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ABSTRACT
In recent years, query recommendation algorithms have been de-
signed to provide related queries for search engine users. Most of
these solutions, which perform extensive analysis of users’ search
history (or query logs), are largely insufficient for long-tail queries
that rarely appear in query logs. To handle such queries, we study a
new solution, which makes use of a knowledge base (or KB), such
as YAGO and Freebase. A KB is a rich information source that
describes how real-world entities are connected. We extract enti-
ties from a query, and use these entities to explore new ones in the
KB. Those discovered entities are then used to suggest new queries
to the user. As shown in our experiments, our approach provides
better recommendation results for long-tail queries than existing
solutions.

1. INTRODUCTION
Keyword search, which allows a user to express her query with a

number of keywords, has become a fundamental tool in Web search
engines. In the last decade, significant improvements have been
made to improve the accuracy of keyword search [10]. Recently,
the topic of query recommendation, which is closely related to key-
word search, has attracted a lot of interest from research and in-
dustry communities. Besides displaying the “classic ten blue result
links” from her keyword search, a search engine may suggest al-
ternative formulations of the query, which can be more articulated,
focused, and interesting to the user. Providing accurate query rec-
ommendations while the user is typing her query, almost instanta-
neously, can be extremely beneficial, in terms of enhancing the user
experience and providing guidance to the retrieval process [11].

Existing work on query recommendation often involves the anal-
ysis of query logs, which contain a variety of information about pre-
vious keyword search activities (e.g., the query contents, the web-
pages selected by users, and click-through rates) [1, 2, 23]. These
query logs are often used to construct a graph, which represents the
relationship among queries, terms, and webpages; often, an impor-
tance weight for each edge is also computed. For example, in [4],
the weight between two query nodes is proportional to the number
of times the two queries appear in the same session. While these
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works have been shown to be useful for query recommendation,
most of them do not focus on long-tail queries, i.e., queries that
rarely appear in query logs. The fact is that long-tail queries exist in
abundance, and they cannot be ignored. In our experiments, 32% of
20 million queries appear three or fewer times in an extended query
log from a commercial search engine. Because a long-tail query has
a low occurrence frequency (and statistical significance), the accu-
racy of query recommendation solutions can be affected. We have
tested the query-flow graph (QFG) method [4] and the term-query-
flow graph (TQGRAPH) one [6], two well-known query recom-
mendation algorithms, on long-tail queries. As we will discuss in
our experimental results, they are far from accurate, reflecting that
there is room for improvement in the recommendation process.

In this paper, we propose an effective recommendation algo-
rithm, called KB-QREC, for long-tail queries. Its main idea is to
utilize a knowledge base (or KB) in the query suggestion process.
A KB, such as YAGO [19] and Freebase [5], is a rich information
source that describes the intricate relationships among real-world
entities. Our solution uses a KB to assist the query recommen-
dation process, alleviating the low-frequency problem of long-tail
queries. Let us consider the following query:

q1: akira kurosawa influence george lucas

Through an entity-linking process [22], Akira_Kurosawa and George
_Lucas are identified to be the entities in the KB. Then, KB-QREC
explores entities in the KB that are conceptually related to them.
For example, Hidden_Fortress is a film directed by Akira_Kurosawa,
and Star_Wars is one directed by George_Lucas. The relationships
among these entities can be expressed by a meta path [16]:

P1 : director
directed−−−−−→ film,

where director, film, and directed are the types of nodes and links,
respectively, in a KB. Correspondingly, the meta path instance
Akira_Kurosawa directed−−−−−→ Hidden_Fortress exists in the KB. The
meta-path P1 can also describe the relationship between entities
George_Lucas and Star_Wars.

Next, KB-QREC uses the two discovered entities to suggest for
q1 the following alternative query:

q2: hidden fortress star wars comparison

In other words, KB-QREC extracts the entities of a query, dis-
covers more entities from the underlying KB, and uses those found
entities to suggest queries to a user.

Challenges and solutions. In the process illustrated above, we
have to address a few challenges. First, given the entities found
in a query (e.g., Akira_Kurosawa and George_Lucas in q1), how
do we find other entities from the KB? As discussed before, meta
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paths, such as P1, can be used in this process. However, there can
be a huge number of meta paths connecting two KB nodes [16],
hence we need to identify the useful ones given a large number of
entity pairs. Second, after these entities are discovered, we need to
perform query recommendation based on them. We examine how
KB-QREC can be designed to tackle these challenges, giving fast
and accurate query recommendation. We have also tested our solu-
tions on real datasets. We found that KB-QREC can rightly suggest
queries that are otherwise absent from other existing approaches.

