
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated
*

O
O
P
S
LA
*

Ar
tifact *

A
E
C

Protocol-Based Verification
of Message-Passing Parallel Programs

Hugo A. López1 Eduardo R. B. Marques2 Francisco Martins2 Nicholas Ng3

César Santos2 Vasco Thudichum Vasconcelos2 Nobuko Yoshida3

1 Technical University of Denmark, Denmark 2 LaSIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal
3 Imperial College London, London, UK

Abstract
We present ParTypes, a type-based methodology for the ver-
ification of Message Passing Interface (MPI) programs writ-
ten in the C programming language. The aim is to statically
verify programs against protocol specifications, enforcing
properties such as fidelity and absence of deadlocks. We de-
velop a protocol language based on a dependent type system
for message-passing parallel programs, which includes var-
ious communication operators, such as point-to-point mes-
sages, broadcast, reduce, array scatter and gather. For the
verification of a program against a given protocol, the pro-
tocol is first translated into a representation read by VCC, a
software verifier for C. We successfully verified several MPI
programs in a running time that is independent of the number
of processes or other input parameters. This contrasts with
alternative techniques, notably model checking and runtime
verification, that suffer from the state-explosion problem or
that otherwise depend on parameters to the program itself.
We experimentally evaluated our approach against state-of-
the-art tools for MPI to conclude that our approach offers a
scalable solution.

Keywords Program verification, Parallel programming,
MPI, Session types, Dependent types

1. Introduction
Background Message Passing Interface (MPI) [7] is the
de facto standard for programming high performance paral-
lel applications targeting hundreds of thousands of process-
ing cores. MPI programs, written in C or Fortran, specify the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
OOPSLA ’15, October 25–30, 2015, Pittsburgh/PA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnnReprinted from OOPSLA ’15, [Unknown
Proceedings], October 25–30, 2015, Pittsburgh/PA, USA, pp. 1–56.

behavior of the various processes, each working on different
data. Programs make calls to MPI primitives whenever they
need to exchange data. MPI offers different forms of com-
munication, notably, point-to-point and collective operators.

Developing MPI applications raises several problems:
one can easily write code that causes processes to block
indefinitely waiting for messages, or that exchange data
of unexpected sorts or lengths. Verifying that such pro-
grams are exempt from communication errors is far from
trivial. The state-of-the-art verification tools for MPI pro-
grams use advanced techniques such as runtime verifica-
tion [13, 24, 27, 34] or symbolic execution and model check-
ing [10, 13, 24, 29, 32].

Runtime verification cannot guarantee the absence of
faults. In addition, the task can become quite expensive due
to the difficulty in producing meaningful tests, the time to
run the whole test suite, and the need to run the test suite
in hardware similar to that where the final application will
eventually be deployed. On the other hand, model checking
approaches frequently stumble upon the problem of scala-
bility, since the search space grows exponentially with the
number of processes. It is often the case that the verification
of real applications limits the number of processes to less
than a dozen [30].

Verification is further complicated by the different com-
munication semantics for the various MPI primitives [29], or
by the difficulty in disentangling processes’ collective and
individual control flow written on a single source file [1].
These also naturally arise in other more recent standards for
message-based parallel programs, such as MCAPI [16].

We attack the problem of verifying C+MPI code using a
type theory for parallel programs. In our framework a type
describes a protocol, that is, the communication behavior
of a program. Programs that conform to one such type are
guaranteed to follow the protocol and not to run into dead-
locks. The type system features a dependent type language
including specific constructors for some of the most com-
mon communication primitives found in MPI, in addition to
sequential composition, primitive recursion, and a form of

1

collective choice. Our aim is to provide a typed verification
basis for the safe development of parallel applications. The
next paragraph explains our motivation via an example.

Motivation The finite differences algorithm illustrates the
typical features present in a parallel application. Given an
initial vector X0, the algorithm calculates successive ap-
proximations to the solution X1, X2, . . . , until a pre-defined
maximum number of iterations has been reached. A distin-
guished process (usually process rank 0) disseminates the
problem size via a broadcast operation. The same process
then divides the input array among all processes. Each par-
ticipant is responsible for computing its local part of the so-
lution. Towards this end, in each iteration, each process ex-
changes boundary values with its left and right neighbours.
When the pre-defined number of iterations is reached, pro-
cess rank 0 obtains the global error via a reduce operation
and collects the partial arrays in order to build a solution to
the problem.

A stripped down version of the C+MPI code is depicted
in Figure 1. Such code is extremely sensitive to variations
in the use of MPI operations. For example, the omission of
any send/receive operation (lines 11–24) leads to a deadlock
where at least one process will be forever waiting for a com-
plementary send or receive operation. Similarly, exchanging
lines 21 and 22 leads to a deadlock where ranks 0 and 1 will
forever wait for one another. Other sorts of deadlocks may
occur when different ranks perform different collective oper-
ations at the same time (say, rank 0 broadcasts and all other
ranks reduce), or when one of the ranks decides to aban-
don, at an earlier stage, a loop comprising MPI primitives.
It is also easy to use mismatching types or array lengths
in MPI calls, thus compromising type and communication
safety. Finally, it may not be obvious at all why one needs a
three-branched conditional (lines 10–25) in order to perform
the “simple” operation of sending a message to the left and
then to the right, in a ring topology.

Solution We attack the problem from a programming lan-
guage angle. In particular, we:

• Propose a protocol (type) language suited for describing
the most common scenarios in the practice of parallel
programming; and

• Statically check that programs conform to a given proto-
col, effectively guaranteeing the absence of deadlocks for
well-typed programs, regardless of the number of process
involved.

We develop our theory along the lines of intuitionistic
type theory [18], demonstrating the soundness of our pro-
posal via two main results: agreement of program reduction
(cf., subject-reduction) and progress for programs.

Challenges Figure 2 presents a protocol for the finite dif-
ferences algorithm. Special variable size represents the num-
ber of processes. The protocol captures the communica-

1int main(int argc,char** argv) {
2MPI_Init(&argc,&argv);
3MPI_Comm_rank(MPI_COMM_WORLD,&rank);
4MPI_Comm_size(MPI_COMM_WORLD,&size);
5MPI_Bcast(&n,1,MPI_INT,0,MPI_COMM_WORLD);
6MPI_Scatter(data,n/size,MPI_FLOAT,&local[1],n/size,

MPI_FLOAT,0,MPI_COMM_WORLD);
7int left = rank == 0 ? size - 1 : rank - 1;
8int right = rank == size - 1 ? 0 : rank + 1;
9for (iter = 1; i <= NUM_ITER; iter++) {
10if (rank == 0) {
11MPI_Send(&local[1],1,MPI_FLOAT,left,0,MPI_COMM_WORLD);
12MPI_Send(&local[n/size],1,MPI_FLOAT,right,0,

MPI_COMM_WORLD);
13MPI_Recv(&local[n/size+1],1,MPI_FLOAT,right,0,

MPI_COMM_WORLD,&status);
14MPI_Recv(&local[0],1,MPI_FLOAT,left,0,MPI_COMM_WORLD,&

status);
15} else if (rank == size - 1) {
16MPI_Recv(&local[n/size+1],1,MPI_FLOAT,right,0,

MPI_COMM_WORLD,&status);
17MPI_Recv(&local[0],1,MPI_FLOAT,left,0,MPI_COMM_WORLD,&

status);
18MPI_Send(&local[1],1,MPI_FLOAT,left,0,MPI_COMM_WORLD);
19MPI_Send(&local[n/size],1,MPI_FLOAT,right,0,

MPI_COMM_WORLD);
20} else {
21MPI_Recv(&local[0],1,MPI_FLOAT,left,0,MPI_COMM_WORLD,&

status);
22MPI_Send(&local[1],1,MPI_FLOAT,left,0,MPI_COMM_WORLD);
23MPI_Send(&local[n/size],1,MPI_FLOAT,right,0,

MPI_COMM_WORLD);
24MPI_Recv(&local[n/size+1],1,MPI_FLOAT,right,0,

MPI_COMM_WORLD,&status);
25}
26}
27MPI_Reduce(&localErr,&globalErr,1,MPI_FLOAT,MPI_MAX,0,

MPI_COMM_WORLD);
28MPI_Gather(&local[1],n/size,MPI_FLOAT,data,n/size,

MPI_FLOAT,0,MPI_COMM_WORLD);
29MPI_Finalize();
30return 0;
31}

Figure 1. Excerpt of an MPI program for the finite differ-
ences problem (adapted from [8])

tion structure of the algorithm. A val constructor introduces
the number of iterations; a broadcast operation initiated by
rank 0 disseminates the problem dimension; scatter dis-
tributes the array. The external loop caters for the various
iterations, whereas the inner one provides for the to-left and
to-right message passing. The final reduce and gather collect
the error and the solution.

There are two points worth noticing about this protocol.
The first is that it talks about messages, whereas the source
code mentions send and receive operations. The other is that
its inner loop does not correspond to a loop in the program,
instead it corresponds to a (three-branched) conditional. The
protocol talks about the global behavior of the program, in a
form inspired by session types [14]. The sole presence of a
global protocol ensures deadlock freedom of programs that
conform to the protocol.

Each individual process contributes to the global proto-
col. A novel type equivalence relation equates individual
protocols against the global description, in such a way that,
if each individual process conforms to its protocol, and all
protocols are equivalent, then the program is deadlock free.

2

1 protocol FDiff {
2 val nIterations: positive
3 broadcast 0 n: {x: natural | x % size = 0}
4 scatter 0 float[n]
5 foreach iter: 1 .. nIterations
6 foreach i: 0 .. size-1 {
7 message i (i = 0 ? size-1 : i-1) float
8 message i (i = size-1 ? 0 : i+1) float
9 }

10 reduce 0 max float
11 gather 0 float[n]
12 }

Figure 2. Protocol for the finite differences program

Type equivalence also naturally justifies the three branches
in the source code, lines 10–25 in Figure 1.

Method In order to verify C+MPI source code against
protocols we use the VCC deductive software verifier [2].
Our method can be summarised as follows.

• Write a protocol for the program (the protocol serves as
further documentation for the program);

• Convert it to VCC;
• Introduce the required annotations in the C+MPI source

code; and
• Use VCC to check code conformance against the proto-

col.

If VCC runs successfully, then the program is guaranteed
to follow the protocol and to be exempt from deadlocks,
regardless of the number of processes, problem dimension,
number of iterations, or any other variables.

Contributions

1. A dependently typed protocol language featuring primi-
tive recursion and a separate static language of indices,
along the lines of DML [36] and Omega [28];

2. A type checking system for a core parallel program-
ming language ensuring a progress property for well-
typed programs; and

3. A methodology for checking C+MPI code against proto-
cols, using a deductive program verifier.

Outline The next section presents a broad overview of the
verification procedure. Sections 3 and 4 introduce the type
theory, a core programming language, and the main results
of the paper. Section 5 shows how we embodied the theory
in VCC. Section 6 quantitatively compares our approach
to state-of-the-art tools for the verification of C+MPI code.
Section 7 discusses related work, and Section 8 concludes
the paper.

2. Overview of the verification procedure
In order to check a program against a protocol, we need a
program, a protocol, and a program verifier.

• Programs are written in the C programming language and
make use of the MPI library interface;

• Protocols are written in a language described below;
• Programs are verified against a protocol using VCC.

In the sequel we detail how to construct protocols and
how to prepare source code for VCC verification.

The protocol language by example We follow a step-by-
step construction of the protocol for finite differences algo-
rithm discussed in the introduction. The end result, we have
seen, is in Figure 2.

In the beginning, process rank 0 broadcasts the problem
size. We write this as

broadcast 0 natural

That process rank 0 divides X0 among all processes is
rendered in ParTypes as a scatter operation.

scatter 0 float[]

Now, each process loops for a given number of iterations,
nIterations. We write this as follows.

foreach i: 1..nIterations

nIterations is a variable that must be somehow intro-
duced in the protocol. The variable denotes a value that must
be known to all processes. Typically, there are two ways for
processes to get to know this value:

• The value is exchanged resorting to a collective commu-
nications operation, in such a way that all processes get
to know it, or

• The value is known to all processes before computation
starts, for example because it is hardwired in the source
code or is read from the command line.

For the former case we could for instance add another
broadcast operation in the first lines of the protocol. For
the latter, the protocol language relies on the val constructor,
allowing one to introduce a program value in the type:

val nIterations: positive

Either solution would solve the problem. If a broadcast

is used then processes must engage in a broadcast operation;
if val is chosen then no value exchange is needed, but the
programmer must identify the value in the source code that
will inhabit nIterations.

We may now continue analyzing the loop body. In each
iteration, each process sends a message to its left neighbor
and another message to its right neighbor. Such an operation
is again described as a foreach construct that iterates over
all processes. The first process is 0; the last is size-1, where
size is a distinguished variable that represents the number
of processes. The inner loop is then written as follows.

foreach i: 0..size-1

3

When i is the rank of a process, an expression of the form
i=size-1 ? 0 : i+1 denotes its right neighbor. Similarly,
the left neighbor is i=0 ? size-1 : i-1.

To send a message containing a value of a datatype D,
from process rank r1 to rank r2 we write message r1 r2 D.
In this way, to send a message containing a floating point
number to the left process, followed by a message to the right
process, we write.

message i (i=0 ? size-1 : i-1) float
message i (i=size-1 ? 0 : i+1) float

So, now we can assemble the loops.

foreach i: 1..nIterations
foreach i: 0..size-1 {
message i (i=0 ? size-1 : i-1) float
message i (i=size-1 ? 0 : i+1) float

}

Once the loop is completed, process rank 0 obtains the
global error. Towards this end, each process proposes a float-
ing point number representing the local error. Rank 0 then
reads the maximum of all these values. We write all this as
follows.

reduce 0 max float

Finally, process rank 0 collects the partial arrays and
builds a solution Xn to the problem. This calls for a gather

operation.

gather 0 float[]

Before we put all the operations together in a protocol,
we need to discuss the nature of the arrays distributed and
collected in the scatter and gather operations. Scatter
distributesX0, dividing it in small pieces; gather collects the
subarrays to build Xn. The arrays in scatter/gather protocols
always refer to the whole array, not to the subarrays. So, we
instead write:

scatter 0 float[n]
...
gather 0 float[n]

Variable n must be introduced somehow (by means of
a val, broadcast, or allreduce). In this case n is exactly the
problem size that was broadcast before. So we name the
value that rank 0 provides as follows.

broadcast 0 n:natural

But n cannot be an arbitrary non-negative number. It
must evenly divide X0. In this way, each process gets a
part of X0 of equal length, namely length(X0)/size, and
we do not risk accessing out-of-bound positions when ma-
nipulating the subarrays. So we would like to make sure
that the length of X0 is such that length(X0)%size = 0.
For this we use a refinement datatype. Rather that saying
that n is a natural number we say that it is of datatype
{x:natural|x%size=0}.

As an aside, datatype natural can be expressed as
{x:integer|x>=0}. Similarly, datatype positive abbrevi-
ates {x:integer|x>0}. Finally, syntax float[n] is the ab-
breviation of a refinement type {x:float[]|length(x)=n}.

The topology underlying the protocol for the finite dif-
ferences (Figure 2) is that of a ring: a linear array with a
wraparound link. If a different mapping of ranks to processes
is to be used, a new protocol must be derived. It turns out
that the language of protocols is flexible enough to encode
topologies in integer arrays. Such a topology may then be
made known to all processes, in such a way that processes
exchange messages as per the particular topology. This flex-
ibility is particularly useful for applications that dynami-
cally adequate the protocol to, say, the load of messages ex-
changed. A datatype of the form

{t: {x: integer | 0<=x and x<size}[size] |
forall y: y in 0..length(t)-1 => t[y] != y}

encodes a one-dimensional network topology, where t[x]=y
means x is a direct neighbor of y: each node has one direct
neighbor (a number between 0 and size-1) that is different
from itself. Such a type, call it D, can be distributed among
all processes by, say, rank 0.

broadcast 0 topology:D

Thereafter each process can exchange a message with its
neighbor, as in:

foreach i: 0 .. length(topology)-1
message i topology[i] float

A right-to-left ring topology of length five can be encoded
as [4, 0, 1, 2, 3].

How can one encode a topology where not all processes
have direct neighbors, such as a star or a line? One possibil-
ity is to weaken the above condition on the elements of the
array, while strengthening the subsequent message passing
loop. We could for example drop the restriction that t[y]!=y
and encode a right-to-left line of length five as [0, 0, 1, 2, 3],
a 0-centered star as [0, 0, 0, 0, 0], and a full binary 0-rooted
tree of depth 3 as [0, 0, 0, 1, 1, 2, 2]. In all cases, rank 0 has
no direct neighbor. And this causes a problem if we try to
send a message from i to topology[i], as in the above ex-
ample.

Given that the topology is a data structure known to
all processes we can make use of a new primitive called
collective choice. We start by broadcasting the topology and
enter the loop as before. Then, within the loop, a message is
exchanged only if the topology array contains a valid entry.

broadcast 0 topology:
{x:integer | 0<=x and x<size}[size]

foreach i: 0 .. length(topology)-1
if (i != topology[i])
message i topology[i] float

else
{}

4

Arbitrary topologies can be encoded, e.g., using an adja-
cency matrix. More examples of protocols can be found in
Section 6.

Verifying C+MPI code against a protocol In order to ver-
ify a program against a protocol, we need:

• The C+MPI source code;
• The protocol in VCC syntax (a C header file);
• The type theory in VCC format (another header file).

The protocol in VCC syntax can be generated by the
ParTypes Eclipse plugin or by a web service [23]. Both
check, in addition, the good formation of the protocol. The
ParTypes VCC library can be obtained from the project’s
web site [23].

All that remains is preparing the source code, so that it
may be successfully verified by VCC. First, VCC limitations
force us to adapt the C source code. In particular, VCC does
not support a theory for floating point numbers, and func-
tions with a variable number of arguments. Thus, we must
filter out lines that contain, e.g., printf or scanf, and also
adapt floating point code that may have impact on the ver-
ification process, e.g., control flow predicates involving ex-
pressions of type float or double. In this process, we must
preserve the control structure of the program, including calls
to MPI primitives and variable declarations. The resulting
program must still compile and exchange the messages the
original program was intended to.

Next, our approach requires introducing some annota-
tions, including:

• Those that distinguish C loops to be matched against
foreach protocols. The core language described in Sec-
tion 4 uses for expressions for code that is supposed to
match a foreach protocol and while loops for all other pur-
poses; C does not make this distinction;

• Those that distinguish C conditionals to be matched
against collective choice protocols, if-else. Again, our
core language distinguishes ifc expressions to be matched
against collective choices from if expressions used for all
other purposes, while C does not;

• The C expression that matches a val type; and
• Annotations that guide VCC in matching a foreach-type

against a non-loop C constructor.

For C functions that make use of MPI operations we have
two options:

• Inline the code (MPI programs are usually non recursive),
or

• Write a contract to the function in the form of a pre- and a
post-condition, stating the entry and exit values of p, the
ghost variable that holds the protocol.

Further details on the annotations required by ParTypes
are provided in Section 5.

We are finally in a position to run VCC on the source
code. If VCC reports no errors, the program complies with
the protocol, and we may conclude that it faithfully follows
the protocol and is, in particular, free from deadlocks.

3. The type theory
This section introduces the notion of type and the novel
notion of type equivalence. Type equivalence is shown to be
decidable.

Index terms Types rely on two base sets: that of vari-
ables (denoted x, y, z), and that of integer values (k, l,m, n).
There are two distinguished variables: size and rank; we use
them to denote the total number of processes and the unique
number of a given process, respectively. It will always be the
case that 1 ≤ rank ≤ size. Unlike the case of MPI, the ranks
in our type theory run from 1. We start by discussing a few
notions types rely on.

Index terms, i, describe the values types may depend
upon. Our language counts with variables, integer, and arith-
metic operations, as well as the usual array operations: cre-
ation [i1, . . . , in], access i1[i2], and length len(i). Index term
formation further includes the standard refinement introduc-
tion rule and datatype subsumption [11].

Datatypes Datatypes, D, describe integer values (int), ar-
rays of an arbitrary datatype (D array), and refinements of
the form {x : D | p}. Refinement datatypes allow one to de-
scribe, e.g., integer values smaller than a given index term
i, such as {y : int | y ≤ i}, or arrays of a given length n,
as in {a : �oat array | len(a) = n}. Datatypes rely on propo-
sitions over index terms, including relational operations and
conjunction.

All formation rules depend on contexts, intuitively or-
dered maps from variables into datatypes. Contexts are also
subject to formation rules. Symbol ε denotes the empty con-
text. A notion of subtyping is defined for datatypes, Γ `
D1 <: D2. The rules are standard and include those for
refinement datatypes [11]. They allow us to conclude that
ε ` {a : �oat array | len(a) = 512} <: �oat array.

Type formation We are now in a position to discuss types
and type formation. The rules for type formation are in
Figure 3. Given Γ and T , if one can deduce Γ ` T :
type, then T is a (well-formed) type under a (well-formed)
context Γ. We do not provide a grammar for the constructs of
our language; such a grammar, if desired, can be recovered
from the blue text in the relevant figures.

A type of the form message i1 i2D describes a point-to-
point communication, from the i1-ranked process to the i2-
ranked process, of a value of datatype D. Both index terms
must denote valid ranks, that is, they must lie between 1, the
first rank, and size, the number of processes. Furthermore,
the sending and the receiving processes must be different
from each other, since under our semantics, a message from,
say, rank 2 to rank 2 leads to a deadlock (see Section 4).

5

Γ ` 1 ≤ i1, i2 ≤ size ∧ i1 6= i2 true Γ ` D : dtype

Γ ` message i1 i2 D : type

Γ ` 1 ≤ i ≤ size true

Γ ` reduce i : type

Γ ` 1≤ i ≤ size Γ ` D <: {x : D′array | len(x)%size = 0}
Γ ` scatter i D : type

Γ ` 1≤ i≤ size Γ ` D <: {x : D′array | len(x)%size = 0}
Γ ` gather i D : type

Γ ` 1 ≤ i ≤ size true Γ, x : D ` T : type

Γ ` broadcast i x : D.T : type

Γ, x : D ` T : type

Γ ` valx : D.T : type

Γ, x : {y : int | y ≤ i} ` T : type

Γ ` ∀x ≤ i.T : type

Γ ` p : prop Γ ` T1 : type Γ ` T2 : type

Γ ` p ?T1 :T2 : type

Γ ` T1 : type Γ ` T2 : type

Γ ` T1;T2 : type

Γ : context

Γ ` skip : type

Figure 3. Type formation rules

A type of the form reduce i denotes a collective operation
whereby all processes contribute with values that are used
to produce a result (say, the maximum). This value is then
transmitted to the i-ranked process, usually known as the
root process.

A type of the form scatter iD describes a collective op-
eration by which the i-ranked process (the root process) dis-
tributes an array among all processes, including itself. The
type formation rule requires i to be a valid rank, and D to
be an array. Type gather iD denotes the inverse operation,
whereby each process proposes an array of identical length,
the concatenation of which is delivered to the root process.
In both operations, D describes the whole array, that is the
array that is distributed in scatter or assembled in gather.

A type of the form broadcast i x : D.T denotes a collec-
tive communication whereby the root process transmits a
value of type D to all processes (including itself). The con-
tinuation type T may refer to the value transmitted via vari-
able x. Type val x : D.T is the dependent product type. In
our case, it denotes a collective operation whereby all pro-
cesses agree on a common value of datatype D, without re-
sorting to communication. Typical applications include pro-
gram constants and command-line values that programs may
depend upon. A type p ?T1 : T2 denotes a collective condi-
tional, whereby all processes jointly decide on proceeding
as T1 or as T2, again without resorting to communication.
The type assignment system in Section 4 makes sure that the
value of p is common to all processes.

Type T1;T2 describes a computation that first performs
the operations as described by T1 and then those described
by T2. Type skip describes any computation that does not en-
gage in communication. skip-typed processes are not neces-

(Γ ` T : type)

Γ ` T ; skip ≡ T
(Γ ` T : type)

Γ ` skip;T ≡ T
(Γ ` T1, T2, T3 : type)

Γ ` (T1;T2);T3 ≡ T1; (T2;T3)

Γ ` i < 1 true (Γ, x : {y : int | y ≤ i} ` T : type)

Γ ` ∀x ≤ i.T ≡ skip

Γ ` i ≥ 1 true (Γ, x : {y : int | y ≤ i} ` T : type)

Γ ` ∀x ≤ i.T ≡ (T{i/x};∀x ≤ i− 1.T)

Γ ` i1, i2 6= rank true
(Γ ` 1≤ i1, i2≤ size ∧ i1 6= i2 true) (Γ ` D : dtype)

Γ ` message i1 i2D ≡ skip

Figure 4. Type equality (excerpt)

sarily halted; they may still perform local operations. Finally,
type of the form ∀x ≤ i.T is a concrete instance of primitive
recursion. A type ∀x ≤ i.T uniquely determines an indexed
family of types T{i/x};T{i− 1/x}; . . . ;T{1/x}; skip.1

In addition to the above type constructors, others could
be easily added, either as primitives or as derived construc-
tors, including: software barriers (adapted, e.g., from re-

duce), allreduce (defined as reduce followed by broadcast),
and allgather (gather followed by broadcast).

The reader may have noticed that types such as mes-

sage or reduce do not introduce value dependencies, whereas
others such as broadcast and val do. The continuation of a
message type, if exists, is captured by sequential composi-
tion, as in message 1 2 �oat;message 2 1 int. The continuation
of a broadcast is built into the type constructor itself; as in
broadcast 1x : int. broadcast 1 y : {z : int | z ≥ x}.skip. The
fundamental reason for the difference lies in the target of the
values exchanged. In the cases of message and reduce values
are transmitted to a unique process, namely the root process.
In the case of broadcast all processes receive the same value.
This value may then be safely substituted in the continua-
tion of the types for all processes, thus preserving the good
properties of types.

Type formation is decidable; we have written an Eclipse
plugin, using an SMT solver, that checks protocol forma-
tion [23].

