
High-Performance Distributed RMA Locks

Patrick Schmid∗, Maciej Besta∗†, Torsten Hoefler
Department of Computer Science, ETH Zurich
∗Both authors contributed equally to this work

†Corresponding author

ABSTRACT
We propose a topology-aware distributed Reader-Writer lock that
accelerates irregular workloads for supercomputers and data cen-
ters. The core idea behind the lock is a modular design that is an
interplay of three distributed data structures: a counter of reader-
s/writers in the critical section, a set of queues for ordering writers
waiting for the lock, and a tree that binds all the queues and syn-
chronizes writers with readers. Each structure is associated with a
parameter for favoring either readers or writers, enabling adjustable
performance that can be viewed as a point in a three dimensional pa-
rameter space. We also develop a distributed topology-aware MCS
lock that is a building block of the above design and improves state-
of-the-art MPI implementations. Both schemes use non-blocking
Remote Memory Access (RMA) techniques for highest performance
and scalability. We evaluate our schemes on a Cray XC30 and il-
lustrate that they outperform state-of-the-art MPI-3 RMA locking
protocols by 81% and 73%, respectively. Finally, we use them to ac-
celerate a distributed hashtable that represents irregular workloads
such as key-value stores or graph processing.

CCS CONCEPTS
•Hardware→ Testing with distributed and parallel systems;
Networking hardware; •Computer systems organization→Ar-
chitectures; Parallel architectures; Multicore architectures;
Distributed architectures; Multicore architectures; • Computing
methodologies → Parallel computing methodologies; Shared mem-
ory algorithms; Distributed algorithms; • Software and its en-
gineering → Synchronization; Access protection; • Theory of
computation → Parallel algorithms; Massively parallel algo-
rithms; Shared memory algorithms; Distributed algorithms.

This is an arXiv version of a paper published at
ACM HPDC’16 under the same title

Code:
https://spcl.inf.ethz.ch/Research/Parallel_Programming/RMALocks

1 INTRODUCTION
The scale of today’s data processing is growing steadily. For ex-
ample, the size of Facebook’s social graph is many petabytes [10,
50] and graphs processed by the well-known HPC benchmark
Graph500 [40] can have trillions of vertices. Efficient analyses of
such datasets require distributed-memory (DM) machines with
deep Non-Uniform Memory Access (NUMA) hierarchies.

Locks are among the most effective synchronization mechanisms
used in codes for such machines [9]. On one hand, if used improp-
erly, they may cause deadlocks. Yet, they have intuitive semantics

and they often outperform other schemes such as atomic opera-
tions [43] or transactions [6].

Designing efficient locks for machines with deep hierarchical
memory systems is challenging. Consider four processes competing
for the same lock. Assume that two of them (A and B) run on one
socket and the remaining two (C and D) execute on the other one.
Now, in a naive lock design oblivious to the memory hierarchy, the
lock may be passed between different sockets up to three times,
degrading performance (e.g., if the order of the processes entering
the critical section (CS) is A, C, B, and D). Recent advances [12, 18]
tackle this problem by reordering processes acquiring the lock to
reduce inter-socket communication. Here, the order of A, B, C, and
D entails only one inter-socket lock transfer, trading fairness for
higher throughput. Extending such schemes to DM machines with
weak memory models increases complexity. Moreover, expensive
inter-node data transfers require more aggressive communication-
avoidance strategies than those in intra-node communication [20].
To our best knowledge, no previous lock scheme addresses these
challenges.

Lower latency of writers vs readers

 F
airn

ess
 v

s l
oca

lit
y (f

or w
rit

ers
) H

ig
h
e
r 

th
ro

u
g
h
p
u
t 

fo
r 

w
r
it

e
r
s
 v

s
 r

e
a
d

e
r
s

DT-related
parameter

DQ-related
parameter

DC-related
parameter

Design A o�ers
high locality and

low fairness

Design B o�ers
more fairness
than Design A

Design B

Design A

Figure 1: The space of parameters of the proposed Reader-
Writer lock.

Another property of many large-scale workloads is that they are
dominated by reads (e.g., they constitute 99.8% of requests to the
Facebook graph [50]). Here, simple locks would entail unnecessary
overheads. Instead, the Reader-Writer (RW) lock [38] can be used to
reduce the overhead among processes that only perform reads in the
critical section (CS). Initial RW NUMA-aware designs have recently
been introduced [11], but they do not address DM machines.

ar
X

iv
:2

01
0.

09
85

4v
2 

 [
cs

.D
C

] 
 2

3 
O

ct
 2

02
0

https://spcl.inf.ethz.ch/Research/Parallel_Programming/RMALocks


In this work, we develop a lock that addresses the above chal-
lenges. Its core concept is a modular design for adjusting perfor-
mance to various types of workloads. The lock consists of three
key data structures. First, the distributed counter (DC) indicates
the number of readers or the presence of a writer in the CS. Second,
the distributed queue (DQ) synchronizes writers belonging to a
given element of the memory hierarchy (e.g., a rack). Finally, the
distributed tree (DT) binds together all queues at different levels of
the memory hierarchy and synchronizes writers with readers. Each
of these three structures offers an adjustable performance tradeoff,
enabling high performance in various settings. DC can lower the la-
tency of lock acquire/release performed by either readers or writers,
DQ can be biased towards improving either locality or fairness, and
DT can increase the throughput of either readers or writers. The
values of these parameters constitute a three dimensional space
that is illustrated in Figure 1. Each point is a specific lock design
with selected performance properties.

Most DM machines offer Remote Direct Memory Access
(RDMA) [42], a hardware scheme that removes the OS and the
CPU from the inter-node communication path. RDMA is the basis
of many Remote Memory Access (RMA) [20] programming mod-
els. Among others, they offer a Partitioned Global Address Space
(PGAS) abstraction to the programmer and enable low-overhead
direct access to remote memories with put/get communication
primitives. RMA principles are used in various HPC languages and
libraries: Unified Parallel C (UPC) [49], Fortran 2008 [30], MPI-
3 [39], or SHMEM [4]. We will illustrate how to utilize RMA in the
proposed locks for DM machines, addressing the above-mentioned
challenges. In the following, we use MPI-3 RMA but we keep our
protocols generic and we discuss (§ 6) how other RMA languages
and libraries can also be used.

In summary, our key contributions are as follows:

• We develop a topology-aware distributed Reader-Writer lock
that enables various tradeoffs between fairness, throughput,
latency, and locality.

• We offer a topology-aware distributed MCS lock that accel-
erates the state-of-the-art MPI-3 RMA codes [20].

• We illustrate that our designs outperform the state-of-the-
art in throughput/latency (7.2x/6.8x on average) and that
they accelerate distributed hashtables used in key-value (KV)
stores or graph processing.

2 RMA AND LOCKS
We start by discussing RMA (§ 2.1), our tool to develop the proposed
locks. Next, we present traditional (§ 2.2) and state-of-the-art (§ 2.3,
§ 2.4) locks that we use and extend.

Notation/Naming: We denote the number of processes as 𝑃 ;
we use the notion of a process as it occurs frequently in DM codes
such as MPI [39]. Still, our schemes are independent of whether
heavyweight processes or lightweight threads are incorporated.
Each process has a unique ID called the rank ∈ {1, ..., 𝑃}. A process
in the CS is called active. A null pointer is denoted as ∅. Then, 𝑁 is
the number of levels of the memory hierarchy of the used machine.
Here, the selection of the considered levels depends on the user.
For example, one can only focus on the nodes connected with a
network and racks that contain nodes and thus 𝑁 = 3 (three levels:

the nodes, the racks, and the whole machine). We refer to a single
considered machine part (e.g., a node) as an element. We refer to a
node that is a shared-memory cache-coherent domain connected to
other such domains with a non-coherent network as a compute node
(or just node). One compute node may contain smaller elements that
are cache-coherent and together offer non-uniform memory access
(NUMA). We refer to such elements as NUMA nodes; an example
NUMA node is a socket with a local DRAM. We present symbols
used in the paper in Table 1.

𝑃 Number of processes.
𝑝 Rank of a process that attempts to acquire/release a lock.
𝑁 Number of levels of the considered machine.
𝑁𝑖 Number of machine elements at level 𝑖 ; 1 ≤ 𝑖 ≤ 𝑁 .
𝑖 Index used to refer to the 𝑖th machine level.
𝑗 Index used to refer to the 𝑗 th element at a given machine level.

Table 1: Symbols used in the paper.

2.1 RMA Programming
In RMA programming, processes communicate by directly access-
ing one another’s memories. Usually, RMA is built over OS-bypass
RDMA hardware for highest performance. RMA non-blocking puts
(writes to remote memories) and gets (reads from remote memo-
ries) offer low latencies, potentially outperforming message pass-
ing [20]. Remote atomics such as compare-and-swap [24, 39] are
also available. Finally, RMA flushes ensure the consistency of data
by synchronizing respective memories. RDMA is provided in virtu-
ally all modern networks (e.g., IBM PERCS [3], IBM’s on-chip Cell,
InfiniBand [48], iWARP [21], and RoCE [29]). Moreover, numerous
libraries and languages offer RMA features. Examples include MPI-
3 RMA [39], UPC [49], Titanium [25], Fortran 2008 [30], X10 [14],
or Chapel [13]. The number of RMA codes is growing steadily, and
RMA itself is being continually enhanced [5, 7].

RMA Windows: In RMA, each process explicitly exposes an
area of its local memory as shared. In MPI, this region is called
a window. Once shared, a window can be accessed with puts/get-
s/atomics and synchronized with flushes. We will refer to such an
exposed memory in any RMA library/language as a window.

RMA Functions:We describe the syntax/semantics of the used
RMA calls in Listing 1. All ints are 64-bit. For clarity, we also use
the bool type and assume it to be an int that can take the 0 (false)
or 1 (true) values, respectively. Values returned by Get/FAO/CAS
are only valid after the subsequent Flush. The syntax is simplified
for clarity: we omit a pointer to the accessed window (we use a
single window). We use an origin/a target to refer to a process that
issues or is targeted by an RMA call.

