N
N

N

HAL

open science

Generating Efficient Context-Switch Capable Circuits
Through Autonomous Design Flow

Alban Bourge, Olivier Muller, Frédéric Rousseau

» To cite this version:

Alban Bourge, Olivier Muller, Frédéric Rousseau. Generating Efficient Context-Switch Capable Cir-
cuits Through Autonomous Design Flow. ACM Transactions on Reconfigurable Technology and Sys-

tems (TRETS), 2016, 10 (1), pp.9. 10.1145/2996199 . hal-01367798v2

HAL Id: hal-01367798
https://hal.science/hal-01367798v2
Submitted on 19 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons CCO - Public Domain Dedication 4.0 International License

https://hal.science/hal-01367798v2
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
https://hal.archives-ouvertes.fr

Generating Eff cient Context-Switch Capable Circuits Through
Autonomous Design Flow

ALBAN BOURGE, Univ. Grenoble Alpes, CNRS, TIMA F-38000
OLIVIER MULLER, Univ. Grenoble Alpes, CNRS, TIMA F-38000
FREDERIC ROUSSEAU, Univ. Grenoble Alpes, CNRS, TIMA F-38000

Commercial Off-the-Shelf (COTS) FPGAs are becoming increasingly powerful. In addition to their huge
hardware resources, they are also integrated into complete systems on chips (SOCs), e.g. in the latest Xilinx
Zynq or Altera Stratix platforms. However, cooperation between FPGAs and their surroundings, and the
f exibility of hardware task management could still be improved. For instance, mechanisms have yet to be
automated to allow multi-user approaches. A reconf gurable resource can be shared between applications or
users only if it has a context-switch ability allowing applications to be paused and resumed in response to
system demands. Here, we present a High-Level Synthesis (HLS) design f ow producing a context-switch-
capable circuit. The design f ow manipulates the intermediate representation of a HLS tool to build the
context extraction mechanism and to optimize performance for the circuit produced. The method is based on
eff cient checkpoint selection and insertion of a powerful scan-chain into the initial circuit. This scan-chain
can extract fip-f ops or memory content. Experiments with the system produced show that it has a low
hardware overhead for many benchmark applications, and that the hardware added has a negligible impact
on application performance. Comparison with current standard methods highlights the eff ciency of our
contributions.

CCS Concepts: *Computer systems organization - Reconf gurable computing; *Hardware —» High-
level and register-transfer level synthesis; Hardware accelerators;

Additional Key Words and Phrases: Context-switch on FPGA, Checkpointing, Partial scan-chain

ACM Reference Format:

Alban Bourge, Olivier Muller and Frédéric Rousseau 2015. Generating Eff cient Context-Switch Capable
Circuits Through Autonomous Design Flow. ACM Trans. Reconf g. Technol. Syst. 10, 1, Article 9 (December
2016), 23 pages.

DA : http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

Over the past decade, FPGAs have been increasingly frequently viewed as a robust
solution for hardware acceleration and the f eld of reconf gurable computing has un-
dergone many technical changes and improvements [Hauck and DeHon 2010], but the
path to even higher-performance FPGA applications is broad. In this paper, we describe
a system to build toward more f exible management of hardware tasks running on
FPGAs by providing a context-switch capacity or allowing for a preemptive schedul-
ing paradigm in hardware applications. The potential benef ts of this technique have
previously been described [Trimberger et al. 1997; Scalera and Vazquez 1998; Guan
et al. 2008]. Context-switch-capable hardware could be more readily integrated into
a complete system and would provide powerful features if combined with other tech-
niques such as reconf guration [Papadimitriou et al. 2011] or task relocation and FPGA

contact: alban.bourge@imag.fr, olivier.muller@imag.fr, frederic.rousseau@imag.fr
Univ. Grenoble Alpes, TIMA F-38000 CNRS, TIMA F-38000 46, avenue Felix Viallet Grenoble, France

ACM Transactions on Reconf gurable Technology and Systems, Vol. 10, No. 1, Article 9, Publication date: December 2016.

9:2 A. Bourge et al.

state 3 | | state 5

state 4

state 6

(a) Switch (b) For or while loop (c) Do-while loop

Fig. 1: Typical Finite State Machines

defragmentation [Fekete et al. 2012]. More generally, a context-switch-capable circuit
would be compatible with multi-user approaches. An ideal hardware context-switch
mechanism fulfills the following requirements:

— ensures a preemption within a given latency;

—is FPGA-technology independent;

—its implementation and usage is effortless for designers and users;

— the hardware overhead is low;

— the hardware overhead has negligible impact on the circuits performance;
— the impact on the whole system is low.

This paper presents a High-Level Synthesis (HLS) flow for the design of a context-
switch-capable circuit, taking the previous requirements into consideration. The paper
is organized as follows: Sections 2 and 3 present the background, definitions and work
related to the solution presented; Section 4 describes the proposed method; Sections 5
and 6 explain the two steps in our method in more detail; multiple experiments to deter-
mine the advantages and disadvantages of the solution are presented in Section 7. This
paper ends with a discussion section and a conclusion summarizing the contributions
made.

2. BACKGROUND AND DEFINITIONS
2.1. System

Throughout the paper, we will consider a generic system made up of two main parts:
1) a control part responsible for managing the whole system. It could be as simple as
a CPU running an operating system. 2) the reconfigurable resource, connected to a
communication bus and behaving as a slave to the control part. The reconfigurable
resource is considered to be a Commercial Off-the-Shelf (COTS) FPGA. This resource
will receive context-switch requests from the CPU. In addition to these two central
elements, other peripherals can also be present, such as memories.

2.2. Hardware Task

It is assumed that a hardware task can be represented by a Finite State Machine
(FSM) comprised of states, and a datapath. In this classical (FSM/datapath) model,
the hardware task is controlled by the FSM. Figure 1 shows various types of small
FSM. Each state performs actions carried out in the datapath. This can be, for example
reading a variable, writing a variable, or computing. For instance, on Figure 1a, state 2
could represent an if instruction, i.e., the test of a condition.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 9, Publication date: December 2016.

Generating Efficient Context-Switch Capable Circuits Through Autonomous Design Flow 9:3

2.3. Hardware Context

One of our hypotheses is that the initial bitstream is not considered to be part of
the task context. Indeed, the controlling system knows which bitstream in memory
corresponds to the current task running. This initial configuration is assumed to be
present in memory and therefore it is unnecessary to save it as part of context-switching.
Another hypotheses concern the data that are currently being transferred to or from the
hardware task. These data are not part of the context and the controlling system has to
manage them. On the other hand, the content of the memory elements of the running
circuit will change during task execution. These changes are not predictable and for
this reason, the memory elements that have changed must be stored. More precisely,
each state has a set of live variables, i.e., variables accessed (read or written) during the
state actions or in subsequent states. When a variable is not yet or no longer used in a
state, it can be removed from the context. Considering these hypotheses, the context of
a task consists in a set of live variables related to the current state of the task.

2.4. Hardware Checkpoint Definition

The notion of checkpointing is classically used in fault-tolerant applications [Elnozahy
et al. 2002; Egwutuoha et al. 2013]. Indeed, in the field of reliability, numerous articles
on checkpointing have been published. For the purposes of this paper, checkpoints
applied to hardware designs are most relevant. [Koch et al. 2007] is a good example
of how software checkpointing techniques can be applied to hardware circuits. Some
uses of checkpointing have been developed to create simple backup images of hardware
tasks [Landaker et al. 2002]. Another possibility is to use checkpoints to add soft error
mitigation, as in [Asadi and Tahoori 2005]. A more specific use is presented by Reorda
et al. [2009], who specifically target soft cores by performing periodic checkpointing
operations. Schmidt et al. [2011] present a complete monitoring infrastructure, dealing
with multiple FPGAs.

In all these cases, the application context is saved each time a hardware checkpoint
is reached. Whenever a fault occurs, checkpoint-based protocols can restore the systems
state from the previously saved hardware checkpoint. From this process we can imagine
how context-switch operations can be made possible. For example, the context of a
hardware task could be saved when the next hardware checkpoint for the application is
reached. Context restoration would then restart the task where it was stopped by using
the previously saved hardware checkpoint. We define a hardware checkpoint as follows:
a task state where context-switch operations are allowed.

2.5. Hardware Context-Switch

Figure 2 presents an example of a hardware context-switching process. Two preemption
demands are shown: the first one switches task 1 for task 2 and the second switches
back to task 1. Task 1 preemption is divided into two steps. The time needed for the
task to reach a checkpoint is the first step. It is represented by the cp stage (total time
t.). When a checkpoint is reached, the context of the task is saved during the save step
(duration: t,); t, varies depending on the size of the context to be extracted. The save
step is followed by configuration of the chip to launch task 2, which is preempted in its
turn. Finally, when the system switches back to task 1, a restoration step is necessary
(rest) so as to re-write the previous context before re-launching the first task.

3. RELATED WORK

Context extraction methods for hardware tasks already exist but were mainly developed
in a fault-tolerant perspective. For example, in 1999 [Fujii et al. 1999] used a specific
hardware resource, i.e., not a typical FPGA chip. Specific FPGA based architectures

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 9, Publication date: December 2016.