Term type equality Type equality plays a central role in
dependent type systems. In our case, type equality includes
the monoidal rules for semicolon and skip, the (base and
step) rules for primitive recursion, and a form of projection
of message types. The rules in Figure 4 determine what it
means for two types to be equal under a given context (rules
pertaining to congruence and equivalence omitted).

Premises enclosed in parenthesis ensure type formation,
playing no other role in the definition of type equality. If we

1 Contrary to the concrete syntax for protocols (cf. Figure 2), primitive

6

Γ ` i1, i2 6= rank true (Γ ` message i1 i2 D : type)

Γ ` message i1 i2 D ⇒ skip

Γ ` i<1 true (Γ ` ∀x ≤ i.T : type)

Γ ` ∀x ≤ i.T ⇒ skip

Γ ` i ≥ 1 true Γ ` T{i/x} ⇒ T ′

Γ ` ∀x ≤ i−1.T ⇒ T ′′ (Γ ` ∀x ≤ i.T : type)

Γ ` ∀x ≤ i.T ⇒ T ′;T ′′

Figure 5. Type conversion (excerpt)

abbreviate a context entry of the form size : {x : int | x = 3}
by size = 3, we can easily show that:

size = 3 ` ∀j ≤ size.message j (j%size + 1) ≡
message 3 1;message 2 3;message 1 2

The last rule in Figure 4 says that a message type that
plays no role for a given process rank is equal to skip. The
rule effectively allows one to project a given type onto a
given rank, a notion introduced in the context of multi-party
session types [14], here cleanly captured as type equality.
When projecting the above type onto rank 2 we obtain the
following type equality,

size = 3, rank = 2 ` ∀j ≤ size.message j (j%size + 1) ≡
message 2 3;message 1 2

in such a way that the ∀-type is effectively equivalent to the
sequential composition of two messages, when judged under
rank 2.

Decidability of type equivalence The proof relies on a type
conversion relation, and follows the strategy of Coquand [3],
albeit in a simplified form. The type conversion relation ex-
pands ∀-types and projects message types. The result is a type
where ∀ cannot be further expanded and each message is not
equivalent to skip. The relevant rules are in Figure 5; the re-
maining are the ten congruence rules. The following lemmas
establish validity and confluence for the type conversion re-
lation.

Lemma 3.1 (agreement for type conversion). If Γ ` T ⇒
T ′ then Γ ` T : type and Γ ` T ′ : type.

Lemma 3.2 (type conversion is deterministic). If Γ ` T ⇒
T ′ and Γ ` T ⇒ T ′′, then T ′ = T ′′.

The type equivalence algorithm relies on a further rela-
tion, structural congruence ≡c, defined as the smallest con-
gruence relation that incorporates the commutative monoidal
rules for semi-colon and skip.

It should be easy to see that conversion is (strongly)
normalizing (primitive recursion is and projection reduces

the size of terms). Structural congruence is also decidable
(by converting types to skip-terminated lists and checking
for equality). The algorithmic type equality, ≡a, is defined
by the following rule,

Γ ` T1 ⇒ T ′1 Γ ` T2 ⇒ T ′2 Γ ` T ′1 ≡c T
′
2

Γ ` T1 ≡a T2

and works as follows: given a context Γ and two types T1
and T2, apply type conversion to both, obtaining T ′1 and T ′2.
Then check these types for congruence.

We can easily show that algorithmic type equality is
sound and complete with respect to type equivalence.

Theorem 3.3 (correctness of algorithmic type equality). Γ `
T1 ≡a T2 if and only if Γ ` T1 ≡ T2.

Program types Program types are vectors of term types.
Not all vectors are nevertheless of interest. Program types in
particular must not deadlock. Below are a few candidates
that, albeit composed of term types, cannot be judged as
program types. For the sake of brevity we once more omit
the datatype in types.

(message 1 2), (message 2 1)

(scatter 1), (reduce 1)

(msg 1 3; scatter 1), (msg 1 3; reduce 1), (msg 1 3; scatter 1)

(msg 3 1;msg 1 2), (msg 1 2;msg 2 3), (msg 2 3;msg 3 1)

The first vector of types is blocked since process rank 1
intends to send a message to rank 2, whereas rank 2 is
ready to send a message to rank 1. In the second vec-
tor, rank 1 is trying to distribute an array, whereas rank 2
is not ready to receive its part. The third case involves a
1–3 message that leads to a deadlocked situation, namely
(scatter 1), (message 1 3; reduce 1), (scatter 1); notice that the
second type is equivalent to reduce 1. The fourth case in-
volves a circular waiting situation: the message between 3
and 1 cannot happen before that of 2 and 3 (see type for
rank 3); the 2–3 message cannot happen before the 1–2 (type
for rank 2); and finally, the 1–2 message cannot happen be-
fore the 3–1 message (type for rank 1). We judge such vector
of types as not constituting program types.

We abbreviate context size = n, rank = k to Γn,k.
The rule defining what constitutes a program type, that is
determining the meaning of assertions S : ptype, is defined
as follows.

Γn,k ` Tk ≡ T : type (1 ≤ k ≤ n)

T1, . . . , Tn : ptype

The central intuition of a program type is that it describes
a non-deadlocked computation, that is, a computation that
is either halted or that may reduce. With this in mind it is
easy to understand that all types must be aligned (if one

recursion decreases the loop variable.

7

Γ ` 1 ≤ i1 ≤ size ∧ i1 6= rank true Γ ` i2 : D

Γ ` send i1 i2 : message rank i1D

Γ ` 1 ≤ i1 ≤ size ∧ i1 6= rank true Γ ` i2 : D ref

Γ ` receive i1 i2 : message i1 rankD

Γ ` 1 ≤ i1 ≤ size true
Γ ` i2 : D Γ, x : D ` e : T rank /∈ fv(i1)

Γ ` letx : D = broadcast i1 i2 in e : broadcast i1 x : D.T

Γ ` 1 ≤ i1 ≤ size true
Γ ` i2 : �oat array ref Γ, rank = i1 ` i3 : �oat[size ∗ len(i2)]

Γ ` scatter i1 i2 i3 : scatter i1 �oat[size ∗ len(i2)]

Γ ` 1 ≤ i1 ≤ size true Γ ` i2 : �oat array
Γ, rank = i1 ` i3 : �oat [size ∗ len(i2)] ref

Γ ` gather i1 i2 i3 : gather i1 �oat[size ∗ len(i2)]

Γ ` e1 : T1 Γ ` e2 : T2
Γ ` e1; e2 : T1;T2

Γ, x : {y : int | y ≤ i} ` e : T

Γ ` forx : i..1 do e : ∀x ≤ i.T
Γ, {p} ` e : skip

Γ ` while p do e : skip

Γ ` e : T1 Γ ` T1 ≡ T2
Γ ` e : T2

In all rules, T and D contain no ref datatypes.

Figure 6. Expression formation (excerpt)

is reduce i, then all are reduce j and Γ ` i = j true). One
exception is the non-collective message types. Yet, even in
this case we require type equality by taking advantage of
the “projection” rule in type equality, so that, for example,
message 1 3, skip,message 1 3 is a program type.

4. A core message-passing programming
language

This section introduces a core Multiple-Program-Multiple-
Data message-passing imperative programming language
and its main results: agreement (cf. subject reduction) and
progress for programs.

References To deal with imperative features, we introduce
the notion of references. We rely on an extra base set, that
of reference identifiers, ranged over by r. A new datatype,
D ref, describes references to values of type D. Four new in-
dex terms are introduced: references r, and the conventional
operations on references: creation mkref i, dereference !i,
and assignment i1 := i2.

We designed our programming language in such a way
that it directly handles the index terms present in types.
The pure index terms introduced in Section 3 are however
extended with side effects, such as reference creation and
assignment. The meaning of expressions with effects when
they occur as index objects to type families is undetermined.
For this reason we are careful in requiring index objects
appearing in types to remain pure.

Expressions The constructors of our language can intu-
itively be divided in two parts: conventional expressions usu-

ally found in a while-language and communication-specific
expressions. A selection of the expression formation rules is
in Figure 6; the remaining (skip, val, reduce, collective con-
ditional ifc, conventional conditional if, and let) are standard.

In an expression of the form send i1 i2, index term i1 (of
datatype int) denotes the target process and index term i2
(of datatype D) describes the value to be sent. The type of
the send expression is message rank i1D, representing a mes-
sage from process rank to process i1 containing a value of
datatype D. The premises come naturally if one considers
the hypothesis necessary for message rank i1D to be consid-
ered a type under context Γ, namely, i1 must denote a valid
process number and must be different from the sender’s rank.
The value to be sent, i2, must be of datatype D, so that it
conforms to the value the message is supposed to exchange.

An expression of the form receive i1 i2 denotes the recep-
tion of a value (of datatype D) from process i1. The value
is stored in the reference (of datatype D ref) denoted by in-
dex term i2. The type of the expression is message i1rankD,
expressing the fact that a message is transmitted from pro-
cess i1 to the target process rank.

In a broadcast expression, index term i1 denotes the root
process and index term i2 the value to be distributed. The
root process cannot refer to the special variable rank, for this
has different values at different processes, precluding all pro-
cesses from agreeing on a common root process. Contrary to
the expressions studied so far, where the object of commu-
nications is stored in a reference, the value distributed by the
root process is collected in a variable x and made available to
an explicit continuation expression e. This strategy provides
for datatype dependency in broadcast operations, while keep-
ing the expression and the type aligned, as made clear by the
type formation rule: variable x (of datatypeD) is moved into
the context to type the continuation, while retaining its pres-
ence in the dependent type for broadcast.

The scatter expression requires three index term argu-
ments: the first is the process that distributes the array (the
root), the second is the reference that will hold the subar-
ray, and the third is the array to be distributed. The premises
reflect these conditions; notice how the types for the arrays
embody the relation between their lengths. As discussed in
Section 2, notation D[p] abbreviates the refinement datatype
of the form {a : D array | len(a) = p}. The rule for the gather

expression is similar, except that the order of the last two pa-
rameters is reversed: i2 denotes the subarrays proposed by
each process and i3 the array to be assembled at the root.

In both expressions, ref datatypes denote values written
at each process (as in receive), and the last index denotes
an expression that is evaluated only at the root process. We
omit similar rules for arrays on integer values, as well as
multidimensional arrays.

The expression formation rule for sequential composition
e1; e2 is particular: its type, T1;T2, is composed of the types
T1 and T2 for expressions e1 and e2. The conventional rule

8

(ρ, i)↓n,k (ρ′, v) : D (Γn,k, ρ, x : D ` e : T) (x /∈ fv(T))

(ρ, letx : D = i in e)→n,k (ρ′, e{v/x})
Γn,k, ρ ` p true

(Γn,k, p, ρ ` e1 : T) (Γn,k,¬p, ρ ` e2 : T)

(ρ, if p then e1 else e2)→n,k (ρ, e1)

Figure 7. Process reduction (a flavor)

is obtained when e1 does not engage in communication
operations, in which case its type is skip, and we know that
Γ ` skip;T2 ≡ T2.

In expression forx : i..1 do e, variable x takes values i, i−
1, . . . , 1 in each different iteration of the loop. The rule for
while requires e to be of type skip, not allowing the loop to
perform any communication action. An entry of the form
{p} in a context abbreviates x : {x : int | p}, for x a fresh
variable [11]. Non skip-types in the body of while loops
may lead to deadlocks, since processes are not guaranteed
to run the same number of iterations. If communications
are required in a loop body, then a for loop must be used.
Finally, the last rule in our selection introduces type equality
in expression formation.

Stores For the operational semantics we make use of
stores, maps from reference identifiers into values. Stores
can be easily converted into contexts. A store entry of the
form r := v is transformed into a context entry r : D ref, if
the initial part of the store is transformed in context Γ and
Γ ` v : D. In the sequel we abuse the notation and write ρ
where a context is expected. For example ρ ` i : D means
Γ ` i : D where ρ is interpreted as a context. Store update,
notation ρ[r := v], is the store ρ′, r := v, ρ′′ if ρ is of the
form ρ′, r := v′, ρ′′ and ρ′ ` r : D ref and ρ′ ` v : D.

Index terms are evaluated against a store; evaluation also
resolves the distinguished variables size and rank. Assertion
(ρ1, i)↓n,k (ρ2, v) : D abbreviates “index term i of datatype
D evaluates under store ρ1, size = n, and rank = k, yielding
a value v of datatype D and a new store ρ2”. The rules are
straightforward and omitted.

Processes A process q is a pair (ρ, e) composed of a store ρ
and an expression e. The rule below determines the meaning
of assertions of the form Γ ` q : T .

Γ, ρ ` e : T

Γ ` (ρ, e) : T

A flavor of the process reduction rules is in Figure 7. The
remaining rules (for if-false, while-true, while-false, skip, for-
loop, for-end, and sequential composition) are standard. The
rules should be self-explanatory. The let expression evalu-
ates index i to value v and proceeds with expression e with v
replacing variable x. Since let is a local (process) operation,
x cannot be free in T , as discussed before. The premises in
parenthesis guarantee the good formation of the stores and

the expressions involved. Notice that process reduction does
not change the type of the expressions involved.

Lemma 4.1 (agreement for process reduction). If q →n,k q′

then Γn,k ` q : T and Γn,k ` q′ : T .

Lemma 4.2 (process reduction is deterministic). If q1 →n,k

q2 and q1 →n,k q3 then q2 = q3.

The following lemma ensures that processes do not get
stuck and will play its part in the main result of the paper.

Lemma 4.3 (progress for processes).
• If Γn,k, ρ ` e : skip then e is skip or (ρ, e)→n,k q.
• If Γn,k, ρ ` i : D and Γn,k, ρ, x : D ` e : T and
x 6∈ fv(T) then (ρ, letx : D = i in e)→n,k q.

• If Γn,k, ρ, p ` e1 : T and Γn,k, ρ,¬p ` e2 : T then
(ρ, if p then e1 else e2)→n,k q.

• If Γn,k, ρ, p ` e : skip then (ρ,while p do e)→n,k q.
• If Γn,k, ρ, x : {y : int | y ≤ i} ` e : T then

(ρ, forx : i..1 do e)→n,k q.

Programs A program is a vector of processes q1, . . . , qn.
Not all such vectors are of interest to us. The following rule
is meaning determining for assertions of the form P : S.

Γn,1 ` q1 : T1 . . . Γn,n ` qn : Tn T1, . . . , Tn : ptype

q1, . . . , qn : T1, . . . , Tn

We can easily write the finite differences algorithm in our
language. In fact, we can write it in an SPMD or in a MPMD
style. In the former case, we follow the C+MPI program
in Figure 1. In the latter case we prepare three different
expressions: for rank 1, for rank size, and a third for all the
intermediate ranks. The fundamental observation is that all
four programs have equivalent types, under the appropriate
value for the rank variable.

Program reduction Figure 8 contains an excerpt of the re-
duction rules for programs. Program reduction is composed
of message passing—send/receive—, five collective barrier-
like rules—reduce, scatter, gather, broadcast, and val—, one
rule for collective decisions, and one rule that provides
for local process reduction. As in the previous cases, the
premises to the rule may be divided in two parts: those gov-
erning the reduction process itself, and those guaranteeing
the good formation of the programs involved. The latter are
enclosed in parenthesis, as before.

Notation i ↓n v abbreviates the evaluation of an int

index term under the empty store, (ε, i) ↓n (ε, v) : int. The
proviso, in all rules, that types and datatypes do not contain
ref datatypes impedes reference passing (and the associated
problem of dangling references at the receiving process).
A similar reason forbids the rank variable in types, for this
variable has a different value in each different process.

The rule for message-passing, evaluates both index terms
in both the send and the receive process. There is a funda-
mental difference between the first and the second parame-

9

il ↓n m (ρl, i
′
l)↓n,l (ρ′l, v) : D im ↓n l (ρm, i

′
m)↓n,m (ρ′m, r) : D ref (l 6= m)

(Γn,l ` el : T) (Γn,m ` em : T) (Γn,k ` qk : T) (k = 1..n, k 6= l,m)

q1, . . . , ql−1, (ρl, send il i
′
l; el), ql+1, . . . , qm−1, (ρm, receive im i′m; em), qm+1 . . . , qn →

q1, . . . , ql−1, (ρ
′
l, el), ql+1, . . . , qm−1, (ρ

′
m[r := v], em), qm+1 . . . , qn

ik ↓n l (ρl, i
′
l)↓n,l (ρ′l, v) : D (Γn ` 1 ≤ ik ≤ n true) (Γn,k, ρk ` i′k : D) (Γn,k, x : D, ρk ` ek : T) (k = 1..n)

(ρk, letx : D = broadcast ik i′k in ek)nk=1 → (ρk, ek{v/x})l−1k=1, (ρ
′
l, el{v/x}), (ρk, ek{v/x})nk=l+1

ql →n,l q′l (Γn,k ` qk : Tk) (T1, . . . , Tn : ptype) (k = 1..n)

q1, . . . , qn → q1, . . . , ql−1, q′l, ql+1, . . . , qn

In all rules, D and T contain no ref types and rank /∈ fv(D,T)

Figure 8. Program reduction (excerpt)

ter in both cases. The first describes a process rank (target or
source), the second the value to be passed, or the reference
to hold the result. In general, index terms that denote pro-
cess ranks cannot refer to the store, for these exact indices
show up in the type of the processes (messagemilD, in the
send case). In such cases we use the abbreviated evaluation,
as in il ↓n m. In all other cases, we use evaluation under a
generic store, as in (ρl, i

′
l) ↓n,l (ρ′l, v) : D. The send/receive

processes reduce to skip (the stores evolve accordingly); the
others remain unchanged. In the rule for broadcast we fol-
low a slightly different strategy. Since a value is transmitted
to all processes, the broadcast expression features an explicit
continuation, allowing one to substitute the value directly in
the continuation process ek (and in its type T), as opposed
to using references.

Main results We are finally in a position to state our main
results.

Theorem 4.4 (agreement for program reduction). If P1 →
P2 then P1 : S1 and P2 : S2.

Program reduction is Church-Rosser. As usual this does
not mean that it is strongly normalising: taking advantage of
while-loops, processes may engage in infinite computations.

Theorem 4.5 (program reduction is Church-Rosser). If
P1 → P2 and P1 → P3 then P2 → P4 and P3 → P4.

In preparation for the progress result, we determine the
meaning of assertions of the form P halted using the fol-
lowing rule.

(ρ1 : store) . . . (ρn : store)

(ρ1, skip), . . . , (ρn, skip) halted

We are finally in a position to establish our progress
result.

Theorem 4.6 (progress for programs). If P1 : S then
P1 halted or P1 → P2.

5. Verification of C+MPI source code
This section shows how the theory introduced in Sections 3
and 4 is rendered in VCC, so that C+MPI code may be
checked with minimal effort.

The ParTypes VCC library The ParTypes VCC library
comprises roughly 800 lines of code and can be obtained
from [23]. It comprises:

• The type theory of Section 3 rendered in VCC;
• Contracts for the MPI primitives supported by the theory

in Section 4;
• Functions and predicates used in annotations for C con-

trol structures (loops and conditionals) that match proto-
col control structures (foreach and collective choice); and

• miscellaneous functions and predicates.

In what follows, we outline the contents of the library
and complete the section by showing how to annotate our
running example so that it can be verified by VCC.

Datatypes in VCC format Index terms, i, are C integer
expressions. Propositions, p, are C boolean expressions.
Datatypes, D, are rendered as a VCC datatype named Data.
We can easily show that, for each datatype D, there is an
equivalent datatype of the form {x : B | p} where B is a
non-refined datatype. Given that VCC does not directly sup-
port multi-dimensional arrays, we consider only datatypes
of the form {x : B | p} where B is either int, int array or
�oat array.Such refinements are rendered in VCC as predi-
cates of one (int) or two arguments (arrays). The case for
�oat array refinements corresponds to the following VCC
function type definition.
_(ghost
typedef \bool FloatArrayPred[float*][\integer])

VCC verification logic is introduced in C programs
using annotations of the form _(...), and in particular
_(ghost ...). We omit _(...) whenever possible to fa-
cilitate readability. We also remove the backslash (\) at the
end of lines in C macros.

10

Datatypes D are encoded as follows.

datatype Data {
case intRefin (IntPred);
case intArrayRefin (IntArrayPred);
case floatArrayRefin (FloatArrayPred);

};

Types in VCC format Types are rendered as a VCC
datatype named Protocol. There is one VCC datatype con-
structor for each type constructor in Figure 3. In addition, de-
pendent types need one different constructor for each Data

constructor, for VCC does not support polymorphic type
constructors. Following the type formation rules in Figure 3,
the constructor for messages, e.g., is a triple of the form
(\integer,\integer,Data). The interesting cases are the
dependent constructors: ∀, broadcast, and val, for which we
use an higher-order abstract syntax (HOAS) [25]. We start
by preparing the abstractions for the three basic datatypes
that we support:

typedef Protocol IntAbs [\integer];
typedef Protocol IntArrayAbs [int*][\integer];
typedef Protocol FloatArrayAbs [float*][\integer];

The VCC Protocol datatype may then be defined as
follows.

datatype Protocol {
case skip ();
case size (IntPred, IntAbs);
case seq (Protocol, Protocol);
case message (\integer, \integer, Data);
case foreach (\integer, \integer, IntAbs);
case intBcast (\integer, IntPred, IntAbs);
case floatArrayBcast (\integer, FloatArrayPred,
FloatArrayAbs);

case intVal (IntPred, IntAbs);
...

}

As an example, type ∀i ≤ 10.message i (i + 1) int is
rendered in VCC as

foreach(1, 10, \lambda \integer i;
message(i, i + 1,
intRefin(\lambda \integer v; \true))

Similarly, type broadcast 1n : int. skip is rendered as

intBcast(1, \lambda \integer v; \true,
\lambda \integer n; skip())

For the purpose of verifying C+MPI code we are inter-
ested in sequents of the form size : D ` T : type, for which
we prepared a specific constructor, size, in the Protocol

datatype.
Type formation (Figure 3) is checked by a dedicated

tool [23]. The same tool translates a type T into a VCC
Protocol datatype such as the one in Figure 9.

_(ghost Protocol program_protocol =
size(\lambda \integer size; size >= 2,

\lambda \integer size;
intVal(\lambda \integer nIterations; nIterations > 0,

\lambda \integer nIterations;
intBcast(0, \lambda \integer n;

n >= 0 && n % size == 0,
\lambda \integer n; seq(

scatter(0, floatArrayRefin(\lambda float* v;
\integer len; len == n)), seq(

foreach(1, nIterations, \lambda \integer iter;
foreach(0, size-1, \lambda \integer i;seq(
message(i, i == 0 ? size-1 : i-1,

floatArrayRefin(\lambda float* v;
\integer len; len == 1)),

message(i, i == size-1 ? 0 : i+1,
floatArrayRefin(\lambda float* v;
\integer len; len == 1)))

)
), seq(
reduce(0, MPI_MAX, floatArrayRefin(\lambda float* v;

\integer len; len == 1)),
gather(0, floatArrayRefin(\lambda float* v;

\integer len; len == n)))))))))

Figure 9. The protocol for finite differences in VCC syntax

Verification flow The flow of program verification can be
summarized as follows:

1. The contract for MPI_Init initializes a ghost variable p

(of type Protocol) with the protocol the program must
follow, such as the one in Figure 9;

2. Contracts for MPI communication primitives progres-
sively match p against the expected communication prim-
itive;

3. Each control structure in the C program that is related to
the protocol is verified, relying on adequate annotations
in the body of program;

4. The contract for MPI_Finalize asserts that p is be equiv-
alent to skip().

In addition to p above, we use two other ghost variables,
size and rank, plus the following machinery:

• A total function, cons, that extracts, from a protocol p, a
pair composed of a head and a tail, in such a way that

p is equivalent to seq(head,tail),

protocol head is not seq, and

head is skip only when p is equivalent to skip.

The function accepts rank in addition to a protocol, so
that it may decide whether to convert messages to skip.
The pair is rendered as a Cons datatype, which we equip
with head and tail deconstructors;

• Partial functions that extract from a protocol (typically
the head) the various parts of a non-seq Protocol

constructor. As an example, for the message(f,t,d)

constructor we prepare three functions—messageFrom,

11

messageTo, and messageData—returning f, t, and d, re-
spectively; and

• An isSkip(p,rank) predicate defined as
head(cons(p,rank)) == skip().

Contracts for MPI primitives We illustrate the cases of
some representative MPI primitives.

MPI_Init declares the ghost variables p, rank, and size,
and establishes the basic invariant between rank and size.
It then calls function cons to extract from protocol p a pair c
composed of the head and the tail. The head of c is supposed
to be a size type, so we use the two deconstructors for size,
namely sizePred and sizeAbs, to extract the predicate and
the continuation of the type. The predicate is applied to size

(VCC notation: pred[size]) as well as to the continuation
of the protocol abs, in line with HOAS.

#define MPI_Init(argc, argv)
_(ghost Protocol p = program_protocol)
_(ghost int rank, size;)
_(assume 0 <= rank && rank < size)
_(ghost Cons c = cons(p,rank))
_(ghost IntPred pred = sizePred(head(c)))
_(ghost IntAbs abs = sizeAbs(head(c)))
_(assume pred[size])
_(ghost p = seq(abs[size],tail(c)))

MPI_Comm_rank propagates the constraints introduced for
variable rank at MPI_Init to the actual variable in the source
code.

#define MPI_Comm_rank(comm, my_rank)
_(assume rank = *(my_rank))

MPI_Comm_size does the same to ghost variable size.
Once we are done with the verification of MPI operations,
we can check that the protocol is reduced to skip:

#define MPI_Finalize()
_(assert isSkip(p, rank))

We now exemplify the contract for one of the MPI com-
munication primitives. At MPI_send we check the confor-
mance of the C code against the type, namely on what con-
cerns the three components of the type: from, to, and the
data. As in the case of MPI_Init, the macro uses function
cons to extract from the protocol its head/tail pair. Since the
head is supposed to be a message type, we use the three de-
constructors for message, namely messageFrom, messageTo,
and messageDate, to extract the components. These compo-
nents are then asserted against the expect values in the pro-
tocol. In the end we “advance” the protocol to its tail. The
simplified version when sending an integer array is as fol-
lows.