2.2 Traditional Hardware-Oblivious Locks
We now present hardware-oblivious locks used in this work.

2.2.1 Reader-Writer (RW) Locks. Reader-Writer (RW) locks [15]
distinguish between processes that only perform reads when in the
CS (readers) and those that issue writes (writers). Here, multiple
readers may simultaneously enter a given CS, but only one writer
can be granted access at a time, with no other concurrent readers

2



1 /* Common parameters: 𝑡𝑎𝑟𝑔𝑒𝑡 : target 's rank; 𝑜 𝑓 𝑓 𝑠𝑒𝑡 : an offset

2 * into 𝑡𝑎𝑟𝑔𝑒𝑡 's window that determines the location of the
3 * targeted data; 𝑜𝑝: an operation applied to a remote piece of
4 * data (either an atomic replace (REPLACE) or a sum (SUM));
5 * 𝑜𝑝𝑟𝑑: the operand of an atomic operation 𝑜𝑝.*/
6
7 /* Place atomically 𝑠𝑟𝑐_𝑑𝑎𝑡𝑎 in 𝑡𝑎𝑟𝑔𝑒𝑡 's window.*/
8 void Put(int src_data , int target , int offset);
9
10 /* Fetch and return atomically data from 𝑡𝑎𝑟𝑔𝑒𝑡 's window.*/
11 int Get(int target , int offset);
12
13 /* Apply atomically 𝑜𝑝 using 𝑜𝑝𝑟𝑑 to data at 𝑡𝑎𝑟𝑔𝑒𝑡 .*/
14 void Accumulate(int oprd , int target , int offset , MPI_Op op);
15
16 /* Atomically apply 𝑜𝑝 using 𝑜𝑝𝑟𝑑 to data at 𝑡𝑎𝑟𝑔𝑒𝑡
17 * and return the previous value of the modified data.*/
18 int FAO(int oprd , int target , int offset , MPI_Op op);
19
20 /* Atomically compare 𝑐𝑚𝑝_𝑑𝑎𝑡𝑎 with data at 𝑡𝑎𝑟𝑔𝑒𝑡 and , if
21 * equal , replace it with 𝑠𝑟𝑐_𝑑𝑎𝑡𝑎; return the previous data.*/
22 int CAS(int src_data , int cmp_data , int target , int offset);
23
24 /* Complete all pending RMA calls started by the calling process
25 * and targeted at 𝑡𝑎𝑟𝑔𝑒𝑡 .*/
26 void Flush(int target);

Listing 1: The syntax/semantics of the utilized RMA calls.

or writers. RW locks are used in OS kernels, databases, and present
in various HPC libraries such as MPI-3 [39].

2.2.2 MCS Locks. Unlike RW locks, the MCS lock (due to Mellor-
Crummey and Scott) [37, 44, 46] does not distinguish between
readers or writers. Instead, it only allows one process 𝑝 at a time to
enter the CS, regardless of the type of memory accesses issued by 𝑝 .
Here, processes waiting for the lock form a queue, with a process
at the head holding the lock. The queue contains a single global
pointer to its tail. Moreover, each process in the queue maintains: (1)
a local flag that signals if it can enter the CS and (2) a pointer to its
successor. To enter the queue, a process 𝑝 updates both the global
pointer to the tail and the pointer at its predecessor so that they both
point to 𝑝 . A releasing process notifies its successor by changing
the successor’s local flag. The MCS lock reduces the amount of
coherence traffic that limits the performance of spinlocks [2]. Here,
each process in the queue spin waits on its local flag that is modified
once by its predecessor.

2.3 State-of-the-Art NUMA-Aware Locks
We now discuss lock schemes that use the knowledge of the NUMA
structure of the underlying machine for more performance. We will
combine and extend them to DM domains, and enrich them with a
family of adjustable parameters for high performance with various
workloads.

2.3.1 NUMA-Aware RW Locks. Many traditional RW locks (§ 2.2.1)
entail performance penalties in NUMA systems as they usually rely
on a centralized structure that becomes a bottleneck and entails high
latency when accessed by processes from remote NUMA elements.
Calciu et al. [11] tackle this issue with a flag on each NUMA node
that indicates if there is an active reader on that node. This reduces
contention due to readers (each reader only marks a local flag) but
may entail additional overheads for writers that check for active
readers.

2.3.2 Hierarchical MCS Locks. Hierarchical locks tackle expen-
sive lock passing described in § 1. They trade fairness for higher

throughput by ordering processes that enter the CS to reduce the
number of such passings. Most of the proposed schemes address
two-level NUMA machines [12, 17, 34, 41]. Chabbi et al. consider
a multi-level NUMA system [12]. Here, each NUMA hierarchy el-
ement (e.g., a socket) entails a separate MCS lock. To acquire the
global lock, a process acquires an MCS lock at each machine level.
This increases locality [47] but reduces fairness: processes on the
same NUMA node acquire the lock consecutively even if processes
on other nodes are waiting.

2.4 Distributed RMA MCS Locks
Finally, we present a distributed MCS (D-MCS) lock based on an
MPI-3 MCS lock [22]. We will use it to accelerate state-of-the-art
MPI RMA library foMPI [20] and as a building block of the proposed
distributed topology-aware RW and MCS locks (§ 3).

2.4.1 Summary and Key Data Structures. Here, processes that wait
for the D-MCS lock form a queue that may span multiple nodes.
Each process maintains several globally visible variables. A naive
approach would use one window per variable. However, this would
entail additional memory overheads (one window requires Ω(𝑃)
storage in the worst case [20]). Thus, we use one window with dif-
ferent offsets determining different variables: a pointer to the next
process in the MCS queue (offset NEXT, initially ∅) and a flag indicat-
ing if a given process has to spin wait (offset WAIT, initially false).
A selected process (rank tail_rank) also maintains a pointer to a
process with the queue tail (offset TAIL, initially ∅).

2.4.2 Lock Protocols. We now describe the protocols for acquire/re-
lease. We refer to respective variables using their offsets in the
window.

LockAcquire (Listing 2) First, 𝑝 atomically modifies TAILwith
its own rank and fetches the predecessor rank (Line 6). If there is
no predecessor, it proceeds to the CS. Otherwise, it enqueues itself
(Line 10) and waits until its local WAIT is set to false. Flushes
ensure the data consistency.

1 void acquire () {
2 /* Prepare local fields. */
3 Put(∅, 𝑝, NEXT);
4 Put(true , 𝑝, STATUS);
5 /* Enter the tail of the MCS queue and get the predecessor. */
6 int pred = FAO(𝑝, tail_rank , TAIL , REPLACE);
7 Flush(tail_rank); /* Ensure completion of FAO. */
8 if(pred != ∅) { /* Check if there is a predecessor. */
9 /* Make the predecessor see us. */
10 Put(𝑝, pred , NEXT); Flush(pred);
11 bool waiting = true;
12 do { /* Spin locally until we get the lock. */
13 waiting = Get(𝑝, WAIT); Flush(𝑝);
14 } while(waiting == true); } }

Listing 2: Acquiring D-MCS.

Lock Release (Listing 3) First, 𝑝 checks if it has a successor
in the queue (Line 3). If there is none, it atomically verifies if it is
still the queue tail (Line 5); if yes, it sets TAIL to ∅. Otherwise, 𝑝
waits for a process that has modified TAIL to update its NEXT field
(Lines 9-11). If there is a successor, the lock is passed with a single
Put (Line 14).

3



DC consists of 4 physical counters, there
is one counter per node, TDC=6

All writers enter
DQs at various

levels, but they all
physically run on
allocated nodes

W1 W2 W3

DQ2.1

W WW9 W10 11 12

DQ3.1 DQ3.2 DQ3.3 DQ3.4

Each DQ forms a
D-MCS lock (§ 2.4)

W7 W8W4 W5 W6

DQ2.2

All readers
also run on
allocated

nodes

R12R2

R3 R4

...

R1

The RMA-RW lock

Readers do not
enter any DQ

c(R1)=1 c(R4)=6
c(R2)=1 c(R5)=6
c(R3)=1 c(R6)=6

e(W1,1)=1
e(W1,2)=1
e(W1,3)=2

Machine
structure:

Structure
of RMA-RW3

DQs on
every

element

3.1

DQ1.1

DT formed
by all DQs

3.2

DC has 4 physical
counters at every
TDCth process

3.3
2 racks

N2=2

Three levels:
N=3

1 machine

N1=1

1

4 nodes

N3=4

Scenario:

12 writers (   ):

12 readers (   ):

2

R12R1

W1 W12

FW=0.5

Example
mappings

4

Example writer acquire scenario
5

Wx

Example writer release scenario
6

Wx

x

x

x

x

Wx

Wx

DT and writers
(without DC and
readers) form an

RMA-MCS
lock (§ 3.5)

Figure 2: An example RMA-RW on a three-level system.

1 void release () {
2 int succ = Get(𝑝, NEXT); Flush(𝑝);
3 if(succ == ∅) {
4 /* Check if we are waiting for the next proc to notify us.*/
5 int curr_rank = CAS(∅, 𝑝, tail_rank , TAIL);
6 Flush(tail_rank);
7 if(𝑝 == curr_rank)
8 return; /* We are the only process in the queue. */
9 do { /* Wait for a successor. */
10 successor = Get(𝑝, NEXT); Flush(𝑝);
11 } while (successor == ∅);
12 }
13 /* Notify the successor. */
14 Put(0, successor , WAIT); Flush(successor);}

Listing 3: Releasing D-MCS.

3 DISTRIBUTED RMA RW LOCKS
We now present a distributed topology-aware RW lock (RMA-RW)
for scalable synchronization and full utilization of parallelism in
workloads dominated by reads. We focus on the RW semantics as
the key part of the introduced lock. Symbols specific to RMA-RW
are presented in Table 2.

Lock AbbreviationsWe always refer to the proposed topology-
aware distributed RW and MCS lock as RMA-RW and RMA-MCS,
respectively. Both RMA-RW and RMA-MCS use as their building
block a simple distributed topology-oblivious MCS lock (§ 2.4) de-
noted as D-MCS.

Example In the whole section, we will use the example shown
in Figure 2. Here, 𝑁 = 3 and the considered levels are: compute
nodes, racks, and the whole machine.

3.1 Design Summary and Intuition
As explained in § 1, RMA-RW consists of three types of core data
structures: distributed queues (DQs), a distributed tree (DT), and
a distributed counter (DC). They are illustrated in Figure 2. First,
every machine element (at each considered level) has an associated
DQ and thus a D-MCS lock local to this element (as opposed to

𝑇𝐷𝐶 The Distributed Counter threshold (§ 3.2.1).
𝑇𝐿,𝑖 The Locality threshold at level 𝑖 (§ 3.2.2).
𝑇𝑅 The Reader threshold (§ 3.2.3).
𝑇𝑊 TheWriter threshold;𝑇𝑊 =

∏𝑁
𝑖=1𝑇𝐿,𝑖 (§ 3.2.3).