9:4 A. Bourge et al.

time

rD<mm

(C: chip configuration |
Preemptlon Preempt|on Icp: checkpoint findingj
demand demand |save context saving |

Fig. 2: Timeline for hardware context-switching

such as virtual CGRAs [Heyse et al. 2013], overlays [Brant and Lemieux 2012] or
reconfigurable processors may offers facility for content extraction. Given that the ideal
mechanism described in Section 1 aims low overheads, the usage of such architectures is
not chosen. The proposed mechanism must hence use generic FPGA content extraction
methods. Nowadays, two main families stand out to address this issue.

3.1. FPGA-Specific Extraction Technique

The first method consists in extracting the condition of the FPGA components (LUT,
FF, routing) through the configuration mechanism. This is called a readback method
as the configuration, hence the flip-flop values, are literally read and transferred back
to the controlling system. This configuration is commonly handled by the Internal
Configuration Access Port (ICAP) in Virtex technologies [Xilinx 2010]. The ICAP allows
configuration (and readback) from within the FPGA. Blodget et al. [2003] and Ullmann
et al. [2004] used that port for their research. Similarly, Sedcole et al. [2006] compared
two reconfiguration methods and presented the use of the ICAP port to read back the
FPGA configuration.

Readback is the most commonly used technique. It is difficult to set up because
it is based on non released information of FPGA family bitstream encoding. It has
the major drawback of extracting a configuration bitstream from the chip, making its
data efficiency very poor. Indeed, much of the extracted data is not required as it is
already present in the initial bitstream. Hence, the data footprint of the method, i.e.,
the amount of memory needed to store a tasks context, is considered high. This fact is
highlighted by Kalte and Porrmann [2005], who indicate that less than 8% of the data
in the readback stream represent hardware context. A system to filter out unnecessary
data was therefore proposed by Simmler et al. [2000] and Levinson et al. [2000]. With
these methods, the bitstream is filtered offline to store only information relating to
registers and RAM. In an alternative approach, Kalte and Porrmann [2005] reduced
the amount of readback data by only reading back portions of the FPGA that are used.

3.2. Task-Specific Extraction Technique

The principle of task-specific extraction techniques is to directly add some structures
to the circuit to allow context extraction. In other words, the circuit embeds the mech-
anisms that allow context reading and writing. The most common mechanism is a
scan-chain: a serial link one or more bits wide between each flip-flop of the circuit.
A multiplexor is added at the input of each flip-flop (or another input is added to an
existing multiplexor) to route each flip-flop signal to the next. The last flip-flop of the
chain acts as an output. An example of a 1-bit scan-chain insertion is shown in Figure 3.
This method has a smaller memory footprint than the readback method because only
FF values are extracted. The extraction time is also reduced compared to the readback
method. On the other hand, the extra design efforts required to add such structures

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 9, Publication date: December 2016.

Generating Efficient Context-Switch Capable Circuits Through Autonomous Design Flow 9:5

> %Ef T

> > > >

----- scan chain
—added hardware

(a) Original datapath (b) Datapath and scan-chain

Fig. 3: Insertion of scan-chain into a simple circuit

Table I: Comparison of readback and full scan-chain methods

Readback Full scan-chain
Data footprint Large Moderate
Extra design efforts No Yes
Extra resource consumption No Yes
Technology independent No Possibly

can be costly [Koch et al. 2007]. Finally, the area overhead when such a structure is
integrated is not negligible.

Other related works include Scalera and Vazquez [1998], describing a specific archi-
tecture extensively modifying the memory elements and adding an extraction structure.
This architecture requires considerable design effort, time and increases the area over-
head. Wheeler et al. [2001] present a typical approach to insert scan-chains, while Koch
et al. [2007] describe three access methods (scan-chain, shadow scan-chain and memory
mapped methods) and present a tool named StateAccess allowing automatic state ex-
traction. The introduction of such a tool is clearly of interest to reduce the additional
design efforts. The interesting notion of switching point was introduced by Mignolet
et al. [2003] to limit the number of authorized context-switch states, but no selection
method was proposed. Eventually, the specific problem of memories (cf. Section 6.1) has
never been addressed.

3.3. Comparison of readback and scan-chain methods

Table I summaries the main characteristics of both methods. It can be pointed out
that they have complementary advantages and drawbacks. Thus, the readback method
cannot extract a completely relevant context and therefore has a large data footprint.
By adding a filtering step, the data footprint can be reduced, becoming close to that
of task-specific techniques. On the contrary, a scan-chain of all memory elements (full
scan-chain) reduces the amount of data to be extracted. The readback method also
relies on a feature of the FPGA fabric, and thus developing an application requires
no particular design efforts. Similarly, no extra resources are consumed within the
FPGA. In contrast, with a full scan-chain approach, the developer must modify the
circuit and use otherwise free hardware resources. It should be noted that with a scan-
chain method, the data footprint and the extra resources consumed are almost directly
linked. Indeed, if the number of memory elements that must be extracted increases or
decreases, hardware must be added or removed in parallel. Scan-chains also prevent
some low level optimizations such as retiming and register duplication. They can also
have an impact on the usage of vendor-specific IPs (e.g. they prevent merging register in
DSPs due to multiplexor addition) and on the place and route steps. Finally, a readback
approach is technology dependent (the bitstream format is not the same for different
FPGAs). This may not be the case for a scan-chain if written in platform-independent
HDL or RTL.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 9, Publication date: December 2016.

9:6 A. Bourge et al.

HLS tool

Compilation

Checkpoint
selection
Scan-chain
! insertion

H Circuit
\ generation

Fig. 4: Proposed design flow

Considering the ideal mechanism described in Section 1, a scan-chain based approach
was chosen for this contribution.

4. METHOD OVERVIEW

In this paragraph, the two main contributions of this paper are first presented as two
steps of a design flow. The consequences and the associated optimization objectives are
then highlighted.

4.1. Proposed Design Flow

HLS allows to design hardware circuits using a high-level language such as C or C++.
These languages enable a more concise description of algorithms compared to HDL and
aim to reduce development time without neglecting performance [Liang et al. 2012].

The proposed design flow consists of two main steps corresponding to our two contri-
butions. These two steps are clearly separate but do influence each other. The steps were
added to an existing HLS flow to produce a circuit capable of context-switching while
respecting design- and user-defined constraints. Figure 4 illustrates their positions
within the design flow. Inside the HLS tool, the typical operations are a compilation
step, providing an intermediate representation of the circuit (Hierarchical Task Graph,
or HTG [Girkar and Polychronopoulos 1994]), followed by one or more transformations.
The aim of these transformations is to improve the circuits performance by adapting
it to the hardware targeted (e.g. unrolling a loop if sufficient resources are available).
Finally, the HDL representation of the circuit is generated. The operations added to
this flow were a checkpoint selection step and insertion of a scan-chain. By combining
these steps, the circuit became capable of context-switching. These two contributions
will be described in more detail below.

4.2. Impact on HLS

Introducing a context-switch capacity to a circuit at a high-level of abstraction is not
without consequences. For instance, intermediate representation and optimization
routines of HLS tools have a significant impact on the applications final architecture.

One drawback of our flow is a lack of control over the circuit that will ultimately
be produced. Indeed, the HLS tool has no control over the following steps, which are
performed by back-end tools (logic synthesis and place and route). These tools handle
the addition mechanism with varying degrees of success.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 9, Publication date: December 2016.

Generating Efficient Context-Switch Capable Circuits Through Autonomous Design Flow 9.7

On the positive side, the HTG obtained after compilation contains useful information
thanks to the modern parsers and compilers. For instance, these tools can analyze the
liveness of variables in the circuit, a task which is difficult to perform at a hardware
description level. This analysis is central to the checkpoint selection step. It also allows
abstraction of the memory elements whatever the underlying implementations (flip-flop,
BRAM or LUTRAM). As proposed by Wheeler et al. [2001], it is possible to link each
memory element in a scan-chain while allowing the addition of specific mechanism
for RAMs. Furthermore, HLS removes the need to build the mechanism by hand. A
typical scan-chain insertion occurs at the HDL or netlist level and if no automation
tool is used it requires the intervention of the application developer. In this proposition,
the method adopted requires no manual efforts. Finally, as the mechanism is written
in HDL (by the HLS tool), the developer can choose any back-end tools and type of
FPGA. The code produced will be portable, and thus a stored context can be used on any
context-switching-capable hardware kernel of the same type (i.e., a context extracted
from the same application), no matter which FPGA or back-end tools were used.

4.3. Global Optimization Objectives

Adding the context-switch capacity to a hardware task comes at a cost. In the first
place, the preemption scheme requires the task context to be saved, which can represent
a considerable amount of data. Transfer of these data has a triple impact on the
surrounding system: the systems main memory must have an adequate capacity, bus
congestion can occur depending on how many peripherals are present, and finally,
the availability of the hardware task varies directly with the time needed to extract
the whole context. In addition, the extraction capacity will naturally also impact the
task itself. Adding the mechanism inside the HDL application results in a hardware
overhead and may alter overall performance.

