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Abstract

This paper focuses on the design of safe and attack-resilient Cyber
Physical Systems (CPS) equipped with multiple sensors measuring the
same physical variable. A malicious attacker may be able to disrupt sys-
tem performance through compromising a subset of these sensors. Con-
sequently, we develop a precise and resilient sensor fusion algorithm that
combines the data received from all sensors by taking into account their
specified precisions. In particular, we note that in the presence of a shared
bus, in which messages are broadcast to all nodes in the network, the at-
tacker’s impact depends on what sensors he has seen before sending the
corrupted measurements. Therefore, we explore the effects of communica-
tion schedules on the performance of sensor fusion and provide theoretical
and experimental results advocating for the use of the Ascending sched-
ule, which orders sensor transmissions according to their precision starting
from the most precise. In addition, to improve the accuracy of the sen-
sor fusion algorithm, we consider the dynamics of the system in order
to incorporate past measurements at the current time. Possible ways of
mapping sensor measurement history are investigated in the paper and
are compared in terms of the confidence in the final output of the sen-
sor fusion. We show that the precision of the algorithm using history is
never worse than the no-history one, while the benefits may be signifi-
cant. Furthermore, we utilize the complementary properties of the two
methods and show that their combination results in a more precise and
resilient algorithm. Finally, we validate our approach in simulation and
experiments on a real unmanned ground robot.
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1 Introduction

Ensuring the safety of Cyber Physical Systems (CPS) is a challenging problem.
Depending on the attacker’s goals and resources, the consequences of malicious
attacks may range from minor variation in performance to absolute inability to
control the system [1, 2]. In addition to the multitude of cyber attacks (e.g.,
denial of service) developed over the years, the fact that CPS rely on real-
time information to interact with the physical world makes them additionally
vulnerable to physical attacks (e.g., sensor spoofing). Recent attacks on GPS [3,
4] and anti-braking systems [5] have illustrated that by tampering with values
obtained from system sensors, the attacker can seriously compromise the safety
of the system.

On the other hand, due to proliferation of sensing technology, modern CPS
have many sensors that can be used to estimate the same physical variable. For
example, modern automotive systems have multiple ways of estimating speed;
combining their sensor data to provide more accurate estimates to the controller
can have a significant impact on the system’s performance and reliability. Even
though these sensors’ precisions may be different, their measurements can be
fused to produce an estimate that is better than any single sensor’s [6]. In
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addition, having diverse sensors with different accuracy and reliability decreases
the system’s dependence on a particular sensor.

Increased sensor diversity, however, raises the question of the vulnerability
of sensor fusion to malicious attacks. Consequently, in this work, we investigate
the design of an attack-resilient sensor fusion algorithm in order to improve
the safety and resiliency of CPS under attack. We consider a standard CPS
architecture from Figure 1, where multiple sensors communicate with the con-
troller via a shared (broadcast) bus (e.g., CAN bus in automotive CPS). We
assume that communication is implemented in a time-triggered manner – in
every frame, each sensor transmits its measurements during its allocated time
slot, according to a predefined schedule.

The first consideration when designing a sensor fusion component of CPS
is the underlying sensor model. These can be broadly divided into two main
categories: probabilistic and abstract. In the former, the sensor provides the
controller with a single measurement that may be corrupted by noise with a
known probability distribution (e.g., [7]). In the latter, the sensor produces a
set with all possible values for the true state of the variable in question [8].
Each model is a basis for a different kind of analysis – while the probabilistic
models allow designers to consider the average case and to ignore events with
low probability, the abstract model is usually utilized for worst-case analysis.

Our goal is to guarantee the safety of CPS under attack; hence we focus on
worst-case analysis. Accordingly, we adopt the abstract sensor model, in which
each sensor provides an interval of possible values. The width of the interval
reflects its precision - a larger interval implies less confidence in the obtained
measurement. Intuitively, the abstract model is well-suited for worst-case anal-
ysis for the following reason. Suppose interval A is an unsafe region for a system
(e.g., A = [100 mph,∞)). Then if every sensor’s interval has an empty inter-
section with A one can conclude with certainty that the system is not in state
A. It is worth noting that this presents a very general sensor model as it does
not make any assumptions about the distribution of the sensor measurements
or their noise. Instead, the interval is constructed based on manufacturer spec-
ifications about precision and accuracy of the sensor, as well as implementation
limitations such as sampling jitter and synchronization errors [9].

We assume that an attacker is able to take control of some of the sensors
and send any measurements to the controller on their behalf. The attacker’s
goal is to use these compromised sensor measurements to affect the performance
of sensor fusion by forcing it to produce an incorrect output or increasing the
uncertainty of the produced value. In particular, if the output is an interval,
the attacker would try to maximize its size since a larger interval reduces the
confidence in the provided measurements and may indicate that the system is
in an unsafe state. Since safety analysis is concerned with the worst case of a
system’s operation, we assume the attacker has full knowledge of its model; in
particular, he is aware of the fusion algorithm used by the system as well as of
the sensor and system specifications. In addition, he has access to the shared
bus and hence to all messages that are broadcast on it.

The contribution of this work is the design and analysis of a safe and attack-
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Figure 1: A typical architecture of a CPS, with sensors communicating over a
shared bus with a controller. After obtaining sensor measurements, the con-
troller performs a sensor fusion algorithm.

resilient sensor fusion for a system such as the one in Figure 1. We provide a
framework for investigating and securing such systems based on their sensors’
specifications and dynamics. Specifically, given the sensor model used in this
work, our approach is based on the fusion algorithm developed in [8]. This
algorithm produces a fusion interval for a bounded number of faulty sensors
and is guaranteed to contain the true value (see Section 2 for more detail). In
this paper, we propose an improvement to the sensor fusion algorithm as well as
a specific communication schedule that aims to minimize the attacker’s impact
on safety and performance. In addition, we combine the two approaches in order
to leverage their complementary properties.

To improve the precision of the original sensor fusion algorithm, we exploit
knowledge of system dynamics and incorporate past measurements in the sensor
fusion algorithm. To achieve this, we focus on discrete-time linear systems with
bounded noise. This paper identifies and compares all possible ways of mapping
past measurements to the current time and compare them in terms of the size
of the fusion interval that they produce. We also show that the algorithm using
history never leads to a larger interval than the no-history one.

Furthermore, to enhance the resiliency of sensor fusion, we note that in
shared buses measurements are broadcast to all nodes in the network, including
the attacked ones. Consequently, the attacker’s capabilities depend on what
measurements he has seen before sending his own. Note that, given the chosen
fusion algorithm, the attacker’s goal is to increase the size of the fusion interval
if he cannot produce a wrong interval. In particular, if he sends his intervals last,
he can maximize the size of the fusion interval based on the placements of the
correct intervals. We show that in the worst case, the attacker does not benefit
from compromising the least precise sensors but may achieve the worst case for
the system if he takes control of the most precise. Consequently, we argue that
system designers should prioritize the protection of the most precise sensors in
their systems. In addition, based on these observations, we consider different
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communication schedules (based on sensors’ precisions), and investigate how
they affect attacker’s impact on the performance of sensor fusion (i.e., size of
the fusion interval). We show that systems adopting the abstract sensor model
should also implement the Ascending schedule, which orders sensors according
to their interval size starting from the most precise.