The paper is organized as follows. We discuss related works in
Section 2. Some preliminary information is given in Section 3.
We present KB-QREC in Section 4. Our experimental results are
discussed in Section 5. We conclude in Section 6.

2. RELATED WORKS
There is a rich body of research on mining the query terms, click-

through data, and the logical user sessions in order to extract useful
patterns and similarity measures – be it syntactical, semantical, or
behavioral – for alternative query formulations in Web search en-
gines. At their core, the techniques boil down to computing simi-
larity between query instances, often using as an intermediary step
various graphs involving queries, pages, users, and terms.

The short paper of [25] was among the first to suggest mining
from query logs the sequential search behavior, and to combine
it with content-based similarity. In [2], the authors introduce the
concept of cover-graph, a bipartite graph between queries and Web
pages, where links indicate corresponding clicks. In [8], another
method using search short cuts was proposed.

The studies of [4, 6] present similar style graph-based methods,
in which the flow patterns are exploited for query recommendation,
using the query-flow graph and the term-query-flow graph, respec-
tively. The former technique builds a graph over queries, in which
links model the transition likelihood in query sessions. The latter
technique extends this idea by adding to the graph also the query
terms, in this way being able to recommend even for queries that
may not explicitly appear in the graph (are not “covered”). In both
works, the selection of the top-k query recommendations is done by
performing random walks in the graph. In [9], the authors rely on
a click-through bipartite graph but also consider the context of the
query, its immediately preceding queries, in order to better identify
suggestions at query time via suffix-trees.

Besides accuracy, two significant challenges for all these works
are efficiency and coverage. Regarding efficiency, naturally, query
recommendation in a Web search engine should trigger within typ-
ing latency, in order to disrupt as little as possible the user expe-
rience; one well-accepted upper-bound on the recommendation la-
tency is 100ms and this threshold may be hardly met by techniques
that must perform random walks in a large graph. This is why a lot
of effort has been put into smart indexing and pre-fetching poli-
cies, the approximation of random walks, etc. Regarding coverage,
which captures how often the recommendation engine can provide
meaningful query suggestions, the existing techniques still under-
perform on the so called long-tail queries, those which are not very
frequent and have scarce support for recommendations. Indeed,
long-tail queries are generally handled poorly by the state-of-the-
art approaches, such as the ones of [4, 6], simply because little to
no evidence is available in the historical records for them.

Very few works have considered the integration of semantics, in
its most common and rich form, the one of a KB, as the means
for a deeper understanding of the query intents and of the relation-
ships that may support suggestions. Among them, [21] proposed
to enhance the query-flow graph with templates over a hierarchy
of entity types (the sort of hierarchy that Wordnet or the isA pro-
jection of a knowledge base could provide). In [18], the authors

considered the mining, ranking, and recommending of so called
“entity aspects” (query segments that represent subtopics) in key-
word search. Their approach combines several metrics and meth-
ods for computing similarity or compatibility, including semantics
via word2vec [17] descriptions. Finally, in [7], the authors con-
sider a slightly different query suggestion scenario, in which the
focus is on anticipating the user’s information need (say, the next
query, i.e., a related but not so obvious query suggestion), in the
context of a Web page that is currently visited (represents the cur-
rent query) and of the entities this page may contain (Wikipedia en-
tities); once again, this is done by extending the query-flow graph
to an entity-query flow graph.

In our view, these works take only a partial approach in the quest
to provide more accurate query suggestions, especially for long-
tail queries, based on semantics. They only make use of limited
semantic-relatedness measures, such as the entity type hierarchy or
word2vec [17]. Our thesis is that better results can be obtained by
a broader exploration of the relationships between entities. This
can only be done by adopting the meta paths, the direct or compos-
ite relationships among entities, as a key ingredient in the process
of reasoning for relatedness and of building suggestions. As we
show in this paper, this introduces new opportunities, in particular
for providing suggestions that are less obvious, but raises also new
technical challenges: for instance, the space of meta paths can be
very large in general and must be explored and filtered very effi-
ciently in order to support online query suggestions.