In line with the ideal mechanism described in the introduction, our proposal will have
to deal with three constraints and three optimization objectives. Each of these points will
be addressed by a particular step of the method (checkpointing or scan-chain insertion)
or by the HLS flow itself. These points are summarized in Table II. The first constraint,
namely staying within a certain latency when context-switching, is very important
in a preemptive multitasking system. Switching can require a considerable number
of cycles and the system schedulers adaptability will be improved with a bounded
extraction time [Buttazzo et al. 2013]. The checkpointing algorithm must ensure that
the switching process does not violate this latency constraint. The HL.S-based design
flow ensures the codes portability and removes any design efforts, as indicated in
Section 4.2. Our optimization objectives were actually minimization objectives. Indeed,
the method should ideally produce a context-switching circuit with no additional impact
on the overall system, no hardware overhead and no impact on application performance
(frequency, latency). Obviously, it is not possible to have it both ways especially with
a scan-chain based mechanism. The two steps in our method — checkpointing and
scan-chain insertion — tries to cover the three optimization objectives.

5. CHECKPOINT SELECTION

As mentioned above, checkpoint selection is the first step in our method. The main
ambition of this step is to ensure the context-switch process will be bounded in time.
This issue is addressed in this section through a mathematical definition which is
resolved algorithmically.

5.1. General Idea

Context-switching requires extraction of the context for the currently running hardware
task. This context consists in the set of live variables for the current FSM state. For

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 9, Publication date: December 2016.

9:8 A. Bourge et al.

Table II: Constraints and optimization objectives of the problem

Type Addressed by
Constraints respect system context-switch latency checkpointing
code portability HLS flow
no design efforts/automatic method HLS flow
Optimization ob- impact on whole system checkpointing +
jectives (mainly communication overhead) scan-chains
hardware overhead checkpointing +
scan-chains
impact on application performances checkpointing +

scan-chains

a particular state, a live variable is a variable that has been written and will be read
later as the task proceeds. A variable which has never been written is not live as its
content is stored in the initial bitstream. A variable which is no longer read after a
certain state is not live either as its value is no longer useful. Establishing the context
only with live variables creates a smaller context than one containing all the variables.
Another selection step makes it possible to further reduce the context size: checkpoint
selection. During task execution, the volume of live variables varies. The objective is
to select moments, or states of the hardware task, to allow extraction of the hardware
context within the given context-switch latency. The task will continue running until
reaching such state when a context extraction is wanted. The smaller the live variable
volume is in a checkpoint, the more the task can run until reaching this checkpoint as
the extraction of this state is faster than the others. The checkpoint selection algorithm
ensures that in any state, the context can be extracted in a given latency and tries to
minimize the previously mentioned objectives.

5.2. Mathematical Definition

When a preemption demand arises in a random state, a checkpoint has to be reached and
the hardware context extracted. The corresponding timings are t. and t,, respectively,
as stated in Section 2.5. The total timing must respect the system-wide context-switch
latency, called ¢;,;: t. + ts < t1q¢. In this case, it is said that the checkpoint covers the
states crossed during the checkpoint search.

Let n be the number of states of a hardware task. A Boolean n-vector can represent
a set of states for the task by assigning one state per vector component. The state is
considered in the set only if its corresponding component equals 1.

Let = be a Boolean n-vector describing a set of hardware checkpoints. Let A = (a;;)
be a Boolean n x n matrix representing the covering matrix. The Boolean coefficient
a;; equals 1 when state j covers state i. Note that Az is an integer n-vector giving the
number of checkpoints defined in x that cover each state. x must ensure that for each
state of the task, the context-switch will be possible, i.e., each state is covered by at
least one checkpoint. This constraint can be represented by the equation:

Ax > 1

where 1 is the integer n-vector with all components equal to 1.

The optimization objective associated with the checkpoint selection problem is the
minimization of the area overhead for the mechanism. Let us assume that the area
overhead for a scan-chain is proportional to its length in bits. As the live variables of a
hardware checkpoint are mapped in memory elements, their cumulative length deter-
mines the size of the scan-chain. Let ¢; be the cost of state i as a checkpoint (the length
in bits of the associated scan-chain). A simple estimation of the area overhead for the
whole mechanism is the sum of the cost of all the checkpoints. Thus, the minimization
equation is:

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 9, Publication date: December 2016.

Generating Efficient Context-Switch Capable Circuits Through Autonomous Design Flow 9:9

n—1
min Z CjTj
§=0

This type of “set covering problem” is a well known mathematical problem. It is an
NP-complete problem which was first described by Cormen et al. [2001].

A closer look at this case reveals the minimization equation to be more complex
than the usual one. This complexity is due to the fact that some memory elements
can be part of several scan-chains. With the simple estimation presented above, these
memory elements will be counted several times, whereas they should only be counted
once since the scan-chain insertion step benefits from this overlapping. To obtain a more
reliable estimation of the area overhead, a polynomial rather than a linear minimization
equation should be applied. A more precise estimation of the optimization objective can

be written as:
2™ -1

min) caf
j=0

where j is the n-bit index of a set of states following the natural order (e.g. for
j =9 =2Y 4 23 the set gathers the states 0 and 3), ¢} is the cost of set j (i.e., the length

in bits of only the memory elements that are live in the states of set j), 2’; is a Boolean
variable set if the intersection between the sets of states indexed by j and depicted by x
is not null.

It should be noted that the number of terms in this formula grows exponentially with
n. To cope with this complexity, we will use a heuristic. This checkpointing problem is
divided into the two parts addressed in this article. First, a static analysis of the FSM
is performed to identify the A matrix of the input hardware task. Secondly, heuristics

are used to rapidly resolve the optimization problem using the A matrix.

5.3. Static Analysis

The first step consists in analysis of the FSM of the application. This analysis is
described in Algorithm 1 and corresponds to the computation of the A matrix.

The coverage of state j, named S;, corresponds to the set of states that state j can
cover. S; is the subset of {0,1...,n — 1} such that S; = {i|a;; = 1}. Mathematically, 5,
corresponds to the j™ column of A. Practically, this means that state j can be reached
and its context extracted in less than ¢;,; from anywhere within S;. The set of S; or the
A matrix, is computed with a recursive algorithm based on #;,; and every state tlme ts,
needed to extract its associated context.

An iteration is performed on every state to compute its corresponding coverage. If the
context of state 7 can be extracted within ¢,,;, then state js coverage will be computed.
Otherwise, j is removed from the potential checkpoints (line 5). Checking coverage
for state j is therefore done recursively using the check_coverage procedure defined
on line 16. Each state potentially leading to state j is analyzed to check if coverage is
possible (line 20). This analysis will be further described below. If coverage is possible,
Dijsktra-style variables are set and/or checked. If the previous state, &, has already been
visited, the search continues only if the path taken is shorter than the previous one, i.e.,
t; is longer. Otherwise, kyisitcq 1S set to true, t..; is set to t; and state & is added to S;.

The following textual description of the instruction on line 20 is provided since its
pseudo-code description is broad and difficult to read. The main problem at this stage
is to solve complex paths existing between states. Figure 5 illustrates how a switch is
covered, considering that each state lasts one clock cycle, ¢;,;, = 12 cycles and state 7
has 8 bits which must be extracted (i.e., ts = 8 cycles with a 1-bit scan-chain). If the
t.+1ts < t1a: constraint also has to be met, the time left to reach state 7 is ¢; = ;. — ¢s, In
the example this gives ¢; = 4 clock cycles. The recursion for computing S; hence starts

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 9, Publication date: December 2016.

9:10 A. Bourge et al.

Algorithm 1 Static FSM analysis

1: forj€{0,1..,n-1} do > Iterate through all FSM states
2 is_cp < true > initially, state j is a checkpoint
3 COMPUTE(t,) > time to save state j
4: if t, > t;,; then

5: is_cp « false > context of state j too large to be extracted within #;,,

6: Sj« 0 > no states covered by state j
7 continue

8 else

9: t; < tiar — ts > time left for coverage i.e., max value of ¢,
10: S; {7} > state j covers itself

11: end if
12: if t; > 0 then

13: CHECK_COVERAGE(j,t;) > recursive procedure filling S;
14: end if

15: end for

16: procedure CHECK_COVERAGE(j,t;)

17: static £y igited > Dijkstra-style implementation
18: static tp.; > Dijkstra-style implementation
19: for all %, previous state of state j do

20: if j is able to cover k then > depending on ¢; and graph relationships
21: =t -1 > decrementing time left
22: if kyisiteq = false then

23: kuisiteqa = true

24: thest =t

25: Sj — Sj U {k}

26: if t; > 0 then

27 CHECK_COVERAGE(k,t;) > time is left to explore the graph
28: end if

29: else if k,;itcq = true and ¢; > ¢p..; then

30: thest = 1 > k already visited but current ¢; is greater
31: CHECK_COVERAGE(,t;)

32: end if

33: end if

34: end for

35: end procedure

from state 7 with 4 cycles left. Step @ tests state 6 with the time remaining (4 cycles).
The result of the test is positive (i.e., 7 covers 6) because the remaining latency is not
null. Step @, the first recursive call to check_coverage on line 28, tests the previous
states of 6, starting with state 5. As the latency left is positive, state 5 is also covered.
Step @ is not completed because state 2 cannot be covered if all the switch branches
starting from it are not covered. Hence, the recursion starts back at state 6 with step @.
The second branch of the switch is then covered in its turn, step ® is completed and
state 2 is covered. State 1 is not covered because no latency is left for step @. The result
of the coverage computed gives S; = {2,3,4,5,6,7}.