Finally we validate our approach on an unmanned ground vehicle case study.
We use the LandShark robot [10] and illustrate in simulations and experiments
the advantages of the Ascending schedule as well as of the use of measurement
history for sensor fusion.

This paper is organized as follows. Section 2 introduces formal definitions
of the problems addressed in this work. In Section 3, we formalize a model of
the attacker (his goals and constraints), and presents worst-case results with
respect to the size of the fusion interval. Section 4 compares effects of different
communication schedules on the attacker’s performance. Section 5 introduces
system dynamics and the benefits of the use of measurement history, whereas
Section 6 shows the combined effect of the two methods. Finally, in Section 7
we illustrate performance of the proposed sensor fusion approach using simula-
tions and experiments on an autonomous vehicle, before discussing related work
(Section 8) and providing some concluding remarks (Section 9).

2 Problem Formulation and Preliminaries

This section describes the problems addressed in this work. At a high level, the
goal is to use sensor redundancy to improve the system’s resiliency to attacks.
To this end, we analyze the fusion algorithm and shared bus modules (as shown
in Figure 1). We formalize both the system and attack models used in the
paper, before stating the two problems considered in the work.

2.1 System Model

The system consists of n sensors measuring the same physical variable, e.g., ve-
locity. As mentioned above, we assume abstract sensors; therefore, each sensor
provides the controller with an interval containing all possible values of the true
state. The interval is computed based on the sensor’s specification and manufac-
turer guarantees. Thus, its size reflects the system’s confidence in the sensor’s
precision, i.e., a larger interval means a less precise sensor. A sensor is said
to be correct if its interval contains the true value and compromised/corrupted
otherwise.

In addition, since most CPS have known dynamics, we assume the system
operates according to discrete-time linear dynamics of the form1

x(t+ 1) = ax(t) + w,

1We have addressed the problem of attack-resilient sensor fusion for multidimensional sys-
tems in our previous work [11].
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where x ∈ R is the system’s state, a ∈ R is the transition matrix and w ∈ R
is bounded process noise such that |w| ≤ M for some constant M . All sensors
transmit at each point in time.

In addition, we assume that in each round sensors transmit their measure-
ments in a predefined schedule, i.e., each sensor only transmits its interval in an
allocated slot. Sensors communicate over a shared bus (e.g., CAN bus) such that
all messages are broadcast to all nodes in the network. Therefore, the sensor
scheduled to transmit last is able to receive and examine all other measurements
before sending.

Once the controller receives all measurements in a given round, it performs
the following abstract sensor fusion algorithm as developed by Marzullo [8]. As
discussed in Section 1, the algorithm is chosen because it is conservative and
fits the safety analysis used in this work.

2.2 Fusion Algorithm

The inputs to the algorithm are n intervals and a number, f , which denotes
an upper bound on the number of corrupted sensors in the system (since this
number is unknown, f is usually set conservatively high, e.g., f = dn/2e − 1).
The algorithm outputs an interval, referred to as the fusion interval in this work,
which spans the smallest to largest point contained in at least n − f intervals.
Intuitively, the algorithm is conservative: since there are at most f corrupted
sensors, there are at least n − f correct ones, hence the true value can lie in
any group of n− f intervals. Thus the algorithm outputs the smallest interval
containing all such groups.

The algorithm is illustrated in Figure 2. As can be seen in the figure, when
f = 0 (i.e., the system is confident that all intervals are correct) the fusion
interval is just their intersection. When f = 1 the fusion interval contains all
points that lie in at least four intervals. As the figure shows, as f increases, so
does the size of the fusion interval; in particular, if f = n− 1 the fusion interval
would just be the convex hull of the union of all intervals. Three results about
the size of the fusion interval from the original work by Marzullo are relevant to
this paper. First of all, if f < dn/3e, the size of the fusion interval is bounded by
the size of some correct interval. If dn/3e ≤ f < dn/2e, the fusion interval can
be at most as large as some sensor’s interval, not necessarily correct. Finally, if
f ≥ dn/2e the fusion interval can be arbitrarily large.

Note that, while the fusion interval can be used for performing closed-loop
control (e.g., by selecting its middle point as its “measurement”), in this work
it is used for safety analysis. In particular, if the fusion interval contains any
points that affect the system’s safety, a flag is raised that the system is in a
potentially dangerous state.

2.3 Attack Model

In this work, we assume that compromised sensors are not randomly faulty but
are controlled by a malicious attacker. As discussed above, sensors in the sys-
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Figure 2: The fusion interval for three values of f , for a system with n = 5
sensors. Dashed horizontal line separates sensor intervals from fusion intervals
in all figures in this work.

tem communicate over a shared bus. Thus, by gaining control over a sensor,
an attacker has the ability to inspect all sensor measurements transmitted be-
fore his sensor’s slot in the current round’s schedule as well as all past rounds’
measurements. We assume the attacker can send any interval2 on behalf of the
corrupted sensor. In addition, we consider a worst-case scenario where the at-
tacker has unlimited computational power and full system knowledge, including
sensor/design specifications and the employed sensor fusion algorithm. The at-
tacker’s goal is to disrupt system performance by leading the system to believe
it is in an unsafe state. As described above, the strategy used to accomplish this
goal (formalized in Section 3) is through maximizing the size of the fusion inter-
val. In addition, the attacker has the constraint that he has to stay undetected
throughout the system’s operation; while a single pronounced attack (followed
by detection) may be considered as a fault and ignored, a consistent uncertainty
may be worse for the system. Based on the worst-case result described above,
we assume that the number of compromised sensors, denoted by fa, is always
less than dn/2e, and we assume f is set conservatively high so that f ≥ fa (for
example, this can be guaranteed by setting f = dn/2e − 1).

2.4 Problems

Given the above model, we note that the attacker’s impact depends on the
position of his sensors in the transmission schedule. In particular, if his sensors
are last in the schedule, the attacker can examine all other measurements before
sending his intervals. This would allow him to place his interval(s) in the way
that maximizes damage while not being detected. Therefore, the first problem
considered in this paper is the following.

2Note that sensors have predefined and known widths of measurement intervals, so the
attacker cannot change the width of his sensor’s interval if he wants to avoid detection.
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Problem 1. How does the sensor communication schedule affect the attacker’s
impact on the performance of sensor fusion (as measured by the size of the fusion
interval) in a given round. Find the schedule that minimizes this impact?

In the second part of the paper we aim to improve the precision of sensor
fusion as that would mitigate the attacker’s impact and eliminate certain safety
concerns. To this end, we explore the use of system dynamics in the sensor
fusion algorithm. Thus, the second problem addressed in this paper is follows:

Problem 2. How can we utilize the knowledge of system dynamics and past
measurements to improve the precision of the sensor fusion algorithm for any
attack strategy and communication schedule?

Finally, we analyze the mixture of the solutions of the aforementioned two
problems in order to combine the power of the two methods.

