definition 1. ε-indistinguishability [7] Consider that

a database produces a set of query results D̂ on the set of
queries Q = {q1, q2, . . . , q|Q|}, and let ε > 0 be an arbitrar-
ily small real constant. Then, transcript U produced by a
randomized algorithm A satisfies ε-indistinguishability if for
every pair of sibling datasets D1, D2 that differ in only one
record, it holds that

ln
Pr[Q(D1) = U ]

Pr[Q(D2) = U ]
≤ ε

In other words, an attacker cannot reliably learn whether
the transcript was obtained by answering the query set Q
on dataset D1 or D2. Parameter ε is called privacy bud-
get, and specifies the amount of protection required, with
smaller values corresponding to stricter privacy protection.
To achieve ε-indistinguishability, DP injects noise into each
query result, and the amount of noise required is propor-
tional to the sensitivity of the query set Q, formally defined
as:

Definition 2 (L1-Sensitivity). [7] Given any arbi-
trary sibling datasets D1 and D2, the sensitivity of query set
Q is the maximum change in their query results.

σ(Q) = max
D1,D2

||Q(D1)−Q(D2)||1

An essential result from [7] shows that a sufficient condition
to achieve DP with parameter ε is to add to each query
result randomly distributed Laplace noise with mean 0 and
scale λ = σ(Q)/ε.

4. PRIVATE PUBLICATION OF LE
In this section we present a baseline algorithm based on a

global sensitivity of LE [7] and then introduce a threshold-
ing technique to reduce the global sensitivity by limiting an
individual’s activity.

4.1 Global Sensitivity of LE
To achieve ε-differential privacy, we must add noise pro-

portional to the global sensitivity (or sensitivity for short) of
LE. Thus, to minimize the amount of injected noise, we first
propose a tight bound for the sensitivity of LE, denoted by
∆H. ∆H represents the maximum change of LE across all
locations when the data of one user is added (or removed)
from the dataset. With the following theorem, the sensitiv-
ity bound is a function of the maximum number of visits a
user contributes to a location, denoted by C (C ≥ 1).

Theorem 1. Global sensitivity of location entropy is

∆H = max {log 2, logC − log(logC)− 1}
Proof. We prove this theorem by first deriving a tight

bound for the sensitivity of a particular location l (visited
by n users), denoted by ∆Hl (Theorem 2). The bound is a
function of C and n. Thereafter, we generalize the bound to
hold for all locations as follows. We take the derivative of
the bound derived for ∆Hl with respect to variable n and
find the extremal point where the bound is maximized. The
detailed proof can be found in our technical report [22].



Theorem 2. Local sensitivity of a particular location l
with n users is:

• log 2 when n = 1

• log n+1
n

when C = 1

• max{log n−1
n−1+C

+ C
n−1+C

logC, log n
n+C

+ C
n+C

logC,

log(1+ 1
exp(H(C\cu))

)} where C is the maximum number

of visits a user contributes to a location (C ≥ 1) and

H(C \ cu) = log(n− 1)− logC
C−1

+ log
(

logC
C−1

)
+ 1, when

n > 1, c > 1.

Proof. We prove the theorem considering both cases—
when a user is added (or removed) from the database. We
first derive a proof for the adding case by using the additivity
property of entropy from Equation 4. Similarly, the proof
for the removing case can be derived from Equation 5. The
detailed proofs can be found in our technical report [22].

Baseline Algorithm: In this section we present a base-
line algorithm that publishes location entropy for all loca-
tions (see Algorithm 1). Since adding (or removing) a single
user from the dataset would impact the entropy of all loca-
tions he visited, the change of adding (or removing) a user
to all locations is bounded by Mmax∆H, where Mmax is
the maximum number of locations visited by a user. Thus,
Line 6 adds randomly distributed Laplace noise with mean
zero and scale λ = Mmax∆H

ε
to the actual value of location

entropy H(l). It has been proved [7] that this is sufficient
to achieve differential privacy with such simple mechanism.