The coverage analysis handles other complex situations in the same fashion. For
example, coverage limitations of a switch branch state (e.g. state 4 cannot cover state
2 or state 1 in Figure 1a), coverage of a loop by a subsequent outer state (e.g. does

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 9, Publication date: December 2016.

Generating Efficient Context-Switch Capable Circuits Through Autonomous Design Flow 9:11

S;

i
! tlat = 12
| @:3«-latency left

o i i
b recursion step !
N e ———— 7

Fig. 5: Example of coverage computation for state 7

state 6 cover the entire loop in Figures 1b and 1c¢?), coverage of nested loops and mixed
situations.

Note that to obtain coverage of a loop, the static analysis depends on information
stored in the HTG. More precisely, the loop duration — derived from the loop size and
the loop iteration number — must be known. An outer state cannot cover any states
contained within a loop with a dynamic iteration number. Thus, loops with dynamic
iteration numbers are not covered by any outer state. This is a worst-case scenario.

5.4. Greedy Heuristic

Given the complexity of the minimization problem (NP-complete) a greedy heuristic was
chosen to search the set of checkpoints. Chvatal [1979] proposed a greedy algorithm to
solve the set covering problem with a linear minimization objective. This algorithm has
an O(n?) complexity. It also ensures that the solution obtained is close to the minimal
solution in an a priori defined factor. This algorithm relies on the mean cost of a variable
z; defined as ¢;/|5;|. In this case, |S;| is the number of states covered by state j, and
¢; is the cost of this state (as defined in Section 5.2). Iteratively, this algorithm sets
the variable z; to 1 with the minimal mean cost until the problem has been completely
covered. At each iteration, the mean costs of variables are updated since some states
are already covered by previous iterations (i.e., the |S;| terms change).

The heuristic presented here proposes a small modification to adapt to the polynomial
optimization objective. The updates of the mean costs also take into account that the

cj are reduced. Indeed, variables set at previous iterations share some costs (c; in the

complex formulation) with unset variables. Those shared costs need not be counted in
subsequent iterations.

The greedy heuristic presented in Algorithm 2 begins with an initialization of different
variables (R, M and z*). Then the state k£ giving the minimal mean cost is chosen
provided all the states are not covered (line 4) and all the variables are updated. Note
that the cost is computed with the v function giving the number of bits for a set of
memory elements. M, represents the set of memory elements associated with state k.
In the algorithm, M is a constant which is provided by the HLS tool after its mapping
step. At the first iteration, v(M\ M) gives cg, like in the linear problem, as M = (). The
mean cost is also updated with the states which have already been covered (R being
removed from S;, which corresponds to the |S;\ R| part of the equation).

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 9, Publication date: December 2016.

9:12 A. Bourge et al.

Algorithm 2 Greedy heuristic for the set covering problem

R« 0 > set of states covered
M+ 0 > set of memory elements covered
z; < O0forj=0,..,n—1 > vector describing the set of checkpoints
while |R| < n do

(M \M) iy JWMAM)
hoose k AV RENGE
Choose k giving |SK\R] i:{gl.gll—l} |Si\R|

&

xf 1

R+ RUS,

M « M U M,
end while

The solution is z*, the n-vector representing the set of checkpoints. At the end of
the heuristic a set of checkpoints is obtained reducing the area overhead of the partial
extraction mechanism and ensuring the task can reach a checkpoint within time ¢;,,.
Though non-optimal by nature, experimental results showed that the heuristic gives
good results.

6. SCAN-CHAIN INSERTION

After the checkpoint selection, a scan-chain based mechanism is inserted to enable data
extraction from the circuit. This paragraph describes our approach more precisely.

6.1. Partial Extraction Mechanism

Scan-chain insertion consists of adding hardware resources (mainly multiplexors and
routing) to a circuit. Our objective was to reduce the potential impact of this addition
mainly by adopting techniques from the test field. Assumptions in this field are quite dif-
ferent, but some ideas are nevertheless applicable. For instance, Touba [2006] inspired
the idea of using partial scan-chains derived from scan trees.

The data to be extracted are given by the checkpoint selection described above. Each
checkpoint has a precise set of live variables. Instead of creating a large scan-chain
concatenating every variable, one partial scan-chain (PSC) will be created for each
checkpoint with the same context. In other words, checkpoints with the same set of
live variables trivially share the same mechanism. Such checkpoints with the same
context are grouped as scan families. The number of scan families represents the actual
number of PSCs in the circuit.

At this point, we have to oppose two technologically different types of live variables.
Indeed, a variable which is accessed through an address (i.e., inside a BRAM or a
LUTRAM) cannot be put in the same scan-chain as a variable in a register. This
means the memories will not be inserted as is into a PSC but into a specific scan-
chain. The mechanism is quite simple and consists in introducing memories directly
into a dedicated scan-chain, called a memory scan-chain (MSC). We must therefore
differentiate between the register-related context and the memory-related context. Note
that no analysis of the liveness of memory elements is considered in this study, although
a basic routine was run to remove ROMs from the memory-related context. Otherwise,
every memory element will be part of the context.

The whole mechanism consisting of PSCs and MSCs on the datapath side of the
circuit, and a scan control system on the FSM side, will later be called the partial
extraction mechanism. The following sections describe the scan control system and the
datapath modifications made to the circuit.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 9, Publication date: December 2016.

Generating Efficient Context-Switch Capable Circuits Through Autonomous Design Flow 9:13

) RN Additional states
Start context restoration |D 4

~-

D={1,4} lID=(2} ID={3}

1PSC, /PSCh 1PSCh
‘1 v 2! 31
S - — SEO
/ W)
tMSQw-
AY
context ~1.(MSQ |
extraction\ cp N (MEC)
1 N0 cPNtocra 4
/)
e to CP2 to CP3
Stop
Initial FSM

Fig. 6: Adding the scan control system

6.2. Scan Control System

To make context extraction or restoration possible, the FSM needs some additional
states. The scan control system is composed of three main parts: the identification state
and the PSC and MSC activation states. These additional states allow the circuit to
enter a context-switching mode when it reaches a checkpoint. They are depicted in
Figure 6 (right-hand panel).

The identification state (ID) allows identification of the checkpoint considered (CP)
whenever a context is to be restored or saved. It reads the value of a particular register
in the datapath containing the checkpoints identification. This register is set to the
identification of the current checkpoint when context extraction is required. Additionally,
the register is updated before a restoration so that the correct checkpoint context will
be restored and the correct restarting state attained.

A PSC, i.e., a scan-chain associated with a particular scan family, is activated during
a state represented by the PSC prefix. In this state, all the multiplexors linking the
different elements of the PSC are driven in order to extract the context from a checkpoint
for a given scan family. Then, the set of MSCs are activated individually to extract the
memory content. The PSC and MSC states are used both for extraction and restoration.
Hence, the states following an extraction or a restoration will be the same, namely ID
then PSC# then the set of MSCs, # being the scan family number for the checkpoint. In
this example, checkpoints 1 and 4 are both part of scan family 1, for which the PSC is
PSC1. Eventually, the circuit will jump to the restored checkpoint.

6.3. Scanning Registers

There are different ways of embedding registers in scan-chains, these methods are more
or less resource intensive and vary in terms of power. Our proposal includes two types of
links between registers. Both techniques have advantages, and their respective results
are presented in the experiment section. The two schemes are illustrated in Figure 7.
Only the link created is represented in the diagram, i.e., any additional multiplexors
are omitted. The first method is the naive scan-chain, which is a serial one-bit-wide link
between each register (Figure 7a). The main advantage of this method is its simplicity,
and the minimal hardware it requires. However, it requires a large number of clock
cycles to extract the whole context. A method based on parallelization of the scan-chain
can be used to improve the extraction latency. Hamzaoglu and Patel [1999] define a
parallel serial scan technique, which is similar to the solution proposed here, although

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 9, Publication date: December 2016.