The importance of rare queries is emphasized in [11], arguing
that search engines are less effective on long-tail queries, and that
reformulations are much more common for them.

Finally, entity linking, the problem of identifying entities from
a KB in a given piece of text, is also a well-known problem for
which most recent efforts focused on how to optimize the latency
of generic approaches, which have good precision; see [3] and the
references therein. We assume similar overhead in our query pro-
cessing pipeline as in [3].

3. PRELIMINARIES
In this section, we first revisit query logs in keyword search in

Section 3.1, and the well-established notion of query-flow graph
in Section 3.2, which conceptually captures the behavior of users
when reformulating queries. Then, we introduce necessary termi-
nology and concepts for the knowledge base and the meta paths
therein in Section 3.3.

3.1 Query Logs
A typical model for the log of a keyword search engine is a set of

records (qi, ui, ti, Ci), where qi is a query submitted by user ui at
time ti, andCi is the set of clicked URLs during this query process.

Following common practice, we partition a query log into task-
oriented sessions, where each one is a contiguous sequence of query
records from the same user, assuming a fixed maximal separation
time tθ (a typical tθ value is 30 minutes). Within the same session,
we can assume that the user’s search intent remains unchanged.

3.2 Query-Flow Graph
One of the most studied directions for the problem of top-k query

recommendation we revisit in this paper relies on the extraction of
behavioral patterns in query reformulation, from extensive collec-
tions of historical search and click records (the query logs). The
query-flow graph (QFG in short) [4] is a graph representation of
query logs, capturing the “flow” between query units. Intuitively, a
QFG is a directed graph of queries, in which an edge (qi, qj) with
weight w indicates that the query qj follows query qi in the same
session with probability w in the query log.



More formally, the QFG is defined as a directed graph Gqf =
(Q,E,W ), where Q is the set of nodes, with each node represent-
ing a unique query in the log,E ⊆ Q×Q is the set of edges, andW
is a weighting function assigning a weight w(qi, qj) to each edge
(qi, qj) ∈ E. In Gqf , two queries qi and qj are connected if and
only if there exists a session in the query log where qj follows qi.

The main application of QFG is to perform query recommenda-
tion. Given a graphGqf = (Q,E,W ) and a query q ∈ Q, the top-
k recommendations for q could be obtained in this graph by some
kind of proximity-based top-k node retrieval, be it neighborhood-
based (e.g., the queries q′ to which q connects with the largest
weights w(q, q′)) or path-based (e.g., by Personalized PageRank
w.r.t. node q). No matter what kind of proximity we choose, QFG
can only perform well on those popular queries, which appear very
frequently in the query log. For those long-tail queries, about which
the query log has little information, as shown in our experiments,
QFG has very poor recommendation performance. This is why we
resort to knowledge bases to address these long-tail queries.

3.3 Knowledge Base and Meta Paths
A knowledge base, or Heterogeneous Information Network (HIN),

such as YAGO [15] or DBPedia [24], can be viewed as a set of facts
(a.k.a. triples), where each fact describes a relationship between
two entities. Different models for knowledge bases have been stud-
ied in the literature. One of the most common formalizations of
knowledge relies on the RDF model, which models triples (s, p, o)
to denote a subject, property, and respectively, object. Alterna-
tively, property graphs model this type of information by labeled
edges and nodes, with labels indicating the edge types and node
classes, respectively; additionally, in this model, nodes can carry
various property-value pairs.

Independently of syntactic formalization flavors, for the purposes
of this work, given a set of entity types (or classes) L and a set
of link types (or relationships) R, we see a knowledge base sim-
ply as a directed graph K = (Ve, Eee) with an entity type map-
ping function φ : Ve → 2L and a relationship mapping function
ψ : Eee → R. Each node in K represents an entity e ∈ Ve,
and belongs to some entity types φ(v) ⊆ 2L; this can be seen
as a form of resource typing. Each link e ∈ E has a relation-
ship label ψ(e) ∈ R. In a knowledge base K, two entities e1,
e2 may be connected via multiple edges and paths. Conceptu-
ally, each of these paths represents a specific direct or composite
relationship between them. We model all these direct and com-
posite relationships by meta paths [20]. Specifically, a meta path
P in the knowledge base is a sequence of entity types t1, . . . , tn
connected by link types l1, . . . , ln−1, and will be represented as

P = t1
l1−→ t2 . . . tn−1

ln−1−−−→ tn. For example, a meta path

person
marryTo−−−−−−→ person represents the direct relationship be-

tween entities of the type person.