2.5 Notation

Let N (t) denote all n intervals measured by sensors at time t. In Sections 3
and 4 we omit time notation and write N since no time is used in the analysis.
Let SN (t),f denote the fusion interval given the sensors in N (t) and an upper
bound f . For a given interval s, let ls and us be the lower and upper bound of
s, respectively. By |s| we denote the size of s, i.e., |s| = us − ls; in particular,
|SN (t),f | is the size of the fusion interval. Finally, let C(t) denote the (unknown
to the system) set of correct sensors at time t.

3 Attack Strategy and Worst-Case Analysis

This section formalizes the attack strategy considered in this work and illustrates
how the attacker’s capabilities vary with the utilized transmission schedule.
Given this strategy, the second part of the section provides worst-case results
to suggest which sensors would be most beneficial for the attacker to corrupt
and for the system to defend, respectively. We denote the strategy with AS1; to
illustrate its effectiveness from the attacker’s point of view, we compare it with
another viable strategy in Section 4. Note that this section does not consider
the use of previous sensor readings, hence a single round is analyzed in isolation.
We introduce the use of measurement history in Section 5.

3.1 Attack Strategy

As described in Section 2, the attacker has a goal, maximize the size of the
fusion interval, and constraints, stay undetected. This subsection formalizes
the two, beginning with the latter.
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3.1.1 Constraints: Staying Undetected

Formally, the attacker has two modes: passive and active, as defined below.
When in passive mode, the attacker’s constraints are tighter, and thus his impact
is limited. In active mode, on the other hand, the constraints on the placement
of the compromised intervals are looser, hence the attacker can send intervals
that would greatly increase the uncertainty in the system.

The attacker begins in passive mode, in which the main goal is to stay
undetected. The detection mechanism used in this work is to check whether
each interval has a nonempty intersection with the fusion interval;3since the
fusion interval is guaranteed to contain the true value, any interval that does
not intersect the fusion interval must be compromised. Thus, in passive mode,
the attacker computes the intersection of all seen measurements, including his
own sensors’, which is the smallest interval from the attacker’s perspective that
is guaranteed to contain the true value. We denote this intersection by ∆.
Therefore, in passive mode the attacker must include ∆ in his interval (any
point that is not contained may be the true value) and has no restrictions on
how to place the interval around ∆ (if the interval is larger than ∆4).

The attacker may switch to active mode when at least n− f − far measure-
ments have been transmitted, where far is the number of unsent compromised
intervals. At this point, the attacker may send an interval that does not contain
∆ because he is aware of enough sent measurements, i.e., he can prevent his
sensor from being detected because he has exactly far remaining intervals to
send and can guarantee each interval overlaps with n− f − 1 sensors and with
the fusion interval, consequently. When in active mode, the attacker is not con-
strained when sending his intervals as long as overlap with the fusion interval
is guaranteed.

3.1.2 Goal: Maximizing the size of the fusion interval

When maximizing the size of the fusion interval, the attacker’s strategy consists
of two different cases depending on the position of the attacker’s intervals in the
transmission schedule: one to target the largest interval and another to target
the largest expected interval.

Specifically, if all the attacker’s sensors are scheduled to transmit last, mean-
ing that the attacker will be aware of all measurements prior to sending his, his
strategy can be stated through the following optimization problem, where vari-
ables a1, . . . , afa represent the attacked intervals:

max
a1,...,afa

|SN ,f |

s.t. SN,f ∩ ai 6= ∅, i = 1, . . . , fa.
(1)

3In Section 5, we use historical measurements to further improve the system’s detection
capabilities.

4Note that it cannot be smaller than ∆ since ∆ includes the intersection of all measurements
of the corrupted sensors.
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Figure 3: An example showing that if attacker (sinusoid) has not seen all inter-
vals then he has no strategy that guarantees fusion interval is maximized.

Since the solution to this problem can be obtained with full information about
the correct sensors’ measurements, we call this solution and the strategy that
led to it, respectively, optimal.

Definition 1. The attack strategy obtained as a solution to the optimization
problem (1) (i.e., the placements of the attacked intervals that achieve the so-
lution) is called optimal (from the attacker’s point of view) given the correct
sensors’ measurements. Any attack strategy that achieves this solution is also
referred to as optimal.

Note that the attack strategy described by optimization problem (1) is opti-
mal by definition. However, there are scenarios in which there exists no optimal
strategy for the attacker if his sensors are not last in the schedule. For example,
consider the scenario depicted in Figure 3, where out of three sensors, a1 is un-
der attack. Suppose that the attacker transmits second in the schedule so that
he is aware of s1’s and his own sensor’s measurement but not of s2’s. Given
the measurements shown in the figure, the attacker cannot guarantee that the
fusion interval will be maximized regardless of the interval that he sends. In
particular, if a1 is sent to the left of s1 (a1(1) in the figure) then s2’s measure-
ment could appear as shown, in which case a1(2) would have resulted in a larger
fusion interval. Other attacks could be similarly shown to not be optimal for
any measurement that can be obtained from s2.

Consequently, in cases such as the one in Figure 3, a reasonable strategy
for the attacker is to maximize the expected size of the fusion interval. The
expectation is computed over all possible placements of the unseen correct and
compromised intervals.5 Formally, for each compromised interval ak the attack
strategy can be described with the following optimization problem

max
ak,...,afa

E
CRk
|SN ,f |

s.t. SN,f ∩ ai 6= ∅ i = k, . . . , fa,
(2)

5To compute the expectation, the attacker is implicitly assuming intervals are uniformly
distributed around ∆. If additional information is available about the distribution of sensor
measurements, it can be incorporated in the optimization problem (2).
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where CRk is the set of all possible placements of the correct intervals that will
be transmitted after ak, and E is the expectation operator.

As shown in Figure 3, there are scenarios in which no optimal strategy
exists; yet, there do exist cases in which there is an optimal solution even if the
attacker is not last in the schedule (and the strategy obtained as a solution to
the optimization problem (2) leads to that solution). In particular, there exist
scenarios in which if the unseen intervals are small enough it is possible for the
attacker to obtain an optimal strategy.

To formalize this statement, we introduce the following notation. Let CS be
the set of seen correct intervals and let CR be the set of correct sensors that
have not transmitted yet. Let ln−f−fa be the (n− f − fa)th smallest seen lower
bound and let un−f−fa be the (n− f − fa)th largest seen upper bound. Finally,
let amin be the attacked sensor with smallest width.

Theorem 1. Suppose n − f − fa ≤ |CS | < n − fa. There exists an optimal
attack strategy if one of the following is true:

(a) ∀si, sj ∈ CS , lsi = lsj , usi = usj and ∀s ∈ CR, |s| ≤ (|amin| − |SCS∪∆,0|)/2

(b) |amin| ≥ un−f−fa − ln−f−fa and ∀s ∈ CR,
|s| ≤ min {lSCS∪∆,0

− ln−f−fa , un−f−fa − uSCS∪∆,0
}

Remark. Note that the conditions in the theorem state that either all seen
correct intervals coincide with one another, and the attacker can attack around
them (a); or that the unseen correct intervals are small enough so that they
cannot change the extreme points contained in at least n − f − fa seen correct
intervals (b), in which case the attacker can attack around these points.