Algorithm 1 Baseline Algorithm

1: Input: privacy budget ε, a set of locations L = {l1, l2, ..., l|L|},
maximum number of visits of a user to a location Cmax, max-
imum number of locations a user visits Mmax.

2: Compute sensitivity ∆H from Theorem 1 for C = Cmax.
3: For each location l in L
4: Count #visits each user made to l: cl,u and compute pl,u
5: Compute H(l) = −

∑
u∈Ul pl,u log pl,u

6: Publish noisy LE: Ĥ(l) = H(l) + Lap(Mmax∆H
ε

)

4.2 Reducing the Global Sensitivity of LE

4.2.1 Limit Algorithm
Limitation of the Baseline Algorithm: Algorithm 1

provides privacy; however, the added noise is excessively
high, rendering the results useless. To illustrate, Figure 1
shows the bounds of the global sensitivity (Theorem 1) when
C varies. The figure shows that the bound monotonically in-
creases when C grows. Therefore, the noise introduced by
Algorithm 1 increases as C and M increase. In practice, C
and M can be large because a user may have visited either
many locations or a single location many times, resulting
in large sensitivity. Furthermore, Figure 2 depicts different
values of noise magnitude (in log scale) used in our various
algorithms by varying the number of users visiting a loca-
tion, n. The graph shows that the noise magnitude of the
baseline is too high to be useful (see Table 2).

Improving Baseline by Limiting User Activity: To
reduce the global sensitivity of LE, and inspired by [13], we
propose a thresholding technique, named Limit, to limit an
individual’s activity by truncating C and M . Our technique
is based on the following two observations. First, Figure 3b
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Figure 2: Noise magnitude
in natural log scale (ε =
5, Cmax=1000, Mmax=100,
C=20, M=5, δ=10−8, k=25).

shows the maximum number of visits a user contributes to
a location in the Gowalla dataset that will be used in Sec-
tion 6 for evaluation. Although most users have one and
only one visit, the sensitivity of LE is determined by the
worst-case scenario—the maximum number of visits3. Sec-
ond, Figure 3a shows the number of locations visited by a
user. The figure confirms that there are many users who
contribute to more than ten locations.

(a) A user may visit many loca-
tions

(b) The largest number of visits
a user contributes to a location

Figure 3: Gowalla, New York.

Since the introduced noise linearly increases with M and
monotonically increases with C, the noise can be reduced
by capping them. First, to truncate M , we keep the first
M location visits of the users who visit more than M loca-
tions and throw away the rest of the locations’ visits. As a
result, adding or removing a single user in the dataset af-
fects at most M locations. Second, we set the number of
visits of the users who have contributed more than C visits
to a particular location of C. Figure 2 shows that the noise
magnitude used in Limit drops by two orders of magnitude
when compared with the baseline’s sensitivity.

At a high-level, Limit (Algorithm 2) works as follows.
Line 3 limits user activity across locations, while Line 7 lim-
its user activity to a location. The impact of Line 3 is the
introduction of approximation error on the published data.
This is because the number of users visiting some locations
may be reduced, which alters their actual LE values. Subse-
quently, some locations may be thrown away without being
published. Furthermore, Line 7 also alters the value of lo-
cation entropy, but by trimming the number of visits of a
user to a location. The actual LE value of location l (after
thresholdingM and C) is computed in Line 8. Consequently,
the noisy LE is published in Line 9, where Lap(M∆H

ε
) de-

3This suggests that users tend not to check-in at places that they
visit the most, e.g., their homes, because if they did, the peak of
the graph would not be at 1.



notes a random variable drawn independently from Laplace
distribution with mean zero and scale parameter M∆H

ε
.