#define MPI_Send(buf,count,dtype,to,tag,comm)
_(ghost Cons c = cons(p, rank))
_(assert messageFrom(head(c)) == rank)
_(assert messageTo(head(c)) == to)
_(ghost Data data = messageData(head(c)))

_(assert dtype == MPI_INT ==>
conformsIntArray(data,(int*)buf,count))

_(ghost p = tail(c))

In order to check that the source code conforms to the
data part of the message, we use the following predicate:

_(pure \bool conformsIntArray (Data d, int* buf,
\integer len))

_(axiom \forall IntArrayPred pred; int* buf;
\integer len; pred[buf][len] <==>
conformsIntArray(intArrayRefin(pred),buf,len))

Annotating control flow Annotations are required for C
code that matches primitive recursion (foreach), collective
choice (if-else), and the val protocol. Four cases arise:

• A val is matched against some C expression;
• A foreach is matched against a C for loop, e.g., the

outer foreach in Figure 2 when matched against the loop
starting at line 9, Figure 1;

• A foreach is matched against an n-branched C condi-
tional, e.g., the inner foreach when matched against the
C code in lines 10–25, Figure 1;

• A collective choice matched against a C conditional.

We analyze the first three cases; the fourth one is similar
to the second. Line 2 in the finite differences protocol (Fig-
ure 2), namely

val nIterations: positive

requires an annotation of the form

applyInt(NUM_ITER)

to be placed in the source code somewhere after MPI_Init
and before MPI_Broadcast. The applyInt macro “injects”
the value into the protocol as follows. Once again, the macro
uses function cons to extract from the protocol its head/tail
pair. The head is now supposed to be a val type; we use
the two deconstructors for val, namely intValPred and
intValAbs, to extract the predicate and the continuation
of the type. The predicate is asserted at value NUM_ITER;
value NUM_ITER is further applied to the continuation of
the protocol (cf. MPI_Init above). In this case, the macro
expands to the following code.

ghost Cons c = cons(p, rank)
ghost IntPred pred = intValPred(head(c))
ghost IntAbs abs = intValAbs(head(c))
assert pred[NUM_ITER]
ghost p = seq(abs[NUM_ITER],tail(c))

As an example of a foreach protocol that must be
matched against a for loop, consider the code in Figure 1,
line 9,

for(iter=1; iter <= NUM_ITER; iter++)

matched against the foreach protocol in Figure 2, line 5:

12

foreach iter: 1 .. nIterations

We again start by using function cons to extract from pro-
tocol p a pair c composed of the head and the tail of the pro-
tocol. The head of c is now supposed to be a foreach type.
We use the deconstructors—foreachLower, foreachUpper,
and foreachBody— to extract the three components. We as-
sert the loop boundaries 1 and NUM_ITER against the corre-
sponding values of foreachLower and foreachUpper. For
the body of the loop we set p to foreachBody and, at loop
exit, assert that the protocol must have been reduced to skip.
Finally, for the loop continuation we set p to the tail of the
original protocol. All this is rendered as follows.

_(ghost Cons c = cons(p, rank))
_(assert 1 == foreachLower(head(c)))
_(assert NUM_ITER == foreachUpper(head(c)))
for(iter=1; iter <= NUM_ITER; iter++) {
_(ghost p = foreachBody(head(c)[i]))
...
_(assert isSkip(p, rank))

}
_(ghost p = tail(c))

Finally, as an example of a foreach protocol that is sup-
posed to be matched against an if-else conditional, con-
sider the fragment of our running example where each pro-
cess sends a message to its right and left process, that is,
lines 10–25 in Figure 1. The type is in Figure 2, line 6:

foreach i: 0..size-1

The general outline is as above: extract from p the head
and the tail, and, at the end of the conditional, set p to the tail
of the original protocol. The difference is that in the above
case we have a loop body, whereas now, instead, there are
several conditional branches. They are all treated alike. In
each branch we, intuitively, unfold the foreach and take into
account (in sequence) only the foreach body terms that are
different from skip. At the end of each branch we assert
that p has reduced to skip, and that all other foreach body
terms are equivalent to skip. For example, in the first branch,
the non-skip elements in the sequence are when i is rank

(that of the two MPI_Send, lines 11 and 12), right (that
of the first MPI_Recv, line 13), or left (that of the second
MPI_Recv, line 14), in this order. We set p as the sequence of
applying the foreachBody body to these three values and, at
the end, check that p is equivalent to skip. Additionally, we
assert that the only non-skip terms in the foreach expansion
are exactly when i is rank, right, and left. The annotated
code is as follows.

_(ghost Cons c = cons(p, rank))
_(ghost fb = foreachBody(head(c)))
if (rank == 0) {
_(ghost p = seq(fb[rank],

seq(fb[right],
fb[left])))

MPI_Send(&local[1],1,MPI_FLOAT, left,...);

MPI_Send(&local[n/procs],1,MPI_FLOAT,...);
MPI_Recv(&local[n/procs+1],1,MPI_FLOAT,...);
MPI_Recv(&local[0],1,MPI_FLOAT,left,0,...);
_(assert isSkip(p, rank))
_(assert \forall \integer i; i>=0 && i<size &&
(i!=rank && i!=left && i!=right) ==>
isSkip(fb[i], rank))

} else {...}
_(ghost p = tail(c))

6. Evaluation
This section provides an evaluation of the ParTypes ap-
proach. We performed a comparative analysis of ParTypes
against state-of-the-art MPI verifiers with similar safety
guarantees, by measuring the verification times of all tools
with varying parameterizations, under a similar environ-
ments. We also provide complementary results regarding
the ParTypes protocol compiler.

Tools under test For a comparative analysis we considered
the following tools:

TASS A model checker which uses symbolic execution [29];

ISP A dynamic verifier that employs dynamic partial order
reduction to select the relevant process schedules [24];

MUST A dynamic verifier that employs a graph-based
deadlock detection approach [13].

Even though all these tools are able to check dead-
locks and type/communication problems, they address the
problem of software verification in very distinct ways. Our
tool and TASS statically verify source code, while ISP and
MUST monitor program execution. TASS relies on model
checking and symbolic execution to prove (or disprove), for
instance, program deadlock situations, while our tool uses
deductive program verification. ISP and MUST both use Pn-
MPI [27] to intercept MPI calls and build a state that allow
them to identify deadlocked situations (among others).

The benchmark suite We consider programs taken from
textbooks [8, 12, 22] and the FEVS suite [31], usually used
in MPI benchmark analysis: 1-D heat diffusion simula-
tion [31], finite differences [8], N-body simulation [12], par-
allel Jacobi equation solver [22], parallel dot product [22],
and pi calculation [12]. All programs are iterative except
for the parallel dot example, that is, they have a core com-
putation/communication loop that is repeated for a number
of iterations. We changed of the parallel dot program to be
iterative as well for benchmarking purposes. The protocols
for five of the six programs are given below; the sixth is the
finite differences in Figure 2.

The Diffusion 1-D program calculates the evolution of
the diffusion (heat) equation in one dimension over time.

protocol Diffusion1D {
broadcast 0 n: {x: positive | x % size = 0}
broadcast 0 nIterations : positive

13

broadcast 0 integer
foreach i: 1 .. size-1
message 0 i float[n/size]

foreach iter: 1 .. nIterations {
foreach i: 1 .. size-1
message i i-1 float

foreach i: 0 .. size-2
message i i+1 float

}
}

The N-body simulation program simulates a dynamic
system of particles under the influence of physical forces.

protocol NbodySimulation {
val n: {x: natural | x % size = 0}
val nIterations: positive
foreach iter: 1 .. nIterations {
foreach pipe: 1 .. size-1
foreach i: 0 .. size-1
message i (i+1 <= size-1 ? i+1 : 0)
float[n*4]

allreduce min float
}

}

The Parallel Dot program calculates the dot product of
two vectors.

protocol ParallelDot {
val nIterations: positive
foreach iter: 1 .. nIterations {
broadcast 0 n: {x: positive | x % size = 0}
foreach i: 1 .. size-1
message 0 i float[n/size]

foreach i: 1 .. size-1
message 0 i float[n/size]

allreduce sum float
foreach i: 1 .. size-1
message i 0 float

}
}

The Parallel Jacobi program solves linear systems of
equations using Jacobi’s method. 2

protocol ParallelJacobi {
val n: {y: positive |
y % size = 0 and y*y % size = 0}

val nIterations: positive
scatter 0 float[n*n]
scatter 0 float[n]
allgather float[n]
foreach i: 1 .. nIterations
allgather float[n]

gather 0 float[n]
}

2 SMT solver Z3, used by the ParTypes protocol compiler and VCC, cannot
infer y∗y%size=0 from y%size=0. Thus we need to state the second condi-
tion explicitly.

Finally, the Pi program approximates π through numeri-
cal integration.

protocol Pi {
val nIterations: positive
foreach i: 1 .. nIterations {
broadcast 0 integer
reduce 0 sum float

}
}

Experimental setup For each benchmark program, we
stripped all computation code that does not affect the pro-
gram’s behavior in terms of MPI calls made or their ar-
guments. In this manner, we can measure the verification
effort strictly in terms of MPI interactions. This approach
rules out the overhead associated with computation code that
comes from actual execution in the case of ISP and MUST,
symbolic execution in the case of TASS, and verification
of memory accesses by VCC for ParTypes. We fixed buffer
sizes used by programs in communication to the minimum
value necessary for the programs to work correctly. We then
prepared two annotated versions of each program, one for
ParTypes and the other for TASS. TASS requires annota-
tions for the input parameters of a program, including the
number of processes and the number of loop iterations. No
annotations are required for ISP and MUST, since both tools
execute the target program directly.

For benchmarking we use a Ubuntu 14.04 Linux machine
with 64 GB of RAM and 4 AMD Opteron 6376 proces-
sors, each with 16 cores, totalling 64 cores. The MPI run-
time (required for ISP and MUST) is MPICH 3.0 and the
Java runtime (for TASS) is Oracle’s JRE 1.8. Tools ISP 0.3,
MUST 1.4, and TASS 1.2 all run natively in this machine.
VCC 2.3, supported by Z3 3.2 [?], runs on a hosted Win-
dows 7 virtual machine using a KVM/QEMU 2.0 hypervisor.
Note that VCC runs only on Windows platforms; in spite of
the virtualisation overhead, we tried to make the VCC setup
as close as possible to that used for all other tools.

We run each tool varying the number of processes or the
number of iterations for ISP, MUST, and TASS. These vari-
ations are not required for ParTypes. The first set of results
resulted from varying the number of processes from 2 to 32.
We do not consider 64 processes (the number of available
cores in the host machine) since ISP and MUST use an ex-
tra process for runtime monitoring in addition to one MPI
process per core. In conjunction, the number of iterations is
fixed to 28 for ISP and TASS, and 48 for MUST. For the sec-
ond set of results, we fix the number of processes to 32, and
let the number of iterations range from 20 to 28 for ISP and
TASS, and from 40 to 48 for MUST. The higher values for
MUST are necessary in order to obtain a reasonable analysis
of the scalability trend.

Under this setup, verification times are taken follow-
ing the start-up performance methodology of [9]. For each
benchmark and configuration of parameters, we took 31

14

2 4 8 16 32
Number of parallel processes

2-3
2-2
2-1
20
21
22
23
24
25
26
27
28

Ti
m

e
(s

)

Diffusion1D

2 4 8 16 32
Number of parallel processes

2-2

20

22

24
26

28

210

212

214

Ti
m

e
(s

)

ParallelJacobi

2 4 8 16 32
Number of parallel processes

2-1
20
21
22
23
24
25
26
27
28
29

Ti
m

e
(s

)

FDiff

2 4 8 16 32
Number of parallel processes

2-1
20
21
22
23
24
25
26
27
28
29

Ti
m

e
(s

)
ParallelDot

ParTypes TASS ISP MUST

2 4 8 16 32
Number of parallel processes

2-3
2-2
2-1
20
21
22
23
24
25
26
27
28

Ti
m

e
(s

)

NbodySimulation

2 4 8 16 32
Number of parallel processes

2-3
2-2
2-1
20
21
22
23
24
25
26

Ti
m

e
(s

)

Pi

Figure 10. Results for the experiments varying the number of processes

034 5 6 7 8
Number of iterations (2x for ISP,TASS; 4x for MUST)

2-1
20
21
22
23
24
25
26
27
28

Ti
m

e
(s

)

Diffusion1D

034 5 6 7 8
Number of iterations (2x for ISP,TASS; 4x for MUST)

2-1

21

23

25

27

29

211

213

Ti
m

e
(s

)

ParallelJacobi

034 5 6 7 8
Number of iterations (2x for ISP,TASS; 4x for MUST)

2-2
2-1
20
21
22
23
24
25
26
27
28
29

Ti
m

e
(s

)

FDiff

034 5 6 7 8
Number of iterations (2x for ISP,TASS; 4x for MUST)

2-2
2-1
20
21
22
23
24
25
26
27
28
29

Ti
m

e
(s

)

ParallelDot

ParTypes TASS ISP MUST

034 5 6 7 8
Number of iterations (2x for ISP,TASS; 4x for MUST)

2-2
2-1
20
21
22
23
24
25
26
27
28

Ti
m

e
(s

)

NbodySimulation

034 5 6 7 8
Number of iterations (2x for ISP,TASS; 4x for MUST)

2-1

20

21

22

23

24

25

26

Ti
m

e
(s

)

Pi

Figure 11. Results for the experiments varying the number of loop iterations

15

samples of the verification time. We discard the first sam-
ple, and compute the average verification time using the
remaining 30 samples.

Results The results are depicted in Figure 10 (for a vari-
able the number of processes) and Figure 11 (for a variable
number of iterations). All plots in each figure, one per bench-
mark program, have a linear scale for the x axis (process or
iteration count) and a log-2 scale for the y axis (verification
time in seconds). Each plot shows the verification times of
ISP, MUST, and TASS versus ParTypes. The ParTypes veri-
fication time is shown constant, since it does not depend on
the choice of values for the number of processes or the num-
ber of iterations.

As the number of processes and iterations grow larger, the
ParTypes verification time can be (sometimes several) orders
of magnitude lower than that of the other tools (particularly
TASS). This trend is observable in all results, except for ISP
in the case of ParallelJacobi and Pi, two programs that only
use collective communication primitives. Our approach is
immune to the growth of the number of processes or the
number of iterations, in clear contrast with the remaining
tools under test.

Evaluating the protocol compiler Table 1 presents results
regarding the protocol compiler that is embedded in the Par-
Types Eclipse plugin [23]. We evaluated the command-line
version of the tool on the machine described above, by mea-
suring the time it takes to validate a protocol and translate
it to VCC form. For each protocol in our benchmark suite
the table lists the total execution time, the protocol’s valida-
tion time, the portion of time spent executing the Z3 SMT
solver for proof discharges during validation, and the time
elapsed in the final stage of VCC translation. All times are in
milliseconds and represent the average of 30 measurements.
The results show that the performance is essentially domi-
nated by the time spent in Z3.

Table 1. Protocol compiler – execution times (ms)

Total Validation (Z3) VCC translation
Diffusion1D 332 320 (309) 12
FDiff 314 304 (290) 10
NbodySimulation 185 178 (167) 7
ParallelJacobi 229 219 (206) 10
ParallelDot 313 304 (291) 9
Pi 136 131 (122) 5

7. Related work
Tools for the verification of MPI programs A recent sur-
vey covers the state-of-the-art in MPI program verifica-
tion [10], providing a comprehensive overview of the di-
verse dimensions of verification and of the methodologies
employed. Verification may target the validation of argu-
ments to MPI primitives as well as resource usage [34],

ensuring interaction properties such as the absence of dead-
locks [24, 29, 34], or asserting functional equivalence to se-
quential programs [29, 31]. Methodologies range from tradi-
tional static and dynamic analysis up to model checking and
symbolic execution. In comparison, our novel methodology
is based on type checking and deductive program verifica-
tion.

TASS [31, 32] employs model checking and symbolic
execution techniques in order to verify a number of safety
properties such as deadlock detection, buffer overflows and
memory leaks, plus user-specified assertions about the inter-
active behavior of processes in a MPI program. TASS also
also checks functional equivalence between MPI programs
and sequential counterparts [31]. CIVL [?], the recent suc-
cessor to TASS, employs the same sort of techniques, but
uses a unified intermediate verification language that han-
dles not only MPI, but also code written using other popular
standards for parallel programming like OpenMP or CUDA.

ISP [24] is a deadlock detection tool that explores all
possible process interleavings using a fixed test harness.
Other runtime verifiers such as DAMPI [34] or MUST [13],
also allow for the detection of deadlocks. MOPPER [6]
is a verifier that detects deadlocks by analyzing execution
traces of MPI programs. The concept of parallel control-
flow graphs [1] provides for the static and dynamic analysis
of MPI programs, e.g., as a means to verify sender-receiver
matching in MPI source code.

Session type theories Among all theoretical works on ses-
sion types, the closest to ours is probably that of [4], in-
troducing dependent types and a form of primitive recur-
sion into session types. ParTypes provides for various com-
munication primitives (in contrast to message passing only)
and incorporates dependent collective choices. On the other
hand, we do not allow session delegation. At the term level,
we work with a while language, as opposed to a variant of
the the π-calculus. Kouzapas et al. introduce a notion of
broadcast in the setting of session types [17]. A new opera-
tional semantics system provides for the description of 1-to-
n and n-to-1 message passing, where n is not fixed a priori,
meaning that a non-deterministic number of processes may
join the operation, the others being left waiting. Types, how-
ever, do not distinguish point-to-point from broadcast opera-
tions. We work on a deterministic setting and provide a much
richer choice of type operators.

Scribble Based on the theory of multiparty session types
[14], Scribble [15? ? ?] is a language to describe pro-
tocols for message-passing programs. Protocols written in
Scribble include explicit senders and receivers, thus ensur-
ing that all senders have a matching receiver and vice versa.
Global protocols are projected into each of their partici-
pants’ counterparts, yielding one local protocol for each par-
ticipant present in the global protocol. Developers can then
implement programs based on the local protocols and us-

16

ing standard message-passing libraries, as in Multiparty Ses-
sion C [21].

Pabble [20] is a parametric extension of Scribble, which
adds indices to participants and represents Scribble protocols
in a compact and concise notation for parallel programming.
Pabble protocols can represent interaction patterns of MPI
programs where the number of participants in a protocol is
decided at runtime. Pabble was applied to generate commu-
nication safe-by-construction MPI programs [?], leveraging
the close affinity between Pabble protocols and MPI pro-
grams. These works show how protocol languages can be
used for verifying or constructing MPI programs.

In ParTypes we depart from multiparty session types
along two distinct dimensions: 1) our protocol language is
specifically built for MPI primitives, and 2) we do not ex-
plicitly project a protocol nor generate the MPI code but else
check the conformance of code against a global protocol. In
contrast to ParTypes, works on parameterised session types
[20?] cannot deal with:

• Protocols where a given communication (say the source
or the target) depends on the contents of previously ex-
changed data;

• Protocols whose behaviour does not depend directly on
message passing, but else on a data-dependent common
agreement among all processes (what we call collective
operations); and

• Most of the collective operations (broadcast, gather, scat-
ter, reduce) primitives, as well as general and array pass-
ing.

• We address the verification of real world code, while [4]
works on the π calculus and is not implemented, and [20]
does not check existing code.

Dependent type systems Following Martin-Löf’s works on
constructive type theory [18], a number of programming lan-
guages have made use of dependent type systems. Rather
than taking advantage of the power of full dependent type
systems (that brings undecidability to type checking), Xi and
Pfenning [36] introduce a restricted form of dependent types,
where types may refer to values of a restricted domain, as
opposed to values of the term language. The type checking
problem is then reduced to constraint satisfiability, for which
different tools nowadays are available. Our language follows
this approach. Xanadu [35] incorporates these ideas in a im-
perative C-like language. Omega [28] and Liquid Types [26]
are two further examples of pure functional languages that
either resort to theorem proving or type inference. All these
languages are functional; their type systems cannot abstract
program’s communication patterns.

Previous work on ParTypes We initially formulated the
problem of verifying C+MPI programs using a type-based
approach in [?]. Subsequent work proposes a preliminary
evaluation of the approach and experiments [?], where we

did not make use of a protocol language, verification did
not scale and also required an a priori defined number of
processes. We also considered the type-based verification of
WhyML parallel programs [?] and the synthesis of correct-
by-construction C+MPI programs from protocol specifica-
tions [?].

8. Conclusion and future work
We presented a type-based methodology to statically ver-
ify message-passing parallel programs. By checking that a
program follows a given protocol, we guarantee a set of
safety properties for the program, in particular that it does
not run into deadlocks. In contrast to other state-of-the-art
approaches that suffer from scalability issues, our approach
is insensitive to parameters such as the number of processes,
problem size, or the number of iterations of a program.

The limitations of ParTypes can be discussed along two
dimensions:

• ParTypes addresses the core messaging primitives in
MPI, namely: send/receive, broadcast, scatter/gather, re-
duce, and allreduce/allgather. Notable exceptions are
non-blocking operations and wildcard receive (the ability
to receive from any source). State-of-the art static veri-
fiers for MPI (see Section 7) roughly deal with this core.
On what concerns control primitives, ParTypes include
primitive recursion and collective choice, a novel primi-
tive.

• Our VCC methodology is sound but not complete with
respect to the core programming language set forth in
Section 3.

In view of these limitations, we plan to address fur-
ther MPI communication primitives, including non-blocking
message passing (the “immediate” operations of MPI) and
non-determinism in the form of accepting messages from
any source. Furthermore, we plan to take advantage of the
rich notion of type equivalence to allow for programs with
different control flows to be matched against the same pro-
tocol.

The idea of a global protocol that governs a parallel pro-
gram offers further interesting applications, including sup-
port for correct-by-construction code generation, test suite
generation, and runtime verification.

Acknowledgments This work is supported by FCT
through project Advanced Type Systems for Multicore
Programming and project Liveness, Statically (PTDC/EIA-
CCO/122547 and 117513/2010); the LaSIGE Research
Unit, (UID/CEC/00408/2013), EPSRC EP/K011715/1,
EP/K034413/1, and EP/L00058X/1, the Danish Foundation
for Basic Research, project IDEA4CPS (DNRF86-10), EU
project FP7-612985 UpScale and COST Action IC1201
BETTY. We would like to thank Stephen Siegel and Zheng
Manchun for help on using TASS, and Dimitris Mostrous
for his insightful comments.

17

References
[1] S. Aananthakrishnan, G. Bronevetsky, and G. Gopalakrish-

nan. Hybrid approach for data-flow analysis of MPI programs.
In ICS, pages 455–456. ACM, 2013.

[2] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach,
M. Moskal, T. Santen, W. Schulte, and S. Tobies. VCC: A
practical system for verifying concurrent C. In TPHOLs, vol-
ume 5674 of LNCS, pages 23–42. Springer, 2009.

[3] T. Coquand. Logical Frameworks, chapter An algorithm for
testing conversion in type theory. CUP, 1991.

[4] P. Deniélou, N. Yoshida, A. Bejleri, and R. Hu. Parameterised
multiparty session types. Logical Methods in Computer Sci-
ence, 8(4), 2012.

[5] FEVS. A functional equivalence verification suite, 2015.
http://vsl.cis.udel.edu/fevs/.

[6] V. Forejt, D. Kroening, G. Narayanswamy, and S. Sharma.
Precise predictive analysis for discovering communication
deadlocks in MPI programs. In FM, volume 8442 of LNCS,
pages 263–278. Springer, 2014.

[7] M. Forum. MPI: A Message-Passing Interface Standard—
Version 3.0. High-Performance Computing Center Stuttgart,
2012.

[8] I. Foster. Designing and building parallel programs. Addison-
Wesley, 1995.

[9] A. Georges, D. Buytaert, and L. Eeckhout. Statistically rigor-
ous Java performance evaluation. In OOPSLA, pages 57–76.
ACM, 2007.

[10] G. Gopalakrishnan, R. Kirby, S. Siegel, R. Thakur, W. Gropp,
E. Lusk, B. D. Supinski, M. Schulz., and G. Bronevetsky.
Formal analysis of MPI-based parallel programs. CACM, 54
(12):82–91, 2011.

[11] A. D. Gordon and C. Fournet. Principles and applications of
refinement types. In Logics and Languages for Reliability and
Security, pages 73–104. IOS Press, 2010.

[12] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: portable
parallel programming with the message passing interface.
MIT press, 1999.

[13] T. Hilbrich, J. Protze, M. Schulz, B. R. de Supinski, and M. S.
Müller. MPI runtime error detection with MUST: advances in
deadlock detection. In SC, page 30. IEEE/ACM, 2012.

[14] K. Honda, N. Yoshida, and M. Carbone. Multiparty asyn-
chronous session types. In POPL, pages 273–284. ACM,
2008.

[15] K. Honda, A. Mukhamedov, G. Brown, T. Chen, and
N. Yoshida. Scribbling interactions with a formal foundation.
In ICDCIT, volume 6536 of LNCS, pages 55–75. Springer,
2011.

[16] Y. Huang, E. Mercer, and J. McCarthy. Proving MCAPI
executions are correct using SMT. In ASE, pages 26–36.
IEEE, 2013.

[17] D. Kouzapas, R. Gutkovas, and S. J. Gay. Session types for
broadcasting. In PLACES, volume 155 of EPTCS, pages 25–
31, 2014.

[18] P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis-Napoli,
1984.

[19] N. Ng and N. Yoshida. Pabble: Parameterised Scribble for
Parallel Programming. In PDP, pages 707–714. IEEE Com-
puter Society, 2014.

[20] N. Ng and N. Yoshida. Pabble: parameterised Scribble. SOCA,
pages 1–16, 2014.

[21] N. Ng, N. Yoshida, and K. Honda. Multiparty Session C: Safe
parallel programming with message optimisation. In TOOLS
Europe, volume 7304 of LNCS, pages 202–218. Springer,
2012.

[22] P. Pacheco. Parallel programming with MPI. Morgan Kauf-
mann, 1997.

[23] ParTypes. Partypes web site.
http://gloss.di.fc.ul.pt/ParTypes.

