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ABSTRACT

Caching popular content at the edge of future mobile netsvbes
been widely considered in order to alleviate the impact efdhta
tsunami on both the access and backhaul networks. A number of
teresting techniques have been proposed, including feaxtbing
and "delayed" or opportunistic cache access. Neverthdalesma-
jority of these approaches suffer from the rather limitedage ca-
pacity of the edge caches, compared to the tremendous aidtyrap
increasing size of the Internet content catalog. We proposte-
part from the assumption of hard cache misses, common in most
existing works, and consider “soft” cache misses, whelesifdrig-
inal content is not available, an alternative content tedbcally
cached can be recommended. Given that Internet contentrogis
tion is increasingly entertainment-oriented, we beligvat ta re-
lated content could often lead to complete or at least parser
satisfaction, without the need to retrieve the originalteah over
expensive links. In this paper, we formulate the problemptinoal
edge caching with soft cache hits, in the context of delayeéss,
and analyze the expected gains. We then show using synémetic
real datasets of related video contents that promisingicgcfains
could be achieved in practice.

Categories and Subject Descriptors

C.2.1 Network Architectureand Design]: Store and forward net-
works, Wireless communication; C.Bdrformance of Systems]:
Modelling techniques
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Caching; Opportunistic networks; Mobile data offloadingpti®
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1. INTRODUCTION

In the context of cellular networks, it is widely believedhtlag-
gressive densification, overlaying the standard macroregivork
with a large number of small cells (e.g., pico- or femto-gglis a
promising way of dealing with the ongoing data crurich [1].this
densification puts a tremendous pressure on the backhaubiket
researchers have suggested storing popular content aédge™,
e.g., at small cell$2], user devicé&s[[B[ 4.5, 6], or velscleting as
mobile relaysl[[7] in order to avoid congesting the capatliityted
backhaul links, and reduce the access latency to such ¢onten

Local content caching has been identified as one of the fivé mos
disruptive enablers for 5G networks! [8], sparking a trenoeisd
interest of academia and industry alike. While caching heenb
widely studied in peer-to-peer systems and content digtdb net-
works (CDNSs)[[9], the number of storage points required inrfel
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dense HetNets are many orders of magnitude more than in tradi
tional CDNs (e.g., 1000s small cells per area covered by dig C
server). Therefore, the storage space per local cache rewsgb
nificantly smaller to keep costs reasonable. Hence, evamgtho
studies assuming a large (CDN-type) cache deep inside tige co
network [10] give promising hit ratios, only a tiny fractiarf the
constantly and exponentially increasing content catatngdcre-
alistically be stored at each edge, leading to low “locaktea hit
ratios [11/12].

Additional “global” caching gains could be sought by insiea
the “effective” cache size visible to each user throughs(aall cell
overlaps, where each user is in range of multiple cells actes
(e.g., in the femto-caching case [2]), (b) collocated useeshear-
ing the same broadcast channel and benefiting from cachéeindon
in other users’ caches (as in coded caching [13]), and (c)ye€l
content access, where a user might wait up to a TTL for itsesu
during which time more than one (fixed| [6] or mobilg [4,[5, 7])
caches can be seen. These ideas could theoretically iactieas
cache hit ratio significantly, when the “global” cache sieedimes
large enough (e.g., when, in the latter example, the agtFesize
of all caches a user sees within a TTL becomes comparableto th
content catalog). Nevertheless, in most practical casesahédge
cache would realistically fit at mo$0~2 /10~* of the catalog (e.g.,
just the entire Netflix catalogue is about 3PBs). Even if theva
methods offered d40x effective cache increase, they would not
suffice to achieve significant cache hit ratios (e.g., in tb&fion
of [A3], the key factorkk M /N would be equal td0~2, leading to
a global caching gain % a merel% of e>_<tra gain).