Algorithm 2 Limit Algorithm

1: Input: privacy budget ε, a set of locations L = {l1, l2, ..., l|L|},
maximum threshold on the number of visits of a user to a
location C, maximum threshold on the number of locations a
user visits M

2: For each user u in U
3: Truncate M : keep the first M locations’ visits of the users

who visit more than M locations
4: Compute sensitivity ∆H from Theorem 1.
5: For each location l in L
6: Count #visits each user made to l: cl,u and compute pl,u
7: Threshold C: c̄l,u = min(C, cl,u), then compute p̄l,u
8: Compute H̄(l) = −

∑
u∈Ul p̄l,u log p̄l,u

9: Publish noisy LE: Ĥ(l) = H̄(l) + Lap(M∆H
ε

)

The performance of Algorithm 2 depends on how we set C
and M . There is a trade-off on the choice of values for C and
M . Small values of C and M introduce small perturbation
error but large approximation error and vice versa. Hence,
in Section 6, we empirically find the values of M and C that
strike a balance between noise and approximation errors.

4.2.2 Privacy Guarantee of the Limit Algorithm
The following theorem shows that Algorithm 2 is differ-

entially private.

Theorem 3. Algorithm 2 satisfies ε-differential privacy.

Proof. For all locations, let L1 be any subset of L. Let
T = {t1, t2, . . . , t|L1|} ∈Range(A) denote an arbitrary pos-
sible output. Then we need to prove the following:

Pr[A(O1(org), . . . , O|L1|(org)) = T ]

Pr[A(O1(org) \Ol,u(org), . . . , O|L1|(org) \Ol,u(org)) = T ]

≤ exp(ε)

The details of the proof and notations used can be found
in our technical report [22].

5. RELAXATION OF PRIVATE LE
This section presents our utility enhancements by adopt-

ing two weaker notions of privacy: smooth sensitivity [16]
(slightly weaker) and crowd-blending [9] (strictly weaker).

5.1 Relaxation with Smooth Sensitivity
We aim to extend Limit to publish location entropy with

smooth sensitivity (or SS for short). We first present the
notions of smooth sensitivity and the Limit-SS algorithm.
We then show how to precompute the SS of location entropy.

5.1.1 Limit-SS Algorithm
Smooth sensitivity is a technique that allows one to com-

pute noise magnitude—not only by the function one wants
to release (i.e., location entropy), but also by the database
itself. The idea is to use the local sensitivity bound of each
location rather than the global sensitivity bound, resulting
in small injected noise. However, simply adopting the lo-
cal sensitivity to calibrate noise may leak the information
about the number of users visiting that location. Smooth
sensitivity is stated as follows.

Let x, y ∈ DN denote two databases, where N is the num-
ber of users. Let lx, ly denote the location l in database x

and y, respectively. Let d(lx, ly) be the Hamming distance
between lx and ly, which is the number of users at location
l on which x and y differ; i.e., d(lx, ly) = |{i : lxi 6= lyi }|; l

x
i

represents information contributed by one individual. The
local sensitivity of location lx, denoted by LS(lx), is the
maximum change of location entropy when a user is added
or removed.

Definition 3. Smooth sensitivity [16] For β > 0, β-smooth
sensitivity of location entropy is:

SSβ(lx) = max
ly∈DN

(
LS(ly) · e−βd(l

x,ly)
)

= max
k=0,1,...,N

e−kβ
(

max
y:d(lx,ly)=k

LS(ly)
)

Smooth sensitivity of LE of location lx can be interpreted as
the maximum of LS(lx) and LS(ly) where the effect of y at
distance k from x is dropped by a factor of e−kβ . Thereafter,
the smooth sensitivity of LE can be plugged into Line 3 of
Algorithm 2, producing the Limit-SS algorithm.

Algorithm 3 Limit-SS Algorithm

1: Input: privacy budget ε, privacy parameter δ, L =
{l1, l2, ..., l|L|}, C,M

2: Copy Lines 2-8 from Algorithm 2

3: Publish noisy LE Ĥ(l) = H̄(l) +
M·2·SSβ(l)

ε
· η, where η ∼

Lap(1), where β = ε
2 ln( 2

δ
)

5.1.2 Privacy Guarantee of Limit-SS

The noise of Limit-SS is specific to a particular location
as opposed to those of the Baseline and Limit algorithms.
Limit-SS has a slightly weaker privacy guarantee. It satisfies
(ε, δ)-differential privacy, where δ is a privacy parameter, δ =
0 in the case of Definition 1. The choice of δ is generally left
to the data releaser. Typically, δ < 1

number of users
(see [16]

for details).