[24] S. Pervez, G. Gopalakrishnan, R. M. Kirby, R. Palmer,
R. Thakur, and W. Gropp. Practical model-checking method
for verifying correctness of MPI programs. In PVM/MPI, vol-
ume 4757 of LNCS, pages 344–353. Springer, 2007.

[25] F. Pfenning and C. Elliot. Higher-order abstract syntax. SIG-
PLAN Not., 23(7):199–208, 1988. ISSN 0362-1340.

[26] P. M. Rondon, M. Kawaguchi, and R. Jhala. Liquid types. In
PLDI, pages 159–169. ACM, 2008.

[27] M. Schulz and B. R. de Supinski. A flexible and dynamic
infrastructure for MPI tool interoperability. In ICPP’06, pages
193–202. IEEE, 2006.

[28] T. Sheard and N. Linger. Programming in Omega. In CEFP,
volume 5161 of LNCS, pages 158–227. Springer, 2007.

[29] S. Siegel and G. Gopalakrishnan. Formal analysis of message
passing. In VMCAI, volume 6538 of LNCS, pages 2–18.
Springer, 2011.

[30] S. Siegel and L. Rossi. Analyzing BlobFlow: A case study
using model checking to verify parallel scientific software.
In EuroPVM/MPI, volume 5205 of LNCS, pages 274–282.
Springer, 2008.

[31] S. F. Siegel and T. K. Zirkel. FEVS: A Functional Equivalence
Verification Suite for high performance scientific computing.
Mathematics in Computer Science, 5(4):427–435, 2011.

[32] S. F. Siegel and T. K. Zirkel. Loop invariant symbolic execu-
tion for parallel programs. In VMCAI, volume 7148 of LNCS,
pages 412–427. Springer, 2012.

[33] S. F. Siegel, M. B. Dwyer, G. Gopalakrishnan, Z. Luo,
Z. Rakamaric, R. Thakur, M. Zheng, and T. K. Zirkel. CIVL:
The concurrency Intermediate Verification Language. Techni-
cal Report UD-CIS-2014/001, Department of Computer and
Information Sciences,University of Delaware, 2014.

[34] A. Vo, S. Aananthakrishnan, G. Gopalakrishnan, B. R.
de Supinski, M. Schulz, and G. Bronevetsky. A scalable and
distributed dynamic formal verifier for MPI programs. In SC,
pages 1–10. IEEE, 2010.

[35] H. Xi. Imperative programming with dependent types. In
LICS, pages 375–387. IEEE, 2000.

[36] H. Xi and F. Pfenning. Dependent types in practical program-
ming. In POPL, pages 214–227. ACM, 1999.

18

A. Finite differences in SPMD and MPMD
formats

Protocols can be used for both Single Program Multiple Data
and Multiple Program Multiple Data style programs. Fig-
ure A presents the finite differences example in a Single
Program Multiple Data form, as written in our programming
language (cf. running example, written in C+MPI, 1). Fig-
ures A to A present the exact same problem, this time writ-
ten in a Multiple Program Multiple Data form. As we can
easily see, the code in each program is the “projection” of
that in Figure A to each of the rank categories: first, last, and
others. Multiple Program Multiple Data is supported by out
theory, but not by C+MPI. Both examples follow the proto-
col in Figure 2.

let n : {x : integer | x ≥ 0 and x % size = 0} =
val <read-the-dimension> in

let m : integer = broadcast <read-iterations> in
let global : {a : float[] | len(a) = n} ref =

mkfloatarray n in
if rank = 1 then
<read-the-global-array>

else
skip;

let local : {b : float[] | len(b) * size = n} ref
=

mkfloatarray (n / size) in
scatter 1 local !global;
let left: {x : integer | 1 ≤ x ≤ size} =
(rank - 2 + size) % size + 1 in

let right : {x : integer | 1 ≤ x ≤ size} =
j % size + 1 in

let lRecv : float ref = mkref 0.0 in
let rRecv : float ref = mkref 0.0 in
let gError : float ref = mkref 0.0 in
let lError : float ref = mkref 0.0 in
for i: m..1 do
if rank = 1 then
send left local[1]
send right local[n/size]
receive right !rRecv
receive left !lRecv

else if rank = size then
receive right !rRecv
receive left !lRecv
send left local[1]
send right local[n/size]

else
receive left !lRecv
send left local[1]
send right local[size/n]
receive right !rRecv

<compute-next-local-n-lError>
reduce 1 !lError gError
gather 1 !local global

Figure 12. Finite differences in a single program

let n : {x : integer | x ≥ 0 and x % size = 0} =
val <read-the-dimension> in

let m : integer = broadcast <read-iterations> in
let global : {a : float[] | len(a) = n} ref =

mkfloatarray n in
<read-the-global-array>

let local : {b : float[] | len(b) * size = n} ref
=

mkfloatarray (n / size) in
scatter 1 local !global;
let left: {x : integer | 1 ≤ x ≤ size} =
(rank - 2 + size) % size + 1 in

let right : {x : integer | 1 ≤ x ≤ size} =
j % size + 1 in

let lRecv : float ref = mkref 0.0 in
let rRecv : float ref = mkref 0.0 in
let gError : float ref = mkref 0.0 in
let lError : float ref = mkref 0.0 in
for i: m..1 do
send left local[1]
send right local[n/size]
receive right !rRecv
receive left !lRecv

<compute-next-local-and-lError>
reduce 1 !lError gError
gather 1 !local global

Figure 13. Finite differences in multiple programs (first
process)

B. The VCC theory
This section presents an overview of the type theory when
encoded in VCC.

B.1 The Data datatype

_(ghost typedef \bool IntPred [\integer];)
_(ghost typedef \bool IntArrayPred

[int*][\integer];)
_(ghost typedef \bool FloatArrayPred

[float*] [\integer];)

_(datatype Data {
case intRefin (IntPred);
case intArrayRefin (IntArrayPred);
case floatArrayRefin (FloatArrayPred);

})

B.2 The Protocol datatype

_(datatype Protocol {
case skip ();
case size (IntPred, IntAbs);
case seq (Protocol, Protocol);
case choice (\bool, Protocol, Protocol);
case foreach (\integer,

IntAbs);
case intVal (IntPred,

IntAbs);
case intArrayVal (IntArrayPred,

IntArrayAbs);
case floatArrayVal (FloatArrayPred,

19

let n : {x : integer | x ≥ 0 and x % size = 0} =
val <read-the-dimension> in

let m : integer = broadcast <read-iterations> in
let global : {a : float[] | len(a) = n} ref =

mkfloatarray n in
<read-the-global-array>

let local : {b : float[] | len(b) * size = n} ref
=

mkfloatarray (n / size) in
scatter 1 local !global;
let left: {x : integer | 1 ≤ x ≤ size} =
(rank - 2 + size) % size + 1 in

let right : {x : integer | 1 ≤ x ≤ size} =
j % size + 1 in

let lRecv : float ref = mkref 0.0 in
let rRecv : float ref = mkref 0.0 in
let gError : float ref = mkref 0.0 in
let lError : float ref = mkref 0.0 in
for i: m..1 do
receive right !rRecv
receive left !lRecv
send left local[1]
send right local[n/size]

<compute-next-local-and-lError>
reduce 1 !lError gError
gather 1 !local global

Figure 14. Finite differences in multiple programs (last pro-
cess)

FloatArrayAbs);
case message (\integer, \integer, Data);
case intBcast (\integer, IntPred,

IntAbs);
case intArrayBcast (\integer, IntArrayPred,

IntArrayAbs);
case floatArrayBcast (\integer, FloatArrayPred,

FloatArrayAbs);
case scatter (\integer, Data);
case gather (\integer, Data);
case allgather (Data);
case reduce (\integer, MPI_Op, Data);
case allreduce (MPI_Op, Data);

})

B.3 The Cons datatype and the cons funtion

_(datatype Cons {
case pair(Protocol, Protocol);

})

_(ghost _(pure) Protocol head(Cons c);)
_(ghost _(pure) Protocol tail(Cons c);)
_(ghost _(pure) Cons cons(Protocol p, \integer rank))

_(
axiom \forall \integer from, to; Data d; \integer rank;

rank == from || rank == to ==>
cons(message(from, to, d),rank) ==
pair(message(from, to, d), skip());

axiom \forall \integer from, to; Data d; \integer rank;
rank != from && rank != to ==>

let n : {x : integer | x ≥ 0 and x % size = 0} =
val <read-the-dimension> in

let m : integer = broadcast <read-iterations> in
let global : {a : float[] | len(a) = n} ref =

mkfloatarray n in
<read-the-global-array>

let local : {b : float[] | len(b) * size = n} ref
=

mkfloatarray (n / size) in
scatter 1 local !global;
let left: {x : integer | 1 ≤ x ≤ size} =
(rank - 2 + size) % size + 1 in

let right : {x : integer | 1 ≤ x ≤ size} =
j % size + 1 in

let lRecv : float ref = mkref 0.0 in
let rRecv : float ref = mkref 0.0 in
let gError : float ref = mkref 0.0 in
let lError : float ref = mkref 0.0 in
for i: m..1 do
receive left !lRecv
send left local[1]
send right local[size/n]
receive right !rRecv

<compute-next-local-and-lError>
reduce 1 !lError gError
gather 1 !local global

Figure 15. Finite differences in multiple programs (other
processes)

cons(message(from, to, d),rank) ==
pair(skip(), skip());

axiom \forall Protocol p1, p2; Cons c; \integer rank;
cons(p1, rank) == c && head(c) == skip() ==>
cons(seq(p1,p2),rank) == cons(seq(tail(c),p2),rank)

axiom \forall Protocol p1, p2; Cons c; \integer rank;
cons(p1, rank) == c && head(c) != skip() ==>
cons(seq(p1, p2), rank) ==
pair(head(c), seq(tail(c), p2));

axiom \forall Protocol p; \integer rank;
cons(skip(), rank) == pair(skip(), skip());

axiom \forall IntPred pred; IntAbs abs; Protocol p;
\integer rank;
cons(size(pred, abs), rank) ==
pair(size(pred, abs), skip());

axiom \forall IntPred pred; IntAbs abs; \integer rank,
root;
cons(intBcast(root, pred, abs), rank) ==
pair(intBcast(root, pred, abs), skip());

// .. similar for other constructors ...
)

B.4 Sample contracts for MPI primitives
B.4.1 MPI_Init and MPI_Finalize

#define MPI_Init(argc,argv) { \

20

_(ghost Protocol _protocol = program_protocol();) \
_(ghost int _rank;) \
_(ghost int _size;) \
_(assume _size >= 1 && 0 <= _rank && _rank < _size) \
_(ghost Cons _pair = cons(_protocol, _rank)) \
_(ghost Protocol _head = head(_pair)) \
_(ghost IntPred _pred = sizePred(_head)) \
_(ghost IntAbs _abs = sizeAbs(_head)) \
_(assume _pred[_size]) \
_(ghost _protocol = seq(_abs[_size], tail(_pair))) \

}

#define MPI_Finalize() \
_(assert isSkip(_protocol, _rank))

B.4.2 MPI_Send and MPI_Recv

_(pure \integer messageFrom(Protocol p))
_(pure \integer messageTo(Protocol p))
_(pure Data messageData(Protocol p))

_(
axiom \forall \integer from, to; Data data;
messageFrom(message(from, to, data)) == from;

axiom \forall \integer from, to; Data data;
messageTo(message(from, to, data)) == to;

axiom \forall \integer from, to; Data data;
messageData(message(from, to, data)) == data;

)

#define MPI_Send(buf, count, dtype, to, \
tag, comm) { \

_(assert tag == 0) \
_(ghost Cons _pair = cons(_protocol, _rank)) \
_(ghost Protocol _head = head(_pair)) \
_(assert messageFrom(_head) == _rank) \
_(assert messageTo(_head) == to) \
_(ghost Data _data = messageData(_head);) \
_assertData(_data, dtype, buf, count) \
_(ghost _protocol = tail(_pair);) \

}

#define MPI_Recv(buf, count, dtype, from, \
tag, comm, status) { \

_(assert tag == 0) \
_(ghost Cons _pair = cons(_protocol, _rank)) \
_(ghost Protocol _head = head(_pair)) \
_(assert messageFrom(_head) == from) \
_(assert messageTo(_head) == _rank) \
_(ghost Data _data = messageData(_head)) \
_assumeData(_data, dtype, buf, count) \
_(ghost _protocol = tail(_pair)) \

}

B.4.3 Collective operations (subset)

#define MPI_Gather(sendbuf ,sendcount, sendtype, \
recvbuf, recvcount, recvtype, \
root, comm) { \

_(assert (sendtype == recvtype) && \
(sendcount) == (recvcount)) \

_(ghost Cons _pair = cons(_protocol, _rank)) \
_(ghost Protocol _head = head(_pair)) \
_(assert gatherRoot(_head) == root) \
_(ghost Data _data = gatherData(_head)) \
_assertData(_data, sendtype, sendbuf, sendcount) \
_(ghost _protocol = tail(_pair)) \

}

#define MPI_Scatter(sendbuf, sendcount, sendtype, \
recvbuf, recvcount, recvtype, \
root, comm) { \

_(assert (sendtype == recvtype) && \
(sendcount) == (recvcount)) \

_(ghost Cons _pair = cons(_protocol, _rank)) \
_(ghost Protocol _head = head(_pair)) \
_(assert scatterRoot(_head) == root) \
_(ghost Data _data = scatterData(_head)) \
_(assert rank == root ==> \
_assertData(_data, sendtype, sendbuf, \
_size * (sendcount))) \

_(assume rank != root ==> \
_assumeData(_data, sendtype, sendbuf, \
_size * (sendcount))) \

_(ghost _protocol = tail(_pair)) \
}

#define MPI_Reduce(sendbuf, recvbuf, count, \
dtype, op, root, comm) { \

_(ghost Cons _pair = cons(_protocol, _rank)) \
_(ghost Protocol _head = head(_pair)) \
_(assert reduceRoot(_head) == root) \
_(assert reduceOp(_head) == op) \
_(ghost Data _data = reduceData(_head)) \
_assertData(_data, dtype, sendbuf, count) \
_(ghost _protocol = tail(_pair)) \

}

C. Complete definitions for the type and the
programming languages

This section introduces the complete definitions for the type
system and the programming language.

Type formation rules The axioms and inference rules for
deciding on what counts as a type, a datatype, a proposition,
an index term and a context, are in Figure 16. The rules for
datatype subtyping are in Figure 17.

Type equality The complete set of inference rules for de-
ciding on when two types are equivalent is presented in Fig-
ure 18.

Algorithmic type equality is composed of two relations:
Structural Congruence (Figure 19) and Type Conversion
(Figure 20).

Reference formation The rule for references are presented
in Figure 21. These rules extend those in Figure 16.

Expression formation The typing rules for deciding what
counts as an expression are presented in Figure 22.

Store formation Stores map reference identifiers to values.
The formation rules are presented in Figure 23.

Index evaluation Figure 24 introduces the assertion rules
used for index evaluation.

Process reduction Figure 25 presents the process reduc-
tion rules.

21

Type formation, Γ ` T : type

Γ : context

Γ ` skip : type

Γ ` 1 ≤ i1, i2 ≤ size ∧ i1 6= i2 true Γ ` D : dtype

Γ ` message i1 i2 D : type

Γ ` 1 ≤ i ≤ size true

Γ ` reduce i : type

Γ, x : D ` T : type

Γ ` valx : D.T : type

Γ ` 1 ≤ i ≤ size true Γ ` D <: D′ array

Γ ` scatter i D : type

Γ ` 1 ≤ i ≤ size true Γ ` D <: D′ array

Γ ` gather i D : type

Γ, x : {y : int | y ≤ i} ` T : type

Γ ` ∀x ≤ i.T : type

Γ ` T1 : type Γ ` T2 : type

Γ ` T1;T2 : type

Γ ` 1 ≤ i ≤ size true Γ, x : D ` T : type

Γ ` broadcast i x : D.T : type

Γ ` p : prop Γ ` T1 : type Γ ` T2 : type

Γ ` p ?T1 :T2 : type

Datatype formation, Γ ` D : dtype

Γ : context

Γ ` int : dtype

Γ : context

Γ ` �oat : dtype

Γ ` D : dtype

Γ ` D array : dtype

Γ, x : D ` p : prop

Γ ` {x : D | p} : dtype

Proposition formation, Γ ` p : prop

Γ ` p1, p2 : prop

Γ ` p1 ∧ p2 : prop

Γ ` i1, i2 : int

Γ ` i1 ≤ i2 : prop

Γ, x : int ` p : prop

Γ ` ∀x.p : prop

Index term formation, Γ ` i : D
Γ : context x : D ∈ Γ

Γ ` x : D

Γ : context

Γ ` n : int

Γ : context

Γ ` f : �oat

Γ ` i : D array

Γ ` len(i) : int

Γ ` i1 : int Γ ` i2 : int

Γ ` i1 + i2 : int

Γ ` i1 : D . . . Γ ` in : D

Γ ` [i1, . . . , in] : D array

Γ ` i1 : D array Γ ` 1 ≤ i2 ≤ len(i1) true

Γ ` i1[i2] : D

Γ ` i : D Γ ` p{i/x} true
Γ ` i : {x : D | p}

Γ ` i : D1 Γ ` D1 <: D2

Γ ` i : D2

Context formation, Γ : context

ε : context

Γ : context Γ ` D : dtype x /∈ Γ, D

Γ, x : D : context

Figure 16. Formation rules

Program reduction Figure 8 contains an excerpt of the
reduction rules for programs. Figure 26 presents the program
reduction rules.

Datatype subtyping, Γ ` D <: D

Γ : context

Γ ` int <: int

Γ : context

Γ ` �oat <: �oat

Γ ` D : dtype

Γ ` D array <: D array

Γ ` D1 <: D2 Γ, x : D1 ` p true
Γ ` D1 <: {x : D2 | p}

Γ ` D1 <: D2 Γ, x : D1 ` p : prop

Γ ` {x : D1 | p} <: D2

Datatype equality, Γ ` D ≡ D

Γ ` D1 <: D2 Γ ` D2 <: D1

Γ ` D1 ≡ D2

Proposition entailment, Γ ` p true

Γ ` p : prop formulae(Γ) � p

Γ ` p true

Formulae in a context, formulae(Γ)

formulae(ε) , ∅

formulae(Γ, x : D) , formulae(Γ) ∪ forms(x : D)

forms(x : int) , forms(x : �oat) , true

forms(h : {x : D | p}) , forms(x : D) ∧ p{h/x}

forms(h : D array) , ∀x.1 ≤ x ≤ len(h)→ forms(h[x] : D)

Figure 17. Datatype subtyping and proposition entailment

22

Type equality, Γ ` T ≡ T :

Γ : context

Γ ` skip ≡ skip

Γ ` i1, i2 = i3, i4 true Γ ` D1 ≡ D2

Γ 6` i1, i2 6= rank true (Γ ` 1 ≤ i1, i2 ≤ size ∧ i1 6= i2 true)

Γ ` message i1 i2 D1 ≡ message i3 i4 D2

Γ ` i1 = i2 true Γ ` D1 ≡ D2

(Γ ` 1 ≤ i1 ≤ size true) (Γ ` D1 <: D3 array)

Γ ` scatter i1 D1 ≡ scatter i2 D2

see scatter
Γ ` gather i1 D1 ≡ gather i2 D2

Γ ` i1 = i2 true (Γ ` 1 ≤ i1 ≤ size true)

Γ ` reduce i1 ≡ reduce i2

Γ ` D1 ≡ D2 Γ, x : D1 ` T1 ≡ T2
Γ ` valx : D1.T1 ≡ valx : D2.T2

Γ ` i1 = i2 true Γ ` D1 ≡ D2 Γ, x : D1 ` T1 ≡ T2
(Γ ` 1 ≤ i1 ≤ size true)

Γ ` broadcast i1 x : D1.T1 ≡ broadcast i2 x : D2.T2

Γ ` T1 ≡ T3 Γ ` T2 ≡ T4
Γ ` T1;T2 ≡ T3;T4

Γ ` p1 ↔ p2 true Γ ` T1 ≡ T2 : type Γ ` T ′1 ≡ T ′2 : type

Γ ` p1 ?T1 :T ′1 ≡ p2 ?T2 :T ′2 : type

Γ 6` i1 ≤ 1 true Γ 6` i1 > 1 true Γ ` i1 = i2 true

Γ, x : {y : int | y ≤ i1} ` T1 ≡ T2
Γ ` ∀x ≤ i1.T1 ≡ ∀x ≤ i2.T2

Γ ` i ≥ 1 true (Γ, x : {y : int | y ≤ i} ` T : type)

Γ ` ∀x ≤ i.T ≡ (T{i/x}; ∀x ≤ i− 1.T)

Γ ` i < 1 true (Γ, x : {y : int | y ≤ i} ` T : type)

Γ ` ∀x ≤ i.T ≡ skip

Γ ` i1, i2 6= rank true
(Γ ` 1≤ i1, i2≤size ∧ i1 6= i2 true) (Γ ` D : dtype)

Γ ` message i1 i2D ≡ skip

(Γ ` T : type)

Γ ` T ; skip ≡ T
(Γ ` T : type)

Γ ` skip;T ≡ T
(Γ ` T1, T2, T3 : type)

Γ ` (T1;T2);T3 ≡ T1; (T2;T3)

Γ ` T1 ≡ T2
Γ ` T2 ≡ T1

Γ ` T1 ≡ T2 Γ ` T2 ≡ T3
Γ ` T1 ≡ T3

Figure 18. Type equality

Structural Congruence (Γ ` T1 ≡c T2):

Γ ` i1, i′1 = i2, i′2 true Γ ` D ≡ D′ : dtype
Γ 6` i1, i′1 6= rank true (Γ ` 1 ≤ i1, i′1 ≤ size ∧ i′1 6= i′1 true)

Γ ` message i1 i′1 D ≡c message i2 i′2 D
′

Γ ` i1 = i2 true Γ ` D1 ≡ D2

(Γ ` 1 ≤ i1 ≤ size true) (Γ ` D1 <: D3 array)

Γ ` scatter i1 D1 ≡c scatter i2 D2

Γ ` i1 = i2 ∧ 1 ≤ i1 ≤ size true

Γ ` reduce i1 ≡c reduce i2

see scatter
Γ ` gather i D ≡c gather i′ D′

Γ ` i1 = i2 true Γ ` D1 ≡ D2 Γ, x : D1 ` T1 ≡c T2
(Γ ` 1 ≤ i1 ≤ size true)

Γ ` broadcast i1 x : D1.T1 ≡c broadcast i2 x : D2.T2

Γ ` D1 ≡ D2 Γ, x : D1 ` T1 ≡c T2

Γ ` valx : D1.T1 ≡c valx : D2.T2

Γ ` T1 ≡c T ′1 Γ ` T2 ≡c T ′2
Γ ` T1;T2 ≡c T ′1;T ′2

Γ ` p1 ↔ p2 true Γ ` T1 ≡c T2 Γ ` T ′1 ≡c T ′2
Γ ` p1 ?T1 :T ′1 ≡c p2 ?T2 :T ′2

Γ 6` i1 ≤ 1 true Γ 6` i1 > 1 true Γ ` i1 = i2 true
Γ, x : {y : int | y ≤ i1} ` T1 ≡c T2

Γ ` ∀x ≤ i1.T1 ≡c ∀x ≤ i2.T2
(Γ : context)

Γ ` skip ≡c skip

(Γ ` T1, T2, T3 : type)

Γ ` (T1;T2);T3 ≡c T1; (T2;T3)

(Γ ` T : type)

Γ ` skip;T ≡c T

(Γ ` T : type)

Γ ` T ; skip ≡c T

Γ ` T1 ≡c T2

Γ ` T2 ≡c T1

Γ ` T1 ≡c T2 Γ ` T2 ≡c T3

Γ ` T1 ≡c T3

Figure 19. Structural congruence

Type Conversion (Γ ` T1 ⇒ T2)

(Γ : context)

Γ ` skip⇒ skip

Γ ` T1 ⇒ T ′1 Γ ` T2 ⇒ T ′2
Γ ` T1;T2 ⇒ T ′1;T ′2

Γ 6` i1, i2 6= rank true ((Γ ` message i1 i2 D : type))

Γ ` message i1 i2 D ⇒ message i1 i2 D

(Γ ` 1 ≤ i ≤ size true)

Γ ` reduce i⇒ reduce i

((Γ ` scatter i D : type))

Γ ` scatter i D ⇒ scatter i D
((Γ ` gather i D : type))

Γ ` gather i D ⇒ gather i D

Γ, x : D ` T ⇒ T ′

Γ ` valx : D.T ⇒ valx : D.T ′

Γ, x : D ` T ⇒ T ′ (Γ ` 1 ≤ i ≤ size true)

Γ ` broadcast i x : D.T ⇒ broadcast i x : D.T ′

Γ ` T1 ⇒ T ′1 Γ ` T2 ⇒ T ′2 (Γ ` p : prop)

Γ ` p ?T1 :T2 ⇒ p ?T ′1 :T ′2

Γ 6` i ≥ 1 true Γ 6` i < 1 true
(Γ, x : {y : int | y ≤ i} ` T ⇒ T ′)

Γ ` ∀x ≤ i.T ⇒ ∀x ≤ i.T ′

Γ ` i < 1 true
((Γ ` ∀x ≤ i.T : type))

Γ ` ∀x ≤ i.T ⇒ skip

Γ ` i ≥ 1 true Γ ` T{i/x} ⇒ T ′

Γ ` ∀x ≤ i− 1.T ⇒ T ′′ ((Γ ` ∀x ≤ i.T : type))

Γ ` ∀x ≤ i.T ⇒ T ′;T ′′

Γ ` i1, i2 6= rank true ((Γ ` message i1 i2 D : type))

Γ ` message i1 i2 D ⇒ skip

((T)) denotes the premises to the type formation rules for T as in Fig. 16

Figure 20. Type conversion

23

Datatype formation, Γ ` D : dtype

Γ ` D : dtype

Γ ` D ref : dtype

Index formation, Γ ` i : D

Γ : context r : D ∈ Γ

Γ ` r : D

Γ ` i : D

Γ ` mkref i : D ref

Γ ` i : D ref

Γ ` !i : D

Γ ` i1 : D ref Γ ` i2 : D

Γ ` i1 := i2 : D

Context formation, Γ : context

Γ : context Γ ` D : dtype r /∈ Γ, D

Γ, r : D : context

Datatype subtyping, Γ ` D <: D

Γ ` D1 ≡ D2

Γ ` D1 ref <: D2 ref

Figure 21. Reference formation

Expression formation, Γ ` e : T :

(Γ : context)

Γ ` skip : skip

Γ ` 1 ≤ i1 ≤ size ∧ i1 6= rank true Γ ` i2 : D

Γ ` send i1 i2 : message rank i1D

Γ ` 1 ≤ i1 ≤ size ∧ i1 6= rank true Γ ` i2 : D ref

Γ ` receive i1 i2 : message i1 rankD

Γ ` i : D Γ, x : D ` e : T

Γ ` letx : D = val i in e : valx : D.T

Γ ` 1 ≤ i1 ≤ size true Γ ` i2 : �oat Γ ` i3 : �oat ref

Γ ` reduce i1 i2 i3 : reduce i1

Γ ` 1 ≤ i1 ≤ size true Γ ` i2 : �oat array ref
Γ, {rank = i1} ` i3 : {x : �oat array | len(x) = size ∗ len(i2)}

Γ ` scatter i1 i2 i3 : scatter i1 {x : �oat array | len(x) = size ∗ len(i2)}

Γ ` 1 ≤ i1 ≤ size true Γ ` i2 : �oat array
Γ, rank = i1 ` i3 : �oat [size ∗ len(i2)] ref

Γ ` gather i1 i2 i3 : gather i1 {x : �oat array | len(x) = size ∗ len(i2)}

Γ ` 1 ≤ i1 ≤ size true Γ ` i2 : D Γ, x : D ` e : T rank /∈ fv(i1)

Γ ` letx : D = broadcast i1 i2 in e : broadcast i1 x : D.T

Γ, p ` e1 : T1 Γ,¬p ` e2 : T2 rank /∈ fv(p)

Γ ` ifc p then e1 else e2 : p ?T1 :T2

Γ ` e1 : T1 Γ ` e2 : T2

Γ ` e1; e2 : T1;T2

Γ, x : {y : int | y ≤ i} ` e : T

Γ ` forx : i..1do e : ∀x ≤ i.T
Γ, p ` e1 : T Γ,¬p ` e2 : T

Γ ` if p then e1 else e2 : T

Γ, p ` e : skip

Γ ` while pdo e : skip

Γ ` i : D Γ, x : D ` e : T x /∈ fv(T)

Γ ` letx : D = i in e : T

Γ ` e : T1 Γ ` T1 ≡ T2 : type

Γ ` e : T2

In all rules, T and D contain no ref datatypes.