Proof. First suppose the first statement is true. We argue that the optimal
strategy for the attacker is to attack on both sides of seen intervals. For any s ∈
CR, s must overlap with at least one point in SCS∪∆,0 (the overlap must contain
the true value) and since |s| ≤ (|amin| − |SCS∪∆,0|)/2 then s will necessarily
overlap with all malicious sensors implementing the above strategy. Note that
since f < dn/2e, the fusion interval cannot be larger than the union of all correct
intervals. Therefore, this strategy is optimal because the attacker can guarantee
that all her intervals contain all correct intervals. Figure 4a illustrates this case.
All seen correct intervals coincide, and the attacker’s intervals are large enough
to guarantee that attacking on both sides will make sure all unseen intervals are
included.

Now suppose the second case is true. Then the attacked intervals are large
enough to contain both ln−f−fa and un−f−fa , thus making sure the fusion
interval is [ln−f−fa , un−f−fa ]. This attack is optimal since the unseen intervals
are all small enough to not change the positions of points un−f−fa and ln−f−fa .
Figure 4b presents an example of this case. The unseen interval, s3, cannot
change the largest and smallest points contained in at least one correct interval.
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(a) Attacker has seen s1 and
s2, while the unseen s3 is small
enough.

(b) Attacker has seen s1 and
s2, while the unseen s3 is
small enough.

Figure 4: Examples of the two cases of Theorem 1. Attacked intervals are
indicated by sinusoids.

3.2 Worst-Case Analysis

Given the attack strategy described in the previous subsection, we now analyze
worst-case results based on the sizes of the attacked and correct sensors. The
first result puts the problem in perspective - it provides an absolute upper bound
on the size of the fusion interval.

Theorem 2. Let sc1
and sc2

be the two largest-width correct sensors. Then
|SN ,f | ≤ |sc1

|+ |sc2
|.

Proof. Let sl and su be the two correct intervals with smallest lower bound and
largest upper bound, respectively. Since f < dn/2e, the lower bound of SN ,f

cannot be smaller than the lower bound of sl and its upper bound cannot be
larger than the upper bound of su. Thus, the width of SN ,f is bounded by the
sum of the widths of sl and su because any two correct intervals must intersect.
Hence, the width of SN ,f is bounded by the sum of the two largest correct
intervals.

Theorem 2 provides a conservative upper bound on the size of the fusion
interval because it does not directly take into account the sizes of the attacked
intervals. The following results analyze how the worst case varies with different
attacked intervals.

To formulate the theorems, we use the following notation. Let L be the
set of predefined lengths of all intervals. We use Sna to denote the worst-case
(largest width) fusion interval when no sensor is attacked. Similarly, let SF be
the worst-case fusion interval for a fixed set of attacked sensors F , |F| = fa,
whereas Swc

fa
is the worst-case fusion interval for a given number of attacked

sensors, fa. Finally, we refer to the set of n fixed (i.e., specific) measurement
intervals as a “configuration”. Note that |Sna| ≤ |SF | ≤ |Swc

fa
| by definition.

The first inequality is true since when there are no attacks, all intervals must
contain the true value, which is not the case in the presence of attacks, hence
the worst-case is at least the same. The second inequality is true since the
worst-case with fa attacks may not be achieved for any F with |F| = fa.

Theorem 3. If the fa largest intervals are under attack, then |Sna| = |SF |.
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Proof. Note that |SF | < |Sna| is impossible since the attacker can send the
correct measurements from her sensors. Thus, suppose |SF | > |Sna|. Let SC,0
be the intersection of the correct intervals in the configuration that achieves SF .
Suppose SF extends SC,0 on the right (note that the argument for the left side
is symmetric) by some distance d and let A be the rightmost point contained
in SF . Since f < dn/2e, A must lie in at least one correct interval sc. Since sc
is correct it must contain SC,0, which implies d + |SC,0| ≤ |sc| ≤ |smax|, where
smax is the largest correct interval. Let s be any attacked interval that contains
A. Because |s| ≥ |smax|, s can be placed to contain both A and SC,0. Since this
can be done for all attacked intervals containing A, the same worst-case fusion
interval can be achieved if no intervals were attacked.

The theorem is illustrated in Figure 5a. The attacked intervals a1 and a2

both do not contain the true value, which is at the intersection of the other
sensors. Since a1 and a2 are the largest intervals, they can be moved and can be
made correct while preserving the size of the fusion interval. Hence, the same
worst case can be achieved with correct intervals.

Theorem 4. |Swc
fa
| is achievable if the fa smallest intervals are under attack.

Proof. Note that if |Swc
fa
| = |Sna|, the theorem follows trivially. Consider the

case |Swc
fa
| > |Sna|. Suppose |Swc

fa
| is not achievable if the fa smallest intervals are

attacked. Let S be the configuration with fa corrupted intervals that achieves
|Swc

fa
| and let A be the rightmost point in Swc

fa
. Since |Swc

fa
| > |Sna| there exists

an interval s ∈ S that does not contain the true value but contains A. Let
Nsmall be the set of fa smallest intervals. If s ∈ Nsmall for all such s then Swc

fa
is achievable if Nsmall is under attack and the theorem follows.

Now suppose there exists an s as above such that s /∈ Nsmall. Then there
exists an interval ssmall ∈ Nsmall that is not under attack. If we swap s and
ssmall such that ssmall now contains A and s contains the old interval ssmall,
s is made correct and ssmall corrupted while preserving the size of the fusion
interval. Since we can do the same for all such s, |Swc

fa
| can be achieved if Nsmall

is under attack.

Figure. 5b illustrates the theorem. The worst-case for the setup can be
achieved when either s or ssmall is attacked.

A few conclusions can be drawn from the results shown in this subsection.
First of all, from Theorem 2, the smaller the correct intervals are, the smaller
the fusion interval will be in the worst case, regardless of the attacker’s actions.
In addition, as shown in Theorems 3 and 4, the attacker benefits more from
compromising precise sensors as opposed to less precise ones. Intuitively, this
is true because imprecise sensors produce large intervals even when correct; at-
tacking precise sensors, however, and moving their intervals on one side of large
correct intervals, with the true value on the other, may significantly increase
the uncertainty in the system. Therefore, one may conclude that it is better for
system designers to prioritize the protection of the most precise sensors.
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(a) Attacking the biggest inter-
vals does not change the worst
case in the system.

(b) Attacking the smallest in-
tervals can achieve the abso-
lute worst case.

Figure 5: Illustrations of Theorems 3 and 4.

4 Schedule Comparison and Analysis

In this section, we analyze the schedule design for communication over the
shared bus in Figure 1. It builds on the analysis in Section 3 by considering
how different schedules affect the capabilities of the attacker. In particular, we
examine the effect of each schedule on the size of the fusion interval.