𝑐 (𝑝) Mapping from a process 𝑝 to its physical counter (§ 3.2.1).
𝑒 (𝑝, 𝑖) Mapping from a process 𝑝 to its home machine element at level 𝑖 (§ 3.2.2).

𝐹𝑊 The fraction of writers in a given workload (the fraction of readers: 1 − 𝐹𝑊 ).

Table 2: Symbols used in RMA-RW.

the global RMA-RW lock). In our example, every node, rack, and
the whole machine have their own DQ (and thus a local MCS lock).
Note that some DQs that are associated with elements such as nodes
are not necessarily distributed, but we use the same name for clarity.
Second, all the DQs form a DT that corresponds to the underlying
memory hierarchy, with one DQ related to one tree vertex. For
example, DQs associated with nodes that belong to a given rack 𝑟
constitute vertices that are children of a vertex associated with a DQ
running on rack 𝑟 . Third, DC counts active readers and writers and
consists of several physical counters located on selected processes.
DT on its own (without DC and any readers) constitutes RMA-MCS.

Writers A writer that wants to acquire a lock starts at a leaf of
DT located at the lowest level 𝑁 (a node in our example). At any
level 𝑖 (2 ≤ 𝑖 ≤ 𝑁 ), it acquires a local D-MCS lock that corresponds
to a subtree of D-MCS locks (and thus DQs) rooted at the given
element. Here, it may compete with other writers. When it reaches
level 1, it executes a different protocol for acquiring the whole
RMA-RW lock. Here, it may also compete with readers. RMA-RW’s
locality-aware design enables a shortcut: some writers stop before
reaching level 1 and directly proceed to the CS. This happens if a
lock is passed within a given machine element.

Readers Readers do not enter DQs and DT and thus have a sin-
gle acquire protocol. This design reduces synchronization overhead
among readers.

4



3.2 Key Data Structures
We now present the key structures in more detail.

3.2.1 Distributed Counter (DC). DC maintains the number of ac-
tive readers or writers. It enables an adjustable performance tradeoff
that accelerates readers or writers. For this, one DC consists of mul-
tiple physical counters, each maintained by every 𝑇𝐷𝐶 th process;
𝑇𝐷𝐶 is a parameter selected by the user. To enter the CS, a reader
𝑝 increments only one associated physical counter while a writer
must check each one of them. Thus, selecting more physical coun-
ters (smaller 𝑇𝐷𝐶 ) entails lower reader latency (as each reader can
access a counter located on a closer machine element) and con-
tention (as each counter is accessed by fewer readers). Yet, higher
𝑇𝐷𝐶 entails lower latency for a writer that accesses fewer physical
counters.

A physical counter associated with a reader 𝑝 is located at a rank
𝑐 (𝑝); 𝑐 (·) ∈ {1, ..., 𝑃} can be determined at compile- or run-time. In
a simple hardware-oblivious scheme, one can fix 𝑐 (𝑝) = ⌈𝑝/𝑇𝐷𝐶 ⌉.
For more performance, the user can locate physical counters in
a topology-aware way. For example, if the user allocates 𝑥 pro-
cesses/node and a node 𝑠 hosts processes with 𝑥 successive ranks
starting from (𝑠 − 1)𝑥 + 1, then setting 𝑇𝐷𝐶 = 𝑘𝑥 in the above for-
mula results in storing one physical counter every 𝑘th node. This
can be generalized to any other machine element.

To increase performance, we implement each physical counter
as two 64-bit fields that count the readers (assigned to this counter)
that arrived and departed from the CS, respectively. This facilitates
obtaining the number of readers that acquired the lock since the
last writer and reduces contention between processes that acquire
and release the lock. We dedicate one bit of the field that counts
arriving readers to indicate whether the CS of RMA-RW is in the
READ mode (it contains readers) or the WRITE mode (it contains a
writer).

RMADesign of DC: Each physical counter occupies two words
with offsets ARRIVE (for counting arriving readers) and DEPART (for
counting departing readers); physical counters together constitute
an RMA window.

3.2.2 DistributedQueue (DQ). DQ orders writers from a single ele-
ment of the machine that attempt to enter the CS. DQs from level 𝑖
have an associated threshold 𝑇𝐿,𝑖 that determines the maximum
number of lock passings between writers running on a machine
element from this level before the lock is passed to a process from
a different element. We use a separate threshold 𝑇𝐿,𝑖 for each 𝑖

because some levels (e.g., racks) may need more locality (a higher
threshold) than others (e.g., nodes) due to expensive data transfers.
This design enables an adjustable tradeoff between fairness and
throughput at each level.

DQ extends D-MCS in that the local flag that originally signals
whether a process can enter the CS now becomes an integer that
carries (in the same RMA operation) the number of past lock ac-
quires within a given machine element. We use this value to decide
whether to pass the lock to a different element at a given level 𝑖 (if
the value reaches 𝑇𝐿,𝑖 ) or not (if the value is below 𝑇𝐿,𝑖 ).

RMADesign of DQ:All DQs at a given level constitute an RMA
window. Respective offsets in the window are as follows: NEXT (a
rank of the next process in the queue), STATUS (an integer that both

signals whether to spin wait and carries the number of past lock
acquires in the associated machine element), and TAIL (a rank of
the process that constitutes the current tail of the queue). TAIL in
DQ at level 𝑖 associated with 𝑗th element is stored on a process
tail_rank[𝑖, 𝑗].

3.2.3 Distributed Tree of Queues (DT). DT combines DQs at differ-
ent memory hierarchy levels into a single structure. This enables
𝑝 to make progress in acquiring/releasing RMA-RW by moving
from level 𝑁 to level 1. Then, at the tree root, writers synchro-
nize with readers. Specifically, the lock is passed from writers to
readers (if there are some waiting) when the total number of lock
passings between writers reaches a threshold 𝑇𝑊 . In our design,
𝑇𝑊 =

∏𝑁
𝑖=1𝑇𝐿,𝑖 . To avoid starvation of writers, we also introduce a

threshold𝑇𝑅 that is the maximum number of readers that can enter
the CS consecutively before the lock is passed to a writer (if there
is one waiting). Increasing 𝑇𝑅 or 𝑇𝑊 improves the throughput of
readers or writers because more processes of a given type can enter
the CS consecutively.

While climbing up DT, a writer must determine the next DQ (and
thus D-MCS) to enter. This information is encoded in a mapping
𝑒 (·, ·) and structure tail_rank[𝑖, 𝑗]. 𝑒 (𝑝, 𝑖) ∈ {1, ..., 𝑁𝑖 } returns
the ID of a machine element associated with a process 𝑝 at level 𝑖 .
An expression tail_rank[𝑖,𝑒 (𝑝, 𝑖)] returns the rank of a process
that points to the tail of a DQ at level 𝑖 within a machine element
assigned to 𝑝 . This enables 𝑝 to enter D-MCS at the next level on the
way to the CS. Similarly to 𝑐 (𝑝), 𝑒 (𝑝, 𝑖) can be determined statically
or dynamically.

Depending on 𝑇𝐿,𝑖 , some writers do not have to climb all DT
levels and can proceed directly to the CS. Thus, we further ex-
tend the STATUS field used in DQ with one more special value
ACQUIRE_PARENT. This indicates that 𝑝 cannot directly enter the
CS and should continue up DT.

3.2.4 Discussion on the Status Field. A central part of DQ and
DT is the STATUS field that enables processes to exchange various
additional types of information in a single RMA communication
action, including: (1) if a lock mode changed (e.g., from READ to
WRITE), (2) if a given process should acquire a lock at a higher DT
level, (3) if a given process can enter the CS, and (4) the number
of past consecutive lock acquires. Two selected integer values are
dedicated to indicate (1) and (2). All the remaining possible values
indicate that the given process can enter the CS (3); at the same
time the value communicates (4).

3.3 Distributed Reader-Writer Protocol
We now illustrate how the above data structures play together
in the acquire and release protocols. A writer starts at the leaf
of DT (level 𝑁 ) both for acquiring and releasing. At any level 𝑖
(2 ≤ 𝑖 ≤ 𝑁 ), it proceeds up the tree executing a protocol for a
partial acquire/release of the respective part of the tree (§ 3.3.1,
§ 3.3.2). At level 1, it executes a different protocol for locking or
releasing the whole lock (§ 3.3.3, § 3.3.4). Readers do not follow
such a hierarchy and thus have single acquire (§ 3.3.5) and release
(§ 3.3.6) protocols.

3.3.1 Writer Lock Acquire: Level 𝑁 to 2 (Listing 4). Intuition: 𝑝
enters the DQ associated with a given level 𝑖 and its home element

5



𝑒 (𝑝, 𝑖); it then waits for the update from its predecessor. If the
predecessor does not have to hand over the lock to a process from
another element (i.e., has not reached the threshold 𝑇𝐿,𝑖 ), the lock
is passed to 𝑝 that immediately enters the CS. Otherwise, 𝑝 moves
to level 𝑖 − 1.
Details: 𝑝 first modifies its NEXT and STATUS to reflect it spin waits
at the DQ tail (Lines 2-3). Then, it enqueues itself (Line 5). If there
is a predecessor at this level, 𝑝 makes itself visible to it with a Put
(Line 8) and then waits until it obtains the lock. While waiting, 𝑝
uses Gets and Flushes to check for any updates from the prede-
cessor. If the predecessor reached 𝑇𝐿,𝑖 and released the lock to the
parent level, 𝑝 must itself acquire the lock from level 𝑖 − 1 (Line 23).
Otherwise, it can directly enter the CS as the lock is simply passed
to it (Line 18). If there is no predecessor at level 𝑖 , 𝑝 also proceeds
to acquire the lock for level 𝑖 − 1 (Line 23).

1 void writer -acquire <𝑖 >() {
2 Put(∅, 𝑝, NEXT);
3 Put(WAIT , 𝑝, STATUS); Flush(𝑝);
4 /* Enter the DQ at level 𝑖 and in this machine element. */
5 int pred = FAO(𝑝, tail_rank[𝑖,𝑒 (𝑝, 𝑖)], TAIL , REPLACE);
6 Flush(tail_rank[𝑖,𝑒 (𝑝, 𝑖) ]);
7 if(pred != ∅) {
8 Put(𝑝, pred , NEXT); Flush(pred); /* pred sees us. */
9 int status = WAIT;
10 do { /* Wait until pred passes the lock. */
11 status = Get(𝑝, STATUS); Flush(𝑝);
12 } while(status == WAIT);
13 /* Check if pred released the lock to the parent level. This
14 would happen if 𝑇𝐿,𝑖 is reached. */
15 if(status != ACQUIRE_PARENT) {
16 /* 𝑇𝐿,𝑖 is not reached. Thus , the lock is passed to
17 𝑝 that directly proceeds to the CS. */
18 return; /* The global lock is acquired. */
19 }
20 }
21 /* Start to acquire the next level of the tree.*/
22 Put(ACQUIRE_START , 𝑝, STATUS); Flush(𝑝);
23 writer -acquire <𝑖 − 1>();}

Listing 4: Acquiring the RMA-RW lock by a writer; levels 𝑁
to 2.