9:14 A. Bourge et al.

n-out

scan-out scan-in § scan
P 1 bit (8 bits)
register

(8 bits)

scan-ino

i
register

LAULLLLAL
=r

AN

4 bi
>register

8 bit
register

> 8 bhit
register

i

dumm

i ji 7 b
reg%tbellt' >reg?stbe||t' >registe|r
(a) 1-bit-wide scan-chain (b) 8-bit-wide scan-chain

Fig. 7: Scan-chain types

scan-out

TS

=0

v 0O,

~-
Al
INW
v 0O,

-
=

scan-in
N
N

Partial scan-chains (PSC)*

=S
MSCh
]

NS -

Memory scan-chains (MSC) %"

A 5
5 din

v
\ din

E @
‘\ dout]
\

Partial extraction mechanism (PEM)

Fig. 8: Partial Extraction Mechanism (datapath), focusing on memories

it is more complex. The technique serializes whole registers, i.e., the first bit of register
1 is linked to the first bit of register 2, bit n of register 1 is linked to bit n of register 2,
etc. This eventually gives multiple parallel one-bit-wide scan-chains, as illustrated in
Figure 7b for an eight-bit-wide scan-chain. This type of chain is briefly but partially
described and no anlysis is given in [Koch et al. 2007]. Note that two 4-bit registers can
be parallelized or stacked to further improve latency. On the downside, when a register
does not fill the entire bus, dummy registers must be added (final register Figure 7b).
This is a major cause of overhead compared with the one-bit-wide scan-chain.

6.4. Scanning Memories

The final datapath modification consists in extracting memory content. To do this,
MSCs are introduced into the circuit. Figure 8 describes the architecture of the partial
extraction mechanism from the datapath side and focuses on a particular MSC.

MSCs are unrelated to PSCs. When a PSC corresponding to a checkpoint is used
(to extract or restore register-related context), all the MSCs are activated one by one
to extract memory-related context. Parallelization reduces the number of MSCs. For
instance, in MSC 2, two memories are stacked to fit the bus width (e.g. two 32-bit word-
length memories can fit in a 64-bit-wide scan-chain). Otherwise, an isolated memory
will be present on its scan-chain. This isolation will cause fragmentation of the extracted
data if a memory has a shorter word-length than the scan-chains width and if it cannot
be stacked with another memory to fill the entire width. In order to route the memories
input and output to the scanning interface, i.e., scan-in and scan-out, multiplexors are
added in the same fashion as for registers (see Figure 3b). This may lead to a reduced
operational frequency if the multiplexors are added in the critical path.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 9, Publication date: December 2016.

Generating Efficient Context-Switch Capable Circuits Through Autonomous Design Flow 9:15

7. EXPERIMENTS

This section describes the different results obtained by implementing our proposal. The
implementation is presented followed by the results of the two steps presented above
(checkpointing and insertion of a partial extraction mechanism). Two experiments
were performed on the register and memory extraction mechanisms, respectively. Both
highlight the necessary trade-offs that had to be made with respect to the internal
fragmentation of the scan-chain method. Finally, the hardware overhead and the impact
on application performance are presented.

7.1. Implementation: CP3 Tool

An implementation of the method described was done in a tool named CP3 [Bourge
et al. 2015], standing for CheckPoint PinPoint. This tool is written in C as a plugin
for the existing HLS tool AUGH. AUGH is a free and open-source HLS tool developed
by Prost-Boucle et al. [2014], it is designed to create hardware accelerators meeting
resource constraints. It takes a subset of ANSI C as input to produce VHDL, regardless
of the final target. Its specificity is that it runs an autonomous design space exploration
(DSE) so that application developers need not focus on hardware.

As a plugin for AUGH, CP3 is also free and open-source. It is distributed as a branch
in the current code repository. CP3 is not a standalone tool as it uses extensively the
AUGH intermediate representation of circuits. The input of CP3, as stated in Section 4.1,
is the HTG of the input application. More parameters are given to the AUGH command
line, such as the authorized latency (¢;,;) and the scan-chain type and width. The tool
behavior has been verified through simulations and tests with a complete system-on-
chip. A set of eight applications was used for benchmarking, seven were taken from the
CHStone benchmark suite (adpcm, aes, blowfish, gsm, mjpeg, mpeg2 and sha) [Hara
et al. 2009], and the remaining application is a simple idct algorithm. This set is
representative as it goes from data-flow to control-flow oriented applications with a
range of characteristics and sizes.

7.2. Checkpoints

The first step in our proposal consists in selecting checkpoints or states where context-
switching is permitted. One should note that AUGH can generate multicycles states
but they are kept from being selected as checkpoints by CP3 to ease the mechanism
complexity. The main constraint respect, keeping within a bounded extraction time
as stated in 4.3, was checked experimentally. Quantitative results for the algorithm
proposed are presented in Table IIT and are commented on here. The data were obtained
with ¢;,; = 15,000 cycles. In [Bourge et al. 2015], we showed that overestimating the
latency value does not affect the best latency achievable by the circuit, which will be
less than the selected latency. Hence, a constant value high enough to fit with every
application was chosen.

The first result to point out is the small number of checkpoints effectively selected in
the end, with a ratio of checkpoints to total states of 6.4%. The scan family selection was
also notably more efficient with applications where a large number of checkpoints were
selected (mjpeg and mpeg2). Many checkpoints share the same context in this case.

The fourth column shows the size of a full scan-chain, i.e., if all the registers of the
circuits were selected for extraction. This value is used for further comparisons. The
next column represents the size of the complete set of registers that will be present
in one or more PSCs, it could be compared with the full scan-chain to illustrate the
initial reduction of the set of extractable variables, but no actual data are available
at this point. Nonetheless, a smaller number of registers to extract could result in
a lower hardware overhead (fewer multiplexors and routing resources). In terms of

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 9, Publication date: December 2016.

9:16 A. Bourge et al.

Table III: Results of the proposed method on a common application set

of PSC checkpoint full partial max mean gain
/checkpoints ratio scan-chain extraction PSC PSC (full/
/states (bit) mech. (bit) (bit) (bit) mean)
adpcm 6/6/131 4.6 % 6304 4384 4288 2778 2,3X
aes 3/5/1053 0.5 % 1616 200 168 163 9,9X
blowfish 5/6/112 54 % 568 392 224 124 4,6X
gsm 12/14/1712 0.8 % 864 448 160 59 14,6X
idct 2/2/233 0.9 % 1000 40 40 36 27,8X
mjpeg 43/104/887 11.7 % 5762 2114 770 444 13,0X
mpeg2 12/19/94 20.2 % 1384 1216 1088 774 1,8X
sha 7/10/134 7.5 % 3168 352 256 176 18,0X
Mean 6.4% | 11.5X

reducing hardware overhead and impact on the circuit’s characteristics, the benefits
are observable after implementation of the partial extraction mechanism.

A final remark can be made about the idct. This simple application can execute in less
than ¢;,; (15,000 cycles). Thus, it could be integrated effortlessly in a "run to completion”
model, i.e., where a task started by the system finishes without interruption. The
experiment shows that CP3 automatically handles such cases, since only 2 checkpoints
are selected: input and output of handshake loops.

7.3. Partial Scan-Chains

Partial scan-chains were implemented after the scan families had been selected. The
three last columns of Table III, showing the gain obtained for the register-related context
thanks to the PSCs, will be analyzed in this paragraph.

The fifth column (max PSC) is the size of the biggest PSC in the circuit. This value
can sometimes be almost as great as the size of the partial extraction mechanism.
However, having one large PSC is not necessarily harmful as it can correspond to a
checkpoint with a low matching probability (i.e., a state rarely occurring). The next
column — the mean PSC size — is the most interesting result in the table as it represents
the mean register-related context that must be extracted when a checkpoint is reached.
Again, this is not wholly representative of the mean size of the context as more probable
checkpoints cannot be assessed. Nevertheless, when compared with a full scan-chain,
where the footprint is set to a certain value, the gains are substantial. Extracting
only the context-necessary data is thus apparently very beneficial, with a geometric
mean reduction of 11.5 times the size of the register-related context. This equates to a
reduction of impact on the surrounding system and a diminished context-switch latency
compared to a full scan-chain method. Even if this last point is a firm constraint for
the circuit (as the t¢;,; parameter of the checkpoint selection), it remains a worst-case
scenario. Indeed, if a checkpoint is nearby when a context-switch is required, and if this
checkpoint has a small context size, the context-switching process can be completed in
a very small number of cycles.

7.4. Partial Scan-Chain Fragmentation

PSCs can be implemented in two ways (see Section6.3). The first way, with a naive
one-bit scan-chain, comes at the minimum theoretical cost but also provides the slowest
extraction time, as bits must be serially extracted. The other way involves multiple
parallel one-bit scan-chains to build a parallel link between registers. This method
divides the extraction time by a factor corresponding to the width of the scan-chain. CP3
can produce both types of chains. The overhead introduced by scan-chain fragmentation
in the second method is discussed here.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 9, Publication date: December 2016.

