Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/2856400.2856409acmconferencesArticle/Chapter ViewAbstractPublication Pagesi3dConference Proceedingsconference-collections
research-article

Real-time rendering of procedural multiscale materials

Published: 27 February 2016 Publication History

Abstract

We present a stable shading method and a procedural shading model that enables real-time rendering of sub-pixel glints and anisotropic microdetails resulting from irregular microscopic surface structure to simulate a rich spectrum of appearances ranging from sparkling to brushed materials. We introduce a biscale Normal Distribution Function (NDF) for microdetails to provide a convenient artistic control over both the global appearance as well as over the appearance of the individual microdetail shapes, while efficiently generating procedural details. Our stable rendering approach simulates a hierarchy of scales and accurately estimates pixel footprint at multiple levels of detail to achieve good temporal stability and antialiasing, making it feasible for real-time rendering applications.

Supplementary Material

MP4 File (p139-zirr.mp4)

References

[1]
Bagher, M. M., Soler, C., Subr, K., Belcour, L., and Holzschuch, N. 2012. Interactive rendering of acquired materials on dynamic geometry using bandwidth prediction. In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, 127--134.
[2]
Becker, B. G., and Max, N. L. 1993. Smooth transitions between bump rendering algorithms. In Proceedings of Computer graphics and interactive techniques, Computer Graphics (Proc. SIGGRAPH), 183--190.
[3]
Beckmann, P., and Spizzichino, A. 1963. The scattering of electromagnetic waves from rough surfaces. International series of monographs on electromagnetic waves. Pergamon Press.
[4]
Blinn, J. F. 1977. Models of light reflection for computer synthesized pictures. Computer Graphics (Proc. SIGGRAPH) 11, 2, 192--198.
[5]
Bosch, C. 2007. Realistic Image Synthesis of Surface Scratches and Grooves. PhD thesis, Universitat Politcnica de Catalunya. 2007LIMO4021.
[6]
Bowles, H., and Wang, B. 2015. Sparkly but not too sparkly: A stable and robust procedural sparkle effect. In Advances in Real Time Rendering, Part 1, N. Tatarchuk, Ed. ACM SIGGRAPH Courses.
[7]
Bruneton, E., and Neyret, F. 2012. A survey of nonlinear prefiltering methods for efficient and accurate surface shading. IEEE Transactions on Visualization and Computer Graphics 18, 2, 242--260.
[8]
Burley, B. 2012. Physically-based shading at Disney. ACM SIGGRAPH Courses, 10:1--10:7.
[9]
Cook, R. L., and Torrance, K. E. 1982. A reflectance model for computer graphics. Computer Graphics (Proc. SIGGRAPH) 1, 1, 7--24.
[10]
Dupuy, J., Heitz, E., Iehl, J.-C., Poulin, P., Neyret, F., and Ostromoukhov, V. 2013. Linear efficient antialiased displacement and reflectance mapping. ACM Transactions on Graphics (Proc. SIGGRAPH) 32, 6, 211:1--211:11.
[11]
Fournier, A. 1992. Normal distribution functions and multiple surfaces. In Graphics Interface Workshop on Local Illumination, 45--52.
[12]
Han, C., Sun, B., Ramamoorthi, R., and Grinspun, E. 2007. Frequency domain normal map filtering. ACM Transactions on Graphics (Proc. SIGGRAPH) 26, 3.
[13]
Heitz, E. 2014. Understanding the masking-shadowing function in microfacet-based BRDFs. Journal of Computer Graphics Techniques (JCGT) 3, 2, 48--107.
[14]
Igehy, H. 1999. Tracing ray differentials. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH, 179--186.
[15]
Jakob, W., Hašan, M., Yan, L.-Q., Lawrence, J., Ramamoorthi, R., and Marschner, S. 2014. Discrete stochastic microfacet models. ACM Transactions on Graphics (Proc. SIGGRAPH) 33, 4, 115:1--115:10.
[16]
Kajiya, J. T., and Kay, T. L. 1989. Rendering fur with three dimensional textures. Computer Graphics (Proc. SIGGRAPH) 23, 3, 271--280.
[17]
Kautz, J., and Seidel, H.-P. 2000. Towards interactive bump mapping with anisotropic shift-variant BRDFs. In Proc. SIGGRAPH/Eurographics Workshop on Graphics Hardware, 51--58.
[18]
Marschner, S. R., Jensen, H. W., Cammarano, M., Worley, S., and Hanrahan, P. 2003. Light scattering from human hair fibers. In ACM Transactions on Graphics (Proc. SIGGRAPH), vol. 22, 780--791.
[19]
Meng, J., Papas, M., Habel, R., Dachsbacher, C., Marschner, S., Gross, M., and Jarosz, W. 2015. Multiscale modeling and rendering of granular materials. ACM Transactions on Graphics (Proc. SIGGRAPH) 34, 4.
[20]
Michels, A. K., Sikachev, P., Delmont, S., Doyon, U., Maheux, F., Bucci, J.-N., and Gallardo, D. 2015. Labs R&D: Rendering techniques in Rise of the Tomb Raider. In ACM SIGGRAPH 2015 Talks, 81:1--81:1.
[21]
Nagano, K., Fyffe, G., Alexander, O., Barbiç, J., Li, H., Ghosh, A., and Debevec, P. 2015. Skin microstructure deformation with displacement map convolution. ACM Transactions on Graphics 34, 4, 109:1--109:10.
[22]
Olano, M., and Baker, D. 2010. LEAN mapping. In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, 181--188.
[23]
Poulin, P., and Fournier, A. 1990. A model for anisotropic reflection. Computer Graphics (Proc. SIGGRAPH) 24, 4, 273--282.
[24]
Smith, B. 1967. Geometrical shadowing of a random rough surface. IEEE Transactions on Antennas and Propagation 15, 5, 668--671.
[25]
Tan, P., Lin, S., Quan, L., Guo, B., and Shum, H. 2008. Filtering and rendering of resolution-dependent reflectance models. IEEE Transactions on Visualization and Computer Graphics 14, 2, 412--425.
[26]
Toksvig, M. 2005. Mipmapping normal maps. Journal of Graphics, GPU, and Game Tools 10, 3, 65--71.
[27]
Torrance, K. E., and Sparrow, E. M. 1967. Theory for off-specular reflection from roughened surfaces. Journal of the Optical Society of America 57, 9, 1105--1112.
[28]
Trowbridge, T. S., and Reitz, K. P. 1975. Average irregularity representation of a rough surface for ray reflection. Journal of the Optical Society of America 65, 5, 531--536.
[29]
Walter, B., Marschner, S., Li, H., and Torrance, K. 2007. Microfacet models for refraction through rough surfaces. In Proc. Eurographics Symposium on Rendering, 195--206.
[30]
Ward, G. J. 1992. Measuring and modeling anisotropic reflection. Computer Graphics (Proc. SIGGRAPH) 26, 2, 265--272.
[31]
Westin, S. H., Arvo, J. R., and Torrance, K. E. 1992. Predicting reflectance functions from complex surfaces. Computer Graphics (Proc. SIGGRAPH) 26, 2, 255--264.
[32]
Wu, H., Dorsey, J., and Rushmeier, H. 2011. Physically-based interactive bi-scale material design. ACM Transactions on Graphics 30, 145, 145:1--145:10.
[33]
Wu, H., Dorsey, J., and Rushmeier, H. 2013. Inverse bi-scale material design. ACM Transactions on Graphics (Proc. SIGGRAPH Asia) 32, 6, 163:1--163:10.
[34]
Yan, L.-Q., Hašan, M., Jakob, W., Lawrence, J., Marschner, S., and Ramamoorthi, R. 2014. Rendering glints on high-resolution normal-mapped specular surfaces. ACM Transactions on Graphics (Proc. SIGGRAPH) 33, 4, 116:1--116:9.