Operators, are thus left with a very costly dilemma: beargehu
cost for the backhaul infrastructure (e.qg., fiber everywher bear
a huge cost for CDN-like storage at each and every small 6.
believe this dilemma stems from the common underlying apsum
tion of almost every caching scheme to try to satesferypossible
user request, either from the local cache or, in the worst,dag
content server. This leads to an immense catalogue of paltent
content. Our main assertion in this paper is that, in an heter
which is becoming increasingly content-centric and eatemhent-
oriented, a radically different approach could be bendfin@mely
moving away from satisfying a given user request towardsfgat
ing the user.E.g., a user requesting a content X, not available lo-
cally (e.g., a fan wanting to follow last weekend's premi&adue’s
games), might be equally satisfied (in the best case) or typtfis-
satisfied (in many cases), if she receives another conteatated
to X (e.g., another premier league game from that weekend). A
other example is users streaming coniargequencée.g., brows-
ing YouTube videos back-to-back or listening to persoraliza-
dio). In that case, the selected content at each step is wten
ommended related to the previous paed the user might be al-
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most equally happy with many alternatives. We will use thente
soft cache hito describe such scenarios. Finally, we believe such
a system is timely given the recent interest of content pleng
with sophisticated recommendation engines, such as XedRlil
YouTube (i.e., Google), to act as Mobile Virtual Network @gpe
tors (MVNO) in the context of RAN Sharing [14].

To this end, we perform here a preliminary analysis and perfo
mance evaluation of such a system, in order to obtain initial
sights. We first formulate the problem of edge caching sibft

Up to this point, the problem setup is the same aslif][7, 6]. The
main departure from that model is captured in the following.

Content Relation GraphEach content € K has a set ofelated
contents Letw;; denote the utility a given user gets if she originally
asks for content but instead receives conteftwhere0 < u;; <
1 andu;; = 1,Vi. The set of related contenf8; C X can be
formally defined as’R; = {j € K : j # i,ui; > 0}. These
relations define a content relation matrix (or graph}= {wu; }.

Delayed Access with Soft Cache Hits (SCA)user again per-

cache hits and analyze the expected gains. We then show using forms delayed access. However, if the requested coritsnhot

both synthetic data and a real dataset of related video wEntieat
interesting caching gains could be achieved in practice. gtab-
lem formulation and analysis takes place in the contextetdyed
content accessia static or mobile small cell§ [7] 6], for two rea-
sons: (a) we believe such delayed access is interestingviecost
users (e.g., 2 euro plans for operators like [15]) celd@ing
regions, and (b) could be easily combined with soft cache toit
achieve multiplicative gains. Nevertheless, the basietenf our
approach are equally applicable to femto-caching (i.e ftame-
work of [2]) or even other PHY-aware caching systems [16].

To the best of our knowledge, the closest related work to the
idea of soft cache hits is Roadcdst|[17], proposing a quespanse
based P2P VANET system, where users’ query requirementsecan
relaxed in order to get a matching response sooner. Nelesthe
this work focuses mostly on content similarity metrics armah-c
siders heuristics to achieve a square root based allocptbey,
known to be optimal in P2P systems. Square root policiesudre s
optimal in our problem setup, as proven later, with or witheaft
cache hits[]7].

2. PROBLEM SETUP

Content Model We consider a wireless network with randomly
distributed users, requesting contents from a catalégwéh ||C|| =
K contents. A user requests contént C with probability p;.
Without loss of generality (“w.l.0.g.”) we assume all canitehave
the same size.

Network Model Our network consists o small cells (SC).
These SCs can be either static (as in the femto-caching ni@jlel
or mobile (e.g. a vehicular cloud as A [7]). We denote theo§atl

SCs asM. We also assume that each SC is equipped with storage

capacity ofC' contents. Accessing content directly from the local
cache, i.e. &ache hit is considered “cheap” while eache miss
leads to an “expensive” access (e.g. of the backhaul linRjirof
the macro-cell in[7]).