Generating Efficient Context-Switch Capable Circuits Through Autonomous Design Flow 9:17

Table IV: Dummy registers (DR) quantification

total DR (bit) | mean DR/PSC (bit) |size wrt mean PSC size | ratio w/o id-related DR

32-bit 64-bit | 32-bit 64-bit | 32-bit 64-bit | 32-bit 64-bit
adpcm n/a 157 n/a 77 n/a 2.8% n/a 0.6%
aes 53 149 37 90 22.71% 55.2% 4.9% 17.8%
blowfish 53 213 33 91 26.6% 73.4% 3.2% 24.2%
gsm 124 412 36 89 61.0% 150.8% 13.6% 49.2%
idct 54 118 42 90 116.7% 250.0% 33.3% 77.8%
mjpeg 875 1611 44 93 9.9% 20.9% 4.3% 8.1%
mpeg2 27 187 27 69 3.5% 8.9% 0% 1.3%
sha 28 92 28 64 15.9% 36.4% 0% 2.3%
Mean 37% 75% 8.5% 23%

Table IV shows the results of the circuits built with the parallel scan-chain scheme in
CP3. The PSC implementation was run both with a width of 32 bits and a width of 64
bits. The 32-bit-wide scan-chain could not be used with adpecm because this application
uses some 64 bit registers and the current implementation cannot handle registers that
need to be split to fit the available width. The first two columns present the number
of dummy registers (DR) inserted to allow scan-chain parallelization. There can be at
most one DR per scan-chain word (see Figure 7b). Some DRs may be shared between
PSCs. In particular, the id of the corresponding checkpoint was added to every PSC
header. In each implementation, this id is isolated on its PSC word, thus for a 32 bit
wide scan-chain, if this id is 4 bits wide (e.g. for the sha application with 10 checkpoints),
a shared DR of at least 32 — 4 = 28 bit will be present in every PSC. The same example
with a 64 bit wide scan-chain gives 64 — 4 = 60 bit which more than double the dummy
register width. This specific DR will later be called the id-related DR. For the sha
application, the table shows this id-related DR to be the only DR added, and that it is
shared by all 7 PSCs. For each application, an id-related DR will be created.

Because the primary contributor to the mean DR per PSC is the id-related DR, this
mean is very stable even when comparing different applications. Indeed, the mean DR
ranges from 1 bit (idct) to 7 bits (mjpeg), corresponding to an id-related DR ranging
from 63 to 57 bits for 64-bit-wide PSCs.

The next two columns show the fragmentation problem faced (i.e., is it possible to
stack the PSC registers to avoid introducing a fragmentation overhead?). We see that
when the width of the PSCs increases, the fragmentation overhead also increases. In
general, when an application is 32-bit-wide compatible (all except adpcm), the results
are not improved by extending the width to 64 bits, as the overhead is more than doubled.
Finally, some applications are very sensitive to fragmentation, and it is not possible
to find a good way to build the PSC for these cases in our current implementation.
For instance with a 64 bit-wide scan-chain, the volume of extracted data for gsm and
idct are more than doubled (+150.8% and +250%, respectively). On the other hand,
adpcm undergoes almost no data fragmentation, with only a 2.8% addition. The last two
columns show the same ratio as the previous ones excluding the id-related DR. These
figures highlight the contribution of the id-related DR to the cost of fragmentation.

Despite these results showing a considerable overhead when parallelizing scan-chains
paths, an advantage remains: broadening the scan-chain makes it possible to introduce
MSCs more easily.

7.5. Memory Scan-Chain

This paragraph describes the overhead associated with memory extraction as above for
DR. Table V compiles the data gathered for the memory-related context size (second
column), the extraction time for this context with fragmentation (third and fourth

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 9, Publication date: December 2016.

9:18 A. Bourge et al.

Table V: Size of memories to extract and associated fragmentation

| Extraction time (cycles) | fragmentation overhead | fragmentation ratio

size (bits) | 32-bit 64-bit | 32-bit 64-bit | 32-bit 64-bit

adpcm 9600 n/a 200 n/a 3200 n/a 25%
aes 18432 576 544 0 16384 0% 47%
blowfish 34048 1082 1082 576 35200 2% 51%
gsm 3264 178 169 2432 7552 43% 70%
idct 2560 128 64 1536 1536 38% 38%
mjpeg 288808 13350 6803 138392 146584 32% 34%
mpeg2 16768 2060 2052 49152 114560 75% 87%
sha 672 21 16 0 352 0% 34%
Mean 27% 48%

columns) and the evaluation of this fragmentation. The latter is presented as a raw
overhead in bits and as a ratio of the total data extracted.

Memory-related context size varies considerably between applications (sha has 672 bit
whereas mjpeg has more than 288 kbit). The current implementation, as for registers,
can only produce a minimum scan-chain width of the same size as the largest memory
word in the circuit. Indeed, MSCs cannot divide memory words into smaller parts. On
the other hand, several memories can be parallelized if their combined word lengths fit
into the scan-chain width (6.4). More efficient mechanisms could be designed in order to
reduce or remove fragmentation. This paper presents the simplest one in order to avoid
overheads. The adpcm has memory words wider than 32 bits, making a 32-bit-wide
scan-chain inappropriate. However, for the other applications, it is not necessary to
take a 64-bit-wide scan-chain. The experiment was performed to see if this could have
a positive impact and to assess the drawbacks. Our conclusion is that broadening the
data channel more than necessary is not effective, just as for the PSCs in the previous
paragraph. A final observation is that extracting all the memories for the switching
application is quite expensive in terms of latency, bandwidth, data storage needs and
fragmentation costs.

7.6. Hardware Overhead

Here, we will discuss the hardware overhead of the method in LUT and FF, applied with
different parameters. Firstly, a distinction was made between a bare circuit and three
circuits differently equipped for context-switching. The results presented above with
regard to the fragmentation cost of the different steps of the method were underlined.
Then, two circuits with the same context-switch capability were compared to illustrate
the advantages of the proposed method over a full scan-chain method.

The various means of embedding the partial extraction mechanism have a changing
impact on the circuit size (Figure 9). The number of LUT and flip-flop were normalized
with respect to the quantity of LUT for a bare circuit. This normalization makes it
possible to compare the overhead between applications and to illustrate the LUT/FF
ratio. All the results were taken after logic synthesis with ISE 14.7 software (Xilinx)
with target xc7v585t. This target was oversized to avoid potential routing shortages
and to obtain the most realistic method-related cost. In terms of the parameters for
CP3, three circuits were built in addition to a bare one. The first circuit had a naive
1-bit-wide partial extraction mechanism and did not include memory extraction. The
second circuit also lacked a memory scan-out mechanism; it was based on a 32-bit-
wide partial extraction mechanism. The last circuit was built with a full 32-bit-wide
partial extraction mechanism. Currently, PSCs and MSCs share the same input and
output pins (see Figure 8). Hence, a 1-bit-wide partial extraction mechanism could

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 9, Publication date: December 2016.

Generating Efficient Context-Switch Capable Circuits Through Autonomous Design Flow 9:19

20 - - N - Lo

S ey
1 bare circuit LUT 3 bare circuit FF
1 one-bit + no memories LUT X one-bit + no memories FF 185
1 32-bit + no memories LUT [32-bit + no memories FF
[32-bit + memories LUT I 32-bit + memories FF B
T T e e e N NS
=
B -
5 S 1.32
[o g -
) m 117 _
| A 1 . 112 - 11 1.08
SO - - 104 -t - - S — 103 A ----- ALE------ -
Q
B
'S
g
-
)
=]
os5HILE-FEERHI LR - - -H - -(F LR TEERH - - - - -

wur| ¥F | Lur] FF | Lur] FrF | wot] R | Lur] FF | Lur] Fr | wot] R | ot FF<‘
ADPCM* | AES BF GSM IDCT | MJPEG | MPEG2 SHA
Application

Fig. 9: Post logic synthesis area results expressed in LUT and FF (ISE 14.7)

*: adpem has a 64-bit-wide mechanism

never contain memory words; similarly, as the adpcm is not 32 bit compliant, it was
built with a 64 bit-wide mechanism.

Overall, the number of FF was less than twice the number of LUT (which is the
resource distribution ratio in Virtex 7 technology [Xilinx 2014]). Because of this ratio,
we focused on the LUT results. The applications responding best to the mechanism
added were aes, idct and sha. These three applications have a LUT overhead of less
than 8% even with a full mechanism. The FF overhead was also small (6%, 10% and
5%, respectively). These three circuits had the smallest partial extraction mechanisms
(cf. Table III). Three other applications (adpcm, gsm and mjpeg) gave intermediate
results. The LUT overheads were 24%, 12% and 17%, respectively. These overhead
results are comparable with [Koch et al. 2007], even though in our solution an extra
memory extraction mechanism is proposed.

One particular case, blowfish (abbreviated "bf” in the Figure), has decent results for
the mechanisms not including memory extraction. However, a hardware overhead peak
was observed when the MSCs were added. This is because ISE can no longer optimize
some memory mapping. The mpeg2 application had the highest overhead (85%). This is
probably because this application has the highest checkpoint ratio (20%) in addition to
a weak register-related context reduction (1.8-fold). A comparable application in terms
of checkpoint ratio is the mjpeg decoder which had a lower overhead (17%). Indeed, both
applications undergo approximately the same LUT growth but the bare circuits are not
the same size initially. The decoder is a larger application at the outset, hence the LUT
addition is less visible.