We first note that the only information available a priori to system design-
ers is the sensors’ accuracy and their intervals’ sizes, consequently; additional
information considerations are discussed in Section 9. Thus, any investigated
schedule must be based on interval lengths alone. We focus on the two sched-
ules, named Ascending and Descending, which schedule sensor transmissions in
order starting from the most and least precise, respectively. Other schedules are
discussed in Section 9.

We first note that neither schedule is better than the other in all scenarios.
Figure 6 shows two examples in which different schedules are better, i.e., they
produce smaller fusion intervals. In Figure 6a the fusion interval obtained with
the Descending schedule is larger because the attacker is aware of the position of
the largest interval. Figure 6b, however, shows that knowing the largest interval
does not necessarily bring the attacker any useful information because he can
only increase the fusion interval by overlapping with s1 and s2. Hence, if he
is aware of s3 when sending his interval he would send aD but that would be
worse for the attacker than sending aA which would be the case if the attacker
had seen s1 and s2 instead.

Since the two schedules cannot be compared in the absolute sense, we con-
sider the average case over all possible sensor measurements. In particular, we
investigate the expected size of the fusion interval for a fixed set of sensors with
fixed precisions. One may consider all possible measurements of these sensors
and all possible attack combinations (with fa < dn/2e), and compute the av-
erage length of the fusion interval over all combinations. Note that there are
two main considerations when computing this expectation: (1) what is the dis-
tribution of sensor measurements around the true value (e.g., uniform over the
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(a) An example where the Ascending sched-
ule is better for the system.

(b) An example where the Descending
schedule is better for the system.

Figure 6: Two examples that show that neither the Ascending nor the Descend-
ing schedule is better for the system in all situations. The first column shows the
measurements by the sensors, including the attacked one. The other columns
contain the intervals sent to the controller, and the corresponding fusion inter-
val.

interval? normal?) and (2) what is the likelihood of different sensors being
attacked.

In the following analysis we investigate two possible distributions, uniform
and normal,6 and assume that all sensors are equally likely to be compromised.
Since obtaining closed form formulas for the expected sizes of the fusion in-
tervals under the two schedules was not possible, we computed the values for
specific systems. In particular, we varied the number of sensors from 3 to 5,
the sensor lengths from 5 to 20 with increments of 3, and the number of attack
sensors from 1 to dn/2e. For each setup, we generated all possible measurement
configurations7 and for each computed the size of the fusion interval under the
two schedules; finally, we computed their weighted sum (depending on the dis-
tribution and likelihood of obtaining each configuration), i.e., our best estimate
of the real expected size of the fusion interval for a given schedule and system.
For all setups, we used f = dn/2e − 1 as input to the sensors fusion algorithm.

Table 1 presents the obtained results. Due to the very large number of se-
tups tried, only a small subset is listed in this work. During simulations, it was
noticed that the schedules produce similar-size expected intervals when the in-
terval lengths are close to one another. The schedules differed greatly, however,
in systems with a few very precise sensors and few imprecise sensors. Hence,
setups in Table 1 were chosen such that they represent classes of combinations
according to these observations. As the table shows, for all analyzed systems,
the expected fusion interval under the Ascending schedule was never larger than
that under Descending. In addition, the gains were significant in some cases.
This is also true of all other setups that are not shown in this paper. We note
that while these results are not sufficient to conclude that the Ascending sched-
ule produces a smaller fusion interval for any sensor configuration, the same
framework can be used for any particular system to compare impacts of com-

6To approximate a normal distribution, we assumed the length of the interval is equal to
six standard deviations, i.e., about 99% of the values of a normal distribution.

7We discretized the real line with sufficient precision in order to enumerate the possible
measurements.
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Table 1: Comparison of the two sensor communication schedules.

EU |SN ,f |
Asc.

EU |SN ,f |
Desc.

EN |SN ,f |
Asc.

EN |SN ,f |
Desc.

n = 3, fa = 1,
L = {5, 11, 17} 10.77 13.58 10.87 13.18

n = 3, fa = 1,
L = {5, 11, 11} 9.43 10.16 9.89 10.39

n = 4, fa = 1,
L = {5, 8, 17, 20} 7.66 9.44 8.07 10.17

n = 4, fa = 1,
L = {5, 8, 8, 11} 6.32 6.53 6.99 7.23

n = 5, fa = 1,
L = {5, 5, 5, 5, 20} 6.13 6.15 5.66 5.7

n = 5, fa = 1,
L = {5, 5, 5, 14, 20} 7.22 9.18 6.86 9.09

n = 5, fa = 2,
L = {5, 5, 5, 5, 20} 6.71 10.32 6.43 9.77

n = 5, fa = 2,
L = {5, 5, 5, 14, 17} 8.17 11.85 8.11 11.04

munication schedules (based on sensors’ precisions when no other information
is available a priori) on performance of attack-resilient sensor fusion.

To conclude this section, we analyze another possible attack strategy, de-
noted by AS2, and show that the optimization strategy AS1 is worse for the
system, i.e., it is a more powerful attack. In AS2, a constant positive offset is
added to the attacked sensors’ measurements. Once again, the attacker has to
guarantee overlap with the fusion interval to avoid detection. Therefore, the
schedule and the seen intervals determine if introducing the whole offset would
lead to detection, in which case the offset is reduced to the maximal one that
would not result in detection.

To compare the two strategies, we note that they can only be compared
when the attacker is not last in the schedule, in which case he always has an
optimal strategy (specified by AS1). Thus, we only investigate cases in which
the attacker has control of the sensors in the middle of the schedule. Similar
to the above results, we compute the expected size of the fusion interval for
each strategy for different setups. The results are shown in Table 2, where a
maximal offset of 3 was introduced and the strategies are compared using the
Ascending schedule (the results using the Descending schedule are similar but
not shown in the interest of clarity). Note that strategy AS1 always produces
a larger expected fusion interval than the AS2, which means it is expected to
lead to more powerful attacks.
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Table 2: Comparison of the two attack strategies when Ascending schedule is
used – S1 is the expectation optimization strategy; S2 is the constant offset
strategy.

E |SN ,f |
Ascending, S1

E |SN ,f |
Ascending, S2

n = 3, fa = 1,
L = {5, 11, 17} 10.17 9.79

n = 3, fa = 1,
L = {5, 11, 11} 8.65 8.44

n = 4, fa = 1,
L = {5, 8, 17, 20} 7.54 7.16

n = 4, fa = 1,
L = {5, 8, 8, 11} 6.17 5.66

n = 5, fa = 1,
L = {5, 5, 5, 5, 20} 6.61 5.92

n = 5, fa = 1,
L = {5, 5, 5, 14, 20} 7.35 6.92

n = 5, fa = 2,
L = {5, 5, 5, 5, 20} 7.35 5.99

n = 5, fa = 2,
L = {5, 5, 5, 14, 17} 8.78 6.96

5 Using Measurement History for Attack-Resilient
Sensor Fusion

In this section, we explore a complementary approach to improve both the
precision and detection capabilites of the sensor fusion algorithm. In particular,
we note that most autonomous systems have known dynamics. In this paper,
we assume a linear time-invariant system in one dimension x(t+1) = ax(t)+w,
as outlined in Section 2. Given such a system, this section describes different
ways of mapping past measurements to the current round in order to reduce the
size of the fusion interval.