Theorem 4. Calibrating noise to smooth sensitivity [16]
If β ≤ ε

2 ln( 2
δ

)
and δ ∈ (0, 1), the algorithm l 7→ H(l) +

2·SSβ(l)

ε
· η, where η ∼ Lap(1), is (ε, δ)-differentially private.

Theorem 5. Limit-SS is (ε, δ)-differentially private.

Proof. Using Theorem 4, Al satisfies (0)-differential pri-
vacy when l /∈ L1 ∩ L(u), and satisfies ( ε

M
, δ
M

)-differential
privacy when l ∈ L1 ∩ L(u).

5.1.3 Precomputation of Smooth Sensitivity
This section shows that the smooth sensitivity of a lo-

cation visited by n users can be effectively precomputed.
Figure 2 illustrates the precomputed local sensitivity for a
fixed value of C.

Let LS(C, n), SS(C, n) be the local sensitivity and the
smooth sensitivity of all locations that visited by n users, re-
spectively. LS(C, n) is defined in Theorem 2. Let GS(C) be
the global sensitivity of the location entropy given C, which
is defined in Theorem 1. Algorithm 4 computes SS(C, n).
At a high level, the algorithm computes the effect of all
locations at every possible distance k from n, which is non-
trivial. Thus, to speed up computations, we propose two
stopping conditions based on the following observations.



Let nx, ny be the number of users visited lx, ly, respec-
tively. If nx > ny, Algorithm 4 stops when e−kβGS(C) is
less than the current value of smooth sensitivity (Line 7). If
nx < ny, given the fact that LS(ly) starts to decrease when
ny > C

logC−1
+ 1, and e−kβ also decreases when k increases,

Algorithm 4 also terminates when ny > C
logC−1

+1 (Line 8).
In addition, the algorithm tolerates a small value of smooth
sensitivity ξ. Thus, when n is greater than n0 such that
LS(C, n0) < ξ, the precomputation of SS(C, n) is stopped
and SS(C, n) is considered as ξ for all n > n0 (Line 8).

Algorithm 4 Precompute Smooth Sensitivity

1: Input: privacy parameters: ε, δ, ξ; C, maximum number of
possible users N

2: Set β = ε
2 ln( 2

δ
)

3: For n = [1, . . . , N ]
4: SS(C, n) = 0
5: For k = [1, . . . , N ]:

6: SS(C, n) = max
(
SS(C, n), e−kβ max(LS(C, n −

k), LS(C, n+ k))
)

7: Stop when e−kβGS(C, n− k) < SS(C, n) and n+ k >
C

logC−1
+ 1

8: Stop when n > C
logC−1

+ 1 and LS(C, n) < ξ

5.2 Relaxation with Crowd-Blending Privacy

5.2.1 Limit-CB Algorithm
Thus far, we publish entropy for all locations; however,

the ratio of noise to the true value of LE (noise-to-true-
entropy ratio) is often excessively high when the number of
users visiting a location n is small (i.e., Equation 3 shows
that entropy of a location is bounded by log(n)). The large
noise-to-true-entropy ratio would render the published re-
sults useless since the introduced noise outweighs the actual
value of LE. This is an inherent issue with the sparsity of
the real-world datasets. For example, Figure 4 summarizes
the number of users contributing visits to each location in
the Gowalla dataset. The figure shows that most locations
have check-ins from fewer than ten users. These locations
have LE values of less than log(10), which are particularly
prone to the noise-adding mechanism in differential privacy.

Figure 4: Sparsity of location
visits (Gowalla, New York).
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Figure 5: Global sensitivity
bound when varying n.

Therefore, to reduce the noise-to-true-entropy ratio, we
propose a small sensitivity bound of location entropy that
depends on the minimum number of users visiting a location,
denoted by k. Subsequently, we present Algorithm 5 that
satisfies (k, ε)-crowd-blending privacy [9]. We prove this in
Section 5.2.2.