Table VI presents a comparison of two scan-chain types. Four syntheses (ISE 14.7 on
xc7v585t) are shown: two are 1-bit-wide mechanisms and the other two are 32-bit-wide
mechanisms. For each width, one scan-chain insertion is run with the method presented
and another is added using a full scan-chain. The full scan-chain corresponds to the
”full” column of the table whereas the "PSC” column corresponds to the circuit built
using our method. The full scan-chain insertion is a link made between each register
of the circuit. The addition is done with the CP3 software as if it was a circuit with a
single PSC containing all the registers. Thus, the same CP3 software function is used

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 9, Publication date: December 2016.

9:20 A. Bourge et al.

Table VI: Comparison between full scan-chain and partial extraction mechanism
*: adpem has a 64-bit-wide mechanism

1-bit-wide scan-chain | 32-bit-wide scan-chain
LUT \ FF \ LUT \ FF
full PSC % | full PSC % | full PSC % | full PSC %
adpem® 12602 10399 —17,5% | 6566 6078 —7,4% |12600 10773 —14,5% | 6600 6175 —6,4%

aes 7833 7172 —8,4% |2970 2769 —6,8% | 7889 7198 —8,8% |2977 2793 —6,2%
blowfish 4145 4156 0,3% | 739 736 —0,4% | 4145 4222 1,9% | 787 760 —3,4%
gsm 5462 5294 —3,1% |2868 2826 —1,5% | 5462 5431 —0,6% |2868 2921 1,8%
idct 4799 4481 —6,6% |1478 1450 —1,9% | 4799 4482 —6,6% |1502 1474 —1,9%

mjpeg 36236 34629 —4,4% |7038 7025 —0,2% | 36230 36044 —0,5% |7069 7773 10,0%
mpeg2 3388 3481 2,7% |1535 1507 —1,8% | 3388 3720 9,8% |1559 1553 —0,4%
sha 8440 5803 —31,2% (3351 3377 0,8% | 8415 5895 —29,9% |3353 3377 0,7%

Mean -8.5% | -2.4% | -6.2% | -0.7%

to build the PSCs and the full scan-chain. The latter will suffer the same drawbacks
due to DR addition when building a 32-bit-wide chain.

Again, the LUT results were more relevant as flip-flop numbers were two-fold lower for
all the applications tested. The partial extraction mechanism gave better results overall
on the LUT number than the simpler mechanism of the full scan-chain (which implies
addition of fewer multiplexors) except for the mpeg2 application where the relatively
large and numerous PSCs cause the circuit to be overweight. Register selection cannot
compensate for this overhead. For all the applications, the mitigated (—0.8%) flip-flop
results with the 64-bit-wide partial extraction mechanism were mostly due to the
multiplication of DRs. These registers are not shared when building PSCs in the
current implementation. As a whole, this table shows the average positive effect (—6.9%
LUT) on the area covered by the method when using a 32 bit-wide scan-chain. The two
circuits compared had similar capacities, but the one built with our method tended to
be smaller.

7.7. Application Performance

The ultimate optimization objective of the proposal, how it affects application perfor-
mance is the focus of this paragraph. The maximum frequency achievable is used as
the metric to compare how the circuits perform. After place and route with ISE 14.7,
this particular value is reported in Table VII. The table presents the difference between
the critical path and frequency of a bare circuit and a circuit with a full mechanism (i.e.,
a 32 bit-wide mechanism with memory extraction). The mpeg2 suffers from the mecha-
nism insertion as it experiences a 10% frequency drop. This can be explained in part
by the high proportion of circuit registers present in the partial extraction mechanism
(1216 on 1384 registers cf. Table III). The operating frequency of the majority of the
circuits is reduced by less than 1% and is reduced by 2.6% on average.

8. DISCUSSION

With no design efforts, the CP3 plugin automatically produces a circuit in HDL with
context-switch capacity from a C file. The circuit produced respects an extraction
latency indicated by the user. The applications produced by CP3 are portable as they
are written in HDL. The experiments performed demonstrated the advantages offered
and trade-offs required by the method.

First, we worked on the impact on the system as a whole. The gain can be illustrated
both in terms of context size and extraction latency as described by [Jozwik et al.
2012]. The two methods (readback and memory-mapped, see Section 3) presented by
these authors allow a fair comparison of gsm, idct and sha applications. Table VIII
summarizes the data gathered. With our solution, the context size was calculated by

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 9, Publication date: December 2016.

Generating Efficient Context-Switch Capable Circuits Through Autonomous Design Flow 9:21

Table VII: Post mapping critical path and frequency results (ISE 14.7)

*: adpem has a 64-bit-wide mechanism

Critical path (ns) | frequency (MHz)

bare full | Dbare full %
adpem* 9.654 9.709 103.581 102.997 0.56%
aes 5.173 5.178 193.298 193.141 0.08%
blowfish 5.87 5.874 170.364 170.242 0.07%
gsm 12.963 13.462 77.141 74.281 3.71%
idct 12.628 12.628 79.188 79.188 0.00%

mjpeg 41.102 44.006 24.33 22.724 6.60%
mpeg2 13.038 14.476 76.696 69.082 9.93%
sha 8.969 8.973 111.492 111.44 0.05%

Mean 2.6%

Table VIII: State of the art comparison

‘ [Jozwik et al. 2012] [Jozwik et al. 2012] Checkpointing + partial
readback (CPA) memory map (TSAS) scan-chains
gsm 99.7 kbit 5.37 kbit 5.90 kbit
Context size idct 49.6 kbit 1.25 kbit 4.20 kbit
sha 47.5 kbit 1.65 kbit 0.83 kbit
gsm 299 us n/a 2.6 1s (190 cycles @ 74 MHz)
Extract time idct 151 us 266 us 1.6 us (130 cycles @ 79 MHz)
sha 144 ps 351 ps 0.23 s (26 cycles @ 111 MHz)

applying the following formula: Cy;.. = scan-chain width x (extraction_time,,emories +
extraction_time, cg;siers) With scan-chain width = 32 bit, extraction_time,,cmorics taken
from Table V as an exact value, and extraction_time,cgistcrs given by CP3, but as an
estimated mean value. The figures presented highlight the methods efficiency. Indeed,
the context size is comparable for TSAS and checkpointing, but extraction time is much
shorter in our case. CPA is profitable neither for context size nor for extraction time.
A final comparison can be made with software context-switch. In general, the latter
can span from several microseconds to more than one thousand microseconds as stated
in [Li et al. 2007].

We then focused on the hardware overhead and the necessary trade-offs to be con-
sidered with the partial scan-chain method. The fragmentation problem induced by
parallelization of the scan-chains and straightforward extraction of the memories is
complex. The main idea is that the scan-chain width should be adapted to the ap-
plication considered, as we showed that applications fitting a 32-bit scan-chain have
poorer results when built with a 64-bit-wide scan-chain. In compensation however,
extraction was almost always faster with a 64-bit-wide scan-chain. When compared to a
full scan-chain, our method presented a smaller overhead in addition to the previous
advantages. Finally, the application performances were consistent and post place and
route results produced by ISE 14.7 did not show substantial variations in terms of
operational frequency for the applications tested.

9. CONCLUSION AND FUTURE WORK

Efficient hardware context-switching on FPGA allows for numerous practical applica-
tions. This paper presents a method to enable context extraction from a circuit running
on a reconfigurable fabric. The addition of this mechanism comes at a cost which is
variable depending on the application. However, it has a low impact on application
performance and consequently tends to reduce the context size compared with readback
methods and even full scan-chain methods. Context extraction is also much faster with

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 9, Publication date: December 2016.

9:22 A. Bourge et al.

our mechanism than with a readback method. Finally, the circuits built with CP3 are
portable, which makes them potential candidates for widespread flexible usage.

This work is highly compatible with much of the existing literature: dynamic (or not)
partial reconfiguration, scheduling of hardware tasks, etc. Future work should include
liveness flags for addressable variables in order to reduce the memory-related context
size. Another option could be to improve PSC construction by including scan-chain
reordering [Zaourar et al. 2012] and/or cost-free scans [Lin et al. 1995]. Eventually,
further research on how to limit the number of PSCs (to limit hardware overhead from
multiplexors and dummy registers) while keeping a fast context extraction could prove
interesting.

REFERENCES

Ghazanfar Asadi and Mehdi B Tahoori. 2005. Soft error rate estimation and mitigation for SRAM-based
FPGAs. In Proceedings of the 2005 ACM /| SIGDA 13th international symposium on Field-programmable
gate arrays. ACM, 149-160.

Brandon Blodget, Philip James-Roxby, Eric Keller, Scott McMillan, and Prasanna Sundararajan.
2003. A Self-reconfiguring Platform. Springer Berlin Heidelberg, Berlin, Heidelberg, 565-574.
DOI: http://dx.doi.org/10.1007/978-3-540-45234-8_55

Alban Bourge, Olivier Muller, and Frédéric Rousseau. 2015. Automatic High-Level Hardware Checkpoint
Selection for Reconfigurable Systems. In Field-Programmable Custom Computing Machines (FCCM),
2015 IEEE 23rd Annual International Symposium on. 100-103.