First note that the general assumptions of the model used in this work
restrict the number of ways of using history. In particular, it is not possible to
only map subsets of intervals from previous rounds to the current one as that
may not guarantee that the fusion interval will contain the true value. Thus, in
our previous work [11] we enumerated the possible ways of using history given
our assumptions and identified five ways of mapping past measurements to the
current round. Due to space limitations, we only consider three here: the most
intuitive one as well as the two best ones, as measured by the size of the obtained
fusion interval.

To simplify the equations, we introduce the map

m(x(t)) = {y ∈ R | ax(t) + w = y, |w| ≤M}.
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Here, the mapping of an interval one round to the future is the image of the
interval under m. In addition, let RN (t),f denote the set of all intersections of
n− f intervals, and let SN (t),f = conv(RN (t),f ), where conv denotes the convex
hull. Note that we use convex hull since the union of disjoint intervals is not an
interval. There are three ways to use past measurements as follows:

1. map n: In this algorithm all intervals from time t are mapped to time
t + 1, resulting in 2n intervals at time t + 1 with 2f as the new bound
on the number of corrupted intervals. Formally the fusion interval can be
described as

Sm(N (t))∪N (t+1),2f .

2. map R and intersect : This algorithm first maps RN (t),f and intersects it
with RN (t+1),f , after which the convex hull is computed. Formally we
describe this as

conv(m(RN (t),f ) ∩RN (t+1),f ).

3. pairwise intersect : This mapping performs pairwise intersection. Pairwise
intersection, denoted by ∩p, means intersecting the mapping of each sensor
s’s interval from time t to t + 1 with the same sensor’s interval at time
t + 1. This object again contains n intervals. The parameter f used in
the fusion algorithm remains the same but an additional assumption is
required as discussed below. Formally we capture this as

Sm(N (t))∩pN (t+1),f .

We now compare the three methods through the size of the fusion interval
obtained from each.

Theorem 5. The interval obtained from map R and intersect is a subset of the
one produced by map n.8

Proof. Consider any point p ∈ m(RN (t),f ) ∩ RN (t+1),f . Then p lies in at least
n − f intervals in N (t + 1), and there exists a q such that p ∈ m(q) that lies
in at least n− f intervals in N (t). Thus, p lies in at least 2n− 2f intervals in
m(N (t)) ∪N (t+ 1), i.e., p ∈ Rm(N (t))∪N (t+1),2f , implying

conv(m(RN (t),f ) ∩RN (t+1),f ) ⊆ conv(Rm(N (t))∪N (t+1),2f )

= Sm(N (t))∪N (t+1),2f .

To compare pairwise intersect and map R and intersect, however, we note
that different mappings make different assumptions about the definition of a
corrupted sensor. In particular, with the definition used in the first part of
this work (i.e., if a sensor is correct in a given round then its interval contains

8map R and intersect also produces a smaller fusion interval than the other methods de-
scribed in our previous work that are not listed here.
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the true value), one cannot use the pairwise intersection method as it does not
guarantee that the fusion interval will contain the true value.9 In this case,
a stricter definition is necessary, namely that a sensor is correct if its interval
contains the true value at all time steps. With this in mind, it is possible to
strengthen the attack detection mechanism by two more conditions. First of
all, if the same sensor’s intervals (mapped from previous rounds and the current
one) do not intersect, then it must be compromised in at least one of the rounds.
Second of all, if the same sensor’s intervals’ intersection does not intersect the
fusion interval obtained from pairwise intersection, then the sensor must also
be compromised. If such a definition of correctness is not realistic for a system
(e.g., for sensors with transient failures), it could still use map R and intersect,
which works with the weaker definition of correct sensor.

Another consideration when using history is what the system does when a
sensor has been detected to be compromised. If the sensor is believed to be
easy to compromise, then the system may choose to ignore its measurements
completely. On the other hand, the system may choose to just ignore the current
intervals and resume using the sensor in several rounds. We do not investigate
the advantages and disadvantages of each approach here; instead, we assume
this is a design decision (i.e., input), and leave its analysis for future work.

Theorem 6. Suppose a system discards a sensor’s measurements in both the
current and previous round if it is detected to be compromised. The interval
produced by pairwise intersect is a subset of map R and intersect.

Proof. The assumption stated in the first sentence implies that for the given sys-
tem, each remaining (i.e., non-discarded) interval intersects the fusion interval
in the same round. In addition, each sensor’s two intervals intersect each other,
and this intersection intersects the fusion interval obtained by pairwise intersect
method. We assume n and f have been updated accordingly (after compromised
sensors are detected).

Without loss of generality, assume that a > 0. Let p be the smallest point in
Sm(N (t))∩pN (t+1),f . Then, p must belong to at least n−f pairwise intersections,
and hence lie in at least n− f intervals in m(N (t)).

Consider RN (t),f . It is a collection of, possibly disjoint, intervals that rep-
resent the intersections of all combinations of n − f intervals in N (t). Let
s ∈ RN (t),f be the interval with lowest lower bound, i.e., ls is the smallest
point contained in RN (t),f . Let S(t) denote the set of n − f intervals whose
intersection yields s.

It remains to show that p ∈ m(s) since then the theorem follows because
p ∈ m(RN (t),f ) and p ∈ RN (t+1),f .

Suppose for a contradiction that p /∈ m(s). Note that this implies that
a(us) + M < p; if a(ls) − M > p then there would not be n − f pairwise
intersections that contain p. Let q(t) ∈ S(t) be the interval with smallest
upperbound. Then p /∈ m(q(t)). But this implies p /∈ m(q(t)) ∩ q(t + 1).

9This is true because if different sets of sensors are attacked over time, it is possible that
not enough pairwise intersections will contain the true value.
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However, this leads to a contradiction since p is in the fusion interval obtained
using pairwise intersect, whereas m(q(t))∩ q(t+ 1) does not intersect the fusion
interval.

These results suggest that systems that could justify the stronger defini-
tion of sensor correctness should use the pairwise intesect method. For other
systems we should resort to the map R and intersect algorithm. Regardless of
which approach is followed, the following results show that using historical mea-
surements is never worse than computing the fusion interval in just one round
in isolation, while the benefits are sometimes significant.

Proposition 1. The fusion interval computed using pairwise intersect is never
larger than the fusion interval computed without using history.

Proof. Each of the intervals (e.g., m(P1(t))∩P1(t+ 1)) computed after pairwise
intersection is a subset of the corresponding interval when no history is used
(e.g., P1(t+ 1)). Consequently, the fusion interval will always be a subset of the
fusion interval obtained when no history is used.

Proposition 2. The fusion interval computed using map R and intersect is
never larger than the fusion interval computed without using history.

Proof. Since m(RN (t),f ) ∩RN (t+1),f ⊆ RN (t+1),f , then
conv(m(RN (t),f ) ∩ RN (t+1),f ) ⊆ conv(RN (t+1),f ), and the proposition follows.