3.3.2 Writer Lock Release: Level 𝑁 to 2 (Listing 5). Intuition: 𝑝
passes the lock within 𝑒 (𝑝, 𝑖) if there is a successor and 𝑇𝐿,𝑖 is not
yet reached. Otherwise, it releases the lock to the parent level 𝑖 − 1,
leaves the DQ, and informs any new successor that it must acquire
the lock at level 𝑖 − 1.
Details: 𝑝 first finds out whether it has a successor. If there is one
and𝑇𝐿,𝑖 is not yet reached, the lock is passed to it with a Put (Line 8).
If 𝑇𝐿,𝑖 is reached, 𝑝 releases the lock for this level and informs its
successor (if any) that it has to acquire the lock at level 𝑖 − 1. If
there is no known successor, it checks atomically if some process
has already entered the DQ at level 𝑖 (Line 15). If so, the releaser
waits for the successor to make himself visible before it is notified
to acquire the lock at level 𝑖 − 1.

3.3.3 Writer Lock Acquire: Level 1 (Listing 7). Intuition: This
scheme is similar to acquiring the lock at lower levels (§ 3.3.1).
However, the predecessor may notify 𝑝 of the lock mode change
that enabled readers to enter the CS, forcing 𝑝 to acquire the lock
from the readers.
Details: 𝑝 first tries to obtain the lock from a predecessor (Lines 2-
18). If there is one, 𝑝 waits until the lock is passed. Still, it can
happen that the predecessor hands the lock over to the readers

1 void writer -release <𝑖 >() {
2 /* Check if there is a successor and get the local status. */
3 int succ = Get(𝑝, NEXT);
4 int status = Get(𝑝, STATUS); Flush(𝑝);
5 if(succ != ∅ && status < 𝑇𝐿,𝑖 ) {
6 /* Pass the lock to succ at level i as well as the number
7 of past lock passings within this machine element. */
8 Put(status + 1, succ , STATUS); Flush(succ); return;
9 }
10 /* There is no known successor or the threshold at level 𝑖 is
11 reached. Thus , release the lock to the parent level. */
12 writer -release <𝑖 − 1>();
13 if(succ == ∅) {
14 /* Check if some process has just enqueued itself. */
15 int curr_rank = CAS(∅, 𝑝, tail_rank[𝑖,𝑒 (𝑝, 𝑖)], TAIL);
16 Flush(tail_rank[𝑖,𝑒 (𝑝, 𝑖) ]);
17 if(𝑝 == curr_rank) { return; }
18 do { /* Otherwise , wait until succ makes itself visible. */
19 succ = Get(𝑝, NEXT); Flush(𝑝);
20 } while(succ == ∅);
21 }
22 /* Notify succ to acquire the lock at level 𝑖 − 1. */
23 Put(ACQUIRE_PARENT , succ , STATUS); Flush(succ); }

Listing 5: Releasing an RMA-RW lock by a writer; levels 𝑁
to 2.

(Line 14). Here, 𝑝 changes the mode back to WRITE before entering
the CS (Line 16); this function checks each counter to verify if there
are active readers. If not, it switches the value of each counter to
WRITE (see Listing 6). If there is no predecessor (Line 19), 𝑝 tries to
acquire the lock from the readers by changing the mode to WRITE
(Line 21).

1 /****** Change all physical counters to the WRITE mode ******/
2 void set_counters_to_WRITE () {
3 /* To simplify , we use one counter every 𝑇𝐷𝐶 th process.*/
4 for(int 𝑝 = 0; 𝑝 < 𝑃 ; 𝑝 += 𝑇𝐷𝐶 ) {
5 /* Increase the arrival counter to block the readers.*/
6 Accumulate(INT64_MAX/2, 𝑝, ARRIVE , SUM); Flush(𝑝);
7 } }
8
9 /* **************** Reset one physical counter **************** */
10 void reset_counter(int rank) {
11 /* Get the current values of the counters.*/
12 int arr_cnt = Get(rank , ARRIVE), dep_cnt = Get(rank , DEPART);
13 Flush(rank);
14 /* Prepare the values to be subtracted from the counters.*/
15 int sub_arr_cnt = -dep_cnt , sub_dep_cnt = -dep_cnt;
16
17 /* Make sure that the WRITE is reset if it was set.*/
18 if(arr_cnt >= INT64_MAX /2) {
19 sub_arr_cnt -= INT64_MAX /2;
20 }
21 /* Subtract the values from the current counters.*/
22 Accumulate(sub_arr_cnt , rank , ARRIVE , SUM);
23 Accumulate(sub_dep_cnt , rank , DEPART , SUM); Flush(rank);
24 }
25
26 /* **************** Reset all physical counters *************** */
27 void reset_counters () {
28 for(int 𝑝 = 0; 𝑝 < 𝑃 ; 𝑝 += 𝑇𝐷𝐶 ) { reset_counter(𝑝); } }

Listing 6: Functions that manipulate counters.

3.3.4 Writer Lock Release: Level 1 (Listing 8). Intuition: 𝑝 first
checks if it has reached 𝑇𝑊 and if there is a successor waiting at
level 1. If any case is true, it passes the lock to the readers and
notifies any successor that it must acquire the lock from them.
Otherwise, the lock is handed over to the successor.
Details: First, if 𝑇𝑊 is reached, 𝑝 passes the lock to the readers
by resetting the counters (Line 6). Then, if it has no successor,
it similarly enables the readers to enter the CS (Line 12). Later, 𝑝
appropriatelymodifies the tail of theDQ and verifies if there is a new
successor (Line 17). If necessary, it passes the lock to the successor

6



1 void writer -acquire <1>() {
2 Put(∅, 𝑝, NEXT); Put(WAIT , 𝑝, STATUS);
3 Flush(𝑝); /* Prepare to enter the DQ.*/
4 /* Enqueue oneself to the end of the DQ at level 1.*/
5 int pred = FAO(𝑝, tail_rank[1,𝑒 (𝑝, 1)], TAIL , REPLACE);
6 Flush(tail_rank[1,𝑒 (𝑝, 1) ]);
7
8 if(pred != ∅) { /* If there is a predecessor ...*/
9 Put(𝑝, pred , NEXT); Flush(pred);
10 int curr_stat = WAIT;
11 do { /* Wait until pred notifies us.*/
12 curr_stat = Get(𝑝, STATUS); Flush(𝑝);
13 } while (curr_stat == WAIT);
14 if(curr_stat == MODE_CHANGE) { /* The lock mode changed ...*/
15 /* The readers have the lock now; try to get it back.*/
16 set_counters_to_WRITE ();
17 Put(ACQUIRE_START , 𝑝, STATUS); Flush(𝑝);
18 } }
19 else { /* If there is no predecessor ...*/
20 /* Change the counters to WRITE as we have the lock now.*/
21 set_counters_to_WRITE ();
22 Put(ACQUIRE_START , 𝑝, STATUS); Flush(𝑝); } }

Listing 7: Acquiring an RMA-RW lock by a writer; level 1.

with a Put (line 23) and simultaneously (using next_stat) notifies
it about a possible lock mode change.

1 void writer -release <1>(){
2 bool counters_reset = false;
3 /* Get the count of consecutive lock acquires (level 1).*/
4 int next_stat = Get(𝑝, STATUS); Flush(𝑝);
5 if(++ next_stat == 𝑇𝑊 ) { /* Pass the lock to the readers.*/
6 reset_counters ();/* See Listing 6.*/
7 next_stat = MODE_CHANGE; counters_reset = true;
8 }
9 int succ = Get(𝑝, NEXT); Flush(𝑝);
10 if(succ == ∅) { /* No known successor.*/
11 if(! counters_reset) { /* Pass the lock to the readers.*/
12 reset_counters (); next_stat = MODE_CHANGE;/* Listing 6.*/
13 }
14 /* Check if some process has already entered the DQ.*/
15 int curr_rank = CAS(∅, 𝑝, tail_rank[1,𝑒 (𝑝, 1)], TAIL);
16 Flush(tail_rank[1,𝑒 (𝑝, 1) ]);
17 if(𝑝 == curr_rank) { return; } /* No successor ...*/
18 do { /* Wait until the successor makes itself visible.*/
19 succ = Get(𝑝, NEXT); Flush(𝑝);
20 } while (succ == ∅);
21 }
22 /* Pass the lock to the successor.*/
23 Put(next_stat , succ , STATUS); Flush(succ); }

Listing 8: Releasing an RMA-RW lock by a writer; level 1.

3.3.5 Reader Lock Acquire (Listing 9). Intuition: Here, 𝑝 first spin
waits if there is an active writer or if 𝑝’s arrival made its associated
counter 𝑐 (𝑝) exceed𝑇𝑅 . Then, it can enter the CS. If 𝑐 (𝑝) = 𝑇𝑅 , then
𝑝 resets DC.
Details: In the first part, 𝑝 may spin wait on a boolean barrier
variable (Line 5), waiting to get the lock from a writer. Then, 𝑝
atomically increments its associated counter and checks whether
the count is below𝑇𝑅 . If yes, the lock mode is READ and 𝑝 enters the
CS. Otherwise, either the lock mode is WRITE or 𝑇𝑅 is reached. In
case of the latter, 𝑝 checks if there are any waiting writers (Line 17).
If there are none, 𝑝 resets the DC (Line 20) and re-attempts to
acquire the lock. If there is a writer, 𝑝 sets the local barrier and
waits for DC to be reset by the writer.

3.3.6 Reader Lock Release (Listing 10). Releasing a reader lock only
involves incrementing the departing reader counter.
1 void reader -release () {
2 Accumulate (1, 𝑐 (𝑝) , DEPART , SUM); Flush(𝑐 (𝑝)); }

Listing 10: Releasing an RMA-RW reader lock.