The algorithm aims to publish entropy of locations with
at least k users (n ≥ k) and throw away the other locations.
We refer to the algorithm as Limit-CB. Lines 3-6 publish the
entropy of each location according to (k, ε)-crowd-blending
privacy. That is, we publish the entropy of the locations
with at least k users and suppress the others. The following
lemma shows that for the locations with at least k users
we have a tighter bound on ∆H, which depends on C and
k. Figure 2 shows that the sensitivity used in Limit-CB is
significantly smaller than Limit’s sensitivity.

Theorem 6. Global sensitivity of location entropy for lo-
cations with at least k users, k ≥ C

logC−1
+1, where C is the

maximum number of visits a user contributes to a location,
is the local sensitivity at n = k.

Proof. We prove the theorem by showing that local sen-
sitivity decreases when the number of users n ≥ C

logC−1
+ 1.

Thus, when n ≥ C
logC−1

+ 1, the global sensitivity equals
to the local sensitivity at the smallest value of n, i.e, n =
k. The detailed proof can be found in our technical re-
port [22].

Algorithm 5 Limit-CB Algorithm

1: Input: all users U , privacy budget ε; C,M, k
2: Compute global sensitivity ∆H based on Theorem 6.
3: For each location l ∈ L
4: Count number of users who visit l, nl
5: If nl ≥ k, publish Ĥ(l) according to Algorithm 2 with

budget ε using a tighter bound on ∆H
6: Otherwise, do not publish the data

5.2.2 Privacy Guarantee of Limit-CB

Before proving the privacy guarantee of Limit-CB, we
first present the notion of crowd-blending privacy, a strict
relaxation of differential privacy [9]. k-crowd blending pri-
vate sanitization of a database requires each individual in the
database to blend with k other individuals in the database.
This concept is related to k-anonymity [19] since both are
based on the notion of “blending in a crowd.” However,
unlike k-anonymity that only restricts the published data,
crowd-blending privacy imposes restrictions on the noise-
adding mechanism. Crowd-blending privacy is defined as
follows.

Definition 4 (Crowd-blending privacy). An algo-
rithm A is (k, ε)-crowd-blending private if for every database
D and every individual t ∈ D, either t ε-blends in a crowd
of k people in D, or A(D) ≈ε A(D\{t}) (or both).

A result from [9] shows that differential privacy implies crowd-
blending privacy.

Theorem 7. DP −→ Crowd-blending privacy [7] Let
A be any ε-differentially private algorithm. Then, A is (k, ε)-
crowd-blending private for every integer k ≥ 1.

The following theorem shows that Algorithm 5 is (k, ε)-
crowd-blending private.

Theorem 8. Algorithm 5 is (k, ε)-crowd-blending private.

Proof. First, if there are at least k people in a location,
then individual u ε-blends with k people in U . This is be-
cause Line 5 of the algorithm satisfies ε-differential privacy,
which infers (k, ε)-crowd-blending private (Theorem 7). Oth-
erwise, we have A(D) ≈0 A(D\{t}) since A suppresses each
location with less than k users.



Sparse Dense Gow.
# of locations 10,000 10,000 14,058
# of users 100K 10M 5,800
Max LE 9.93 14.53 6.45
Min LE 1.19 6.70 0.04
Avg. LE 3.19 7.79 1.45
Variance of LE 1.01 0.98 0.6
Max #locations per user 100 100 1407
Avg. #locations per user 19.28 19.28 13.5
Max #visits to a loc. per user 20,813 24,035 162
Avg. #visits to a loc. per user 2578.0 2575.8 7.2
Avg. #users per loc. 192.9 19,278 5.6

Table 2: Statistics of the datasets.

6. PERFORMANCE EVALUATION
We conduct several experiments on real-world and syn-

thetic datasets to compare the effectiveness and utility of
our proposed algorithms. Below, we first discuss our exper-
imental setup. Next, we present our experimental results.

6.1 Experimental Setup
Datasets: We conduct experiments on one real-world

(Gowalla) and two synthetic datasets (Sparse and Dense).
The statistics of the datasets are shown in Table 2. Gowalla
contains the check-in history of users in a location-based so-
cial network. For our experiments, we use the check-in data
in an area covering the city of New York.