6 Unified Approach for Attack-Resilient Sensor
Fusion

In this section, we analyze how the use of an optimal transmission schedule and
measurement history in sensor fusion can be combined to complement each other
and further improve the performance of the sensor fusion algorithm. We assume
the stronger definition of correctness and use the pairwise intersect method in
the following comparisons. We also assume that the attacker does not have any
limitations, i.e., he is aware of all previous sensor measurements and is able to
implement pairwise intersect as well (or any other algorithm).

Similar to the one-round comparison of schedules, we note that no schedule
is better than the other in the absolute sense. Therefore, we compare them using
the expected size of the fusion interval. As no closed-form solution for this size
is available, we compute the value for the same setups as the ones described in
Table 1. The system dynamics were assumed to be x(t + 1) = x(t) + w, with
|w| ≤ 1. Table 3 presents the results. Two things are worth noting. Firstly,
once again the Ascending schedule produces smaller-size fusion intervals for all
setups. Secondly, as compared with the same setups in Table 1, by adding
history the system can further reduce the expected sizes for all setups, even
when the attacker also has access to historical measurements.
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Table 3: Comparison of the two sensor communication schedules when historical
measurements are used.

EU |Sp i|
Asc.

EU |Sp i|
Desc.

EN |Sp i|
Asc.

EN |Sp i|
Desc.

n = 3, fa = 1,
L = {5, 11, 17} 8.59 9.65 10.03 11.37

n = 3, fa = 1,
L = {5, 11, 11} 7.77 8.05 9.19 9.61

n = 4, fa = 1,
L = {5, 8, 8, 11} 4.9 5 6.61 6.79

Algorithm 1 Implementation of the pairwise intersect algorithm

Input: f , an upper bound on the number of corrupted sensors
1: past meas← ∅
2: for each step t do
3: cur meas← get meas(t)
4: if past meas == ∅ then
5: past meas← cur meas
6: else
7: past meas = pair inter(cur meas, past meas)
8: end if
9: S ← fuse intervals(past meas, f)

10: send interval to controller(S)
11: end for

Note that pairwise intersect does not add significant computational and
memory complexity to the sensor fusion algorithm. In fact, the only additional
computation it imposes is the intersection of n pairs of intervals. Furthermore, it
requires storing at most n intervals to represent past measurements - intuitively
they are the “intersection” of all past measurements.

The implementation of pairwise intersect is shown in Algorithm 1. In essence,
at each point in time n intervals (the pairwise intersections) are stored. Thus,
past meas represents the “pairwise intersection” of all previous measurements
of each sensor. In addition to being more efficient in terms of the size of the fu-
sion interval, the algorithm also needs very little memory – the required memory
is linear in the number of sensors irrespective of how long the system runs.

7 Case Studies

This section illustrates how the framework proposed in this work can be im-
plemented on an unmanned ground vehicle. We provide both simulation and
experimental results using the LandShark [10] robot (shown in Figure 7). The
LandShark is mainly used in missions in hostile environments in order to carry
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Figure 7: LandShark vehicle [10].

injured people or for reconnaissance of rough terrain.

7.1 Simulations

For our simulations, we used the LandShark’s velocity sensors. It has four
sensors that can estimate speed, namely two wheel encoders, a GPS and a
camera. The encoders’ intervals were determined based on the measurement
error and sampling jitter provided by the manufacturer, whereas the GPS and
camera intervals were determined empirically, i.e., the LandShark was driven
in the open and largest deviations from the actual speed (as measured by a
high-precision tachometer) were recorded for each sensor. The interval sizes (at
a speed of 10 mph) were computed to be 0.2 mph for the encoder, 1 mph for
the GPS, and 2 mph for the camera.

We simulated two different scenarios in order to illustrate the effectiveness
of the two approaches discussed in this paper both as separate components and
as a unity. The following subsections describe each evaluation in greater detail.

7.1.1 Utilize Dynamics and Measurement History

To validate the use of measurement history, we analyzed the fusion interval for
the LandShark’s velocity when moving straight at a constant speed of 10 mph;
we examined the fusion interval when measurements history is used and com-
pared it to the no-history case. In order to use pairwise intersect, we assume
that only one sensor is compromised during one run of the system. Thus, we
simulated three cases, each one with a different sensor under attack. Since
schedules were not investigated in this scenario, an offset attack strategy was
chosen such that a constant offset of 1 mph was added to each interval.10 If an
attack is detected, both the current and the previous measurements of the sen-
sor are discarded (thereby reducing both n and f by 1), and new measurements
are again collected in the following round.

Figure 8 shows the results for the three cases. As can be seen in the figure,
using history never results in larger fusion intervals, whereas in some cases the

10Note that this scenario is equivalent to one where a schedule is used and the attacker has
to transmit first without a detection constraint.
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(a) GPS under attack. (b) Camera under attack. (c) Encoder under attack.

Figure 8: Sizes of velocity fusion intervals for each of the three simulated
cases; Dashed line – volume of the fusion interval when measurement history
is not considered, Solid line – volume of the fusion interval obtained using
pairwise intersect.

reductions in size are significant. Notably, in agreement with Theorem 4, when
an attack on an encoder is detected, the resulting fusion interval is much smaller.

7.1.2 Unified Approach

To illustrate the advantages of the Ascending schedule, the following scenario
was simulated – three LandSharks are moving away from enemy territory in a
straight line. The leader sets a target speed of v mph, and the two vehicles
behind it try to maintain it for safety reasons. Each vehicle’s velocity must not
exceed v + δ1 as that may cause the leader to crash in an unseen obstacle or
one of the other two LandSharks to collide with the one in front. Speed must
also not drop below v − δ2 as that may cause the front two vehicles to collide
with the one behind. If either of these conditions occurs, a high-level algorithm
takes control, switching to manual control of the vehicles. These constraints
were encoded via the size of the fusion interval - if the fusion interval contains
a point less than or equal to v − δ2 or greater than or equal to v + δ1, then a
critical violation flag is raised.

We simulated multiple runs of this scenario, each consisting of two rounds.
To satisfy the stronger assumption of sensor correctness, the same sensor (ran-
domly chosen at each run) was assumed attacked during the two rounds. In each
round random (but correct) measurements were generated for each sensor and
then fusion intervals were computed at the end of the second round under the
Ascending and Descending schedules (using strategy AS1). For completeness,
a different Random schedule was used during each round in order to investi-
gate other schedules that were not analyzed in depth. For each schedule, the
fraction of runs was computed that led to a critical violation, as defined in the
previous paragraph. The target speed was set to be 10 mph, with δ1 = 0.5
and δ2 = 0.5, and system dynamics were assumed to be x(t + 1) = x(t) + w,
with |w| ≤ 10. The results are shown in Table 4. As can be seen, no critical
violations were recorded under the Ascending Schedule, whereas the Descend-
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Table 4: Simulation results for each of the three schedules used in combination
with pairwise intersect. Each entry denotes the proportion of time that the
corresponding schedule generated a critical violation when there was none.