1 void reader -acquire () {
2 bool done = false; bool barrier = false;
3 while (!done) {
4 int curr_stat = 0;
5 if(barrier) {
6 do {
7 curr_stat = Get(𝑐 (𝑝) , ARRIVE); Flush(𝑐 (𝑝));
8 } while(curr_stat >= 𝑇𝑅 );
9 }
10
11 /* Increment the arrival counter.*/
12 curr_stat = FAO(1, 𝑐 (𝑝) , ARRIVE , SUM); Flush(𝑐 (𝑝));
13 if(curr_stat >= 𝑇𝑅 ) { /* 𝑇𝑅 has been reached ...*/
14 barrier = true;
15 if(curr_stat == 𝑇𝑅 ) {/* We are the first to reach 𝑇𝑅 .*/
16 /* Pass the lock to the writers if there are any.*/
17 int curr_tail = Get(tail_rank[1,𝑒 (𝑝, 1)], TAIL);
18 Flush(tail_rank[1,𝑒 (𝑝, 1) ]);
19 if(curr_tail == ∅) { /* There are no waiting writers.*/
20 reset_counter(𝑐 (𝑝)); barrier = false;/* Listing 6.*/
21 }
22 }
23 /* Back off and try again.*/
24 Accumulate(-1, 𝑐 (𝑝) , ARRIVE , SUM); Flush(𝑐 (𝑝));
25 } } }

Listing 9: Acquiring an RMA-RW lock by a reader.

3.4 Example
Consider the scenario from Figure 2. Here, there are three machine
levels, 12 readers, and 12 writers (𝐹𝑊 = 0.5).

Writer Acquire Assume a new writer𝑊𝑥 running on a node
related to DQ3.1 attempts to acquire RMA-RW (Figure 2, Part 5).
First, it enters DQ3.1 (Listing 4). As this queue is not empty,𝑊𝑥

spins locally (Lines 10-12) until its predecessor𝑊9 modifies𝑊𝑥 ’s
STATUS. Now, if𝑊9 has not yet reached 𝑇𝐿,3,𝑊𝑥 gets the lock and
immediately proceeds to the CS (Lines 15-19). Otherwise, it attempts
to move to level 2 by updating its STATUS (Line 22) and calling
writer-acquire<𝑖−1>(). Thus, it enters DQ2.1 and takes the same
steps as in DQ3.1: it spins locally until𝑊4 changes its STATUS and it
either directly enters the CS or it proceeds up to level 1. Assuming
the latter,𝑊𝑥 enters DQ1.1 and waits for𝑊1 to change its STATUS
(Listing 7, Lines 10-12). If STATUS is different from MODE_CHANGE
(Line 17),𝑊𝑥 can enter the CS. Otherwise, the lock was handed over
to the readers and𝑊𝑥 calls set_counters_to_WRITE() to change
all physical counters to the WRITE mode (Line 15), which blocks
new incoming readers. At some point, the readers reach the 𝑇𝑅
threshold and hand the lock over to𝑊𝑥 .

Writer Release Assumewriter𝑊𝑥 occupies the CS and starts to
release RMA-RW (Figure 2, Part 6). It begins with level 3 (Listing 5).
Here, it first checks if it has a successor in DQ3.1 and if 𝑇𝐿,3 is not
yet reached (Line 5). Its successor is𝑊10 and assume that the latter
condition is true. Then,𝑊𝑥 passes the lock to𝑊10 by updating its
STATUS so that it contains the number of lock acquires within the
given element. If 𝑇𝐿,3 is reached,𝑊𝑥 releases the lock at level 2
(Line 12). Here, it repeats all the above steps (its successor is𝑊6)
and then starts to release the lock at level 1 (Listing 8). Here it hands
the lock over to the readers if 𝑇𝑊 is reached (Lines 5-8). Finally, it
notifies its successors at each level (𝑁 to 2) to acquire the lock at
the parent level (Listing 5, Line 23).

Reader Acquire A reader 𝑅𝑥 that attempts to acquire RMA-
RW first increments 𝑐 (𝑅𝑥 ) (Listing 9, Line 12) and checks if 𝑇𝑅 is
reached (in the first attempt Lines 6-8 are skipped). If yes, it sets
barrier (Line 14), backs off (Line 24), and reattempts to acquire
the lock. In addition, if 𝑅𝑥 is the first process to reach 𝑇𝑅 , it also

7



checks if there are any waiting writers (Lines 15-21). If not, it resets
𝑐 (𝑅𝑥 ) and sets barrier to false so that it can enter the CS even
if 𝑇𝑅 was reached. Then, it reexecutes the main loop (Line 3); this
time it may enter the loop in Lines 6-8 as the lock was handed over
to a writer (if𝑇𝑅 was reached). In that case, 𝑅𝑥 waits until its 𝑐 (𝑅𝑥 )
is reset (Listing 9, Lines 6-8).

Reader Release This is a straightforward scenario in which
𝑅𝑥 only increments DEPART at 𝑐 (𝑅𝑥 ).

3.5 RMA-RW vs. RMA-MCS
We also outline the design of RMA-MCS. RMA-MCS consists of
DQs and DT but not DC. 𝑇𝑅 and 𝑇𝑊 are excluded as the are no
readers. Similarly, 𝑇𝐿,1 is not applicable because there is no need to
hand the lock to readers. The acquire/release protocols are similar
to the ones in Listings 4 and 5 for any 𝑖 ∈ {1, ..., 𝑁 }.

4 CORRECTNESS ANALYSIS
We now discuss how RMA-RW ensures three fundamental correct-
ness properties: mutual exclusion (ME), deadlock freedom (DF), and
starvation freedom (SF) [24]. At the end of this section, we show
how we use model checking to verify the design.

4.1 Mutual Exclusion
ME is violated if two writers or a reader and a writer enter the CS
concurrently. We now discuss both cases.

Writer & Writer: We distinguish between writers that are in
the same DQ (case A) or in different ones (case B). In case A, they
operate on the same TAIL. Thus, they could only violate ME if both
writers do not see any predecessor. This is prevented by using FAO
for atomically modifying TAIL. In case B, two writers competing
in different DQs have a common DQ in DT where they or their
predecessor compete for the lock. Similarly as above, the MCS lock
must be acquired at each DT level. If a predecessor has to compete
for the lock, a writer waits until he gets notified by its predecessor
and thus does not interfere in the lock acquiring process.

Reader & Writer: A reader and a writer can be active at the
same time if the lock mode is READ and about to change to WRITE.
This is because the reader on its own cannot change the mode and
as a consequence cannot acquire a lock while a writer is active.
However, a writer can alter the mode to WRITE while a reader is
active. This is prevented by a writer that checks each counter again
for active readers after changing all of them.

4.2 Deadlock Freedom
Here, we also differentiate two base cases: two writers deadlock or
a reader and a writer deadlock.

Writer &Writer The only way how writers deadlock is if there
is a cycle in a queue. For two writers it means that one becomes the
predecessor of the other. Therefore, both wait on the other to get
notified. This cannot happen as the processes use an atomic FAO to
obtain their predecessor. As explained, this function is atomic and
thus we can order the uses of FAO in a timeline. This contradicts
that the writers have a cycle in their waiting queue.

Reader & Writer A reader may deadlock after 𝑇𝑅 is reached
(case A) or the mode goes into WRITE (case B). In case A, either
there is no writer active and the reader resets the DC or a writer is

waiting and a reader backs off. Thus, the writer changes the mode
to WRITE after all readers back off which is done in a finite time. As
writers do not deadlock and the last writer changes the mode back
to READ, no reader will deadlock in case B either.

4.3 Starvation Freedom
Finally, we show that no writer or reader can starve.

Writers A writer may starve while other writers or readers are
active. We prevent it with different thresholds. First, there is 𝑇𝐿,𝑖 at
each DT level 𝑖 . After reaching𝑇𝐿,𝑖 , writers in one of the associated
DQs at 𝑖 release the lock to the next DQ at the same level. Thus, we
only need to show that one DQ is starvation-free which is already
provided by the underlying MCS queue lock design. Yet, there is the
𝑇𝑅 threshold that regulates the number of lock acquires by readers
for one counter before the readers associated to the counter back
off. We already showed that the readers make progress. Thus, at
some point, all counters have reached 𝑇𝑅 and a writer changes the
mode to WRITE.

Readers There are two ways how readers could starve. First,
other readers are active while processes associated with a certain
counter back off to let writers acquire the lock. However, there is
the𝑇𝑅 threshold for each counter after which the readers associated
with this counter back off. Thus, eventually, all readers wait on the
writers to take over. This leads us to the second case where the
writers have the lock and do not pass it to the waiting readers. This
is not possible since there is the 𝑇𝐿,𝑖 threshold at each level of the
writer hierarchy and at most after 𝑇𝑊 =

∏𝑁
𝑖=1𝑇𝐿,𝑖 lock passings

between writers the lock goes to readers; we have also already
illustrated that the writers will make progress until this threshold
is reached.

4.4 Model Checking
To confirm that RMA-RW provides the desired correctness prop-
erties, we also conduct model checking with SPIN [27] (v6.4.5), a
software tool for the formal verification of multi-threaded codes.
The input to SPIN is constructed in PROMELA, a verification mod-
eling language that allows for the dynamic creation of concurrent
processes to model, for example, distributed systems. We evaluate
RMA-RW for up to 𝑁 ∈ {1, ..., 4} and a maximum of 256 processes.
The machine elements on each level of the simulated system have
the same number of children. Thus, for 𝑁 = 3 and four subelements
per machine element, the system would consist of 43 processes.
Each process is defined randomly either as a reader or a writer at
the beginning and after that, it tries to acquire the lock 20 times.
We choose this value as it generates a feasible number of cases that
SPIN has to check even for a high count of processes. During the
execution of a test, we use a designated process that verifies that
either only one writer or multiple readers hold a lock. All the tests
confirm mutual exclusion and deadlock freedom.

5 EVALUATION
We now illustrate performance advantages of RMA-MCS and RMA-
RW over state-of-the-art distributed locks from the foMPI imple-
mentation of MPI-3 RMA [20].

Comparison Targets We consider D-MCS and both foMPI
locking schemes: a simple spin-lock (foMPI-Spin) that enables

8



10

100

1000

16 64 256 1024
MPI processes (P)

L
a
te

n
c
y
 [
u
s
]

Scheme

foMPI−Spin
D−MCS
RMA−MCS

intra-
node

inter-
node

Performance initially
increases due to high
intra-node bandwidth

(a) Latency (LB).

0

2

4

6

16 64 256 1024
MPI processes (P)

T
h
ro

u
g
h
p
u
t 
[m

ln
 l
o
c
k
s
/s

]

Scheme

foMPI−Spin
D−MCS
RMA−MCS

Performance initially
increases due to high
intra-node bandwidth

intra-
node

inter-
node

(b) Throughput (ECSB).