Delayed Access Protocolf the requested content is not avail-
able in a nearby small cell, the user waits until it encountether
small cells (as a result of user or cell mobility), until a E#fo-
Live T'. If the content is not found in any SC withifi, a cache
miss occurs and the content is fetched over the expensive lin

found within T", but a content inj € R; is found in one of the
encountered caches, a soft cache hit occurs (and thus nnsixpe
access is needed). A cache miss occurs if neither the reguest
any related content is found withifi, in which case the original
content is retrieved over the expensive link. The soft cdhetil-
ity is equal tou;;. We will consider two main cases f&J.

e Soft Cache Hits (Case 1)i;; = 1,Vj € R;. Any related
content gives a cache hit. As soon as one is found, the user
stops looking.

e Soft Cache Hits (Case 2);; = ¢ (0 < ¢ < 1),Vj € Ri.
If a related contenj € R; is found beforerl’, the user now
continues looking for until 7. If it fails, a soft cache hit
occurs and the access to the expensive link is still avoided.
However, the utility attained is less than 1 (equat)tawvhich
creates an interesting tradeoff. If neithianor any relatedi
is found byT', then a cache miss occurs, as usual.

3. CACHINGWITH RELATED CONTENT
3.1 Objectives

The goal in the above defined problem is to minimize the number
of bytes accessed over the expensive “link” (which is, asagmed,
a radio access link to a macro-cell and/or the backhaul rmé&wo
When all contents have the same size, this is simplified témiA
ing the number of (expensive) accesses, or equivalemgyimiz-
ing the cache hit ratio

DEFINITION 1 (FEASIBLE PLACEMENT). Let N; denote the
number of SC caches storing conténtA placement vectaN =

{N1,..., Ng}is“feasible”, if it satisfies the following constraints:
K
>N < M-C (©)
i=1

N; are the main optimization variables for our problem. Caistr
@) says that the number of SCs storing conteist non-negative
and at most equal to the total number of SCs, and const3itit48

Meeting Model Meetings between each user and each SC are the total number of content replicas stored at all the edgbesa

1D, with the residual time until such a meeting occurs being a
random variable with CDFF'(t).

LEmMA 2.1. Ifthere areN total SCs storing the requested con-
tent, the probability of not encountering any of them withirs

@

The above result follows directly from the definition BY¢) and
the assumption of 11D meetings.

For simplicity, in this paper we will focus o () = 1—exp ',
S0 thatP,.iss(N) = exp *Vt. The identical meeting rates as-
sumption can be further relaxed, as explained in Seftion 5.

Priss (N) = WN

cannot exceed their total capacity.

In the traditional case of delayed access no soft cache tdts a
allowed. This will serve as oubaselinescenario. The problem
objective (i.e., the expected hit ratio) in this case is give the
following lemma.

LEMMA 3.1 (CACHE HIT RATIO - BASE). Assume afeasible
placement vectoN. The cache hit rate, i.e., the expected number
of user requests served locally when no soft cache hits toeat
is equal to

gBase(N) — EK:pi . (1 _ efA.T.Ni) . (4)
i=1



The objective (Ed.{4)) in the above lemma is straightfoovar
light of LemmdZ.1 and the model of Sectidn 2.

As explained earlier, when we do allow soft cache hits, itteah
1 is requested, a cache hit can occur also if other confefredated

ReplacingN;" in the objective of the baseline problem (EEg).(4))
gives us the optimal cache hit ratio, if we ignored relatedtent.
At the same time, replacing/;" in the objective of Ed.{5) gives
us the cache hit ratio when we can satisfy a request witheelat

to 7) can be accessed on time. The modified objective for Cases 1content,but the caching decisions were already taken and are the

and 2 of the content relation grafifiis given in the following two
lemmas (the proofs are based on basic probabilistic argisyemd
are omitted for brevity).