Ascending Descending Random
History Used

More than 10.5 mph 0% 2.98% 4.9%
Less than 9.5 mph 0% 2.63% 4.8%
No History Used
More than 10.5 mph 0% 15.29% 5.22%
Less than 10.5 mph 0% 16.8% 5.61%

ing and Random schedules both produced some.11 In addition, adding history
has greatly reduced the number of violations, both for the Descending and the
Random schedules.

7.2 Experimental Validation

In addition to the simulations shown above, experiments were performed using
the LandShark robot. They were used to compare the two attack strategies
described in the paper as well as to illustrate the advantages of the Ascending
schedule regardless of the attack strategy used.

As argued in Section 4, attack strategies can only be compared when the
compromised sensors are not at the beginning or end of the communication
schedule but in the middle instead. Thus, in the experiments only the mid-
schedule sensors were compromised. In the experiments, the LandShark was
driven straight and the size of the fusion interval for each scenario was computed
as soon as measurements were obtained from all sensors. Note that three sensors
were used in the experiments (GPS and two encoders), with the right encoder
being in the middle of the schedule, i.e., under attack.

Figure 9 presents the results of the experiments.12 During the run of the
LandShark, the attack (as computed by AS1 and AS2) on the right encoder was
turned on and off several times, and we only recorded the fusion interval sizes
at the rounds with an attack. Since the rounds were independent, they were
concatenated in Figure 9 as if the system was always under attack. The four
curves represent the size of the fusion interval for each scenario. As is apparent
from the figure, the Ascending curves are almost invariably below, but never
above, the Descending. This confirms our results that the use of the Ascending
communication schedule reduces the attacker’s impact on the performance of

11Note that all critical violations recorded under the Descending and Random schedules are
false alarms, i.e., the system is not in an unsafe state but is led to believe it is in one due to
the attack.

12A video with the experiments is available at
http://www.seas.upenn.edu/∼pajic/research/CPS security.html#videos.
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Figure 9: Comparison of the sizes of the fusion intervals as obtained with the
two attack strategies, optimization (AS1) and offset (AS2), and two schedules.

Table 5: Average size of the fusion interval for each of the four scenarios.

Ascending schedule Descending schedule
Optimization strategy 0.399m/s 0.652m/s
Offset strategy 0.395m/s 0.483m/s

sensor fusion. In addition, it is clear that the optimization attack strategy (i.e.,
AS1) outperforms the offset one (i.e., AS2) at virtually every round and with
both schedules. Finally, Table 5 summarizes the results by providing the average
size of the fusion interval for each scenario.

8 Related Work

Providing security for Cyber-Physical and Embedded Systems is a challenging
task [12]. One way of addressing it is through exploiting the fact that these
systems have multiple sensors, whose data may be calibrated and fused for
better closed-loop performance [13]. Yet, the term “sensor fusion” has different
interpretations and applications in different fields of research. In some areas it
is considered to be the process of collecting and combining the data from similar
sensors measuring the same variable. In others, however, it is synonymous to
the broader term “state estimation”, in which different sensors measure different
aspects of the system’s state. This paper uses the first definition as it implies
sensor redundancy, which is a part of the model used in this work.

The work on sensor fusion can be divided according to the sensor model
used. The far more prevalent approach is to use a probabilistic model and
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derive expected results such as in the pivotal work in this domain, the Kalman
filter [6]. In that work, assumptions about sensor precisions are combined with
a known system dynamics model in order to produce a best linear estimator
of the true state. In addition, distributed versions of this model have been
proposed as well [14, 7]. All probabilistic works, however, are concerned with
the average performance of a system and are not well-suited for the analysis of
low-probability rare events.

On the other hand, the abstract sensor model is usually employed for worst-
case analysis. One of the first works in this field [8] assumes that sensors provide
one-dimensional intervals and shows worst-case results regarding the size of the
fused interval based on the number of faulty sensors in the system. A varia-
tion of [8] relaxes the worst-case guarantees in favor of obtaining more precise
fused measurements through weighted majority voting [15]. Another extension
combines the abstract and probabilistic models by assuming a probability dis-
tribution of the true value inside the interval and casting the problem in the
probabilistic framework [16]. Finally, sensors can be assumed to not only provide
intervals but also multidimensional rectangles and balls [17] and more general
sets as well [18, 19]. Another advantage of the abstract sensor model is that it
can be used not only for safety analysis but for fault detection as well [8, 20].

Finally, some works propose performing sensor fusion independently of the
sensor model. In particular, if instead of a measurement, the sensor’s output
is a decision such as whether to raise an alarm or not, a higher-level fusion
algorithm has to combine the sensor decisions instead of their measurements.
This problem is usually solved with a voting scheme [21, 22] or a fuzzy voting
technique [23].

Another term that is used differently across areas of research is “sensor
scheduling”. While in some works, including this one, it refers to the com-
munication schedule of sending measurements during every round of system
operation, in others the schedule refers to which sensors should be utilized in
a given round. Thus, the difference between the two is that in the former all
sensors are utilized at all time steps, whereas in the latter only subsets of the
sensors are used at each time in order to minimize energy consumption or inter-
ference. Different approaches for the latter definition of sensor scheduling have
been proposed, ranging from pruning techniques [24] to convex optimization [25]
to information theory [26].

9 Discussion and Conclusion

In this paper we described an attack-resilien sensor fusion algorithm for mul-
tiple sensors measuring the same variable. We introduced security concerns
by formalizing an attack strategy that attempts to maximize the uncertainty
in the system by increasing the set of possible measurement values obtained
from sensor fusion. Two approaches of improving the precision and resiliency
of sensor fusion were investigated. On the one hand, we showed that different
transmission schedules affect the information and capabilities of the attacker.
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Our results showed that the Ascending schedule is expected to produce the most
precise fusion intervals by either providing the attacker with too little informa-
tion (acting first in the schedule when compromising more precise sensors) or
too little power (when compromising imprecise sensors). On the other hand,
we showed that knowledge of system dynamics can be utilized with sensor mea-
surement history in order to further improve the precision and resilience of the
algorithm. Finally, we showed that by using the optimal communication sched-
ule (i.e., Ascending) and the sensor fusion algorithm with measurement history,
we can further reduce the attacker’s impact on the system. We validated our
findings and illustrated the use of the proposed sensor fusion approach on a
real-world case study, velocity estimation on an unmanned ground vehicle.

There are several ways in which the algorithm can be improved. Naturally, if
information is available as to which sensors are harder to compromise, it can be
incorporated by scheduling those sensors to transmit last, thus precluding the
attacker from seeing their measurements. In addition, while this work focused
mainly on the Ascending and Descending schedules, other schedules were con-
sidered in Section 7.13 Even there, however, the Ascending schedule produced
no violations, whereas the Random schedules led to a few.

Regarding the problem of using measurement history, it was noted that the
accuracy of the different mapping algorithms depends on the definition of a
compromised sensor. However, in this work we assume that sensors are either
correct or compromised. A next step would be to allow a fault model for sensors
to be included in the fusion algorithm. For example, we could introduce a
temporal fault model where sensors are allowed to be faulty in a few rounds
without being immediately discarded as compromised.
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