4. METHOD
We now introduce our knowledge-enabled query recommenda-

tion approach, denoted in short KB-QREC, which can make use
of the rich information in a KB to improve the performance of the
query recommendation task for long-tail queries. In Section 4.1, we
give an overview to our method, then in Section 4.2 we describe the
details for building offline the necessary data structures, from the
input query log and the knowledge base. Finally, in Section 4.3 we
describe the online phase for recommendation using KB-QREC.

4.1 Overview
Intuitively, KB-QREC is a combination of the query-flow graph

Gqf with a knowledge base K, the two being bridged by entity-

to-query links between entity nodes in K and query nodes in Gqf .
After we perform entity linking on the queries in Gqf , we can fur-
ther analyze the entities withinK. With the rich information in KB,
we can better understand the rationale behind the flow of queries.

Formally, the KB-QREC underlying data structure is a quadru-
ple (Gqf ,K, tEQ,P), where we have (1) Gqf = (Q,EQQ,W )
is a query-flow graph (Section 3.2); (2) K = (VE , EEE) is a KB
(Section 3.3); (3) tEQ is a transition probability matrix associat-
ing to each linked entity-query pair (e, q) a probability tEQ(e, q)
in (0, 1); (4) P is a set of meta paths over the entity types in K.
Specifically, P[t] is a set of meta paths, each having an associated
importance score, for entity type t ∈ L. We denote by P[t][p] the
weight of meta path p for entity type t.

Intuitively, with the knowledge base K enhancing the original
query-flow graph, we can better grasp the behavior of the search
engine users, by analyzing the flow among entities. For example,
suppose the two queries q1 “george lucas” and q2 “star wars” ap-
pear in sequence in the same session, and thus we have (q1, q2) ∈
EQQ. If we can detect the two entities e1 George_Lucas and e2
Star_Wars, we also have (e1, q1), (e2, q2) ∈ tEQ. Then we can an-
alyze the flow from e1 to e2 in our knowledge base K, in addition
to the flow from q1 to q2 in the query-flow graph. For example, we
can find that in the knowledge base e1 and e2 are connected by the
meta path director directed−−−−−→ film, and this is one piece of evi-
dence for the fact that users may tend to search for these two queries
jointly. We can exploit such evidence when answering queries w.r.t.
directors.

4.2 Offline Steps in KB-QREC

Before detailing how we perform recommendations with KB-
QREC, we first describe how to build the necessary data structures
from a query log offline. Section 4.2.1 recalls the query-flow graph
Gqf approach, Section 4.2.2 shows how to construct an entity-
query transition matrix tEQ, and Section 4.2.3 shows how to build
the meta path collection P .

4.2.1 Building the Query-Flow Graph Gqf

We adopt the approach of [4] to build the query flow graphGqf .
Specifically, we perform a linear scan on the query log. For each
query pair (q, q′) that appears within the same session, in this or-
der timewise, we have (q, q′) ∈ EQQ. We set w(q, q′) to be
f(q, q′)/f(q), where f(q, q′) is the frequency of co-occurrences
of q and q′ in sessions, and f(q) is the frequency of q itself.

4.2.2 Computing tEQ

For each query q ∈ Q, we perform entity linking on it, and de-
note by θ(q) the set of entities found in q. Note that, by definition,
each entity e detected in a query instance has also a corresponding
entity node in the knowledge base K. tEQ(e, q) measures how rel-
evant an entity e is to the query q. It is defined proportional to the
frequency of q in the query log divided by the total frequency of all
the queries containing e. Formally, tEQ(e, q) = f(q)∑

q′ | e∈θ(q′) f(q
′) .

Note that
∑
q tEQ(e, q) = 1 holds for all e.

4.2.3 Constructing the meta path collection P
If we view θ(q) as a representation of the query q, we can ex-

tract the entity-to-entity transitions within sessions. For example, a
query “star wars” after query “geoge lucas” accounts for a transi-
tion from entity Geoge_Lucas to entity Star_Wars. In our knowl-
edge base, these entities have their corresponding nodes connected
via multiple paths, and each such path stands for a specific rela-
tionship between the two entities. To capture these relationships,
we construct a set of outgoing meta paths in P for each entity type
t ∈ L appearing in the query log, as follows.
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Figure 1: Three steps to generate query recommendations with KB-QREC.