LEMMA 3.2 (SOFTCACHE HIT RATIO (CASE 1)). Assumea
feasible placement vectd¥, and a content relation grapty, where
ui; € {0,1},Vi,j € K. The cache hit rate foN is equal to

K
gSCHl(N) _ § :pz . (1 _e AT E]:] N T'J) (5)
=1

LEMMA 3.3 (SOFT CACHE HIT RATIO (CASE 2)). Assume a
feasible placement vectd¥, and a content relation grapty, where
ui = 1,V1, andug; € {0, c},Vj € K\{i}. The cache hit rate for
N is equal to

gscm2(N) = ipi ) [ (1 _ e*A‘T'Ni)
i=1
+e e NN (1 M Sjen, Nj) ] ©)

The main difference between these two cases is that, in gte fir
case, finding a related content gives utilitynd is equivalent to a
normal cache hit. However, in the second case, a relate@mbnt
allows the operator to avoid accessing the expensive liok,ish
penalized because the utility for the user is lower, leatbrayutility
of ¢ < 1 (we remind the reader th&; in the second term of EJ(6)
includes all related contents such thatu;; > 0, but does not
include content).

3.2 Performance Improvement Under the
Baseline Placement

Maximizing the objective of Lemnia_3.1 within the feasibilie-
gion of Definition[1, defines the optimal cache allocationbem
for the baseline scenario (no soft cache hits). This is iregan
an INLP (Integer Non-Linear Program) that relates to a “iplét
knapsack” problem (with equal capacities and logarithraither
than linear utilities) and is NP-hard to solve. Various panial
approximation algorithms exist with good performance wtiesn
size of the caches are large enough to fit many contents. @he su
approximation can be achieved by solving a continuous agilax
of the problem (related to the fractional knapsack prob|eviere
the optimization variablesvV; < [0, M] are continuous. In that
case, it is easy to show that the baseline problem is convessev
optimal solution can be found analytically using Lagrangmaul-
tipliers and solving the KKT conditions (we refer the intstesd
reader to[[] for more details). Specifically, the optimdusion is
given by

0, if p; <L
N = %m(%), ifL<p <U @)
M, if p; > U

whereL £ p-(\T) ", U £ p-(\T)~*-e*M T andp is an appro-
priate Lagrange multiplier corresponding to the capaatystraint
of Eq.[3

1An integer solution could be obtained by roundifg([i7, 2]. eMt

original ones (We will show later that we could do even better
by considering the related content grdghwhen solving the cache
placement problem.) The following theorem provides theeeigd
improvement in terms of load on the expensive link, for a $enp
scenario wherd, < p, < U,Vi € K.

THEOREM 3.4. Assume thaliR;|| = L, Vi € K. The expected
improvement in the cache hit ratio by recommending altéveat
contents, when the optimal cache placement algorithm isiobk
to these recommendations, is equal to

1- gBase(N*)
1 —gscm(N¥)

AT\ 1
p Zie,gprﬂjeicpy—w
J
PROOF The cache miss ratio (or “load” on the main infrastruc-
ture) in the baseline problem 1s— ggas.(IN*). Replacing Eq{7)

into Eq.[3) gives
Eq.@) K X X
1- gBase(N*) E. Zp’b . e—)\.T ijl N7

=1

Kp

O

K K
Pl 5 () 23 L -
i=1 ¢

1=1

Similarly, let's assume that an original request could héstad
with a related content as in Lemial3.2. The cache miss ragio, d
noted asl — gscu1(IN™), can be calculated as:

Eq.@) K X
1—gscm (N¥) 7= Zpi NI N g
=1

piAT
6**'T‘<Z§<:1 %T“‘( o )‘“ij)

p 1 PAE I 1

Hence, the gain from soft cache hits (case 1) is equéﬂ%,
which gives the desired EQI(4).J