0

1

2

3

16 64 256 1024
MPI processes (P)

T
h
ro

u
g
h
p
u
t 
[m

ln
 l
o
c
k
s
/s

]

Scheme

foMPI−Spin
D−MCS
RMA−MCS

Performance initially
increases due to high
intra-node bandwidth

intra-
node

inter-
node

(c) Throughput (SOB).

0.2

0.3

0.4

0.5

0.6

16 64 256 1024
MPI processes (P)

T
h
ro

u
g
h
p
u
t 
[m

ln
 l
o
c
k
s
/s

]

Scheme

foMPI−Spin
D−MCS
RMA−MCS

intra-
node

inter-
node

(d) Throughput (WCSB).

0.2

0.3

0.4

0.5

0.6

16 64 256 1024
MPI processes (P)

T
h
ro

u
g
h
p
u
t 
[m

ln
 l
o
c
k
s
/s

]

Scheme

foMPI−Spin
D−MCS
RMA−MCS

intra-
node

inter-
node

(e) Throughput (WARB).

Figure 3: (§ 5.1) Performance analysis of RMA-MCS and comparison to the state-of-the-art.

mutual exclusion, and an RW lock (foMPI-RW) that provides both
shared and exclusive accesses to the CS.

Selection of Benchmarks We conduct six series of experi-
ments. The latency benchmark (LB) measures the latency of both
acquiring and releasing a lock; an important performance metric
in workloads such as real-time queries. Four other analyses obtain
throughput under varying conditions and parameters. The empty-
critical-section benchmark (ECSB) derives the throughput of acquir-
ing an empty lock with no workload in the CS. The single-operation
benchmark (SOB) measures the throughput of acquiring a lock with
only one single operation (one memory access) in the CS; it repre-
sents irregular parallel workloads such as graph processing with
vertices protected by fine locks. Next, the workload-critical-section
benchmark (WCSB) covers variable workloads in the CS: each pro-
cess increments a shared counter and then spins for a random time
(1-4𝜇s) to simulate local computation. The wait-after-release bench-
mark (WARB) varies lock contention: after release, processes wait
for a random time (1-4𝜇s) before the next acquire. The throughput
experiments represent data- and communication-intensive work-
loads. Finally, we integrate and evaluate the proposed locks with a
distributed hashtable (DHT) to cover real codes such as key-value
stores.

Varied Parameters To evaluate various scenarios, we vary:
𝑇𝐷𝐶 , 𝑇𝐿,𝑖 , and 𝑇𝑅 . Unless stated otherwise, we set the fraction of
writers 𝐹𝑊 = 0.2% as it reflects Facebook workloads [50]; however,
we also evaluate other values.

Experimentation Methodology To calculate the latency, we
derive the arithmetic mean of 100,000 operations per process (for
each latency benchmark). Throughput is the aggregate count of
lock acquires or releases divided by the total time to run a given
benchmark. 10% of the first measurements are discarded (warmup).
All time measurements are taken using a high precision rdtsc
timer [26].

Experimental Setup We conduct experiments on CSCS Piz
Daint (Cray XC30). Each node has an 8-core HT-enabled Intel Xeon
E5-2670 CPU with 32 GiB DDR3-1600 RAM. The interconnection
is based on Cray’s Aries and it implements the Dragonfly topol-
ogy [19, 31]. The batch system is slurm 14.03.7. We use C++ and
the GNU 5.2.40 g++ compiler with -O3 optimizations. The utilized
Cray DMAPP is 7.0.1-1.0501.8315.8.4.ari. Unless stated otherwise,
we use all the compute resources and run one MPI process per one
HT resource (16 processes per one compute node).

Machine Model We consider two levels of the hierarchy: the
whole machine and compute nodes, thus 𝑁 = 2.

ImplementationDetails We use the libtopodisc [23] library for
discovering the structure of the underlying compute nodes and for
obtaining MPI communicators that enable communication within
each node. We group all the locking structures in MPI allocated
windows to reduce the memory footprint [20].

5.1 Performance Analysis of RMA-MCS
We present the results in Figure 3. The latency of RMA-MCS is lower
than any other target. For example, for 𝑃 = 1, 024, it is ≈10x and ≈4x
lower than foMPI-Spin and D-MCS, respectively. This is because
foMPI-Spin entails lock contention that limits performance. In
addition, both foMPI-Spin and D-MCS are topology-oblivious. Then,
the throughput analysis confirms the advantages of RMA-MCS
across all the considered benchmarks. The interesting spike in
ECSB and SOB is because moving from 𝑃 = 8 to 𝑃 = 16 does not
entail inter-node communication, initially increasing RMA-MCS’s
and D-MCS’s throughput. We conclude that RMA-MCS consistently
outperforms the original foMPI design and D-MCS.

5.2 Performance Analysis of RMA-RW
We now proceed to evaluate RMA-RW. First, we analyze the impact
of various design parameters (Figure 4) and then compare it to
the state-of-the-art (Figure 5). Due to space constraints, we only
present a subset of the results, all remaining plots follow similar
performance patterns.

5.2.1 Influence of 𝑇𝐷𝐶 . We first discuss how different 𝑇𝐷𝐶 values
impact performance. We consider 𝑇𝐷𝐶 ∈ {1, 2, 4} (one physical
counter on each compute node and every 2nd and 4th compute node,
respectively). We also vary the number of counters on one node
(1, 2, 4, 8). The results are presented in Figure 4a. First, lower 𝑇𝐷𝐶
entails more work for writers that must access more counters while
changing the lock mode. This limits performance, especially for
high 𝑃 , because of the higher total number of counters. Larger𝑇𝐷𝐶
increases throughput (less work for writers), but at some point (e.g.,
𝑃 = 512 a counter on every 2nd node) the overhead due to readers
(contention and higher latency) begins to dominate. We conclude
that selecting the proper 𝑇𝐷𝐶 is important for high performance of
RMA-RW, but the best value depends on many factors and should
be tuned for a specific machine. For example, higher 𝑇𝐷𝐶 might

9



1

2

3

4

5

16 64 256 1024
MPI processes (P)

T
h

ro
u

g
h

p
u

t 
[m

ln
 l
o

c
k
s
/s

] TDC

64
32
16
8
4
2

(a) (§ 5.2.1)𝑇𝐷𝐶 analysis, SOB, 𝐹𝑊 = 2%.

2

4

6

16 64 256 1024
MPI processes (P)

T
h

ro
u

g
h

p
u

t 
[m

ln
 l
o

c
k
s
/s

] TLi product

500
1000
2500
5000
7500

(b) (§ 5.2.2)
∏𝑁

𝑖=1𝑇𝐿,𝑖 analysis, SOB, 𝐹𝑊 = 25%.

2

4

6

8

16 64 256 1024

MPI processes (P)

T
h

ro
u

g
h

p
u

t 
[m

ln
 l
o

c
k
s
/s

] TLi

50−20
25−40
10−100

(c) (§ 5.2.2)𝑇𝐿,𝑖 analysis, SOB, 𝐹𝑊 = 25%.

0

1000

2000

3000

16 64 256 1024

MPI processes (P)

L
a

te
n

c
y
 [

u
s
]

TLi

50−20
25−40
10−100

(d) (§ 5.2.2)𝑇𝐿,𝑖 analysis, LB, 𝐹𝑊 = 25%.

0

10

20

30

16 64 256 1024
MPI processes (P)

T
h

ro
u

g
h

p
u

t 
[m

ln
 l
o

c
k
s
/s

] TR

6000
5000
4000
3000
2000
1000

(e) (§ 5.2.3)𝑇𝑅 analysis, ECSB, 𝐹𝑊 = 0.2%.

3

6

9

16 64 256 1024

MPI processes (P)

T
h

ro
u

g
h

p
u

t 
[m

ln
 l
o

c
k
s
/s

] TR

3000−2
4000−2
5000−2
3000−5
4000−5
5000−5

(f) (§ 5.2.3)𝑇𝑅 analysis, ECSB, 𝐹𝑊 ∈ {2%, 5%}.

Figure 4: Analysis of the performance impact of various thresholds.

entail unpredictable performance penalties on Cray XE because the
job scheduler does not enforce contiguous job allocations [8].

5.2.2 Influence of 𝑇𝐿,𝑖 . Next, we analyze the performance impact
of 𝑇𝐿,𝑖 in the considered system 𝑖 ∈ {1, 2}. We fix 𝐹𝑊 = 25% to
ensure that there are multiple writers per machine element on
each level. We start with various

∏𝑁
𝑖=1𝑇𝐿,𝑖 : the maximal number

of writer acquires before the lock is passed to the readers; see Fig-
ure 4b. As expected, smaller product increases throughput because
more readers can enter the CS, but reduces fairness as writers wait
longer. In the second step, we analyze how varying each 𝑇𝐿,𝑖 im-
pacts performance. We first fix

∏𝑁
𝑖=1𝑇𝐿,𝑖 = 1000. As 𝑁 = 2, we use

𝑇𝐿,2 ∈ (10, 25, 50) and 𝑇𝐿,1 ∈ (100, 40, 20). The outcome is shown
in Figure 4c. When more writers consecutively acquire the lock
within one node (higher 𝑇𝐿,2), the throughput increases. Still, the
differences between the considered options are small (up to 25%
of the relative difference), especially for lower 𝑃 . This is because
of smaller amounts of inter-node communication. Interestingly,
options that increase throughput (e.g., 50-20) also increase latency,
see Figure 4d. We conjecture this is due to improved fairness caused
by smaller 𝑇𝐿,2 (more processes from different nodes can acquire
the lock). However, the average latency increases because other
writers have to wait for a longer time.

5.2.3 Influence of 𝑇𝑅 . Next, we analyze the impact of 𝑇𝑅 ; see Fig-
ure 4e. We first use 𝐹𝑊 = 0.2%. The throughput for 𝑇𝑅 ∈ {1,000 ;
2,000} drops significantly for 𝑃 > 512 due to the higher overhead

of writers. Contrarily, increasing 𝑇𝑅 improves the throughput sig-
nificantly. This is because the latency of readers is lower than that
of writers and a higher𝑇𝑅 entails a preference of readers. However,
the larger 𝑇𝑅 the longer the waiting time for writers is. Finally,
we analyze the relationship between 𝑇𝑅 and 𝐹𝑊 in more detail;
see Figure 4f. Here, we vary 𝐹𝑊 ∈ {2%, 5%}. The results indicate
no consistent significant advantage (<1% of relative difference for
most 𝑃 ) of one threshold over others within a fixed 𝐹𝑊 .