Algorithm 1: KB-QREC recommendation engine
Input: (Gqf , K, tEQ,P), a query q, k
Output: top k recommendation listRec for q

1 Rec← ∅
2 θ(q)← entityLinking(K, q)
3 RelatedEntities← ∅
4 for e ∈ θ(q) do
5 for t ∈ φ(e) do
6 for p ∈ P[t] do
7 entities← getNeighbor(K, e, p)

8 for e′ ∈ entities do
9 RelatedEntities[e′]←

RelatedEntities[e′] + 1
|θ(q)|·|entities|

10 queryWeight← ∅
11 for e ∈ RelatedEntities do
12 distribution← PPR(Gqk, e, RelatedEntities[e])
13 queryWeight← queryWeight+ distribution

14 Rec← topK(queryWeight)
15 returnRec

As in [7], we denote by tq→q′(e → e′) the transition proba-
bility from entity e to entity e′ via a pair of queries q and q′. If
(q, q′) ∈ EQQ and (e, q), (e′q′) ∈ tEQ, then we have tq→q′(e →
e′) = w(q, q′)/(|θ(q)| · |θ(q′)|). Then, the transition probability
from entity e to entity e′ can be defined as:

tEE(e, e
′) = 1−

∏
(q,q′)∈EQQ

(1− tq→q′(e→ e′)).

So far, we have defined the transition probability among entities
derived from a query log. Suppose now we receive a query q con-
taining entity e: if e has already been encountered in the query logs,
we can directly use the information on e to perform recommenda-
tions for q. For example, we can directly return the queries q′ with
largest entity-to-query transition probability tEQ(e, q′), or we can
perform Personalized PageRank to retrieve queries with high prob-
ability. However, this works only if e has been seen in the query
log, and this can be rarely the case for long-tail queries.

To address this problem, we want to share the information be-
tween the short-tail and the long-tail queries. One solution is to
find a meta path in K to represent the relationship between entity
pairs. Then, for a new entity e′ that has not been encountered in
the query log, we can use this meta path to derive related entities in
K. We now describe how to select from the knowledge base K the
meta paths that will be used in this way for query suggestion.

Given two entities e and e′, most often, there can be a large num-
ber of distinct paths in K connecting them. Each of these paths
potentially represents a relationship between them. However, not
all these paths are equally meaningful. Unsurprisingly, a very long
path between e and e′ may have a “diluted” meaning, as pointed
out also in [20]; therefore a natural approach, and the one we fol-
low here, is to select the shortest paths between e and e′ to represent
their relationships. Then, for each entity type t ∈ φ(e), we book-
keep the meta paths in P[t] and accumulate the weight tEE(e, e′).

4.3 Online steps in KB-QREC

We are now ready to detail in this section how to generate query

recommendations for a given query q, using the KB-QREC method.
The overview is given in Algorithm 1, and a runtime example is
shown in Figure 1. Generally, there are three steps:
Step 1. Entity Linking. (line 2) We firstly need to perform en-
tity linking on the input query q, and get the set of entities θ(q)
contained in it. Note that each of these entities have corresponding
nodes in the knowledge base K. For example in Figure 1, given an
input query q1 “akira kurosawa influence george lucas”, we per-
form entity linking on it and get the entities e1 and e2.
Step 2. Entity Expansion. (lines 3-9) for each e ∈ θ(q1), we
look at its entity types φ(e) in the knowledge base K. Then, for
each t ∈ φ(e), we perform a path-constrained random walk [14]
on K with each meta path p ∈ P[t], and get the related entities
for q1. To each of these related entities, we assign a weight as
defined in line 9 of Algorithm 1. For example, e1 has the type Di-
rector and Person in K. Then, we use the pre-recorded meta path
Director

directed−−−−−→ Film and Person bornIn−−−−→ Country, to find
related entities e3 and e4. Finally, these related entities, e3 and e4,
are assigned each a weight of 1.0/(2× 2) = 0.25.
Step 3. Query Searching. (lines 10-14) Last but not least, we
need to find out the most relevant queries w.r.t. the set of re-
lated entities. One commonly-used way is to perform Personalized
PageRank (PPR). Specifically, for each related entity e, we per-
form a PPR on Gqf ∪ tEQ, starting from e, with initial probability
RelatedEntities[e]. We sum up the stable probability distribu-
tion for each PPR to obtain the aggregated per-query result. The k
queries with the largest aggregated probability should be our rec-
ommendations. In our example, we perform PPR computations
starting from e3, e4, and e5, respectively, with the corresponding
probability. Finally, we sum up the probability distribution over
queries to get the top-2 recommendations, q2 and q3.