The case where some contents receive no or maximidjrcopies,
as in Eql¥), can be easily derived by modifying the summaitio
the above proofs. As a very simple example, consider the afase
uniform content popularity, i.ep; = % After some simple cal-
culations, we get that the performance benefits by relatatenbd

are equal t((%)f(“l). However, we know tha€2 < 1, since
it is the cache miss rate of the base policy (se€[fEq.(9)). €fbes,
the above gair(%)f(hl) > 1, and is increasing il — 1, the
number of related contents per conténas one would expect. A
similar result can be easily derived for Case 2, as well agwthe
number of non-zero elements on each rowf U is different (i.e.
not all equal tal).

natively, one could interpret a non-integ®t value as follows: If
N; = 7.6, 100% of content; is allocated t&r caches, and one more
cache stores oni§0% of the content. If a user encounters the latter,
she retrieves the remainid®?% from the infrastructure.




3.3 Content Graph Aware Optimal Caching

We have so far assumed that the caching policy is unaffegted b
the ability to recommend alternative contents. While thisaly
leads to performance gains, as shown earlier, it is stilbptitnal.
For example, assume a user requesting comenbuld be OK to
receive instead contet (i.e. ua g = 1) and a user requesting con-
tent B would be OK to receive content instead (i.eupa = 1).

If both contentsA and B are populara standard caching policy
would give a high number of replicas to boticcording to EQ{7).
However, this is clearly suboptimal here, since the cachiigg-
rithm could just store only one of the two at each cache, gavin
valuable capacity that could be used to store other contéftie
following two theorems formalize this for the two contenlateon
graph cases, discussed in Secfibn 2. Due to space limisatios
only show the proof for the more generic Case 2.

THEOREM3.5 (U-AWARE OPTIMAL CACHING (CASE1)).
Assume a content relation grafih, whereu;; € {0,1},Vi,5 € K.
The optimal content placement that directly exploits taton-
tents is given by vectdN§ g, Which is the solution to the follow-
ing optimization problem

K
. ATSE N
maximize= E pi~(1—e AT =1 N “”),
N
i=1

subject toN feasible (according to Definitida 1)

Furthermore, the above problem is a convex optimizatiomigm.

THEOREM3.6 (U-AWARE OPTIMAL CACHING (CASE 2)).
The optimal content placement defined by maximizing thetge
of Lemmd 313, subject to the feasibility constraints of Déédim[T],
gives the optimal content allocation vecNig 2. Furthermore,
the problem is also convex.

PROOF. lItis easy to see that the feasibility region (Definitidn 1)
is convex. The objective function needs to be concave (dhisés
formulated as a maximization problem). A sufficient coratitis
if its Hessian matriXH is negative semi-definite, i.e? - H -z <
0, Vz= {ZZ} > 0.

Taking the derivatives of the objective functigac 2, we cal-
culate the terms of the Hessian matrix

Hm,m — _()\ . T)2 . |:pm . (1 _ C) . e—)\-T-Nm
K K
+ Zpi ¢ Lim Lin - eileiszI NJ"IU]
=1
and form # n

K
Hpn = —(X-T)? Zpi ¢+ Lim + Tin - e MT XS Ny T
=1
whereZ,,,, is 1 if uy.n, > 0; otherwise i9.
Then, the product” - H - ziis given by the expression

K
—AT-Npp,

" H-z=-(\-T)°

m=1

K K X
AT S5 N..T..
_|_§ E Zm'Zn'pi'Iz‘ ~TLin - € 23:1 J g
n=11i=1

[zfn-pm~(1—c)-e

which is always< 0. O

4. PERFORMANCE EVALUATION

4.1 Simulations Setup

Mobility Trace. We use the TVCM mobility model to gener-
ate a trace, where nodes move in a square H8&mn x 1000m
comprising three sub-areas of interest (communities).hEacle
moves inside its community for 60% of the time, and leavesrit f
a few short periods. The area is entirely covered by madito-ce
BSs, and also includes 25 non overlapping small-cell bag®as
(SCs), with a communication range of 100m.