For synthetic data generation, in order to study the im-
pact of the density of the dataset, we consider two cases:
Sparse and Dense. Sparse contains 100,000 users while Dense
has 10 million users. The Gowalla dataset is sparse as
well. We add the Dense synthetic dataset to emulate the
case for large industries, such as Google, who have access
to large- and fine-granule user location data. To gener-
ate visits, without loss of generality, the location with id
x ∈ [1, 2, . . . , 10, 000] has a probability 1/x of being vis-
ited by a user. This means that locations with smaller ids
tend to have higher location entropy since more users would
visit these locations. In the same fashion, the user with id
y ∈ {1, 2, . . . , 100, 000} (Sparse) is selected with probability
1/y. This follows the real-world characteristic of location
data where a small number of locations are very popular
and then many locations have a small number of visits.

In all of our experiments, we use five values of privacy bud-
get ε ∈ {0.1, 0.5, 1,5, 10}. We vary the maximum number of
visits a user contributes to a location C ∈ {1, 2, . . . ,5, . . . , 50}
and the maximum number of locations a user visits M ∈
{1, 2,5, 10, 20, 30}. We vary threshold k ∈ {10, 20, 30, 40,
50}. We also set ξ = 10−3, δ = 10−8, and β ≈ ε/2 ∗ ln(2/δ).
Default values are shown in boldface.

Metrics: We use KL-divergence as one measure of pre-
serving the original data distribution after adding noise.
Given two discrete probability distributions P and Q, the
KL-divergence of Q from P is defined as follows:

DKL(P ||Q) =
∑
i

P (i) log
P (i)

Q(i)
(6)

In this paper the location entropy of location l is the prob-
ability that l is chosen when a location is randomly selected
from the set of all locations; P and Q are respectively the

published and the actual LE of locations after normalization;
i.e., normalized values must sum to unity.

We also use mean squared error (MSE) over a set of loca-
tions L as the metric of accuracy using Equation 7.

MSE =
1

|L|
∑
l∈L

(
LEa(l)− LEn(l)

)2
(7)

where LEa(l) and LEn(l) are the actual and noisy entropy
of the location l, respectively.

Since Limit-CB discards more locations as compared to
Limit and Limit-SS, we consider both cases: 1) KL-divergence
and MSE metrics are computed on all locations L, where the
entropy of the suppressed locations are set to zero (default
case); 2) the metrics are computed on the subset of locations
that Limit-CB publishes, termed Throwaway.

6.2 Experimental Results
We first evaluate our algorithms on the synthetic datasets.

6.2.1 Overall Evaluation of the Proposed Algorithms
We evaluate the performance of Limit from Section 4.2.1

and its variants (Limit-SS and Limit-CB). We do not in-
clude the results for Baseline since the excessively high
amount of injected noise renders the perturbed data useless.

Figure 6 illustrates the distributions of noisy vs. actual
LE on Dense and Sparse. The actual distributions of the
dense (Figure 6a) and sparse (Figure 6e) datasets confirm
our method of generating the synthetic datasets; locations
with smaller ids have higher entropy, and entropy of lo-
cations in Dense are higher than that in Sparse. We ob-
serve that Limit-SS generally performs best in preserving
the original data distribution for Dense (Figure 6c), while
Limit-CB performs best for Sparse (Figure 6h). Note that
as we show later, Limit-CB performs better than Limit-SS
and Limit given a small budget ε (see Section 6.2.2).

Due to the truncation technique, some locations may be
discarded. Thus, we report the percentage of perturbed lo-
cations, named published ratio. The published ratio is com-
puted as the number of perturbed locations divided by the
total number of eligible locations. A location is eligible for
publication if it contains check-ins from at least K users
(K ≥ 1). Figure 7 shows the effect of k on the published
ratio of Limit-CB. Note that the published ratio of Limit
and Limit-SS is the same as Limit-CB when k = K. The
figure shows that the ratio is 100% with Dense, while that
of Sparse is less than 10%. The reason is that with Dense,
each location is visited by a large number of users on aver-
age (see Table 2); thus, limiting M and C would reduce the
average number of users visiting a location but not to the
point where the locations are suppressed. This result sug-
gests that our truncation technique performs well on large
datasets.