Note that the recommendation process only considers the entities
θ(q), without considering the unique information about query q
itself. In other words, the recommendation results are the same for
all queries containing the same entities, i.e., Rec(q) = Rec(q′)
if θ(q) = θ(q′). While this interpretation already proves to be
effective for long-tail queries containing entities, it may also harm
the results in certain cases. We intend to study how to combine
the KB-QREC method with an existing one, to get a best-of-both-
worlds approach, in the future.

5. EXPERIMENTS
We compare the performance of three configurations: the query-

flow graph (denoted as QFG), the term-query-flow graph (denoted
as TQGRAPH), and the knowledge-enable method (denoted as KB-
QREC), focusing on their performance on long-tail queries.

5.1 Implementation
For QFG, we re-implemented the query-flow graph as described

in [4]. We adopt the typical recommendation approach by maxi-
mum weight, i.e., for an input query q, the query q′ with largest
value of w(q, q′) will be the one recommended. An advantage of



this approach is that it can provide very locally related recommen-
dations with high efficiency.

For TQGRAPH, we directly used a Scala implementation pub-
lished by the authors of [12]. We used the default parameters, i.e.,
a restart probability for the random walk αre = 0.9 and the con-
vergence distance ε = 0.005.

For KB-QREC, we used YAGO [13] as our KB. YAGO is a
large-scale knowledge graph derived from Wikipedia, WordNet,
and GeoNames. We use its “Core Facts”, i.e., YAGO-Core [16],
which contains 4M facts (edges) of 125 types, over 2.1M entities.
These entities have 365K entity types, organized in a hierarchy
with 5 layers. We follow the procedure in Section 4.2.3 to select
the meta paths, and use the approach in Section 4.3 to provide rec-
ommendations.

5.2 Dataset
We used in all our experiments a well-known public dataset from

a major commercial search engine, which consists of web queries
collected from 657k users over a two months period. This dataset
is sorted by anonymous user ID and sequentially arranged, con-
taining 20M query instances corresponding to around 9M distinct
queries. After we sessionized the query log with θt = 30min, we
obtained a total of 12M sessions. As the focus of this paper is not
on entity linking, we directly used Dexter2 [22] to tag the entities
from queries. After entity linking, we obtained a total of 0.4M
distinct entities in our dataset.

5.3 Methodology
We adopt the automatic evaluation process described in [21], to

assess the performance of the five configurations as predictors of
the next query in a session. Basically, we make use of part of the
query logs (training data) to predict the user’s behavior over a kept-
apart query log (the test data). In the test query log, we denote by
qi,j the jth query in the session si. We assume that {qi,j | j > 1}
is a good recommendations for query qi,1 which, as argued in pre-
vious literature, is a reasonable assumption for scalable evaluation.

To assess the performance of each method, we simply count
their “hits” in the test data, i..e., for each session thereof, how
many times one of the recommended top-k queries for qi,1 is in
{qi,j | j > 1}. While the objective of this evaluation approach
may not necessarily be aligned with what a good recommendation
may be on particular instances, by being entirely unsupervised and
used on a large number of sessions, it becomes a strong indicator of
the techniques’ performance. For a more complete assessment, we
also intend to perform a complementary user study in the future.

In order to test how robust each method is, we used 90%, 50%
and 10% of the query logs to train the recommendation systems.
We denote them as D90, D50, and D10. Note that the smaller the
query log, the less historical information we have on queries. The
statistics of these datasets are shown in Table 1. We can see that
the number of sessions and the number of distinct queries drops
almost linearly with the size of query log, but the number of distinct
entities is more stable. This means that we can still rely on the
information on entities, even when we have a very small query log.