Content Popularity. We createK’ = 1000 contents and assign
to each of them a popularity valye drawn from a Zipf distri-
bution, p; € [1,1000] with shape parameter = 2. Power-law
distributions have been shown to capture well real popylgat-
terns [18[19., 20].

Utility Matrix. To investigate the effect of the matrix U, we
generate different matrices belonging to two generic elsiss
(a) random U for each content paifi, j }, the utility isu;; = 1
with probabilityp = % (otherwise it is 0), such that each content
has on averagé related contents, i.e[; = E[||R;||].

(b) popularity proportional U for each content paifi, ;}, the util-

ity is w;; = 1 with probabilityp = L' - E”f;j (otherwise it is 0),
J

wherep; is the popularity of contenf, and L’ is a normalization
parameter that determinég{||R;||].

YouTubedatasets. In addition to the synthetic popularity/utility
patterns, we use real datasets from YouTube that contaimiai-
tion aboutvideo popularityand related video listd21]]. Table[1
contains information about the datasets we use, and some mai
statistics. We pre-process the data to remove entriesinithno
popularity value. For each videpappearing in the related videos
list of a videoi, we setu;; = 1 andu;; = 1. Due to the sparseness
of the datasets, we consider only the videos belonging ttathest
connected component of the graph with vertites: {i : i € K}
and edge€ = {¢;; : i,7 € K, ui; = 1}.

4.2 Effectsof Utility Matrix

We first study the effects of the (a) densify,= E[||R.||], and
(b) type fandom U/ popularity proportional U of the utility ma-
trix. Specifically, in FigllL we present the soft-cache Hiioréor the
SCH1landSCH2(with ¢ = 0.5) cases, under the base optimal pol-
icy N*, as well as the hit ratio of the scenarios without soft caches
(no-soft cachgs As expected, the cache hit rate improves as the
density L of the matrix U (x-axis) increases. Under random U ma-
trices the increase in the cache hit rate is almost linegfIf&]) on
L, but quickly plateaus for the popularity proportional U nzs
(Fig.[I(B]). This is reasonable as the achieved cache ftsrédr
the popularity proportional U case already reach vaiueé®) %, for
few related contents. The reason is that popular conteathtve
higher probability to appear in the related list of othertenits, are
also stored in more caches (under the base optimal policy).
These initial observations show that the performance cambe
proved by recommending more contents (density) and/or legtse
ing carefully which contents to recommend (type of matrixThis
is a positive message, since there are more than one defjfess-o
dom for a system design, allowing thus improvements undes va
ous settings (e.g., restriction on the max number of recomalex

Table 1: YouTube dataset instances information (aftergssing).

Data (date / depth of search [21]) K EJ||R:]|]
Instance 1 27 July 2008 /3 2098 5.3
Instance 2 27 March 2008 / 1 1086 7.9
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Figure 1: Scenarios where the matrices U are generated iar{a)
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ber of related contents per content equals the value of tnesc-
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Figure 2: Scenarios where the matrices U are generated iar(a)
dom and (b) popularity proportional way, so that the expstoten-
ber of related contents per contenfis= 5. The capacity of caches
is@ = 5 (i.e.,0.5% of the catalogue siz&1).

contents, predefined content relations), and enablingsdey®r
(application/network) design and optimization approache

4.3 Gainsof Optimal Caching Policies

4.4 Gainsof the YouTube's Recommendation
System

We conduct simulations on the TVCM mobility trace using the

popularity/utility patterns of the YouTube datasets (seet®4.1).

In Table[2 we present the relative gain in the soft-cacheatioy

i.e., gpase(IN™) vs. hit ratio under no-soft caches scenario. The
improvement in performance by using soft-caches can be up to
20%, and -on average- is higher Instance lwhere the content
catalogue is larger (cf. Tadlé 1). The gains are similar heosim-
ulated scenarios we tested; with parametgrs= {5, 10, 20, 50}
andTTL = {0.5, 1,5, 20}min.