Figure 22. Expression formation

Stores, ρ : store

ε : store
ρ : store r /∈ ρ ρ to Γ Γ ` v : D

ρ, r := v : store

Stores as contexts, ρ to Γ

(ε : store) to (ε : context)

ρ to Γ Γ ` v : D (r /∈ ρ,Γ, D)

(ρ, r := v) to (Γ, r : D ref)

Figure 23. Store formation and store-to-context conversion

Index term evaluation, (ρ1, i)↓n,k (ρ2, v) : D:

(ρ : store)

(ρ,m)↓n,k (ρ,m) : int

(ρ : store)

(ρ, f)↓n,k (ρ, f) : �oat

(ρ : store)

(ρ, size)↓n,k (ρ, n) : int

(ρ : store)

(ρ, rank)↓n,k (ρ, k) : int

r := v ∈ ρ ρ ` v : D (ρ : store)

(ρ, r)↓n,k (ρ, r) : D ref

(ρ1, i)↓n,k (ρ2, v) : D r /∈ ρ2
(ρ1,mkref i)↓n,k ((ρ2, r := v), r) : D ref

(ρ1, i)↓n,k (ρ2, r) : D ref r := v ∈ ρ2
(ρ1, !i)↓n,k (ρ2, v) : D

(ρ1, i1)↓n,k (ρ2, r) : D ref (ρ2, i2)↓n,k (ρ3, v) : D

(ρ1, i1 := i2)↓n,k (ρ3[r := v], v) : D

(ρ1, i1)↓n,k (ρ2, v1) : int (ρ2, i2)↓n,k (ρ3, v2) : int

(ρ1, i1 + i2)↓n,k (ρ3, v1 + v2) : int

(ρ1, i1)↓n,k (ρ2, v1) : D . . . (ρn, in)↓n,k (ρn+1, vn) : D

(ρ1, [i1, . . . , in])↓n,k (ρn+1, [v1, . . . , vn]) : D array

(ρ1, i1)↓n,k (ρ2, [v1, . . . , vl]) : {x : D array | len(x) = l}
(ρ2, i2)↓n,k (ρ3,m) : {y : int | 1 ≤ y ≤ l}

(ρ1, i1[i2])↓n,k (ρ3, vm) : D

(ρ1, i)↓n,k (ρ2, [v1, . . . , vn]) : D array

(ρ1, len(i))↓n,k (ρ2, n) : int

(ρ1, i)↓n,k (ρ2, v) : D1 ρ2 ` D2 <: D1

(ρ1, i)↓n,k (ρ2, v) : D2

(ρ1, i)↓n,k (ρ2, v) : D Γn,k, ρ2 ` p{i/x} true
(ρ1, i)↓n,k (ρ2, v) : {x : D | p}

Figure 24. Index term evaluation

24

Process reduction, p→n,k q:

(ρ, i)↓n,k (ρ′, v) : D (Γn,k, ρ, x : D ` e : T) (x 6∈ fv(T))

(ρ, letx : D = i in e)→n,k (ρ′, e{v/x})
Γn,k, ρ ` p true (Γn,k, p, ρ ` e1 : T) (Γn,k,¬p, ρ ` e2 : T)

(ρ, if p then e1 else e2)→n,k (ρ, e1)

Γn,k, ρ ` ¬p true (Γn,k,¬p, ρ ` e1 : T) (Γn,k, p, ρ ` e2 : T)

(ρ, if p then e1 else e2)→n,k (ρ, e2)

Γn,k, ρ ` p true (Γn,k, p, ρ ` e : skip)

(ρ,while p do e)→n,k (ρ, (e;while p do e))

(Γn,k, ρ ` e : T)

(ρ, (skip; e))→n,k (ρ, e)

Γn,k, ρ ` ¬p true (Γn,k,¬p, ρ ` e : skip)

(ρ,while p do e)→n,k (ρ, skip)

Γn,k, ρ ` i ≥ 1 true (Γn,k, ρ, x : {y : int | y ≤ i} ` e : T)

(ρ, forx : i..1do e)→n,k (ρ, (e{i/x}; forx : i− 1..1do e))

Γn,k, ρ ` i < 1 true (Γn,k, ρ, x : {y : int | y ≤ i} ` e : T)

(ρ, forx : i..1do e)→n,k (ρ, skip)

(ρ, e1)→n,k (ρ′, e3) (Γn,k, ρ ` e2 : T)

(ρ, (e1; e2))→n,k (ρ′, (e3; e2))

Figure 25. Process reduction
Program reduction, P1 → P2:

il ↓n m (ρl, i
′
l)↓

n,l (ρ′l, v) : D im ↓n l (ρm, i′m)↓n,m (ρ′m, r) : D ref (l 6= m)
(Γn,l ` el : T) (Γn,m ` em : T) (Γn,k ` qk : T) (k = 1..n, k 6= l,m)

q1, . . . , ql−1, (ρl, send il i′l; el), ql+1, . . . , qm−1, (ρm, receive im i′m; em), qm+1 . . . , qn →
q1, . . . , ql−1, (ρ

′
l, el), ql+1, . . . , qm−1, (ρ′m[r := v], em), qm+1 . . . , qn

ik ↓n l (ρk, i
′
k)↓n,k (ρ′k, fk) : �oat (ρ′l, i

′′
l)↓n,l (ρ′′l , r) : �oat ref (k = 1..n)

(ρk, reduce ik i′k i
′′
k)nk=1 → (ρ′k, skip)l−1

k=1, (ρ
′′
l [r := max(v1, .., vn)], skip), (ρ′k, skip)nk=l+1

ik ↓n l (ρk, i
′
k)↓n,k (ρ′k, rk) : �oat array ref (ρ′l, i

′′
l)↓n,l (ρ′′l , [~v1, . . . , ~vn]) : {x : �oat array | len(x) = size ∗ len(i′k)}

(Γn,k, ρk, {rank = ik} ` i′′k : {x : �oat array | len(x) = size ∗ len(i′k)}) (k = 1..n)

(ρk, scatter ik i′k i
′′
k)nk=1 → (ρ′k[rk := [~vk]], skip)l−1

k=1, (ρ
′′
l [rl := [~vl]], skip), (ρ′k[rk := [~vk]], skip)nk=l+1

ik ↓n l (ρk, i
′
k)↓n,k (ρ′k, [~vk]) : �oat array (ρ′l, i

′′
l)↓n,l (ρ′′l , r) : {x : �oat array | len(x) = size ∗ len(i′k)} ref

(Γn,k, ρk, {rank = ik} ` i′′k : {x : �oat array | len(x) = size ∗ len(i′k)} ref) (k = 1..n)

(ρk, gather ik i′k i
′′
k)nk=1 → (ρ′k, skip)l−1

k=1, (ρ
′′
l [r := [~v1, . . . , ~vn]], skip), (ρ′k, skip)nk=l+1

ik ↓n l (ρl, i
′
l)↓

n,l (ρ′l, v) : D (Γn ` 1 ≤ ik ≤ n true) (Γn,k, ρk ` i′k : D) (Γn,k, x : D, ρk ` ek : T) (k = 1..n)

(ρk, letx : D = broadcast ik i′k in ek)nk=1 → (ρk, ek{v/x})l−1
k=1, (ρ

′
l, el{v/x}), (ρk, ek{v/x})

n
k=l+1

ik ↓n v (Γn,k, x : D, ρk ` ek : T) (k = 1..n)

(ρk, let x : D = val ik in ek)nk=1 → (ρk, ek{v/x})nk=1

Γn ` pk true (Γn,k, ρk ` ek : T) (Γn,k, ρk ` e′k : T ′)

(ρ1, ifc p1 then e1 else e′1), . . . , (ρn, ifc pn then en else e′n)→ (ρ1, e1), . . . (ρn, en)

(qk, ek)nk=1 → (q′k, e
′′
k)nk=1 (Γn,k ` e′k : Tk) (T1, . . . , Tn : ptype) (k = 1..n)

(qk, (ek; e′k))nk=1 → (q′k, (e
′′
k ; e′k))nk=1

ql →n,l q′l (Γn,k ` qk : Tk) (T1, . . . , Tn : ptype) (k = 1..n)

q1, . . . , qn → q1, . . . , ql−1, q
′
l, ql+1, . . . , qn

In all rules, D and T contain no ref types and rank /∈ fv(D,T)
Omitting dual rule for receive-send, the Γ ` ¬pk true rule for ifc, and integer/multidimensional arrays in scatter and gather rules.

Figure 26. Program reduction

25

D. Proofs
This section includes the proofs for all theorems stated in the paper. For ease of navigation, we divide the section into proofs
related to term types (§ D.1), type equality including decidability (§ D.2), program types (§ D.3), references (§D.4), expressions
(§ D.5), stores (§ D.6), processes (§ D.7), and programs (§ D.8).

D.1 Results related to term types
Main results in this section: agreement for type formation (Lemma D.1), weakening (Lemma D.2), strengthening (Lemma D.3),
context exchange (Lemma D.8) <: is a preorder (Lemma D.6), and the substitution lemma for types (Lemma D.7).

Lemma D.1 (agreement for type formation).

Γ ` T : type

Γ : context

Γ ` D : dtype

Γ : context

Γ ` p : prop

Γ : context

Γ ` i : D

Γ ` D : dtype

Γ ` D1 <: D2

Γ ` D1 : dtype Γ ` D2 : dtype

Γ ` p true
Γ : context

Proof. By simultaneous rule induction on the various hypothesis.

Lemma D.2 (weakening). Let Γ ` D : dtype.3

Γ ` T : type

Γ, x : D ` T : type

Γ ` D2 : dtype

Γ, x : D ` D2 : dtype

Γ ` p : prop

Γ, x : D ` p : prop

Γ ` i : D1

Γ, x : D ` i : D1

Γ ` D1 <: D2

Γ, x : D ` D1 <: D2

Γ ` p true
Γ, x : D ` p true

Proof. By simultaneous rule induction on the various hypotheses.

Lemma D.3 (strengthening).

Γ, x : D ` T : type x /∈ fv(T)

Γ ` T : type

Γ, x : D ` D1 : dtype x /∈ fv(D1)

Γ ` D1 : dtype

Γ, x : D ` p : prop x /∈ fv(p)

Γ ` p : prop

Γ, x : D ` i : D1 x /∈ fv(D1)

Γ ` i : D1

Γ, x : D ` D1 <: D2 x /∈ fv(D1, D2)

Γ ` D1 <: D2

Γ, x : D ` p true x /∈ fv(p)

Γ ` p true
y : D1 ∈ Γ, x : D2 x /∈ y, fv(D1)

y : D1 ∈ Γ

Proof. By simultaneous rule induction on the first hypothesis for each justified inference.

Lemma D.4 (inversion for subtyping).

1. If Γ ` int <: D then D is int or D is {x : D′ | p} and Γ ` D′ <: int.
2. If Γ ` �oat <: D then D is �oat or D is {x : D′ | p} and Γ ` D′ <: �oat.
3. If Γ ` D1 array <: D2 then D2 is D3 array and Γ ` D1 <: D3 or D2 is {x : D3 | p} and Γ ` D1 array <: D3 and

Γ, x : D1 array ` p true.
4. If Γ ` {x : D1 | p1} <: D2 then Γ ` D1 <: D2 and Γ, x : D1 ` p1 : prop or D2 is {y : D3 | p2} and

Γ ` {x : D1 | p1} <: D3 and Γ, y : {x : D1 | p1} ` p2 true.

Proof. By a case analysis on the rules for subtyping.

3 Assertion Γ ` D : dtype should be understood as a premise for all justified inference rules. For example, the inference rule for types is the following.

Γ ` D : dtype Γ ` T : type

Γ, x : D ` T : type

26

Lemma D.5 (context subsumption). Let Γ ` D2 <: D1.

Γ, x : D1 : context

Γ, x : D2 : context

Γ, x : D1 ` T : type

Γ, x : D2 ` T : type

Γ, x : D1 ` D3 : dtype

Γ, x : D2 ` D3 : dtype
Γ, x : D1 ` p true
Γ, x : D2 ` p true

Γ, x : D1 ` p : prop

Γ, x : D2 ` p : prop

Γ, x : D1 ` i : D3

Γ, x : D2 ` i : D3

Proof. By simultaneous rule induction on the various hypotheses.

Lemma D.6 (<: is a pre-order).

Γ ` D <: D

Γ ` D1 <: D2 Γ ` D2 <: D3

Γ ` D1 <: D3

sketch. Reflexivity follows by case analysis on assertion Γ ` D : dtype. Transitivity is proved by induction on assertion
Γ ` D1 : dtype followed by induction on assertion Γ ` D2 : dtype, using the inversion lemma for subtyping (Lemma D.4)
and context subsumption (Lemma D.5).

Lemma D.7 (substitution lemma).

Γ1, x : D,Γ2 ` T : type Γ1 ` i : D

Γ1,Γ2{i/x} ` T{i/x} : type

Γ1, x : D,Γ2 ` D1 : dtype Γ1 ` i : D

Γ1,Γ2{i/x} ` D1{i/x} : dtype

Γ1, x : D,Γ2 ` p : prop Γ1 ` i : D

Γ1,Γ2{i/x} ` p{i/x} : prop

Γ1, x : D,Γ2 ` p true Γ1 ` i : D

Γ1,Γ2{i/x} ` p{i/x} true
Γ1, x : D,Γ2 ` i1 : D1 Γ1 ` i : D

Γ1,Γ2{i/x} ` i1{i/x} : D1{i/x}
Γ1, x : D,Γ2 ` D1 <: D2 Γ1 ` i : D

Γ1,Γ2{i/x} ` D1{i/x} <: D2{i/x}
Γ1, x : D,Γ2 : context Γ1 ` i : D

Γ1,Γ2{i/x} : context

y : D ∈ (Γ1, x : D,Γ2) Γ1 ` i : D

y : D{i/x} ∈ Γ{i/x}

Proof. By simultaneous rule induction on the first hypothesis of each justified inference rule. We highlight a couple of cases.

hypothesis Γ1 ` i : D (1)

Case the derivation ends with Γ1, x : D,Γ2 ` broadcast i1 y : D1.T : type.

rule premise Γ1, x : D,Γ2 ` 1 ≤ i1 ≤ size true (2)

rule premise Γ1, x : D,Γ2, y : D1 ` T : type (3)

1, induction, def. subs. Γ1,Γ2{i/x} ` 1 ≤ i1{i/x} ≤ size true (4)

2, induction, def. subs. Γ1,Γ2{i/x}, y : D1{i/x} ` T{i/x} : type (5)

4, 5, formation, def. subs. Γ1,Γ2{i/x} ` (broadcast i1 y : D1.T){i/x} : type (6)

Case the derivation ends with Γ1, x : D,Γ2 ` y : D1.

rule premise Γ1, x : D,Γ2 : context (2)

rule premise y : D1 ∈ (Γ1, x : D,Γ2) (3)

Subcase y = x

3, y = x D1 is D (4)

2, context formation x /∈ D (5)

1, 4, 5, y = x, def. subs. Γ1 ` y{i/x} : D1{i/x} (6)

6, 2, lemma D.2 Γ1,Γ2{i/x} ` y{i/x} : D1{i/x} (7)

Subcase y 6= x

1, 2, induction Γ1,Γ2{i/x} : context (8)

27

1, 3, induction y : D1{i/x} ∈ (Γ1,Γ2{i/x}) (9)

8, 9, type formation Γ1,Γ2{i/x} ` y{i/x} : D1{i/x} (10)

Case the derivation ends with Γ1, x : D,Γ2 ` i1 : {y : D1 | p}.

rule premise Γ1, x : D,Γ2 ` i1 : D1 (2)

rule premise Γ1, x : D,Γ2 ` p{i1/y} true (3)

2, induction Γ1,Γ2{i/x} ` i1{i/x} : D1{i/x} (4)

2, induction Γ1,Γ2{i/x} ` p{i1/y}{i/x} true (5)

5, (y 6= x), def. subs. Γ1,Γ2{i/x} ` p{i/x}{i1/y} true (6)

4, 5, index formation Γ1,Γ2{i/x} ` i1{i/x} : {y : D1{i/x} | p{i/x}} (7)

7, def. subs. Γ1,Γ2{i/x} ` i1{i/x} : {y : D1 | p}{i/x} (8)

Case the derivation ends with Γ1, x : D,Γ2 ` p true.

rule premise Γ1, x : D,Γ2 ` p : prop (2)

rule premise formulae(Γ1, x : D,Γ2) � p (3)

2, induction Γ1,Γ2{i/x} ` p{i/x} : prop (4)

1, 3, assumption on � formulae(Γ1,Γ2{i/x}) � p{i/x} (5)

4, 5, true formation Γ1,Γ2{i/x} ` p{i/x} true (6)

Lemma D.8 (context exchange). Let Γ1 ` D1 : dtype

Γ1,Γ2, x : D1 ` T : type

Γ1, x : D1,Γ2 ` T : type

Γ1,Γ2, x : D1 ` D : dtype

Γ1, x : D1,Γ2 ` D : dtype

Γ1,Γ2, x : D1 ` p true
Γ1, x : D1,Γ2 ` p true

Γ1,Γ2, x : D1 ` p : prop

Γ1, x : D1,Γ2 ` p : prop

Γ1,Γ2, x : D1 ` i : D2

Γ1, x : D1,Γ2 ` i : D2

Γ1,Γ2, x : D : context

Γ1, x : D,Γ2 : context
Γ1,Γ2, x : D1 ` D2 <: D3

Γ1, x : D1,Γ2 ` D2 <: D3

Proof. By mutual rule induction on the various “main” hypotheses.

D.2 Results related to type equality
This section is divided in two parts: first, the results regarding definitional type equality are presented in § D.2.1. Later, § D.2.2
presents the type checking algorithm for type equality.

D.2.1 Definitional Type Equality
Main results in this section: agreement for type equality (Lemma D.9) and type equality is an equivalence relation
(Lemma D.11).

Lemma D.9 (agreement for type equality).

Γ ` T1 ≡ T2
Γ ` T1 : type Γ ` T2 : type

Proof. By rule induction on the derivation of the hypothesis. We must analyse fourteen cases. The congruence/equivalence
cases are standard. We detail the other four.
Case Γ ` skip;T ≡ T :

hyp. premise Γ ` T : type (1)

1, agreement for type formation Γ : context (2)

2, type formation Γ ` skip : type (3)

28

1, 3, type formation Γ ` skip;T : type (4)

Case Γ ` ∀x ≤ i.T ≡ skip:

hyp. premise Γ, x : {y : int | y ≤ i} ` T : type (1)

hyp. premise Γ ` i < 1 true (2)

1, type formation Γ ` ∀x ≤ i.T : type (3)

2, agreement for true Γ : context (4)

4, type formation Γ ` skip : type (5)

Case Γ ` message i1 i2D ≡ skip:

hyp. premise Γ ` i1, i2 6= rank true (1)

hyp. premise Γ ` 1 ≤ i1, i2 ≤ size ∧ i1 6= i2 true (2)

hyp. premise Γ ` D : dtype (3)

2, 3, type formation Γ ` message i1 i2D : type (4)

3, agreement for dtype Γ : context (5)

5, type formation Γ ` skip : type (6)

Case Γ ` ∀x ≤ i.T ≡ (T{i/x};∀x ≤ i− 1.T):

hyp. premise Γ ` i ≥ 1 true (1)

hyp. premise Γ, x : {y : int | y ≤ i} ` T : type (2)

1, inversion Γ ` i ≥ 1 : prop (3)

3, inversion Γ ` i : int (4)

2, lemma D.1 Γ, x : {y : int | y ≤ i} : context (5)

5, inversion Γ ` {y : int | y ≤ i} : dtype (6)

6, inversion Γ, y : int ` y ≤ i : prop (7)

7, lemma D.1 Γ, y : int : context (8)

It is always the case that an index term is smaller or equal to itself:

4, deducibility Γ ` i ≤ i true (9)

8, def. of subs. Γ ` (y ≤ i){i/y} true (10)

By application of index formation rules and the substitution lemma (Lemma D.7):

4, 10, index formation Γ ` i : {y : int | y ≤ i} (11)

11, 2, lemma D.7 Γ ` T{i/x} : type (12)

It is easy to prove that Γ ` {y : int | y ≤ i− 1} <: {y : int | y ≤ i} (it follows from 9, standard deducibility, and index
formation).

2, lemma D.5 Γ, x : {y : int | y ≤ i− 1} ` T : type (13)

16, type formation Γ ` ∀x ≤ i− 1.T : type (14)

Finally, we can join assertions 11 and 13 by applying the type formation rule for sequential composition:

11, 13, type formation Γ ` T{i/x};∀x ≤ i− 1.T : type (15)

1, 2, type formation Γ ` ∀x ≤ i.T : type (16)

29

Lemma D.10 (Datatype equality is an equivalence relation).

Proof. Notice that Γ ` D ≡ D′ : dtype requires Γ ` D <: D′ and Γ ` D′ <: D. Reflexivity and Transitivity follow from
Lemma D.6. Symmetry follows by induction on Γ ` D ≡ D′ : dtype.

Lemma D.11 (type equality is an equivalence relation).

Proof. Reflexivity follows from the congruence rules; symmetry and transitivity are built into the definition.

D.2.2 Type Checking Algorithm for Type Equality
The construction of a type checking algorithm for type equality is divided in three parts: In § D.2.2 we present the results on
structural congruence. § D.2.2 introduces type-term normalization. Finally, § D.2.2 presents the soundness and completeness
results of the algorithm.

D.2.2.1 Structural congruence
We use the structural congruence rules as presented in Figure 19. As usual, we identify terms up-to α-equivalence. The

main results in this section are agreement for structural congruence (Lemma D.12), that structural congruence is an equivalence
relation (Lemma D.13) and that structural congruence is decidable (Lemma D.14).

Lemma D.12 (agreement for ≡c).
Γ ` T1 ≡c T2

Γ ` T1 : type Γ ` T2 : type

Proof. Straightforward (the set rules of rules in Γ ` T1 ≡c T2 is a subset of the rules in Γ ` T1 ≡ T2 : type, having the same
premises. The cases have been already considered in the proof of lemma D.9).

Lemma D.13 (≡c is an equivalence relation).

Proof. Symmetry and transitivity are embedded in the definition of ≡c. Reflexivity follows by rule induction on the typing
rules for ≡c, using the first 9 top-bottom rules.

Notice that the monadic rules for structural congruence are the same as the ones for the π-calculus withouth replication, for
which decidability has already been proven [?]. We refer to this result to claim the decidability of structural congruence.

Lemma D.14 (≡c is decidable).

D.2.2.2 Type conversion
The Type-conversion algorithm is presented in Figure 20. The main results for this section are agreement for type-conversion

(lemma 3.1), context subsumption for conversion (lemma D.15), confluence for type conversion (lemma 3.2) and strong
normalization (lemma D.16).

Lemma 3.1 (agreement for Γ ` T ⇒ T ′). Statement on page 7.

Proof. By rule induction on the derivation of the hypothesis. The thirteen cases are straightforward. We detail one of them:
Case Γ ` ∀x ≤ i.T ⇒ T ′;T ′′

Rule premise Γ ` i ≥ 1 true (1)

Rule premise Γ ` T{i/x} ⇒ T ′ (2)

Rule premise Γ ` ∀x ≤ i− 1.T ⇒ T ′′ (3)

Rule premise Γ, x : {y : int | y ≤ i} ` T : type (4)

2, IH Γ ` T ′ : type (5)

3, IH Γ ` T ′′ : type (6)

5, 6, formation Γ ` T ′;T ′′ : type (7)

4, formation Γ ` ∀x ≤ i.T : type (8)

30

Lemma D.15 (context subsumption for Γ ` T ⇒ T ′).