5.2.4 Comparison to the State-of-the-Art. We now present the
advantages of RMA-RW over the state-of-the-art foMPI RMA li-
brary [20]; see Figure 5. Here, we consider different 𝐹𝑊 rates. As
expected, any RW distributed lock provides the highest throughput
for 𝐹𝑊 = 0.2%. This is because readers have a lower latency for
acquiring a lock than writers and they can enter the CS in paral-
lel. The maximum difference between the rates 𝐹𝑊 = 0.2% and
𝐹𝑊 = 2% is 1.8x and between 𝐹𝑊 = 0.2% and 𝐹𝑊 = 5% is 4.4x.
We then tested other values of 𝐹𝑊 up to 100% to find out that for
𝐹𝑊 > 30% the throughput remains approximately the same. At
such rates, the throughput is dominated by the overhead of writers
that enter the CS consecutively.

In each case, RMA-RW always outperforms foMPI by >6x for
𝑃 ≥ 64. One reason for this advantage is the topology-aware design.
Another one is the presence of 𝑇𝐿,𝑖 and 𝑇𝑅 that prevent one type
of processes to dominate the other one resulting in performance
penalties.

10



10

100

1000

16 64 256 1024

MPI processes (P)

L
a
te

n
c
y
 [
u
s
]

RMA-RW

5%

2%

0.2
%

0.2%

5%

2%

foMPI-RW

W

Percentages are

values of F 

(a) Latency (LB).

1

10

16 64 256 1024

MPI processes (P)

T
h
ro

u
g
h
p
u
t 
[m

ln
 l
o
c
k
s
/s

]

0.2%

RMA-RW 2%

5%

0.2%

2%

5%

foMPI-RW

Percentages are
values of F W

(b) Throughput (ECSB).

1

10

16 64 256 1024

MPI processes (P)

T
h
ro

u
g
h
p
u
t 
[m

ln
 l
o
c
k
s
/s

]

0.2%

RMA-RW
2%

5%

0.2%

2% 5%foMPI-RW

Percentages are

values of F W

(c) Throughput (SOB).

Figure 5: (§ 5.2.4) Performance analysis of RMA-RW and comparison to the state-of-the-art.

0.1

1.0

16 32 64 128 256 512 1024
MPI processes (P)

T
o

ta
l 
ti
m

e
 [

s
]

Scheme

foMPI−A
foMPI−RW
RMA−RW

(a) 𝐹𝑊 = 20%.

0.1

1.0

16 32 64 128 256 512 1024
MPI processes (P)

T
o

ta
l 
ti
m

e
 [

s
]

Scheme

foMPI−A
foMPI−RW
RMA−RW

(b) 𝐹𝑊 = 5%.

0.01

0.10

1.00

16 32 64 128 256 512 1024
MPI processes (P)

T
o

ta
l 
ti
m

e
 [

s
]

Scheme

foMPI−A
foMPI−RW
RMA−RW

(c) 𝐹𝑊 = 2%.

0.01

0.10

1.00

16 32 64 128 256 512 1024
MPI processes (P)

T
o

ta
l 
ti
m

e
 [

s
]

Scheme

foMPI−A
foMPI−RW
RMA−RW

(d) 𝐹𝑊 = 0%.

Figure 6: (§ 5.3) Performance analysis of a distributed hashtable.

UPC (standard) [49] Berkeley UPC [1] SHMEM [4] Fortran 2008 [30] Linux RDMA/IB [36, 48] iWARP [21, 45]

Put UPC_SET bupc_atomicX_set_RS shmem_swap atomic_define MskCmpSwap masked CmpSwap
Get UPC_GET bupc_atomicX_read_RS shmem_mswap atomic_ref MskCmpSwap masked CmpSwap
Accumulate UPC_INC bupc_atomicX_fetchadd_RS shmem_fadd atomic_add FetchAdd FetchAdd
FAO (SUM) UPC_INC, UPC_DEC bupc_atomicX_fetchadd_RS shmem_fadd atomic_add FetchAdd FetchAdd
FAO (REPLACE) UPC_SET bupc_atomicX_swap_RS shmem_swap atomic_define* MskCmpSwap masked CmpSwap
CAS UPC_CSWAP bupc_atomicX_cswap_RS shmem_cswap atomic_cas CmpSwap CmpSwap

Table 3: Illustration of the feasibility of using libraries/languages other than MPI RMA for RMA-MCS/RMA-RW. * indicates
the lack of an atomic swap in Fortran 2008, suggesting that some of RMA-RW protocols that depend on it would have to be
adjusted to a different set of available atomics.

5.3 Case Study: A Distributed Hashtable
We now illustrate how RMA-RW accelerates a distributed hashtable
(DHT) that represents irregular codes. Our DHT stores 64-bit inte-
gers and it consists of parts called local volumes. Each local volume
consists of a table of elements and an overflow heap for elements
after hash collisions. The table and the heap are constructed with
fixed-size arrays. Every local volume is managed by a different pro-
cess. Inserts are based on atomic CASes. If a collision happens, the
losing thread places the element in the overflow list by atomically
incrementing the next free pointer. In addition, a pointer to the last
element is also updated with a second CAS. Flushes are used to
ensure memory consistency.

We illustrate a performance analysis in Figure 6. In the bench-
mark, 𝑃 − 1 processes access a local volume of a selected process
with a specified number of inserts and reads targeted at random
hashtable elements. We compare the total execution time of foMPI-
A (a variant that only synchronizes accesses with CAS/FAO), foMPI-
RW, and RMA-RW. For 𝐹𝑊 ∈ {2%, 5%, 20%} RMA-RW outperforms
both the remaining variants. For 𝐹𝑤 = 0%, foMPI-RW and RMA-RW
offer comparable performance.

6 DISCUSSION
Using Different RMA Libraries/Languages In our implemen-
tation, we use MPI RMA. Still, the proposed schemes are generic
and can be implemented using several other existing RMA/PGAS

11



libraries/languages that support the required operations described
in Listing 1. We illustrate this in Table 3 (we omit the distinction
between blocking and non-blocking operations as any type can be
used in the proposed locks). The analysis indicates that RMA-MCS
and RMA-RW can be used in not only traditional HPC domains
(by utilizing UPC, SHMEM, or RDMA/IB), but also in TCP/IP-based
settings (by using iWARP).

Selecting RMA-RW Parameters To set the parameters, we
first find an appropriate value for 𝑇𝐷𝐶 . This is because our per-
formance analysis indicates that 𝑇𝐷𝐶 has on average the highest
impact on performance of both readers and writers. Here, our eval-
uation indicates that placing one counter per compute node results
in a reasonable balance between reader throughput and writer la-
tency. In the second step, we further influence the reader/writer
performance tradeoff by manipulating with 𝑇𝑅 and 𝑇𝐿,𝑖 . To reduce
the parameter space, we fix 𝑇𝑊 as indicated in Table 2. Selecting
𝑇𝐿,𝑖 depends on the hardware hierarchy and would ideally incor-
porate several performance tests before fixing final numbers. One
rule of the thumb is to reserve larger values for𝑇𝐿,𝑖 associated with
components with higher inter-component communication costs,
such as racks; this may reduce fairness, but increases throughput.

7 RELATEDWORK
Queue-Based Locks The well-known traditional examples of this
family are CLH [16, 35] and MCS [37]. Yet, they are oblivious to
the memory hierarchy and cannot use this knowledge to gain per-
formance. More recently, Radovic and Hagersten [41] proposed a
hierarchical backoff lock that exploits memory locality: a thread
reduces its backoff delay if another thread from the same cluster
owns the lock. This increases the chance to keep the lock within the
cluster, but introduces the risk of starvation. Luchangco et al. [34]
improved this scheme by introducing a NUMA-aware CLH queue
that ensures no starvation. Yet, it considers only two levels of the
memory hierarchy. Chabbi et al. [12] generalized it to any number
of memory hierarchy levels. Similarly to our scheme, they introduce
an MCS lock for each level. Yet, they do not target DM machines.
None of these protocols can utilize the parallelism of miscellaneous
workloads where the majority of processes only read the data.
RW Locks There exist various traditional RW proposals [28, 32].
Recently, Courtois et al. [15] introduced different preference
schemes that favor either readers (a reader can enter the CS even if
there is a writer waiting) or writers (a writer can enter the CS before
waiting readers). Yet, this protocol neither prevents starvation nor
scales well. Mellor-Crummey and Scott [38] extended their MCS
lock to distinguish between readers and writers. This algorithm
however does not scale well under heavy read contention. Next,
Krieger et al. [32] use a double-linked list for more flexibility in
how processes traverse the queue. Yet, there is still a single point of
contention. Hsieh and Weihl [28] overcome this by trading writer
throughput for reader throughput. In their design, each thread has
a private mutex; the readers acquire the lock by acquiring their
private mutex but the writers need to obtain all mutex objects.
This introduces a massive overhead for the writers for large thread
counts. Other approaches incorporate elaborate data structures like
the Scalable Non-Zero Indicator (SNZI) tree [33] that traces readers
in the underlying NUMA hierarchy for more locality. Yet, writers

remain NUMA-oblivious. Calciu et al. [11] extend this approach
with an RW lock in which both readers and writers are NUMA-
aware. This design improves memory locality but it only considers
two levels in a NUMA hierarchy. None of these schemes address
DM environments.
Distributed Locks To the best of our knowledge, little research
has been performed into locks for DM systems. Simple spin-lock
protocols for implementing MPI-3 RMA synchronization were pro-
posed by Gerstenberger et al. [20]. Some other RMA languages
and libraries (e.g., UPC) also offer locks, but they are not RW, their
performance is similar to that of foMPI, and they are hardware-
oblivious.

We conclude that our work offers the first lock for DM systems
that exploits the underlying inter-node structure and utilizes the RW
parallelism present in various data- and communication-intensive
workloads.

8 CONCLUSION
Large amounts of data in domains such as graph computations
require distributed-memory machines for efficient processing. Such
machines are characterized by weak memory models and expensive
inter-node communication. These features impact the performance
of topology-oblivious locks or completely prevent a straightforward
adoption of existing locking schemes for shared-memory systems.

In this work, we propose a distributed topology-aware Reader-
Writer (RMA-RW) and MCS lock that outperform the state-of-the-
art. RMA-RW offers a modular design with three parameters that
offer performance tradeoffs in selected parts of the lock. These are:
higher lock fairness or better locality, larger throughput of readers
or writers, and lower latency of readers or writers. This facilitates
performance tuning for a specific workload or environment. RMA-
RW could also be extended with adaptive schemes for a runtime
selection and tuning of the values of the parameters. This might be
used in accelerating dynamic workloads.