6.2.2 Privacy-Utility Trade-off (Varying ε)
We compare the trade-off between privacy and utility by

varying the privacy budget ε. The utility is captured by the
KL-divergence metric introduced in Section 6.1. We also
use the MSE metric. Figure 8 illustrates the results. As
expected, when ε increases, less noise is injected, and values
of KL-divergence and MSE decrease. Interestingly though,
KL-divergence and MSE saturate at ε = 5, where reducing
privacy level (increase ε) only marginally increases utility.
This can be explained through a significant approximation
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(a) Actual (Dense)
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(b) Limit (Dense)
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(c) Limit-SS (Dense)
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(d) Limit-CB (Dense)
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(e) Actual (Sparse)
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(f) Limit (Sparse)
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(g) Limit-SS (Sparse)
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(h) Limit-CB (Sparse)

Figure 6: Comparison of the distributions of noisy vs. actual location entropy on the dense and sparse datasets.
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Figure 7: Published ratio of Limit-CB when varying k (K = 20).

error in our thresholding technique that outweighs the im-
pact of having smaller perturbation error. Note that the
approximation errors are constant in this set of experiments
since the parameters C, M and k are fixed.

Another observation is that the observed errors incurred
are generally higher for Dense (Figures 8b vs. 8c), which is
surprising, as differentially private algorithms often perform
better on dense datasets. The reason for this is because
limiting M and C has a larger impact on Dense, resulting
in a large perturbation error. Furthermore, we observe that
the improvements of Limit-SS and Limit-CB over Limit
are more significant with small ε. In other words, Limit-SS
and Limit-CB would have more impact with a higher level
of privacy protection. Note that these enhancements come
at the cost of weaker privacy protection.

6.2.3 The Effect of Varying M and C

We first evaluate the performance of our proposed tech-
niques by varying threshold M . For brevity, we present the
results only for MSE, as similar results have been observed
for KL-divergence. Figure 9 indicates the trade-off between
the approximation error and the perturbation error. Our
thresholding technique decreases M to reduce the perturba-
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(a) Dense
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(b) Dense
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(c) Sparse
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Figure 8: Varying ε

tion error, but at the cost of increasing the approximation
error. As a result, at a particular value of M , the tech-
nique balances the two types of errors and thus minimizes
the total error. For example, in Figure 9a, Limit performs
best at M = 5, while Limit-SS and Limit-CB work best at
M ≥ 30. In Figure 9b, however, Limit-SS performs best at
M = 10 and Limit-CB performs best at M = 20.

We then evaluate the performance of our techniques by
varying threshold C. Figure 10 shows the results. For
brevity, we only include KL-divergence results (MSE metric
shows similar trends). The graphs show that KL-divergence
increases as C grows. This observation suggests that C
should be set to a small number (less than 10). By com-
paring the effect of varying M and C, we conclude that M
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Figure 9: Varying M

has more impact on the trade-off between the approximation
error and the perturbation error.
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Figure 10: Varying C

6.2.4 Results on the Gowalla Dataset
In this section we evaluate the performance of our algo-

rithms on the Gowalla dataset. Figure 11 shows the dis-
tributions of noisy vs. actual location entropy. Note that
we sort the locations based on their actual values of LE as
depicted in Figure 11a. As expected, due to the sparse-
ness of Gowalla (see Table 2), the published values of LE
in Limit and Limit-SS are scattered while those in Limit-
CB preserve the trend in the actual data but at the cost of
throwing away more locations (Figure 11d). Furthermore,
we conduct experiments on varying various parameters (i.e.,
ε, C,M, k) and observe trends similar to the Sparse dataset;
nevertheless, for brevity, we only show the impact of varying
ε and M in Figure 12.