Alexander Brant and Guy GF Lemieux. 2012. ZUMA: An open FPGA overlay architecture. In Field-
Programmable Custom Computing Machines (FCCM), 2012 IEEE 20th Annual International Symposium
on. IEEE, 93-96.

G.C. Buttazzo, M. Bertogna, and Gang Yao. 2013. Limited Preemptive Scheduling for Real-Time Systems. A
Survey. Industrial Informatics, IEEE Transactions on 9, 1 (Feb 2013), 3-15.

Vasek Chvatal. 1979. A greedy heuristic for the set-covering problem. Mathematics of operations research 4, 3
(1979), 233-235.

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, Clifford Stein, and others. 2001. Introduction to
Algorithms. Vol. 2. MIT Press and McGraw-Hill.

IfeanyiP. Egwutuoha, David Levy, Bran Selic, and Shiping Chen. 2013. A survey of fault tolerance mecha-
nisms and checkpoint/restart implementations for high performance computing systems. The Journal of
Supercomputing 65, 3 (2013), 1302-1326. DOI : http://dx.doi.org/10.1007/s11227-013-0884-0

Elmootazbellah Nabil Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B Johnson. 2002. A survey of
rollback-recovery protocols in message-passing systems. ACM Computing Surveys (CSUR) 34, 3 (2002),
375-408.

Sandor P Fekete, Tom Kamphans, Nils Schweer, Christopher Tessars, Jan C van der Veen, Josef Anger-
meier, Dirk Koch, and Jiirgen Teich. 2012. Dynamic defragmentation of reconfigurable devices. ACM
Transactions on Reconfigurable Technology and Systems (TRETS) 5, 2 (2012), 8.

Taro Fuyjii, K-i Furuta, and others. 1999. A dynamically reconfigurable logic engine with a multi-context/multi-
mode unified-cell architecture. In ISSCC, 1999. IEEE.

Milind Girkar and Constantine D Polychronopoulos. 1994. The hierarchical task graph as a universal
intermediate representation. International Journal of Parallel Programming 22, 5 (1994), 519-551.
Nan Guan, Qingxu Deng, Zonghua Gu, Wenyao Xu, and Ge Yu. 2008. Schedulability Analysis of Preemptive
and Nonpreemptive EDF on Partial Runtime-reconfigurable FPGAs. ACM Trans. Des. Autom. Electron.

Syst. 13, 4, Article 56 (Oct. 2008), 43 pages. DOI: http://dx.doi.org/10.1145/1391962.1391964

Ilker Hamzaoglu and Janak H Patel. 1999. Reducing test application time for full scan embedded cores. In
Fault-Tolerant Computing, 1999. Digest of Papers. Twenty-Ninth Annual International Symposium on.
IEEE, 260-267.

Yuko Hara, Hiroyuki Tomiyama, Shinya Honda, and Hiroaki Takada. 2009. Proposal and quantitative
analysis of the CHStone benchmark program suite for practical C-based high-level synthesis. Information
and Media Technologies 4, 4 (2009), 740-752.

Scott Hauck and Andre DeHon. 2010. Reconfigurable Computing: The Theory and Practice of FPGA-Based
Computation. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Karel Heyse, Timothy N Davidson, Elias Vansteenkiste, Karel Bruneel, and Dirk Stroobandt. 2013. Efficient
implementation of virtual coarse grained reconfigurable arrays on FPGAs. In Field Programmable Logic
and Applications (FPL), 2013 23rd International Conference on. IEEE, 1-8.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 9, Publication date: December 2016.

http://dx.doi.org/10.1007/978-3-540-45234-8_55
http://dx.doi.org/10.1007/s11227-013-0884-0
http://dx.doi.org/10.1145/1391962.1391964

Generating Efficient Context-Switch Capable Circuits Through Autonomous Design Flow 9:23

Krzysztof Jozwik, Hiroyuki Tomiyama, Masato Edahiro, Shinya Honda, and Hiroaki Takada. 2012. Compari-
son of preemption schemes for partially reconfigurable FPGAs. Embedded Systems Letters, IEEE 4, 2
(2012), 45-48.

Heiko Kalte and Mario Porrmann. 2005. Context saving and restoring for multitasking in reconfigurable
systems. In FPL, 2005. IEEE.

Dirk Koch, Christian Haubelt, and Jiirgen Teich. 2007. Efficient hardware checkpointing: concepts, overhead
analysis, and implementation. In Proceedings of the 2007 ACM | SIGDA 15th international symposium on
Field programmable gate arrays. ACM.

Wesley J. Landaker, Michael J. Wirthlin, and Brad L. Hutchings. 2002. Multitasking Hardware on the
SLAACI-V Reconfigurable Computing System. Springer Berlin Heidelberg, Berlin, Heidelberg, 806-815.
DOI:http://dx.doi.org/10.1007/3-540-46117-5_83

L Levinson, Reinhard Méanner, M Sessler, and Harald Simmler. 2000. Preemptive Multitasking on FPGAs..
In FCCM, 2000. Citeseer, 301-302.

Chuanpeng Li, Chen Ding, and Kai Shen. 2007. Quantifying the cost of context switch. In ExpCS 2007. ACM,
2.

Yun Liang, Kyle Rupnow, Yinan Li, Dongbo Min, Minh N Do, and Deming Chen. 2012. High-level synthesis:
productivity, performance, and software constraints. Journal of Electrical and Computer Engineering
2012 (2012), 1.

Chih-Chang Lin, Mike Tien-Chien Lee, Malgorzata Marek-Sadowska, and Kuang-Chien Chen. 1995. Cost-free
scan: a low-overhead scan path design methodology. In Proceedings of the 1995 IEEE | ACM international
conference on Computer-aided design. IEEE Computer Society, 528-533.

J-Y Mignolet, Vincent Nollet, Paul Coene, Diederik Verkest, Serge Vernalde, and Rudy Lauwereins. 2003.
Infrastructure for design and management of relocatable tasks in a heterogeneous reconfigurable system-
on-chip. In DATE, 2003. IEEE, 986-991.

Kyprianos Papadimitriou, Apostolos Dollas, and Scott Hauck. 2011. Performance of partial reconfiguration in
FPGA systems: A survey and a cost model. ACM Transactions on Reconfigurable Technology and Systems
(TRETS) 4, 4 (2011), 36.

Adrien Prost-Boucle, Olivier Muller, and Frédéric Rousseau. 2014. Fast and standalone Design Space Explo-
ration for High-Level Synthesis under resource constraints. Journal of Systems Architecture 60 (2014),
79-93.

M Sonza Reorda, Massimo Violante, Cristina Meinhardt, and Ricardo Reis. 2009. A low-cost SEE mitigation
solution for soft-processors embedded in systems on programmable chips. In Proceedings of the Conference
on Design, Automation and Test in Europe. European Design and Automation Association, 352—357.

Stephen M Scalera and Jése R Vazquez. 1998. The design and implementation of a context switching FPGA.
In FCCM, 1998. IEEE, 78-85.

Andrew G Schmidt, Bin Huang, Ron Sass, and Matthew French. 2011. Checkpoint/restart and beyond:
resilient high performance computing with FPGAs. In Field-Programmable Custom Computing Machines
(FCCM), 2011 IEEE 19th Annual International Symposium on. IEEE, 162-169.

Pete Sedcole, Brandon Blodget, Tobias Becker, James Anderson, and Patrick Lysaght. 2006. Modular dynamic
reconfiguration in Virtex FPGAs. In Computers and Digital Techniques, IEE Proceedings. IET.

H. Simmler, L. Levinson, and R. Méanner. 2000. Multitasking on FPGA Coprocessors. Springer Berlin
Heidelberg, Berlin, Heidelberg, 121-130. DOI : http://dx.doi.org/10.1007/3-540-44614-1_13

Nur A Touba. 2006. Survey of test vector compression techniques. Design & Test of Computers, IEEE 23, 4
(2006), 294-303.

Steven Trimberger, Dean Carberry, Anders Johnson, and Jennifer Wong. 1997. A time-multiplexed FPGA. In
FCCM, 1997. IEEE, 22-28.

Michael Ullmann, Michael Hiibner, Bjorn Grimm, and Jiirgen Becker. 2004. An FPGA run-time system for
dynamical on-demand reconfiguration. In IPDPS, 2004. IEEE, 135.

Timothy Wheeler, Paul Graham, Brent Nelson, and Brad Hutchings. 2001. Using design-level scan to improve
FPGA design observability and controllability for functional verification. In FPL, 2001. Springer, 483-492.

Xilinx. 2010. Partial Reconfiguration User Guide. (2010). UG702.
Xilinx. 2014. 7 Series FPGAs Configurable Logic Block. (2014). UG474.

Lilia Zaourar, Yann Kieffer, and Chouki Aktouf. 2012. A graph-based approach to optimal scan chain stitching
using RTL design descriptions. VLSI Design 2012 (2012), 3.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 9, Publication date: December 2016.

http://dx.doi.org/10.1007/3-540-46117-5_83
http://dx.doi.org/10.1007/3-540-44614-1_13