Microbenchmark results indicate that the proposed locks outper-
form the state-of-the-art in both latency and throughput. Finally,
RMA-RW accelerates a distributed hashtable that represents irreg-
ular workloads such as key-value stores.

ACKNOWLEDGEMENTS
This work was supported by Microsoft Research through its Swiss
Joint Research Centre. We thank our shepherd Patrick G. Bridges,
anonymous reviewers, and Jeff Hammond for their insightful com-
ments. We thank the CSCS team granting access to the Piz Dora
and Daint machines, and for their excellent technical support.

REFERENCES
[1] Berkeley UPC User’s Guide version 2.22.0. http://upc.lbl.gov/docs/user/.
[2] T. E. Anderson. The performance of spin lock alternatives for shared-memory

multiprocessors. IEEE Trans. Parallel Distrib. Syst., 1(1):6–16, Jan. 1990.
[3] B. Arimilli et al. The PERCS High-Performance Interconnect. In Proc. of the IEEE

Symp. on High Perf. Inter., HOTI ’10, pages 75–82, 2010.
[4] R. Barriuso and A. Knies. SHMEM user’s guide for C, 1994.
[5] M. Besta and T. Hoefler. Fault tolerance for remote memory access programming

models. In Proceedings of the 23rd international symposium on High-performance
parallel and distributed computing, pages 37–48, 2014.

[6] M. Besta and T. Hoefler. Accelerating irregular computations with hardware
transactional memory and activemessages. In Proceedings of the 24th International
Symposium on High-Performance Parallel and Distributed Computing, pages 161–
172, 2015.

12

http://upc.lbl.gov/docs/user/


[7] M. Besta and T. Hoefler. Active access: A mechanism for high-performance
distributed data-centric computations. In Proceedings of the 29th ACM on Interna-
tional Conference on Supercomputing, pages 155–164, 2015.

[8] A. Bhatele et al. There goes the neighborhood: performance degradation due to
nearby jobs. In Proc. of the ACM/IEEE Supercomputing, page 41. ACM, 2013.

[9] C. Bienia. BenchmarkingModernMultiprocessors. PhD thesis, PrincetonUniversity,
January 2011.

[10] N. Bronson et al. TAO: Facebook’s Distributed Data Store for the Social Graph.
In USENIX Annual Technical Conference, pages 49–60, 2013.

[11] I. Calciu et al. NUMA-aware Reader-writer Locks. In Proc. of the ACM Symp. on
Prin. and Prac. of Par. Prog., PPoPP ’13, pages 157–166, 2013.

[12] M. Chabbi, M. Fagan, and J. Mellor-Crummey. High Performance Locks for
Multi-level NUMA Systems. In Proc. of the ACM Symp. on Prin. and Prac. of Par.
Prog., PPoPP 2015, pages 215–226, 2015.

[13] B. Chamberlain, S. Deitz, M. B. Hribar, and W. Wong. Chapel. Technical report,
Cray Inc., 2005.

[14] P. Charles et al. X10: an Object-Oriented Approach to Non-Uniform Cluster
Computing. SIGPLAN Not., 40(10):519–538, Oct. 2005.

[15] P. J. Courtois, F. Heymans, and D. L. Parnas. Concurrent control with “readers”
and “writers”. Commun. ACM, 14(10):667–668, Oct. 1971.

[16] T. S. Craig. Building FIFO and Priority-Queuing Spin Locks from Atomic Swap.
Technical report, 1993.

[17] D. Dice, V. J. Marathe, and N. Shavit. Flat-combining NUMA Locks. In Proc. of
the ACM Symp. on Par. in Alg. and Arch., SPAA ’11, pages 65–74, 2011.

[18] D. Dice, V. J. Marathe, and N. Shavit. Lock Cohorting: A General Technique for
Designing NUMA Locks. In Proc. of the ACM Symp. on Prin. and Prac. of Par.
Prog., PPoPP ’12, pages 247–256, 2012.

[19] G. Faanes et al. Cray cascade: a scalable HPC system based on a Dragonfly
network. In Proc. of the ACM/IEEE Supercomputing, page 103, 2012.

[20] R. Gerstenberger, M. Besta, and T. Hoefler. Enabling Highly-scalable Remote
Memory Access Programming with MPI-3 One Sided. In Proc. of ACM/IEEE
Supercomputing, SC ’13, pages 53:1–53:12, 2013.

[21] R. Grant, M. Rashti, A. Afsahi, and P. Balaji. RDMA Capable iWARP over Data-
grams. In Par. Dist. Proc. Symp. (IPDPS), 2011 IEEE Intl., pages 628–639, 2011.

[22] W. Gropp, T. Hoefler, R. Thakur, and E. Lusk. Using Advanced MPI: Modern
Features of the Message-Passing Interface. MIT Press, 2014.

[23] W. D. Gropp. Personal exchange, 2013.
[24] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan

Kaufmann Publishers Inc., 2008.
[25] P. N. Hilfinger et al. Titanium Language ReferenceManual, version 2.19. Technical

report, UC Berkeley Tech Rep. UCB/EECS-2005-15, 2005.
[26] T. Hoefler et al. Netgauge: A Network Performance Measurement Framework.

In Proc. of High Perf. Comp. and Comm., HPCC’07, volume 4782, pages 659–671,
2007.

[27] G. J. Holzmann. The Model Checker SPIN. IEEE Trans. Softw. Eng., 23(5):279–295,
May 1997.

[28] W. C. Hsieh and W. W. Weihl. Scalable reader-writer locks for parallel systems.
In Proc. of Par. Proc. Symp., pages 656–659, Mar 1992.

[29] InfiniBand Trade Association. Supplement to InfiniBand Architecture Spec., Vol. 1,
Rel. 1.2.1. Annex A16: RDMA over Converged Ethernet (RoCE). 2010.

[30] ISO Fortran Committee. Fortran 2008 Standard (ISO/IEC 1539-1:2010). 2010.
[31] J. Kim, W. J. Dally, S. Scott, and D. Abts. Technology-driven, highly-scalable

dragonfly topology. In ACM SIGARCH Comp. Arch. News, volume 36, pages 77–88,
2008.

[32] O. Krieger, M. Stumm, R. Unrau, and J. Hanna. A fair fast scalable reader-writer
lock. In In Proc. of the Intl. Conf. on Par. Proc., pages 201–204, 1993.

[33] Y. Lev, V. Luchangco, and M. Olszewski. Scalable reader-writer locks. In Proc. of
the Symp. on Par. in Alg. and Arch., SPAA ’09, pages 101–110, 2009.

[34] V. Luchangco, D. Nussbaum, and N. Shavit. A Hierarchical CLH Queue Lock.
In W. Nagel, W. Walter, and W. Lehner, editors, Euro-Par 2006 Par. Proc., volume
4128 of Lecture Notes in Computer Science, pages 801–810. 2006.

[35] P. S. Magnusson, A. Landin, and E. Hagersten. Queue Locks on Cache Coherent
Multiprocessors. In Proc. of the Intl. Symp. on Par. Proc., pages 165–171, 1994.

[36] Mellanox Technologies. Mellanox OFED for Linux User Manual, 2015.
[37] J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable synchronization

on shared-memory multiprocessors. ACM Trans. Comput. Syst., 9(1):21–65, Feb.
1991.

[38] J. M. Mellor-Crummey and M. L. Scott. Scalable reader-writer synchronization
for shared-memory multiprocessors. In Proc. of the ACM SIGPLAN Symp. on Prin.
and Prac. of Par. Prog., PPOPP ’91, pages 106–113, 1991.

[39] MPI Forum. MPI: A Message-Passing Interface Standard. Ver. 3, 2012.
[40] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang. Introducing the graph

500. Cray User’s Group (CUG), 2010.
[41] Z. Radovic and E. Hagersten. Hierarchical backoff locks for nonuniform com-

munication architectures. In Proc. of the Intl. Symp. on High-Perf. Comp. Arch.,
HPCA ’03, pages 241–, 2003.

[42] R. Recio et al. A remote direct memory access protocol specification, Oct 2007.
RFC 5040.

[43] H. Schweizer, M. Besta, and T. Hoefler. Evaluating the cost of atomic operations
on modern architectures. In 2015 International Conference on Parallel Architecture
and Compilation (PACT), pages 445–456. IEEE, 2015.

[44] M. L. Scott and W. N. Scherer. Scalable Queue-based Spin Locks with Timeout.
In Proc. of the ACM SIGPLAN Symp. on Prin. and Prac. of Par. Prog., PPoPP ’01,
pages 44–52, 2001.

[45] R. Sharp et al. Remote Direct Memory Access (RDMA) Protocol Extensions. 2014.
[46] H. Takada and K. Sakamura. Predictable spin lock algorithms with preemption.

In Real-Time Operating Systems and Software. RTOSS ’94, Proc., IEEE Workshop on,
pages 2–6, 1994.

[47] A. Tate, A. Kamil, A. Dubey, A. Größlinger, B. Chamberlain, B. Goglin, C. Edwards,
C. J. Newburn, D. Padua, D. Unat, et al. Programming abstractions for data locality.
2014.

[48] The InfiniBand Trade Association. Infiniband Architecture Spec. Vol. 1-2, Rel. 1.3.
InfiniBand Trade Association, 2004.

[49] UPC Consortium. UPC language spec., v1.3. Technical report, Lawrence Berkeley
National Laboratory, 20013. LBNL-6623E.

[50] V. Venkataramani et al. TAO: How Facebook Serves the Social Graph. In Proc. of
the ACM Intl. Conf. on Manag. of Data, SIGMOD ’12, pages 791–792, 2012.

13


	Abstract
	1 INTRODUCTION
	2 RMA AND LOCKS
	2.1 RMA Programming
	2.2 Traditional Hardware-Oblivious Locks
	2.3 State-of-the-Art NUMA-Aware Locks
	2.4 Distributed RMA MCS Locks

	3 DISTRIBUTED RMA RW LOCKS
	3.1 Design Summary and Intuition
	3.2 Key Data Structures
	3.3 Distributed Reader-Writer Protocol
	3.4 Example
	3.5 RMA-RW vs. RMA-MCS

	4 CORRECTNESS ANALYSIS
	4.1 Mutual Exclusion
	4.2 Deadlock Freedom
	4.3 Starvation Freedom
	4.4 Model Checking

	5 EVALUATION
	5.1 Performance Analysis of RMA-MCS
	5.2 Performance Analysis of RMA-RW
	5.3 Case Study: A Distributed Hashtable

	6 DISCUSSION
	7 RELATED WORK
	8 CONCLUSION
	References