Recommendations for Data Releases: We summa-
rize our observations and provide guidelines for choosing ap-
propriate techniques and parameters. Limit-CB generally
performs best on sparse datasets because it only focuses on
publishing the locations with large visits. Alternatively, if
the dataset is dense, Limit-SS is recommended over Limit-
CB since there are sufficient locations with large visits. A
dataset is dense if most locations (e.g., 90%) have at least
nCB users, where nCB is the threshold for choosing Limit-
CB. Particularly, given fixed parameters C, ε, δ, k—nCB can
be found by comparing the global sensitivity of Limit-CB
and the precomputed smooth sensitivity. In Figure 2, nCB
is a particular value of n where SS(C, nCB) is smaller than
the global sensitivity of Limit-CB. In other words, the noise
magnitude required for Limit-SS is smaller than that for
Limit-CB. Regarding the choice of parameters, to guarantee
strong privacy protection, ε should be as small as possible,
while the measured utility metrics are practical. Finally, the

0 2000 4000 6000 8000 10000 12000 14000
0

2

4

6

8

10

12

14

16

18

Location id

A
c
tu

a
l 
e

n
tr

o
p

y

(a) Actual

0 2000 4000 6000 8000 10000 12000 14000
0

2

4

6

8

10

12

14

16

18

Location id

N
o

is
y
 e

n
tr

o
p

y

(b) Limit
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(c) Limit-SS
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(d) Limit-CB

Figure 11: Comparison of the distributions of noisy vs. actual
location entropy on Gowalla, M = 5.
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Figure 12: Varying ε and M (Gowalla).

value of C should be small (≤ 10), while the value of M can
be tuned to achieve maximum utility.

7. RELATED WORK
Location privacy has largely been studied in the context

of location-based services, participatory sensing and spatial
crowdsourcing. Most studies use the model of spatial k-
anonymity [19], where the location of a user is hidden among
k other users [11, 15]. However, there are known attacks on
k-anonymity, e.g., when all k users are at the same location.
Nevertheless, such techniques assume a centralized architec-
ture with a trusted third party, which is a single point of
attack. Consequently, a technique that makes use of cryp-
tographic techniques such as private information retrieval
is proposed that does not rely on a trusted third party to
anonymize locations [10]. Recent studies on location pri-
vacy have focused on leveraging differential privacy (DP) to
protect the privacy of users [21, 27].

Location entropy has been extensively used in various
areas of research, including multi-agent systems [25], wire-
less sensor networks [26], geosocial networks [4, 3, 17], per-
sonalized web search [14], image retrieval [29] and spatial
crowdsourcing [12, 23, 20], etc. The study that most closely
relates to ours focuses on privacy-preserving location-based
services in which location entropy is used as the measure of



privacy or the attacker’s uncertainty [28, 24]. In [28], a pri-
vacy model is proposed that discloses a location on behalf of
a user only if the location has at least the same popularity
(quantified by location entropy) as a public region specified
by a user. In fact, locations with high entropy are more likely
to be shared (checked-in) than places with low entropy [24].
However, directly using location entropy compromises the
privacy of individuals. For example, an adversary certainly
knows whether people visiting a location based on its en-
tropy value, e.g., low value means a small number of people
visit the location, and if they are all in a small geographi-
cal area, their privacy is compromised. To the best of our
knowledge, there is no study that uses differential privacy for
publishing location entropy, despite its various applications
that can be highly instrumental in protecting the privacy of
individuals.

8. CONCLUSIONS
We introduced the problem of publishing the entropy of a

set of locations according to differential privacy. A baseline
algorithm was proposed based on the derived tight bound for
global sensitivity of the location entropy. We showed that
the baseline solution requires an excessively high amount
of noise to satisfy ε-differential privacy, which renders the
published results useless. A simple yet effective trunca-
tion technique was then proposed to reduce the sensitivity
bound by two orders of magnitude, and this enabled publica-
tion of location entropy with reasonable utility. The utility
was further enhanced by adopting smooth sensitivity and
crowd-blending. We conducted extensive experiments and
concluded that the proposed techniques are practical.
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