Γ, x : D1 ` T ⇒ T ′ Γ ` D2 <: D1

Γ, x : D2 ` T ⇒ T ′

Proof. By rule induction on the first hypothesis, using Lemma D.5.

Lemma 3.2 (Γ ` T ⇒ T ′ is confluent). Statement on page 7.

Proof. It follows by rule induction on the first hypothesis.

In order to prove the decidability of algorithmic equality, it is necessary that the type-conversion reduces type terms to a
normal form.

Lemma D.16 (Γ ` T ⇒ T ′ is strongly normalizing).

Proof. The only rule creating new type terms in Γ ` T ⇒ T ′ is the expansion rule for primitive recursion. As primitive
recursion is strongly normalizing, we are done.

D.2.2.3 Algorithmic Type Equality
The type equality algorithm is presented in Figure 18. The main results in this section are agreement for algorithmic type

equality (Lemma D.17), soundness (Lemma D.18) and completeness (Lemma D.19) and decidability (Lemma D.20) for
algorithmic type equality

Lemma D.17 (agreement for algorithmic type equality).

Γ ` T1 ≡a T2
Γ ` T1 : type Γ ` T2 : type

Proof. From the hypothesis we know that Γ ` T1 ⇒ T ′1, Γ ` T2 ⇒ T ′2 and Γ ` T ′1 ≡c T
′
2. By applying lemma 3.1 in the first

two derivations, we know that Γ ` T1 : type and Γ ` T2 : type and we are done.

Theorem D.18 (soundness of the type equality algorithm).

Γ ` T1 ≡a T2
Γ ` T1 ≡ T2

(1)

Proof. By inversion of the hypothesis Γ ` T1 ≡a T2 we know that:

Γ ` T1 ⇒ T ′1 (2a)

Γ ` T2 ⇒ T ′2 (2b)

Γ ` T ′1 ≡c T
′
2 (2c)

We proceed by rule induction on (2a) followed by rule induction on (2b). We show some of the cases.

Case Γ ` message i1 i2 D1 ⇒ message i1 i2 D1:

rule Γ ` message i1 i2 D1 ⇒ message i1 i2 D1 (1)

1, inversion Γ 6` i1, i2 6= rank true (2)

1, inversion Γ ` 1 ≤ i1, i2 ≤ size ∧ i1 6= i2 true (3)

1, inversion Γ ` D1 : dtype (4)

Applying rule induction on (2b), we have only one case to consider (all other rule inductions are void in 2c):

rule Γ ` message i3 i4 D2 ⇒ message i3 i4 D2 (5)

5, inversion Γ 6` i3, i4 6= rank true (6)

5, inversion Γ ` 1 ≤ i3, i4 ≤ size ∧ i3 6= i4 true (7)

5, inversion Γ ` D2 : dtype (8)

31

1, 5, eq. (2c) Γ ` message i1 i2 D1 ≡c message i3 i4 D2 (9)

9, inversion Γ ` i1, i2 = i3, i4 true (10)

9, inversion Γ ` D1 ≡ D2 : dtype (11)

2, 3, 10, 11 Γ ` message i1 i2 D1 ≡ message i3 i4 D2 (12)

Case skip, reduce, scatter, gather: Ibid.
Case Γ ` p ?T1 :T2 ⇒ p ?T ′1 :T ′2:

rule Γ ` p! ?T1 :T2 ⇒ p1 ?T ′1 :T ′2 (1)

1, inversion Γ ` p1 : prop (2)

1, inversion Γ ` T1 ⇒ T ′1 (3)

1, inversion Γ ` T2 ⇒ T ′2 (4)

Applying rule induction on (2b), we have only one case to consider (all other rule inductions are void in 2c):

rule Γ ` p2 ?T3 :T4 ⇒ p2 ?T ′3 :T ′4 (5)

5, inversion Γ ` p2 : prop (6)

5, inversion Γ ` T3 ⇒ T ′3 (7)

5, inversion Γ ` T4 ⇒ T ′4 (8)

1, 5, eq. (2c) Γ ` p1 ?T ′1 :T ′2 ≡c p2 ?T ′3 :T ′4 (9)

9, inversion Γ ` p1 ↔ p2 true (10)

9, inversion Γ ` T ′1 ≡c T
′
3 (11)

9, inversion Γ ` T ′2 ≡c T
′
4 (12)

3, 7, 11, IH Γ ` T1 ≡ T3 (13)

4, 8, 12, IH Γ ` T2 ≡ T4 (14)

10, 13, 14, ≡ formation Γ ` p1 ?T1 :T2 ≡ p2 ?T3 :T4 (15)

Case val, broadcast, congruence for ∀x ≤ i.T : Ibid.
Case projection (Γ ` message i1 i2 D1 ⇒ skip):

rule Γ ` message i1 i2 D1 ⇒ skip (1)

1, inversion Γ ` i1, i2 6= rank true (2)

1, inversion Γ ` 1 ≤ i1, i2 ≤ size ∧ i1 6= i2 true (3)

1, inversion Γ ` D1 : dtype (4)

4, lemma D.1 Γ : context (5)

We then proceed by applying rule induction on (2b). We have to consider the following cases:
Subcase Γ ` skip⇒ skip:

rule Γ ` skip⇒ skip (6)

1, 6, eq. (2c) Γ ` skip ≡c skip (7)

1, 6, 7, IH Γ ` message i1 i2 D1 ≡ skip (8)

Subcase Γ ` message i3 i4 D2 ⇒ skip:

rule Γ ` message i3 i4 D2 ⇒ skip (6)

6, inversion Γ ` i3, i4 6= rank true (7)

6, inversion Γ ` 1 ≤ i3, i4 ≤ size ∧ i3 6= i4 true (8)

6, inversion Γ ` D2 : dtype (9)

1, 6, eq. (2c) Γ ` skip ≡c skip (10)

32

1, 6, 10, IH Γ ` message i1 i2 D1 ≡ message i3 i4 D2 (11)

Subcase Γ ` ∀x ≤ i.T ⇒ skip:

rule Γ ` ∀x ≤ i.T ⇒ skip (6)

6, inversion Γ ` i < 1 true (7)

6, inversion Γ, x : {y : int | y ≤ i} ` T : type (8)

1, 6, eq. (2c) Γ ` skip ≡c skip (9)

1, 6, 9, IH Γ ` message i1 i2 D1 ≡c ∀x ≤ i.T (10)

Case primitive recursion, base case (Γ ` ∀x ≤ i.T ⇒ skip): Ibid
Case primitive recursion, induction case (Γ ` ∀x ≤ i.T1 ⇒ T2;T3):

rule Γ ` ∀x1 ≤ i1.T1 ⇒ T2;T3 (1)

1, inversion Γ ` i1 ≥ 1 true (2)

1, inversion Γ ` T1{i1/x1} ⇒ T2 (3)

1, inversion Γ ` ∀x1 ≤ i1 − 1.T1 ⇒ T3 (4)

1, inversion Γ ` ∀x1 ≤ i1.T1 : type (5)

We then proceed by applying rule induction on (2b). We have to consider the following cases:
Subcase sequential composition (Γ ` T4;T5 ⇒ T ′4;T ′5):

rule Γ ` T4;T5 ⇒ T ′4;T ′5 (6)

6, inversion Γ ` T4 ⇒ T ′4 (7)

6, inversion Γ ` T5 ⇒ T ′5 (8)

1, 6, eq. (2c) Γ ` T2;T3 ≡c T
′
4;T ′5 (9)

9, inversion Γ ` T2 ≡c T
′
4 (10)

9, inversion Γ ` T3 ≡c T
′
5 (11)

3, 7, 10, IH Γ ` T1{i1/x1} ≡ T4 (12)

4, 8, 11, IH Γ ` ∀x1 ≤ i1 − 1.T1 ≡ T5 (13)

12, 13, ≡ formation Γ ` T1{i1/x1};∀x1 ≤ i1 − 1.T1 ≡ T4;T5 (14)

1, lemma 3.1 Γ ` ∀x1 ≤ i1.T1 : type (15)

15, inversion Γ, x1 : {y1 : int | y1 ≤ i1} ` T1 : type (16)

2, 16, ≡ formation Γ ` ∀x1 ≤ i1.T1 ≡ T1{i1/x1};∀x1 ≤ i1 − 1.T1 (17)

14, 17, lemma D.11 Γ ` ∀x1 ≤ i1.T1 ≡ T4;T5 (18)

Subcase primitive recursion, induction case (Γ ` ∀x2 ≤ i2.T4 ⇒ T5;T6):

rule Γ ` ∀x2 ≤ i2.T4 ⇒ T5;T6 (6)

6, inversion Γ ` i2 ≥ 1 true (7)

6, inversion Γ ` T4{i2/x2} ⇒ T5 (8)

6, inversion Γ ` ∀x2 ≤ i2 − 1.T4 ⇒ T6 (9)

6, inversion x2 /∈ fv(T5) (10)

1, 6, eq. (2c) Γ ` T2;T3 ≡c T5;T6 (11)

11, inversion Γ ` T2 ≡c T5 (12)

11, inversion Γ ` T3 ≡c T6 (13)

3, 8, 12, IH Γ ` T1{i1/x1} ≡ T4{i2/x2} (14)

4, 9, 13, IH Γ ` ∀x1 ≤ i1 − 1.T1 ≡ ∀x2 ≤ i2 − 1.T4 (15)

33

1, lemma 3.1 Γ ` ∀x1 ≤ i1.T1 : type (16)

16, inversion Γ, x1 : {y1 : int | y1 ≤ i1} ` T1 : type (17)

6, lemma 3.1 Γ ` ∀x2 ≤ i2.T4 : type (18)

18, inversion Γ, x2 : {y2 : int | y2 ≤ i2} ` T4 : type (19)

2, 17, ≡ formation Γ ` ∀x1 ≤ i1.T1 ≡ T1{i1/x1};∀x1 ≤ i1 − 1.T1 (20)

8, 19, ≡ formation Γ ` ∀x2 ≤ i2.T4 ≡ T4{i2/x2};∀x2 ≤ i2 − 1.T4 (21)

14, 15, ≡ formation Γ ` T1{i1/x1};∀x1 ≤ i1 − 1.T1 ≡ T4{i2/x2};∀x2 ≤ i2 − 1.T4 (22)

20, 21, 22, lemma D.11 Γ ` ∀x1 ≤ i1.T1 ≡ ∀x2 ≤ i2.T4 (23)

Case (Γ ` T1;T2 ⇒ T ′1;T ′2): Ibid.

Theorem D.19 (completeness of the type equality algorithm).

Γ ` T1 ≡ T2
Γ ` T1 ≡a T2

Proof. We proceed by rule induction on the hypothesis. Notice that the premises to conclude Γ ` T1 ≡a T2 are Γ ` T1 ⇒ T ′1,
Γ ` T2 ⇒ T ′2 and Γ ` T ′1 ≡c T

′
2. We proceed to prove that we can derive such premises in each case.

Case Γ ` broadcast i1 x : D1.T1 ≡ broadcast i2 x : D2.T2 : type.

rule premise Γ ` i1 = i2 true (1)

rule premise Γ ` D1 ≡ D2 (2)

rule premise Γ, x : D1 ` T1 ≡ T2 (3)

rule premise Γ ` 1 ≤ i1 ≤ size true (4)

3, IH Γ, x : D1 ` T1 ⇒ T3 (5)

3, IH Γ, x : D1 ` T2 ⇒ T4 (6)

3, IH Γ, x : D1 ` T3 ≡c T4 (7)

4, 5, formation Γ ` broadcast i1 x : D1.T1 ⇒ broadcast i1 x : D1.T3 (8)

2, 3, lemma D.15 Γ, x : D2 ` T2 ⇒ T4 (9)

1,4, 9, formation Γ ` broadcast i2 x : D2.T2 ⇒ broadcast i2 x : D2.T4 (10)

1,2,4, 7, formation Γ ` broadcast i1 x : D1.T3 ≡c broadcast i2 x : D2.T4 (11)

Case Congruence rules for skip,message, scatter, gather, reduce, val, p ?T :T ′, T ;T ′ and primitive recursion: Ibid.
Case projection rule, Γ ` message i1 i2 D ≡ skip.

rule premise Γ ` i1, i2 6= rank true (1)

rule premise Γ ` 1 ≤ i1, i2 ≤ size ∧ i1 6= i2 true (2)

rule premise Γ ` D : dtype (3)

2, 3, type formation Γ ` message i1 i2 D : type (4)

1,4,⇒ formation Γ ` message i1 i2 D ⇒ skip (5)

4, lemma D.1 Γ : context (6)

6,⇒ formation Γ ` skip⇒ skip (7)

6, ≡ formation Γ ` skip ≡c skip (8)

Case primitive recursion, base case (Γ ` ∀x ≤ i.T ≡ skip).

rule premise Γ ` i < 1 true (1)

rule premise Γ, x : {y : int | y ≤ i} ` T : type (2)

2, type formation Γ ` ∀x ≤ i.T : type (3)

34

1,3,⇒ formation Γ ` ∀x ≤ i.T ⇒ skip (4)

4, lemma 3.1 Γ ` skip : type (5)

5, inversion Γ : context (6)

6,⇒ formation Γ ` skip⇒ skip (7)

6, ≡ formation Γ ` skip ≡c skip (8)

Case primitive recursion, induction case (Γ ` ∀x ≤ i.T ≡ (T{i/x};∀x ≤ i− 1.T)).

rule Γ ` ∀x ≤ i.T1 ≡ (T1{i/x};∀x ≤ i− 1.T1) (1)

1, inversion Γ ` i ≥ 1 true (2)

1, inversion Γ, x : {y : int | y ≤ i} ` T1 : type (3)

1, lemma D.9 Γ ` ∀x ≤ i.T1 : type (4)

1, lemma D.9 Γ ` T1{i/x};∀x ≤ i− 1.T1 : type (5)

5, inversion Γ ` T1{i/x} : type (6)

5, inversion Γ ` ∀x ≤ i− 1.T1 : type (7)

6, lemma D.11 Γ ` T1{i/x} ≡ T1{i/x} (8)

8, IH Γ ` T1{i/x} ⇒ T2 (9)

8, IH Γ ` T1{i/x} ⇒ T3 (10)

8, IH Γ ` T2 ≡c T3 (11)

9, 10, lemma 3.2 T2 = T3 (12)

7, lemma D.11 Γ ` ∀x ≤ i− 1.T1 ≡ ∀x ≤ i− 1.T1 (13)

13, IH Γ ` ∀x ≤ i− 1.T1 ⇒ T4 (14)

13, IH Γ ` ∀x ≤ i− 1.T1 ⇒ T5 (15)

13, IH Γ ` T4 ≡c T5 (16)

14, 15, lemma 3.2 T4 = T5 (17)

9, 14,⇒ formation Γ ` T1{i/x};∀x ≤ i− 1.T1 ⇒ T2;T4 (18)

2, 4, 9, 14,⇒ formation Γ ` ∀x ≤ i.T1 ⇒ T2;T4 (19)

20, lemma 3.1 Γ ` T2;T4 : type (20)

21, lemma D.13 Γ ` T2;T4 ≡c T2;T4 (21)

Case monoidal rules, Γ ` T ; skip ≡ T (the left rule is similar).

rule premise Γ ` T : type (1)

1, lemma D.11 Γ ` T ≡ T (2)

2, IH Γ ` T ⇒ T ′ (3)

2, IH Γ ` T ⇒ T ′′ (4)

2, IH Γ ` T ′ ≡c T
′′ (5)

3,4, lemma 3.2 T ′ = T ′′ (6)

2, lemma D.9 Γ ` T : type (7)

7, lemma D.1 Γ : context (8)

8,⇒ formation Γ ` skip⇒ skip (9)

3,9,⇒ formation Γ ` T ; skip⇒ T ′; skip (10)

3, lemma 3.1 Γ ` T ′ : type (11)

11, ≡ formation Γ ` T ′; skip ≡c T
′ (12)

Case monoidal rules, associativity Γ ` T1; (T2;T3) ≡ (T1;T2);T3.

rule premise Γ ` T1, T2, T3 : type (1)

35

1, lemma D.11 (same for T2, T3) Γ ` T1 ≡ T1 (2)

2, IH (same for T2, T3) Γ ` T1 ⇒ T ′1 (3)

2, IH (same for T2, T3) Γ ` T1 ⇒ T ′′1 (4)

2, IH (same for T2, T3) Γ ` T ′1 ≡c T
′′
1 (5)

3,4, lemma 3.2 (same for T2, T3) T ′1 = T ′′1 (6)

3,⇒ formation Γ ` T1;T2 ⇒ T ′1;T ′2 (7)

3,⇒ formation Γ ` T2;T3 ⇒ T ′2;T ′3 (8)

3,7,⇒ formation Γ ` (T1;T2);T3 ⇒ (T ′1;T ′2);T ′3 (9)

3,8,⇒ formation Γ ` T1; (T2;T3)⇒ T ′1; (T ′2;T ′3) (10)

9, lemma 3.1 Γ ` T ′1, T ′2, T ′3 : type (11)

11, ≡ formation Γ ` (T ′1;T ′2);T ′3 ≡c T
′
1; (T ′2;T ′3) (12)

Case symmetry, Γ ` T1 ≡ T2.

rule premise Γ ` T2 ≡ T1 (1)

1, IH Γ ` T2 ⇒ T ′2 (2)

1, IH Γ ` T1 ⇒ T ′1 (3)

1, IH Γ ` T ′2 ≡c T
′
1 (4)

4, lemma D.13 Γ ` T ′1 ≡c T
′
2 (5)

Case transitivity.

rule premise Γ ` T1 ≡ T2 (1)

rule premise Γ ` T2 ≡ T3 (2)

1, IH Γ ` T1 ⇒ T ′1 (3)

1, IH Γ ` T2 ⇒ T ′2 (4)

1, IH Γ ` T ′1 ≡c T
′
2 (5)

2, IH Γ ` T2 ⇒ T ′′2 (6)

2, IH Γ ` T3 ⇒ T ′3 (7)

2, IH Γ ` T ′′2 ≡c T
′
3 (8)

4, 6, lemma 3.2 T ′2 = T ′′2 (9)

9, 8 Γ ` T ′2 ≡c T
′
3 (10)

10, 5, ≡ formation Γ ` T ′1 ≡c T
′
3 (11)

Theorem D.20 (Decidability of algorithmic type equality).

Proof. Follows as a consequence of lemmas D.14 and D.16.

D.3 Results related to program types
Main result in this section: agreement for program type formation (Lemma D.21).

Lemma D.21 (agreement for program type formation).

T1, . . . , Tn : ptype

Γn,1 ` T1 : type . . . Γn,n ` Tn : type

Proof. By inversion on the hypothesis, we know that Γn,k ` Tk ≡ T : type, (1 ≤ k ≤ n). The proof follows by the
application of lemma D.9.

36

D.4 Results related to references
Main results in this section: agreement for type formation, now with references (Lemma D.22), index term subtyping remains
a pre-order (Lemma D.23) and that deducibility contains no references (Lemma D.24).

Lemma D.22 (agreement for type formation, with references). The statement of this lemma is that of Lemma D.1, page 26.

Proof. By mutual rule induction on the hypotheses, reusing the cases from the proof of Lemma D.1.

Lemma D.23 (subtyping is still a pre-order). The statement of this lemma is that of Lemma D.6, page 27.

Proof. By rule induction on the hypothesis, reusing the cases from the proof of Lemma D.6. Inversion for <: (Lemma D.4)
must be extended with the following case.

5. If Γ ` D1 ref <: D2 then D2 is D3 ref and Γ ` D1 <: D3 or D2 is {x : D3 | p} and Γ ` D1 ref <: D3 and
Γ, x : D1 ref ` p true.

Lemma D.24 (deducibility contains no references).
Γ ` p true
r 6∈ refs(p)

Proof. Assertion Γ ` p true is not defined on reference identifiers.

D.5 Results related to expressions
Main results in this section: agreement for expression formation (Lemma D.25), weakening for expression formation
(Lemma D.26), strengthening for expression formation (Lemma D.27), context subsumption for expression formation
(Lemma D.28), substitution in expression formation (Lemma D.29), context exchange for expression formation (Lemma D.30),
and the inversion lemma for expression formation (Lemma D.31).

Lemma D.25 (agreement for expression formation).

Γ ` e : T

Γ ` T : type

Proof. By rule induction on the hypothesis, using Lemma D.1.

Lemma D.26 (weakening for expression formation).

Γ ` e : T Γ ` D : dtype

Γ, x : D ` e : T

Proof. By rule induction on the first hypothesis, using Lemma D.2.

Lemma D.27 (strengthening for expression formation).

Γ, x : D ` e : T x /∈ fv(e, T)

Γ ` e : T

Proof. By rule induction on the first hypothesis, using Lemma D.3.

Lemma D.28 (context subsumption for expression formation).

Γ, x : D1 ` e : T Γ ` D2 <: D1

Γ, x : D2 ` e : T

Proof. By rule induction on the first hypothesis, using Lemma D.5.

Lemma D.29 (substitution for expression formation).

Γ, x : D ` e : T Γ ` i : D

Γ ` e{i/x} : T{i/x}

Proof. By rule induction on the first hypothesis, using Lemma D.7.

37

Lemma D.30 (context exchange for expression formation).

Γ1,Γ2, x : D1 ` e : T Γ1 ` D1 : dtype

Γ1, x : D1,Γ2 ` e : T

Proof. By rule induction on the first hypothesis, using Lemma D.8.

The lemma below establishes the various expressions that may inhabit a given type. It forms the basis to the proof of the
result on progress (Theorem 4.6).

Lemma D.31 (inversion for expression formation).

1. If Γ ` e : broadcast i x : D.T then e is either
• letx : D1 = broadcast i1 i2 in e1 and Γ ` D1 ≡ D : dtype and Γ ` i1 = i true and Γ ` 1 ≤ i1 ≤ size true and

Γ ` i2 : D and rank 6∈ fv(i1) and Γ, x : D ` e1 : T , or
• let y : D1 = i1 in e1 and Γ ` i1 : D1 and y /∈ fv(broadcast i x : D.T) and Γ, y : D1 ` e1 : broadcast i x : D.T , or
• if p then e1 else e2 and Γ, p ` e1 : broadcast i x : D.T and Γ,¬p ` e2 : broadcast i x : D.T , or
• e1; e2 and Γ ` e1 : skip and Γ ` e2 : broadcast i x : D.T .

2. If Γ ` e : message i i′D then e is either
• send i1 i2 and Γ ` rank = i true and Γ ` i1 = i′ true and Γ ` i2 : D, or
• receive i1 i2 and Γ ` i1 = i true and Γ ` rank = i′ true, and Γ ` i2 : D ref, or
• let y : D1 = i1 in e1 and Γ ` i1 : D1 and y /∈ fv(message i i′D) and Γ, y : D1 ` e1 : message i i′D, or
• if p then e1 else e2 and Γ, p ` e1 : message i i′D and Γ,¬p ` e2 : message i i′D, or
• e1; e2 and Γ ` e1 : skip and Γ ` e2 : message i i′D.

3. If Γ ` e : ∀x ≤ i.T then e is either
• forx : i1..1 do e1 and Γ ` i1 ≤ i true and Γ, x : {y : int | y ≤ i} ` e1 : T and Γ ` T{i/x} = T{i− 1/x} = · · · = {i1 + 1/x} ≡
skip : type, or

• skip and Γ ` i < 1 true, or
• let y : D1 = i1 in e1 and Γ ` i1 : D1 and y /∈ fv(∀x ≤ i.T) and Γ, y : D1 ` e1 : ∀x ≤ i.T , or
• if p then e1 else e2 and Γ, p ` e1 : ∀x ≤ i.T and Γ,¬p ` e2 : ∀x ≤ i.T , or
• e1; e2 and Γ ` e1 : skip and Γ ` e2 : ∀x ≤ i.T , or

4. If Γ ` e : (T ;T ′) then e is either
• e1; e2 and Γ ` e1 : T and Γ ` e2 : T ′

• forx : i1..1 do e1 and Γ ` i1 ≥ 1 true and Γ, x : {y : int | y ≤ i1} ` e1 : T1 and Γ ` T1{i/x} ≡ T : type and
Γ ` (∀x ≤ i1 − 1.T1) ≡ T ′ : type, or

• let y : D1 = i1 in e1 and Γ ` i1 : D1 and y /∈ fv(T ;T ′) and Γ, y : D1 ` e1 : T ;T ′, or
• if p then e1 else e2 and Γ, p ` e1 : T ;T ′ and Γ,¬p ` e2 : T ;T ′, or
• e1; e2 and Γ ` e1 : skip and Γ ` e2 : T ;T ′, or

5. If Γ ` e : skip then e is either
• skip, or
• while p do e1 and Γ ` p : prop and Γ, p ` e1 : skip, or
• forx : i..1 do e1 and Γ ` i < 1 true and Γ, x : {y : int | y ≤ i} ` e1 : skip, or
• let y : D1 = i1 in e1 and Γ ` i1 : D1 and y /∈ fv(skip) and Γ, y : D1 ` e1 : skip, or
• if p then e1 else e2 and Γ, p ` e1 : skip and Γ,¬p ` e2 : skip, or
• e1; e2 and Γ ` e1 : skip and Γ ` e2 : skip.

6. If Γ ` e : gather iD then e is either
• gather i1 i2 i3 and Γ ` i1 = i true and Γ ` 1 ≤ i1 ≤ size true and Γ ` i2 : {x : D array | len(i3) = size ∗ len(x)} and

Γ ` i3 : D array ref, or
• let y : D1 = i1 in e1 and Γ ` i1 : D1 and y /∈ fv(gather iD) and Γ, y : D1 ` e1 : gather iD, or
• if p then e1 else e2 and Γ, p ` e1 : gather iD and Γ,¬p ` e2 : gather iD, or
• e1; e2 and Γ ` e1 : skip and Γ ` e2 : gather iD.