Cited By

View all
  • (2024)Appearance-Preserving Scene Aggregation for Level-of-Detail RenderingACM Transactions on Graphics10.1145/370834344:1(1-23)Online publication date: 19-Dec-2024
  • (2024)Neural Histogram‐Based Glint Rendering of Surfaces With Spatially Varying RoughnessComputer Graphics Forum10.1111/cgf.1515743:4Online publication date: 24-Jul-2024
  • (2024)A Tiny Example Based Procedural Model for Real-Time Glinty Appearance RenderingJournal of Computer Science and Technology10.1007/s11390-024-4123-339:4(771-784)Online publication date: 1-Jul-2024
  • Show More Cited By

Index Terms

  1. Real-time rendering of procedural multiscale materials

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    I3D '16: Proceedings of the 20th ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games
    February 2016
    200 pages
    ISBN:9781450340434
    DOI:10.1145/2856400
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 27 February 2016

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. level of detail
    2. procedural textures
    3. shading models

    Qualifiers

    • Research-article

    Conference

    I3D '16
    Sponsor:
    I3D '16: Symposium on Interactive 3D Graphics and Games
    February 27 - 28, 2016
    Washington, Redmond

    Acceptance Rates

    Overall Acceptance Rate 148 of 485 submissions, 31%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)35
    • Downloads (Last 6 weeks)3
    Reflects downloads up to 05 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Appearance-Preserving Scene Aggregation for Level-of-Detail RenderingACM Transactions on Graphics10.1145/370834344:1(1-23)Online publication date: 19-Dec-2024
    • (2024)Neural Histogram‐Based Glint Rendering of Surfaces With Spatially Varying RoughnessComputer Graphics Forum10.1111/cgf.1515743:4Online publication date: 24-Jul-2024
    • (2024)A Tiny Example Based Procedural Model for Real-Time Glinty Appearance RenderingJournal of Computer Science and Technology10.1007/s11390-024-4123-339:4(771-784)Online publication date: 1-Jul-2024
    • (2023)Real‐Time Rendering of Glinty Appearances using Distributed Binomial Laws on Anisotropic GridsComputer Graphics Forum10.1111/cgf.1486642:8Online publication date: 2-Aug-2023
    • (2023)Efficient Specular Glints Rendering With Differentiable RegularizationIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2022.314447929:6(2940-2949)Online publication date: 1-Jun-2023
    • (2022)MIPNetACM Transactions on Graphics10.1145/3550454.355548741:6(1-12)Online publication date: 30-Nov-2022
    • (2022)Constant-Cost Spatio-Angular Prefiltering of Glinty Appearance Using Tensor DecompositionACM Transactions on Graphics10.1145/350791541:2(1-17)Online publication date: 22-Jan-2022
    • (2022)Real‐Time Microstructure Rendering with MIP‐Mapped Normal Map SamplesComputer Graphics Forum10.1111/cgf.1444841:1(495-506)Online publication date: Feb-2022
    • (2022)Recent advances in glinty appearance renderingComputational Visual Media10.1007/s41095-022-0280-x8:4(535-552)Online publication date: 16-Jun-2022
    • (2021)A Multiscale Microfacet Model Based on Inverse Bin MappingComputer Graphics Forum10.1111/cgf.14261840:2(103-113)Online publication date: 4-Jun-2021
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media