Placing contents with the U-aware optimal poliSi, g1 gives
similar gains as in th&* case in the simulated scenarios. In light
of the synthetic results, this perhaps suggests that thewmorela-
tion graph for these YouTube instances more closely resethil
popularity proportional case, rather than the random.

Table 2: Gains in cache hit ratio in the YouTube scenarios.

Instance 1 Instance 2

Q=5 Q:50‘Q:5 Q =50
TTL = 1min 11% 17% 12% 13%
TTL = 20min ‘ 20% 19% ‘ 11% 7%

5. DISCUSSION

Our initial results suggest that soft cache hits could beoans-
ing way to make edge caching scale, opening up new integestin
operator-user performance tradeoffs. Some limitatiomspoien-
tial extensions of the proposed model are discussed here.
User-dependent recommendationhroughout this work, we
have been assuming that the related contents for a requested
tent items, and their related utilities depend only on itépand not
on the user that requested it. In a sense, this relatesmeitemcol-
laborative filtering, where a new/alternative item is recoended
based on its similarity with the requested one. Item-itecone
mendations have been claimed to offer some advantages oednpa
to user-usercollaborative filtering[[2R]. Nevertheless, one user

In Fig.[2 we compare the performance gains of the base optimal Might be less happy than another, with the same alternativient.

policy N* and the U-aware optimal polid{gcgq the SCH1case
(Theoren35). Under random U matrices (ffig. P(a)), theeaei
cache hit rate byNgcyy1 IS always higher than in thBN™ policy,
with an increase of4% (for T'T'L = 1min) and34% (for TTL =

On the modeling side, one could take this into account by ngaki
u,; arandom variable and using its expected vallje;;] in the ob-
jective functions of Sectidd 3. Finally, on the recommeiataside,

a recommendation system could actually combine both types o

20min). Here, we need to stress that the extra performance gaincollaborative filtering to make better recommendation.sWould

from the U-aware optimal caching polid¥gc: comes without
any cost for the system: the recommendation system (mafrix U
and the caching capacity){ and Q) remain the same, and only
the caching policy changes (i.e., in practice, this cowasdp to a
simple modification in the content placement algorithm).

In the popularity proportional U case (Fig-_23(b)), the perfo
mance improvement of the U-aware optimal polts gy, over
the base optimal policiN* is moderate{% and16%, for TT'L =
1min andTT L = 20min, respectively). This indicates that when
a recommendation system is carefully designed for a mobile e
vironment (i.e., in our example, resulting to a popularitggor-
tional matrix U), the U-aware caching policy does not adahisig
icant gains. As a result, only the content popularities isdeel
for the caching placement algorithm. Hence, tieéwork provider
does not need to cooperate further withamtent provider(which
designs also the recommendation system), e.g., YouTubesr N
flix, and this facilitates the deployment of a soft-cacheteysin
practice.

lead to differentU graphs per user (or user clusters), whose inte-
gration and impact on our framework is part of future work.
Generalization ofU graph: For simplicity, in our analysis we
assumed that related contents bring the same amount oy (tiin
case 1, and < 1 in case 2). In general, different related contents
might bring different amounts of utility. We could generaliour
model by assuming €ase 3wherew;; = 1,u;; € [0,1) @i # j.
As in Case 2, if a user requesting contéraccesses (befoig any
content; € R;, she will be satisfied:;; € (0,1) (less thant).
She will keep on requestingtill time 7', but will not accept any
other related contdft Contrary to Case 2, however, the value of
the utility u;; (to be contributed at the objective function) is not
known a priori, since we cannot know a priori which contgnt
R; will be accessed. One can still derive a closed form objectiv

2An alternative approach would be to keep requesting evatiyeca
encountered for potentially better related content. Hamewe
believe this might put a high burden on the battery of the U& an
the UE-SC traffic.
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