7. If Γ ` e : scatter iD then e is either
• scatter i1 i2 i3 and Γ ` i1 = i true and Γ ` 1 ≤ i1 ≤ size true and Γ ` i2 : {x : D array | len(i3) = size ∗ len(x)} and

Γ ` i3 : D array ref, or

38

• let y : D1 = i1 in e1 and Γ ` i1 : D1 and y /∈ fv(scatter iD) and Γ, y : D1 ` e1 : scatter iD, or
• if p then e1 else e2 and Γ, p ` e1 : scatter iD and Γ,¬p ` e2 : scatter iD, or
• e1; e2 and Γ ` e1 : skip and Γ ` e2 : scatter iD.

8. If Γ ` e : reduce i then e is either
• reduce i1 i2 i3 and Γ ` i1 = i true and Γ ` 1 ≤ i1 ≤ size true and Γ ` i2 : �oat and Γ ` i3 : �oat ref, or
• let y : D1 = i1 in e1 and Γ ` i1 : D1 and y /∈ fv(reduce i1) and Γ, y : D1 ` e1 : reduce i1, or
• if p then e1 else e2 and Γ, p ` e1 : reduce i1 and Γ,¬p ` e2 : reduce i1, or
• e1; e2 and Γ ` e1 : skip and Γ ` e2 : reduce i1.

9. If Γ ` e : valx : D.T then e is either
• letx : D1 = val i1 in e1 and Γ ` D1 ≡ D : dtype and Γ ` i1 : D and Γ, x : D ` e1 : T
• let y : D1 = i1 in e1 and Γ ` i1 : D1 and y /∈ fv(valx : D.T) and Γ, y : D1 ` e1 : valx : D.T , or
• if p then e1 else e2 and Γ, p ` e1 : valx : D.T and Γ,¬p ` e2 : valx : D.T , or
• e1; e2 and Γ ` e1 : skip and Γ ` e2 : valx : D.T .

10. If Γ ` e : p ?T :T ′ then e is either
• ifc p′ then e1 else e2 and Γ ` p↔ p′ true and Γ ` e1 : T and Γ ` e2 : T ′ and rank /∈ fv(p), or
• let y : D1 = i1 in e1 and Γ ` i1 : D1 and y /∈ fv(p ?T :T ′) and Γ, y : D1 ` e1 : p ?T :T ′, or
• if p then e1 else e2 and Γ, p ` e1 : p ?T :T ′ and Γ,¬p ` e2 : p ?T :T ′, or
• e1; e2 and Γ ` e1 : skip and Γ ` e2 : p ?T :T ′.

Proof. By a case analysis on the rules for expression formation.

D.6 Results related to stores
Main results in this section: agreement for store-to-context formation (Lemma D.32), agreement for index evaluation
(Lemma D.37) and that evaluation induces deducibility (Lemma D.38).

Lemma D.32 (agreement for store-to-context conversion).

ρ to Γ

ρ : store Γ : context

Proof. By rule induction on the hypothesis.

Lemma D.33 (store-to-context inversion).
ρ : store

ρ to Γ

Proof. By rule induction on the hypothesis.

Lemma D.34 (store update does not affect store-to-context).

ρ to Γ Γn,Γ ` r : D ref Γn,Γ ` v : D

ρ[r := v] to Γ

Proof. By rule induction on the hypothesis ρ to Γ.

Lemma D.35 (store value is index).
ρ ` r : D ref r := v ∈ ρ

ρ ` v : D

Proof. From the second hypothesis we know that ρ is not empty. Case ρ is ρ′, r := v. From the definition of ρ to Γ we
know that (ρ′, r := v) to (Γ′, r : D ref). By inversion we get Γ′ ` v : D. Applying weakening (Lemma D.2) we conclude
Γ′, r : D ref ` v : D. Case ρ is ρ′, r′ := v′ with r 6= r′ follows by induction.

Lemma D.36 (inversion of store formation).

ρ to Γ r : D ∈ Γ

r := v ∈ ρ D is D′ ref Γ ` v : D′

39

Proof. By rule induction on hypothesis ρ to Γ. From the second premise we know that Γ is not empty, then the only case to
consider is when ρ is not empty.
Case ρ is ρ′, r := v′:

store as context ρ′, r := v′ to Γ′, r : D′ ref (1)

1, inversion ρ′ to Γ′ (2)

1, inversion Γ′ ` v′ : D′ (3)

1, inversion r 6∈ ρ′,Γ, D′ (4)

1 r := v′ ∈ ρ′, r := v′ (5)

3, lemma D.2 Γ′, r : D′ ref ` v′ : D′ (6)

Case ρ is ρ′, r ′ := v′ and r 6= r′:

Case hyp., store as context ρ′, r ′ := v′ to Γ′, r′ : D′ ref (1)

Case hyp. r 6= r′ (2)

Case hyp. r : D ∈ Γ′, r′ : D′ ref (3)

2, 3, lemma D.3 r : D ∈ Γ′ (4)

1, inversion r : D ∈ Γ′ (5)

4, 5, induction r := v′′ ∈ ρ′ (6)

4, 5, induction D is D′′ ref (7)

4, 5, induction Γ′ ` v : D′′ (8)

Lemma D.37 (agreement for evaluation).

(ρ1, i)↓n,k (ρ2, v) : D

ρ1 to Γ1 ρ2 to Γ2 Γ2 is Γ1,Γ3 Γn,k,Γ2 ` i : D Γ2 ` v : D

Proof. By rule induction on the hypothesis. We list the most representative cases.
Case (ρ, f)↓n,k (ρ, f) : �oat

rule premise ρ : store (1)

1, lemma D.33 ρ to Γ (2)

2, lemma D.32 Γ : context (3)

3, index formation Γ ` f : �oat (4)

4, lemmas D.2, D.8 Γn,k,Γ ` f : �oat (5)

Case (ρ, size)↓n,k (ρ, n) : int

rule premise ρ : store (1)

1, lemma D.33 ρ to Γ (2)

2, lemma D.32 Γ : context (3)

3, lemmas D.2,D.8 Γn,k,Γ : context (4)

4, index formation Γn,k,Γ ` size : int (5)

2, index formation Γ ` n : int (6)

Case (ρ, r)↓n,k (ρ, r) : D ref

rule premise ρ : store (1)

rule premise r := v ∈ ρ (2)

40

rule premise ρ ` v : D (3)

From (2) we know that ρ is non empty. Subcase ρ is ρ′, r := v:

1, lemma D.33 (ρ′, r := v) to (Γ′, r : D ref) (4)

4, lemma D.32 Γ′, r : D ref : context (5)

5, index formation Γ′, r : D ref ` r : D ref (6)

6, lemmas D.2,D.8 Γn,k,Γ′, r : D ref ` r : D ref (7)

The subcase where ρ is ρ′, r′ := v′ with r 6= r′ follows by induction.

Case (ρ1, !i)↓n,k (ρ2, v) : D

rule premise (ρ1, i)↓n,k (ρ2, r) : D ref (1)

rule premise r := v ∈ ρ2 (2)

1, induction ρ2 to Γ2 (3)

1, induction ρ1 to Γ1 (4)

1, induction Γ2 is Γ1,Γ3 (5)

1, induction Γn,k,Γ2 ` i : D ref (6)

1, induction Γ2 ` r : D ref (7)

6, index formation Γn,k,Γ2 ` !i : D (8)

2, 3, 7, lemma D.35 Γ2 ` v : D (9)

Case (ρ1, i1 := i2)↓n,k (ρ2[r := v], v) : D

rule premise (ρ1, i1)↓n,k (ρ3, r) : D ref (1)

rule premise (ρ3, i2)↓n,k (ρ2, v) : D (2)

1, induction ρ1 to Γ1 (3)

1, induction Γn,k,Γ3 ` i1 : D ref (4)

1, induction Γ3 ` r : D ref (5)

1, induction ρ3 to Γ3 (6)

1, induction Γ3 is Γ1,Γ4 (7)

2, induction Γn,k,Γ2 ` i2 : D (8)

2, induction Γ2 ` v : D (9)

2, induction Γ2 is Γ3,Γ5 (10)

2, induction ρ2 to Γ2 (11)

Through simple context manipulation and the fact that store update does not affect store to context formation (Lemma D.34)
we obtain the remaining conclusions:

7, 10, equals for equals Γ2 is Γ1,Γ4,Γ5 (12)

4, 12, lemma D.2 Γn,k,Γ2 ` i1 : D ref (13)

8, 13, index formation Γn,k,Γ2 ` i1 := i2 : D (14)

5, 10, lemma D.2 Γ2 ` r : D ref (15)

8, lem. D.1, inv. Γn,k : context (16)

9, 16, lem. D.2, D.8 Γn,k,Γ2 ` v : D (17)

15, 16, lem. D.2, D.8 Γn,k,Γ2 ` r : D ref (18)

11, 17, 18, lemma D.34 ρ2[r := v] to Γ2 (19)

41

Case (ρ1,mkref i)↓n,k ((ρ2, r := v), r) : D ref

rule premise (ρ1, i)↓n,k (ρ2, v) : D (1)

rule premise r fresh (2)

1, induction Γn,k,Γ2 ` i : D (3)

1, induction Γ2 ` v : D (4)

1, induction Γ2 is Γ1,Γ3 (5)

1, induction ρ1 to Γ1 (6)

1, induction ρ2 to Γ2 (7)

3, index formation Γn,k,Γ2 ` mkref i : D (8)

7, lemma D.32 ρ2 : store (9)

7, lemma D.32 Γ2 : context (10)

2, 10, 7, 4, store formation ρ2, r := v : store (11)

11, store as context formation ρ2, r := v to Γ2, r : D ref (12)

5,monotonicity Γ2, r := v is Γ1,Γ3, r := v (13)

Case (ρ1, [i1, . . . , in])↓n,k (ρn+1, [v1, . . . , vn]) : D array

rule premise (ρ1, i1)↓n,k (ρ2, v1) : D (1)

rule premise (ρn, in)↓n,k (ρn+1, vn) : D (2)

2, induction, for all 1 ≤ l ≤ n Γn,k,Γl+1 ` il : D (3)

2, induction, for all 1 ≤ l ≤ n Γl+1 ` vl : D (4)

2, induction, for all 2 ≤ l ≤ n Γl+1 is Γl,Γ
′
l (5)

2, induction, for all 1 ≤ l ≤ n+ 1 ρl to Γl (6)

By applying basic lemmas over contexts (weakening, strengthening), index formation rules, and transitivity we get:

5, transitivity Γl+1 = Γ1,Γ
′
1, . . . ,Γ

′
n (7)

3, 7, lemma D.2 Γn,k,Γl+1 ` il : D (8)

8, index formation Γn,k,Γl+1 ` [i1, . . . , in] : D array (9)

4, 7, lemma D.2 Γl+1 ` vl : D (10)

11, index formation Γl+1 ` [v1, . . . , vn] : D array (11)

Case (ρ1, i1[i2])↓n,k (ρ3, vm) : D

rule premise (ρ1, i1)↓n,k (ρ2, [v1, . . . , vl]) : {x : D array | len(x) = l} (1)

rule premise (ρ2, i2)↓n,k (ρ3,m) : {x : int | 1 ≤ x ≤ l} (2)

1, induction Γn,k,Γ2 ` i1 : {D array | len(x) = l} (3)

1, induction Γ2 ` [v1, . . . , vl] : {D array | len(x) = l} (4)

1, induction ρ1 to Γ1 (5)

1, induction Γ2 = Γ1,Γ4 (6)

1, induction ρ2 to Γ2 (7)

2, induction Γn,k,Γ3 ` i2 : {x : int | 1 ≤ x ≤ l} (8)

2, induction Γ3 ` m : {x : int | 1 ≤ x ≤ l} (9)

2, induction ρ3 to Γ3 (10)

2, induction Γ3 = Γ2,Γ5 (11)

10, 15, equals for equals Γ3 is Γ1,Γ4,Γ5 (12)

42

8, inversion, lemma D.2 Γn,k,Γ3 ` 1 ≤ i1 ≤ l true (13)

3, 13, index formation Γn,k,Γ3 ` i1[i2] : D (14)

8, inversion, lemma D.2 Γ3 ` vm : D (15)

Case refinement introduction.

rule premise (ρ1, i)↓n,k (ρ2, v) : D (1)

rule premise ε ` p{i/x} true (2)

1, induction ρ1 to Γ1 (3)

1, induction ρ2 to Γ2 (4)

1, induction Γ2 is Γ1,Γ3 (5)

1, induction Γn,k,Γ2 ` i : D (6)

1, induction Γ2 ` v : D (7)

2, lemma D.2 Γn,k,Γ2 ` p{i/x} true (8)

6, 8, index formation Γn,k,Γ2 ` i : {x : D | p} (9)

2, lemma D.2 Γ2 ` p{i/x} true (10)

7, 10, index formation Γ2 ` v : {x : D | p} (11)

Case subtyping.

rule premise (ρ1, i)↓n,k (ρ2, v) : D1 (1)

rule premise ρ2 ` D2 <: D1 (2)

1, induction ρ1 to Γ1 (3)

1, induction ρ2 to Γ2 (4)

1, induction Γ1 is Γ1,Γ3 (5)

1, induction Γn,k,Γ2 ` i : D1 (6)

1, induction Γ2 ` v : D1 (7)

2, 6, lemma D.2, subtyping Γn,k,Γ2 ` i : D2 (8)

2, 7, subtyping Γ2 ` v : D2 (9)

Lemma D.38 (eval to deducibility).
i ↓n m

Γn ` i = m true

Proof. By rule induction on the hypothesis, making use of basic assumptions on deducibility such as, Γ ` i1 = m1 true and
Γ ` i2 = m2 true and m is m1 +m2 implies Γ ` i1 + i2 = m true.

Lemma D.39 (evaluation succeeds).
Γn,k, ρ1 ` i : D

(ρ1, i)↓n,k (ρ2, v) : D

Proof. By rule induction on the hypothesis. We highlight a few representative cases.

premise ρ to Γ (1)

1, lemma D.32 ρ : store Γ : context (2)

Case Γn,k,Γ ` x : D

premise x : D ∈ (Γn,k,Γ) (3)

43

1, 3 x is size or x is rank (4)

Subcase x is size

1, eval rule (ρ, size)↓n,k (ρ, n) : int (5)

Subcase x is rank. As above.

Case Γn,k,Γ ` r : D

premise r : D ∈ (Γn,k,Γ) (3)

1, 3, lemma D.36 D is D′ref ∧ Γn,k,Γ ` v : D′ ∧ r := v ∈ ρ (4)

2, 4, eval rule (ρ, r)↓n,k (ρ, r) : D (5)

Case Γn,k,Γ ` i1 + i2 : int

premise Γn,k,Γ ` i1 : int (3)

premise Γn,k,Γ ` i2 : int (4)

3, induction (ρ, i1)↓n,k (ρ1,m1) : int (5)

5, lemma D.37 ρ1 to Γ1 (6)

5, lemma D.37 Γ1 is Γ,Γ′ (7)

4, 6, lemma D.2 Γn,k,Γ1 ` i2 : int (8)

9, induction (ρ1, i2)↓n,k (ρ2,m2) : int (9)

5, 9, eval rule (ρ, i1 + i2)↓n,k (ρ2, v1 + v2) : int (10)

Case Γn,k,Γ ` i1[i2] : D

premise Γn,k,Γ ` i1 : {x : D array | len(x) = l} (3)

premise Γn,k,Γ ` 1 ≤ i2 ≤ l true (4)

4, inversion Γn,k,Γ ` i2 : int (5)

4, 5, index formation Γn,k,Γ ` i2 : {y : int | 1 ≤ y ≤ l} (6)

3, induction (ρ0, i1)↓n,k (ρ1, v1) : {x : D array | len(x) = l} (7)

7, lemma D.37 ρ1 to Γ1 (8)

7, lemma D.37 Γ1 is Γ,Γ′ (9)

6, 9, lemma D.2 Γn,k,Γ1 ` i2 : {y : int | 1 ≤ y ≤ l} (10)

10, induction (ρ1, i2)↓n,k (ρ2,m) : {y : int | 1 ≤ y ≤ l} (11)

7, 11, evaluation (ρ, i1[i2])↓n,k (ρ2, vm) : D (12)

Case Subtyping Γn,k,Γ ` i : D1

premise Γn,k,Γ ` i : D2 (3)

premise Γn,k,Γ ` D1 <: D2 (4)

3, induction (ρ, i)↓n,k (ρ′, v) : D2 (5)

5, lemma D.37 ρ′ to Γ2 (6)

5, lemma D.37 Γ2 is Γ,Γ′ (7)

4, 7, lemma D.2 Γn,k,Γ2 ` D1 <: D2 (8)

5, 8, evaluation (ρ, i)↓n,k (ρ′, v) : D1 (9)

Case Refinement Γn,k,Γ ` i : {x : D | p}

premise Γn,k,Γ ` i : D (3)

44

premise Γn,k,Γ ` p{i/x} true (4)

3, induction (ρ, i)↓n,k (ρ′, v) : D (5)

5, lemma D.37 ρ′ to Γ2 (6)

5, lemma D.37 Γ2 is Γ,Γ′ (7)

4, 7, lemma D.2 Γn,k,Γ2 ` p{i/x} true (8)

5, 8, evaluation (ρ, i)↓n,k (ρ′, v) : {x : D | p} (9)

Case Γ ` mkref i : D ref

premise Γn,k,Γ ` i : D (3)

3, induction (ρ, i)↓n,k (ρ′, v) : D (4)

ref. ids are countable r 6∈ ρ′ (5)

4, 6, eval. (ρ,mkref i)↓n,k ((ρ′, r := v), r) : D′ ref (6)

Case Γ ` !i : D

premise Γn,k,Γ ` i : D ref (3)

3, induction (ρ, i)↓n,k (ρ′, r) : D ref (4)

4, lemma D.37 ρ′ to Γ′ (5)

4, lemma D.37 Γ′ ` r : D ref (6)

6, inversion r : D ref ∈ Γ′ (7)

5, 7, lemma D.36 r := v ∈ ρ′ (8)

4, 8, evaluation (ρ, !i)↓n,k (ρ′, v) : D (9)

Case Γ ` i1 := i2 : D

premise Γn,k,Γ ` i1 : D ref (3)

premise Γn,k,Γ ` i2 : D (4)

3, induction (ρ, i1)↓n,k (ρ′, r) : D ref (5)

4, lemma D.37 ρ′ to Γ′ (6)

4, lemma D.37 Γ′ is Γ,Γ′′ (7)

4, 7, lemma D.2 Γn,k,Γ′ ` i2 : D (8)

8, induction (ρ′, i2)↓n,k (ρ′′, r) : D (9)

5, 9, evaluation (ρ, i1 := i2)↓n,k (ρ′′[r := v], v) : D (10)

D.7 Results related to processes
Main results in this section: agreement for process formation (Lemma D.40), agreement for process reduction (Lemma 4.1)
and progress for processes (Lemma 4.3).

Lemma D.40 (agreement for process formation).
Γ ` q : T

Γ ` T : type

Proof. From the hypothesis and the only process formation rule, we know that q is (ρ, e) and that Γ, ρ ` e : T . Agreement
(Lemma D.1) tells us that Γ, ρ ` T : type. The premise of all expression formation rules tells us that T contains no ref types.
From strengthening (Lemma D.3) we get the result.

Lemma 4.1 (agreement for process reduction). Statement on page 9.

45

Proof. By rule induction on the hypothesis. We have nine simple cases, and illustrate one of them.

(ρ, forx : i..1 do e)→n,k (ρ, (e{i/x}; forx : i− 1..1 do e)) (1)

rule premise Γn,k, ρ ` i ≥ 1 true (2)

rule premise Γn,k, ρ, x : {y : int | y ≤ i} ` e : T (3)

The type for the left hand side follows from the application of expression and process formation rules:

3, exp. formation Γn,k, ρ ` forx : i..1 do e : ∀x ≤ i.T (4)

4, proc. formation Γn,k ` (ρ, forx : i..1 do e) : ∀x ≤ i.T (5)

The right hand side requires slightly more effort.

2, inversion Γn,k, ρ ` i : int (6)

6, tautology Γn,k, ρ ` i ≤ i true (7)

7, def. of subs. Γn,k, ρ ` (y ≤ i){i/y} true (8)

6, 8, index form. Γn,k, ρ ` i : {y : int | y ≤ i} (9)

3, 9, lemma D.29 Γn,k, ρ ` e{i/x} : T{i/x} (10)

3, agreement Γn,k, ρ, x : {y : int | y ≤ i} : context (11)

11, subtyping Γn,k, ρ ` {y : int | y ≤ i− 1} <: {y : int | y ≤ i} (12)

3, 12, lemma D.28 Γn,k, ρ, x : {y : int | y ≤ i− 1} ` e : T (13)

13, exp. formation Γn,k, ρ ` forx : i− 1..1 do e : ∀x ≤ i− 1.T (14)

10, 14, exp. formation Γn,k, ρ ` (e{i/x}; forx : i− 1..1 do e) :

T{i/x};∀x ≤ i− 1.T (15)

3, lemma D.25 Γn,k, ρ, x : {y : int | y ≤ i} ` T : type (16)

2, 16, type eq. Γn,k, ρ ` (T{i/x};∀x ≤ i− 1.T) ≡ ∀x ≤ i.T (17)

10, 17, exp.+proc. form. Γn,k ` (ρ, e{i/x}; forx : i− 1..1 do e) : ∀x ≤ i.T (18)

Lemma 4.3 (progress for processes). Statement on page 9.

Proof. By analysis of the hypotheses, with one case for each rule, and a special treatment for Γn,k, ρ ` e : skip.
Case let rule: Building from Γn,k, ρ ` i : D and the fact that evaluation succeeds (Lemma D.39), we obtain (ρ, i) ↓n,k
(ρ′, v) : D. This, combined with premises Γn,k, ρ, x : D ` e : T and x 6∈ fv(T) constitute the necessary conditions to apply
reduction for let processes in Figure 25, obtaining (ρ, letx : D = i in e)→n,k (ρ′, e{v/x}).

Case if p then e1 else e2, while p do e, and forx : i..1 do e rules: Similar to let.

Case Γn,k, ρ ` e : skip: By induction on this assertion, using the inversion lemma for expression formation (Lemma D.31).

Subcase e is skip: we are done.

Subcase e is while p do e1 and Γn,k, ρ ` p : prop and Γn,k, ρ, p ` e1 : skip. Analysing the possible truth values of proposi-
tion p, we know that either formulae(Γn,k, ρ) |= p or formulae(Γn,k, ρ) 6|= p. We show the first case (the other is similar).
If formulae(Γn,k, ρ) |= p and Γn,k, ρ ` p : prop then Γn,k, ρ ` p true. By applying context exchange for expressions
(Lemma D.30) followed by process reduction rules we conclude that (ρ,while p do e1)→n,k (ρ, e1;while p do e1).

Subcase e is forx : i..1 do e1, Γn,k, ρ ` i < 1 true and Γn,k, ρ, x : {y : int | y ≤ i} ` e1 : skip. By application of context
exchange for expressions (Lemma D.30) followed by process reduction rules we can conclude that (ρ, forx : i..1 do e1) →n,k

46

(ρ, skip).

Subcase e is let y : D1 = i1 in e1, and (1) Γn,k, ρ ` i1 : D1 and (2) y /∈ fv(skip), and (3) Γn,k, ρ, y : D1 ` e1 : skip: By
applying evaluation always succeeds (lemma D.39) to (1), we derive that (4) (ρ, i) ↓n,k (ρ′, v) : D. By applying (2–4) and
process reduction rules, we can conclude that (ρ, let y : D1 = i1 in e1)→n,k (ρ′, e1{v/y}).

Subcase e is if p then e1 else e2, and Γn,k ` p : prop, and Γn,k, ρ, p ` e1 : skip, and Γn,k, ρ,¬p ` e2 : skip: Similar to while.

Subcase e is e1; e2, and (1) Γn,k, ρ ` e1 : skip, and (2) Γn,k, ρ ` e2 : skip. By induction on (1) we obtain e1 is skip or
(ρ, e1)→n,k q. It is easy to show that for both cases there is a process reduction rule such that (ρ, e1; e2)→n,k q.

D.8 Results related to programs
Main results in this section: agreement for program formation (Lemma D.41), agreement for program reduction (Theorem 4.4),
and progress for programs (Theorem 4.6).

Lemma D.41 (agreement for program formation).
P : S

S : ptype

Proof. Directly from the premise of the only rule for assertion P : S.

Theorem 4.4 (agreement for program reduction). Statement on page 10.