Table 1: Statistics about the datasets
#sessions #queries #entities

Dataset 12M 9.2M 0.40M
D90 11M 8.4M 0.39M
D50 5.9M 4.9M 0.30M
D10 1.2M 1.1M 0.13M

We used the remaining 10% of the query log to generate the

test sessions. We first extracted those sessions with at least two
queries, and obtained 467473 such sessions. As explained before,
we then took the first query of each session as input and the follow-
ing queries as the ground truth recommendations. Formally, the
ground truth for input query qi,1 is {qi,j | j > 1}, where qi,j is the
jth query appearing in the ith session.

We further extracted the long-tail queries from the test sessions:
if the frequency of a query in the whole query log is no more than
a threshold θf , we refer to it as belonging to the long-tail. Then,
we form our test sessions by those whose first query qi,1 belongs
to the long-tail. By setting θf to be 10, 5, and 3, respectively,
we have three different testing dataset L10, L5, and L3. Note that
these three test datasets contain only long-tail queries w.r.t. the fre-
quency threshold θf , but they include both entity-bearing queries
and queries without entities. As our knowledge-enabled method
can only apply to entity-bearing queries, we further filter our all
sessions where the first query is not of this kind, i.e., |θ(qi,1)| = 0.
This leads to the three test datasets L′10, L′5, and L′3, which contain
only sessions starting by long-tail queries with entities.

We stress here that the feature of containing entities or not is
not really affected by the frequency; head, torso, or tail queries
alike have a ratio of approximately 60% entity-bearing queries. We
measured the following two metrics to evaluate the performance of
each configuration:
• Coverage. Percentage of input queries that can be answered
with at least one recommendation.
• Precision@5. Percentage of recommended queries in the top-5
lists that are in the ground truth, as described previously. Formally,
Precision@5 = #HIT

5·#query , where #HIT is the number of rec-
ommended queries that are part of the ground truth, and #query
is the number of input queries.

5.4 Results and Analysis
Figure 2 presents the coverage results on L′10, L′5, and L′3. We

can see that (i) all the configurations show a decrease in coverage
when we use a smaller query log, but the knowledge-enabled meth-
ods remain relatively stable. In particular: KB-QREC still has the
same coverage even when we use 10% of query log. (ii) KB-QREC
holds a stable coverage on queries with different frequencies, while
QFG and TQGRAPH have a lower coverage as the queries have
lower frequency. (iii) When we use 10% of query log, KB-QREC
has higher coverage than QFG and TQGRAPH.

Figure 3 presents the precision@5 results onL′10,L′5 andL′3. We
can see that: (i) KB-QREC has the highest precision@5 on all the
three datasets, (ii) QFG has extremely low precision@5, because
of its low coverage, and (iii) similar to the results of coverage, all
the three configurations show a decrease in precison@5 when we
use a smaller query log, but KB-QREC remains relatively stable.

If we compare the precision@5 results across the three data con-
figurations, we can see that (i) performance for QFG drops when
we test on a longer tail (queries with lower frequency), and (ii) KB-
QREC has a rather stable performance even when we test on queries
with lower frequency. This is because the KB-QREC method only
considers the entities θ(q) in q. Even when the query q does not
appear frequently in the query log, KB-QREC can still make use
of the flow recorded for other queries q′, containing the same enti-
ties. This property makes KB-QREC suitable for long-tail queries,
and even for those that were not seen before in the query log.

The extra information in the knowledge base can account for all
these improvements on both coverage and precision@5. It is nat-
ural that more information leads to better performance. An advan-
tage of our KB-QREC method is that the amount of information in
the knowledge base remains the same, no matter how large is the
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Figure 2: Coverage results on long-tail queries with entities.
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Figure 3: Precision@5 results on long-tail queries with entities.
query log trained upon. This can explain why the performance of
KB-QREC remains stable even with a relatively small query log,
as when we test on queries with very low frequency.

6. CONCLUSION
In this paper, we propose a knowledge-enabled approach for

query recommendation, one of the most visible features in Web
search. Its performance for long-tail queries significantly over-
passes that of state-of-the-art methods. This is important, as it is
well-known that most queries are rare and it is precisely for them
that query recommendations are most useful. Using a real-world
dataset from a major commercial Web search engine, our automatic
evaluation shows that the knowledge-enabled method can bring sig-
nificant improvements, in terms of both coverage and precision.
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