Proof. By case analysis on the rules concluding the hypothesis. We have eight cases: one dealing with message passing, one
dealing with process reductions and six dealing with collective operations. We illustrate one case for each category.
Case the derivation ends with the broadcast rule:

rule premise (ρl, i
′
l)↓n,l (ρ′l, v) : D (1)

rule premise Γn ` 1 ≤ ik ≤ n true (2)

rule premise Γn,k, ρk ` i′k : D (3)

rule premise Γn,k, x : D, ρk ` ek : T (4)

rule premise D,T contain no ref types (5)

rule premise rank /∈ fv(D,T) (6)

Building the first result, P1 : S1:

2–4, 6, lemma D.2, exp.+proc. form. Γn,k ` (ρk, letx : D = broadcast ik i
′
k in ek) : broadcast ik x : D.T (7)

4, 6, lemmas D.25,D.3 Γn, x : D ` T : type (8)

2, 8, type form., reflex. of type eq. Γn ` broadcast ik x : D.T ≡ broadcast ik x : D.T : type (9)

9, ptype form. (broadcast ik x : D.T)nk=1 : ptype (10)

7, 10, prog. form. (ρk, letx : D = broadcast ik i
′
k in ek)nn=1 :(broadcast ik x : D.T)nk=1 (11)

Building the second result, P2 : S2:

2, lemma D.37 Γn,l, ρl ` i′l : D (12)

2, lemma D.37 ρ′l ` v : D (13)

2, lemma D.37 ρ′l = ρl, ρ
′′
l (14)

2, 4, 6, lemma D.3 ε ` v : D (15)

rank 6= l:

15, lemma D.2 Γn,k, ρk ` v : D (16)

5, 8, lemma D.29 Γn,k, ρk ` e{v/x} : T{v/x} (17)

47

15, proc. formation Γn,k, ρk ` (ρk, e{v/x}) : T{v/x} (18)

rank = l:

5, 14, lemma D.2 Γn,l, ρ′l ` el : T (19)

as for rank 6= l Γn,l, ρ′l ` (ρl, e{v/x}) : T{v/x} (20)

15, lemma D.2 Γn, ρk ` v : D (21)

8, 21, lemma D.7, ref. type eq. Γn ` T{v/x} ≡ T{v/x} : type (1 ≤ k, l ≤ n) (22)

22, program type formation (T{v/x})nk=1 : ptype (23)

18, 20, 22, proc+proc. form. (ρk, ek{v/x})l−1k=1, (ρ
′
l, el{v/x}), (ρk, ek{v/x})nk=l+1 :(T{v/x})nk=1 (24)

Case the derivation ends with the message rule:

shape of the rule 1 ≤ l,m ≤ n (1)

rule premise il ↓n m (2)

rule premise (ρl, i
′
l)↓n,l (ρ′l, v) : D (3)

rule premise im ↓n l (4)

rule premise (ρm, i
′
m)↓n,m (ρ′m, r) : D ref (5)

rule premise Γ ` l 6= m true (6)

rule premise Γn,l ` el : T (7)

rule premise Γn,m ` em : T (8)

rule premise Γn,k ` qk : T (k = 1..n, k 6= l,m) (9)

rule premise D,T contain no ref types (10)

rule premise rank /∈ fv(D,T) (11)

We proceed by building the first result, namely P1 : S1. The types for processes (ρl, send il i
′
l) and (ρm, receive im i′m) follow

from Lemma D.38 and from the constraints imposed on l and m:

2, lemma D.38 Γn ` il = m true (12)

3, lemma D.37 Γn,l, ρ′l ` i′l : D (13)

1, 12, transitivity Γn ` 1 ≤ il ≤ size true (14)

From the definition of Γn,l, we know that Γn,l ` rank = l true.

6,Γn,l ` rank = l true Γn,l ` m 6= rank true (15)

Weakening (Lemma D.2) is used in rules (13–15) to extend the type environment to Γn,l, ρ′l (details omitted). Such steps build
the type for send:

13, 14, 15, lemma D.2, exp. form. Γn,l, ρ′l ` send il i
′
l : message l il D (16)

16, 10, lemma D.27 Γn,l, ρl ` send il i
′
l : message l il D (17)

7, lemma D.2 Γn,l, ρl ` el : T (18)

17, 18, exp. form. Γn,l, ρl ` send il i
′
l; el : message l il D;T (19)

A similar derivation yields the type for receive:

4, lemma D.38 Γn ` im = l true (20)

1, 20, transitivity Γn ` 1 ≤ im ≤ size true (21)

5, lemma D.37 Γn,m, ρ′m ` i′m : D ref (22)

48

Def. of Γn,m Γn,m ` rank = m true (23)

6, 23, transitivity Γn,m ` rank 6= l true (24)

21, 22, 24, lemma D.2, exp. form. Γn,m, ρ′m ` receive im i ′m : message im m D (25)

25, 10, lemma D.27 Γn,m, ρm ` receive im i ′m : message im m D (26)

8, lemma D.2 Γn,m, ρm ` em : T (27)

26, 27, exp. form. Γn,m, ρm ` receive im i ′m : message im m D;T (28)

Building the ptype:

12, 19, proc. form. Γn,l ` (ρl, send m i′l; el) : message l m D;T (29)

20, 28, proc. form. Γn,m ` (ρm, receive l i
′
m ; em) : message l m D;T (30)

Notice that from type equality, message types who do not have rank as a sender or receiver are equated to skip. We use such
fact to build a common type for the vector.

1, 6, 9, transitivity Γn,k ` l,m 6= rank true (k = 1..n, k 6= l,m) (31)

1, 6, def. of Γn, lemma D.2 Γn,k ` 1 ≤ l,m ≤ size ∧ l 6= m true (32)

13, lemma D.1 Γn,l, ρ′l ` D : dtype (33)

33, 10, 11, lemma D.3 Γn ` D : dtype (34)

34, lemma D.2 Γn,k ` D : dtype (35)

31, 32, 35,≡ form. Γn,k ` message l mD ≡ skip (36)

9, inversion Γn,k, ρk ` ek : T (37)

37, lemma D.25 Γn,k, ρk ` T : type (38)

36, 38,≡ formation Γn,k, ρk ` skip;T ≡ message l mD;T (39)

37, 39, exp.+proc. formation Γn,k ` (ρk, ek) : message l mD;T (40)

Putting all together:

29, 30, 40, proc. inversion, lem. D.25 Γn,k ` Tk ≡ message l mD;T : type (41)

41,ptype formation (message l m D;T)nk=1 : ptype (42)

7, 29, 30, 41, prog. form. (qk)l−1k=1, (ρl, send il i
′
l; el), (qk)m−1k=l+1, (ρm, receive im i′m; em), (qk)nk=m+1

: (message l m D;T)nk=1 (43)

Building the second result, P2 : S2:

3, lemma D.37 Γn,l, ρ′l ` v : D (44)

10, 11, 44, lemma D.3 Γn ` v : D (45)

45, lemma D.2 Γn,m, ρ′m ` v : D (46)

5, lemma D.37 Γn,m, ρ′m ` r : D ref (47)

46, 47, store update Γn,m, ρ′m[r := v] ` r : D ref (48)

48, lemma D.22 - applied twice Γn,m, ρ′m[r := v] : context (49)

8, 49, lemma D.26 Γn,m, ρ′m[r := v] ` em : T (50)

50, proc. form Γn,m ` (ρ′m[r := v], em) : T (51)

44, lemma D.22 - applied twice Γn,l, ρ′l : context (52)

7, 52, lemma D.26 Γn,l, ρ′l ` el : T (53)

53, proc. form Γn,l ` (ρ′l, el) : T (54)

Joining (9), (51) and (54), we can see that the continuations have the same type:

9, 10, inversion, lemmas D.22, D.3 Γn,k ` T : type (k = 1..n, k 6= l,m) (55)

49

51, 10, inversion, lemmas D.22, D.3 Γn,l ` T : type (56)

54, 10, inversion, lemmas D.22, D.3 Γn,m ` T : type (57)

55, 56, 57,≡ form. Γn,k ` Tk ≡ T (k = 1..n, k) (58)

58,ptype formation (T)nk=1 : ptype (59)

9, 51, 54, 59, prog. formation (qk)l−1k=1, (ρ
′
l, el), (qk)m−1k=l+1, (ρ

′
m[r := v], em), (qk)nk=m+1 : (T)nk=1 (60)

Case the derivation ends with the scatter rule:

rule premise ik ↓n l (1)

rule premise (ρk, i
′
k)↓n,k (ρ′k, rk) : �oat array ref (k = 1..n) (2)

rule premise (ρ′l, i
′′
l)↓n,l (ρ′′l , [~v1, . . . , ~vn]) : {x : �oat array | len(x) = size ∗ len(i′k)} (3)

rule premise Γn,k, ρk, {rank = ik} ` i′′k : {x : �oat array | len(x) = size ∗ len(i′k)} (4)

rule premise D,T contain no ref types (5)

rule premise rank /∈ fv(D,T) (6)

We now proceed by proving the left-hand side, namely: (ρk, scatter ik i
′
k i
′′
k)nk=1 : S1.

1, lem. D.38 Γn ` ik = l true (k = 1..n) (7)

2, lem. D.37 ρk to Γk (8)

2, lem. D.37 ρ′k to Γ′k (9)

2, lem. D.37 Γ′k is Γk,Γ
′′
k (10)

2, lem. D.37 Γn,l,Γ′k ` i′k : �oat array ref (11)

2, lem. D.37 Γ′k ` rk : �oat array ref (12)

3, lem. D.37 ρ′l to Γ′l (13)

3, lem. D.37 ρ′′l to Γ′′l (14)

3, lem. D.37 Γ′′l is Γ′l,Γ
′′′
l (15)

3, lem. D.37 Γn,l,Γ′′l ` i′′l : {x : �oat array | len(x) = size ∗ len(i′k)} (16)

3, lem. D.37 Γ′′l ` [~v1, . . . , ~vn] : {x : �oat array | len(x) = size ∗ len(i′k)} (17)

From the structure of the program reduction rule, we know that · ` 1 ≤ l ≤ size true, then:

8, lemma D.32 Γk : context (18)

7, 18, · ` 1 ≤ l ≤ size true, lem. D.2 Γn,k ` 1 ≤ ik ≤ size true (19)

4, 11, 19, exp. form. Γn,k,Γk ` scatter ik i
′
k i
′′
k : scatter ik {x : �oat array | len(x) = size ∗ len(i′k)}

(20)

20, proc. form. Γn,k ` (ρk, scatter ik i
′
k i
′′
k)nk=1 : scatter ik {x : �oat array | len(x) = size ∗ len(i′k)}

(21)

We continue by proving Γn,k ` scatter ik {x : �oat array | len(x) = size ∗ len(i′k)} ≡ T : type:

21, lemma D.40 Γn,k ` scatter ik {x : �oat array | len(x) = size ∗ len(i′k)} : type (22)

22, lem. D.11 Γn,k ` scatter ik {x : �oat array | len(x) = size ∗ len(i′k)} ≡ scatter ik {x : �oat array | len(x) = size ∗ len(i′k)}
(23)

23, ptype form. (scatter ik ({x : D array | len(x) ∗ size = len(i′′k)}))nk=1 : ptype (24)

Joining (21) and (24), we can derive the program type:

21, 24, prog. formation (ρk, scatter ik i
′
k i
′′
k)nk=1 : (scatter ik ({x : D array | len(x) ∗ size = len(i′′k)}))nk=1 (25)

50

We continue by proving the right-hand side, namely: (ρ′k[rk := [~vk]], skip)l−1k=1, (ρ
′′
l [rl := [~vl]], skip), (ρ′k[rk := [~vk]], skip)nk=l+1 :

S2.

12, 18, lems. D.2, D.8 Γn,Γ′k ` rk : �oat array ref (26)

17, inversion Γ′′l ` [~v1, . . . ~vn] : �oat array (27)

27, inversion Γ′′l ` [~vk] : �oat (28)

In order to prove ρ′k[rk := [~v1, . . . ~vn]] to Γ′k we need to ensure that: (A) ρ′k to Γ′k, (B) Γn,Γ′k ` rk : D ref and (C)
Γn,Γ′k ` [~vk] : D. We have already (A) from eq. 9, and applying weakening and context exchange to eq. 12 we can derive that
Γn,Γ′k ` rk : �oat array ref. How do we use eq. 28 to derive (C)?

Case the derivation ends with the gather rule:

rule premise ik ↓n l (1)

rule premise (ρk, i
′
k)↓n,k (ρ′k, [~vk]) : �oat array (k = 1..n) (2)

rule premise (ρ′l, i
′′
l)↓n,l (ρ′′l , r) : {x : �oat array | len(x) = size ∗ len(i′k)} ref (3)

rule premise Γn,k, ρk, {rank = ik} ` i′′k : {x : �oat array | len(x) = size ∗ len(i′k)} (4)

rule premise D,T contain no ref types (5)

rule premise rank /∈ fv(D,T) (6)

We start by proving the left hand side, (ρk, gather ik i
′
k i
′′
k)nk=1 : S1.

1, lem. D.38 Γn ` ik = l true (7)

2, lem. D.37 ρk to Γk (8)

2, lem. D.37 ρ′k to Γ′k (9)

2, lem. D.37 Γ′k is Γk,Γ
′′
k (10)

2, lem. D.37 Γn,k,Γ′k ` i′k : �oat array (11)

2, lem. D.37 Γ′k ` [~vk] : �oat array (12)

3, lem. D.37 ρ′l to Γl (13)

3, lem. D.37 ρ′′l to Γ′′l (14)

3, lem. D.37 Γ′′l is Γ′l,Γ
′′′
l (15)

3, lem. D.37 Γn,l,Γ′′l ` i′′l : {x : �oat array | len(x) = size ∗ len(i′k)} ref (16)

3, lem. D.37 Γ′′l ` r : {x : �oat array | len(x) = size ∗ len(i′k)} ref (17)

From the structure of the program reduction rule we can infer that · ` 1 ≤ l ≤ size true, then:

7, · ` 1 ≤ l ≤ size true Γn ` 1 ≤ ik ≤ size true (18)

8, lem. D.1 Γk : context (19)

18, 19, lem. D.2 Γn,k ` 1 ≤ ik ≤ size true (20)

18, 19, lem. D.3 Γn,k,Γk ` i′k : �oat array (21)

4, 20, 21, exp. form. Γn,k,Γk ` gather ik i
′
k i
′′
k : gather ik {x : �oat array | len(x) = size ∗ len(i′k)} (22)

22, proc. form. Γn,k ` (ρk, gather ik i
′
k i
′′
k) : gather ik {x : �oat array | len(x) = size ∗ len(i′k)} (23)

23, lem. D.40 Γn,k ` gather ik {x : �oat array | len(x) = size ∗ len(i′k)} : type (24)

24, lem. D.11 Γn,k ` gather ik {x : �oat array | len(x) = size ∗ len(i′k)} ≡ gather ik {x : �oat array | len(x) = size ∗ len(i′k)}
(25)

25, ptype form. (gather ik {x : �oat array | len(x) = size ∗ len(i′k)})nk=1 : ptype (26)

51

23, 26, prog. form. (ρk, gather ik i
′
k i
′′
k)nk=1 : (gather ik {x : �oat array | len(x) = size ∗ len(i′k)})nk=1 (27)

We continue by proving the right hand side, namely (ρ′k, skip)l−1k=1, (ρ
′′
l [r := [~v1, . . . , ~vn]], skip), (ρ′k, skip)nk=l+1 : S2.

11, lem. D.1 Γn,k,Γ′k : context (28)

28, exp. form. Γn,k,Γ′k ` skip : skip (29)

9, 29, proc. form. Γn,k ` (ρ′k, skip) : skip (30)

30, lem. D.40 Γn,k ` skip : type (31)

31, lem. D.11 Γn,k ` skip ≡ skip (32)

17, lem. D.2, lem. D.8 Γn,Γ′′l ` r : {x : �oat array | len(x) = size ∗ len(i′k)} ref (33)

. . .

In order to establish that Γn,l ` (ρ′′l [r := [~v1, . . . , ~vn]], skip) : Tl, we need to use lemma D.34 with premises ρ′′l to Γ′′l (eq.
14), Γn,Γ′′l ` r : {x : �oat array | len(x) = size ∗ len(i′k)} ref (eq. 33) and Γn,Γ′′l ` [~v1, . . . , ~vn] : {x : �oat array | len(x) = size ∗ len(i′k)}.
From (12) we know that

Γ′k ` [~vk] : �oat array

, that can be transformed into Γn,Γ′′l ` [~vk] : �oat array by applying weakening and context exchange. However, I do not
see how to prove the missing subtyping relation Γn,Γ′′l ` �oat array <: {x : �oat array | len(x) = size ∗ len(i′k)}. Is there a
subtyping relation between them?

(34)

Case the derivation ends with process reduction:

rule premise ql →n,l q′l (1)

rule premise Γn,k ` qk : Tk (2)

rule premise T1, . . . , Tl, . . . , Tn : ptype (3)

The proof relies on agreement for process reduction (lemma 4.1).

2, 3, prog. form. q1, . . . , ql, . . . , qn : T1, . . . , Tl, . . . , Tn (4)

1, lemma 4.1 Γn,l ` q′l : Tl (5)

2, 4, 5, prog. form. q1, . . . , q
′
l, . . . , qn : T1, . . . , Tl, . . . , Tn (6)

Theorem 4.6 (progress for programs). Statement on page 10.

Proof. From the hypothesis and the formation rules for programs and processes we know that:

P1 is (ρ1, e1), . . . , (ρn, en) (1)

S1 is T1, . . . , Tn (2)

Γn,k, ρk ` ek : Tk (k = 1..n) (3)

T1, . . . , Tn : ptype (4)

The proof proceeds by rule induction on assertion T1, . . . , Tn : ptype. There are ten cases to consider. We illustrate a few.
Case the derivation ends with the type equality rule:

rule premise T1, . . . , T
′
k, . . . , Tn : ptype (5)

52

rule premise Γn,k ` Tk ≡ T ′k : type (6)

3, 6, exp. formation Γn,k, ρk ` ek : T ′k (7)

1, 3, 7, 5, proc+prog. formation P1 : T1, . . . , T
′
k, . . . , Tn (8)

8, induction P + 1 halted or P1 → P2 (9)

Case the derivation ends with the broadcast rule:

rule premise Γn ` 1 ≤ l ≤ n true (5)

rule premise Γn, x : D ` T : type (6)

6, lemma D.2, lemma D.8 Γn,k, ρk, x : D ` T : type (7)

Each expression ek (1 ≤ k ≤ n) may be of four different forms, according to inversion for expression formation:
Subcase each expression ek is letx : D1 = broadcast ik i

′
k in e′k:

lemma D.31 Γn,k, ρk ` D1 ≡ D : dtype (8)

lemma D.31 Γn,k, ρk ` ik = l true (9)

lemma D.31 Γn,k, ρk ` 1 ≤ ik ≤ size true (10)

lemma D.31 Γn,k, ρk ` i′k : D (11)

lemma D.31 rank 6∈ fv(i1) (12)

lemma D.31 Γn,k, x : D1, ρk ` e′k : T (13)

Building from index typing, deducibility and the fact that evaluation always succeeds, we get:

5, inversion Γn ` 1 ≤ l ≤ n : prop (14)

14, index form. Γn ` l : int (15)

14, 15, index form. Γn ` l : {y : int | 1 ≤ y ≤ n} (16)

9, 12, inversion, lemmas D.24, D.3 Γn ` ik : int (17)

17, lemma D.39 ik ↓n l (18)

11, lemma D.39 (ρk, i
′
k)↓n,k (ρ′′k , v) : D (19)

We have now all the ingredients to perform reduction:

10, 11, 13, 18, 19, prog. red. (ρk, letx : D = broadcast ik i
′
k in e′k)nk=1 →

(ρk, e
′
k{v/x})i−1k=1, (ρ

′′
i , e
′
i{v/x}), (ρk, e′k{v/x})nk=i+1 (20)

Subcase at least one of the expressions ek is not broadcast.
From inversion of expression formation we have three additional cases.

Subsubcase ek is let yk : Dk = i′k in e′k:

lemma D.31 Γn,k, ρk ` i′k : Dk (21)

lemma D.31 y 6∈ fv(broadcast i x : D.T) (22)

lemma D.31 Γn,k, ρk, yk : Dk ` e′k : broadcast ik x : D.T (23)

We apply progress for processes followed by program reduction:

21, 22, 23, lemma 4.3 (ρk, let yk : Dk = i′k in ek)→n,k qk (24)

3, 4, 24, prog. red. P1 → (ρ1, e1), . . . , qk, . . . , (ρn, en) (25)

Subsubcase ek is if p then e′k else e′′k :

lemma D.31 Γn,k, ρk ` p : prop (26)

53

lemma D.31 Γn,k, ρk ` e′k : broadcast ik x : D.T (27)

lemma D.31 Γn,k, ρk ` e′′k : broadcast ik x : D.T (28)

We just need to apply progress to processes and program reduction.

26, 27, 28, lemma 4.3 if p then e′k else e′′k →n,k qk (29)

3, 4, 29, prog. red. P1 → (ρ1, e1), . . . , qk, . . . , (ρn, en) (30)

Subsubcase ek is e′k; e′′k :

lemma D.31 Γn,k, ρk ` e′k : skip (31)

lemma D.31 Γn,k, ρk ` e′′k : broadcast ik x : D.T (32)

From progress for processes applied to e′k we have:

31, lemma 4.3 e′k is skip or (ρk, e
′
k)→n,k (ρ′k, e

′′′
k) (33)

Subsubsubcase e′k is skip: Follows by simple application of process and program reduction rules:

33 e′k is skip (34)

32, 34, proc. red. (ρk, skip; e′′k)→n,k (ρk, e
′′
k) (35)

3, 4, 36, prog. red. P1 → (ρ1, e
′
k), . . . , (ρk, e

′′
k), . . . , (ρn, e

′
n) (36)

Subsubsubcase e′k reduces: Again a simple application of process and program reduction rules yields:

33 (ρk, e
′
k)→n,k (ρ′k, e

′′′
k) (37)

32, 37, proc. red. (ρk, (e
′
k; e′′k))→n,k (ρ′k, (e

′′′
k , e

′′
k)) (38)

3, 4, 38, prog. red. P1 → (ρ1, e
′
k), . . . , (ρ′k, (e

′′′
k , e

′′
k)), . . . , (ρn, e

′
n) (39)

Case the derivation ends with the message rule.

rule premise Γn ` l 6= m true (1)

rule premise Γn ` D : dtype (2)

According to inversion for expression formation lemma we have five cases for each of the two ej , em expressions.
Subcase el is send il i

′
l and em is receive im i′m and l < m.

lemma D.31 Γn ` rank = l true (3)

lemma D.31 Γn ` il = m true (4)

lemma D.31 Γn ` i′l : D (5)

lemma D.31 Γn ` im = l true (6)

lemma D.31 Γn ` rank = m true (7)

lemma D.31 Γn ` i′m : D ref (8)

4, lemma D.2 Γn,l, ρl ` il = m true (9)

9, lemma D.39 (ρl, il)↓n,k (ρ′l,m) : D (10)

10, il does not contain references il ↓n m (11)

By applying to (9-11) similar steps as for im:

steps 9-11, applied to im il ↓n m (12)

We can infer that (ρl, i
′
l) ↓n,l (ρ′l, v) : D and (ρm, i

′
m) ↓n,m (ρ′m, r) : D via weakening and that evaluation always succeeds

(lemma D.39):

5, lemma D.2 Γn,l, ρl ` i′l : D (13)

54

13, lemma D.39 (ρl, i
′
l)↓n,l (ρ′l, v) : D (14)

8, lemma D.2 Γn,m, ρm ` i′m : D ref (15)

15, lemma D.39 (ρm, i
′
m)↓n,m (ρ′m, r) : D (16)

Finally, we need to derive ε ` l 6= m true:

1, deducibility inversion Γn ` l 6= m : prop (17)

3, deducibility and prop inversions Γn ` l : int (18)

7, deducibility and prop inversions Γn ` m : int (19)

17, lemma D.3, truth formation ε ` l 6= m true (20)

And putting all together:

11–16, 20, form. q1, . . . , (ρl, send il i
′
l), . . . , qm−1, (ρm, receive im i′m), . . . , qn →

q1, . . . , (ρ
′
l, skip), . . . , qm−1, (ρ

′
m[r := v], skip), . . . , qn (21)

Subcase el is send il i
′
l and em is receive im i′m and l > m (from (1) we know that the case for l = m does not apply).

Similar to the case above.
Subcase Either el or em are not receive or send. We show the case for el, the other is similar.
Subsubcase el is let y : D1 = i1 in e

′
l

lemma D.31 Γn ` i1 : D1 (22)

lemma D.31 y 6∈ fv(message l mD) (23)

lemma D.31 Γn, y : D1 ` e′l : message l mD (24)

22, lemma, D.2 Γn,l, ρl ` i1 : D1 (25)

24, lemma D.26, lemma D.30 Γn,l, ρl, y : D1 ` e′l : message l mD (26)

By applying progress for processes:

23, 25, 26, lemma 4.3 (ρl, el)→n,l ql (27)

27, prog. red. skip1, . . . , (ρl, el), skipl+1, . . . , skipm−1, (ρm, em), . . . , skipn →
skip1, . . . , ql, skipl+1, . . . , skipm−1, (ρm, em), . . . , skipn (28)

Subsubcase el is if p then e1 else e2
From inversion of expression formation we get:

lemma D.31 Γn ` p : prop (29)

lemma D.31 Γn ` e1 : message l mD (30)

lemma D.31 Γn ` e2 : message l mD (31)

We weaken the context with ρl:

29, lemma D.2 Γn,l, ρl ` p : prop (32)

30, lemma D.26 Γn,l, ρl ` e1 : message l mD (33)

31, lemma D.26 Γn,l, ρl ` e2 : message l mD (34)

apply progress for processes:

32, 33, 34, lemma 4.3 (ρl, if p then e1 else e2)→n,l ql (35)

35, prog. red. skip1, . . . , (ρl, el), skipl+1, . . . , skipm−1, (ρm, em), . . . , skipn →
skip1, . . . , ql, skipl+1, . . . , skipm−1, (ρm, em), . . . , skipn (36)

Subsubcase el is e1; e2:

55

From inversion of expression formation and weakening we get:

lemma D.31 Γn ` e1 : skip (37)

lemma D.31 Γn ` e2 : message l mD (38)

37, lemma D.26 Γn,l, ρl ` e1 : skip (39)

38, lemma D.26 Γn,l, ρl ` e2 : message l mD (40)

From progress for processes we have that:

39, lemma 4.3 e1 is skip or (ρl, e1)→n,l (ρ′l, e3) (41)

Subsubsubcase e1 is skip: By applying process and program reduction as we in the previous case:

40, proc. red. (ρl, e1; e2)→n,l (ρl, e2) (42)

42, prog. red. skip1, . . . , (ρl, el), . . . , skipm−1, (ρm, em), . . . , skipn →
skip1, . . . , (ρl, e2), . . . , skipm−1, (ρm, em), . . . , skipn (43)

Subsubsubcase (ρl, e1)→n,l (ρ′l, e3): By applying process and program reductions we get:

40, proc. red. (ρl, e1; e2)→n,l (ρ′l, e3; e2) (44)

44, prog. red. skip1, . . . , (ρl, el), . . . , skipm−1, (ρm, em), . . . , skipn →
skip1, . . . , (ρ

′
l, e3; e2), . . . , skipm−1, (ρm, em), . . . , skipn (45)

56

