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ABSTRACT

Exploratory data analysis tries to discover novel dependen-
cies and unexpected patterns in large databases. Traditional-
ly, this process is manual and hypothesis-driven. However,
analysts can come short of patience and imagination. In
this paper, we introduce Claude, a hypothesis generator for
data warehouses. Claude follows a 2-step approach: (1) It
detects interesting views, by exploiting non-linear statisti-
cal dependencies between the dimensions and the measure.
(2) To explain its findings, it detects local patterns in these
views and describes them with SQL queries. Technically, we
derive a model of interestingness from fundamental informa-
tion theory. To exploit this model, we present aggressive ap-
proximations and heuristics, allowing Claude to be fast and
more accurate than state-of-art view selection algorithms.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining
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1. INTRODUCTION

Businesses and scientists willing to extract knowledge from
databases face a dilemma. On one hand, software editors
have commercialized quantity of visual Business Intelligence
tools, such as Tableau or Qlik. Yet, these rely almost en-
tirely on users’ expertise, intuition, and patience. In an ex-
ploratory scenario, when users know little about their data,
such tools can involve time-consuming cycles of trial and er-
ror. On the other hand, automated, machine learning meth-
ods have gained much popularity, as shown by the recent
success of industrial “data scientists”. Nevertheless, at the
time of writing this paper, these experts are still a rare and
expensive resource. Can we find a middle way? Can we de-
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sign a flexible, accessible method to automatically analyze
data warehouses?

Consider the following scenario. A government analyst
studies criminality in US cities. The database describes how
a measure, the number of crimes, varies along several dozen
dimensions, e.g., the population, unemployment rate, or lo-
cation. Which cities are prone to crime? Can we identify
causes, correlations, or patterns? For our analyst, inspect-
ing how every possible combination of dimensions correlates
with crime is close to impossible. But important obser-
vations could hide behind unexpected dependencies. Our
aim is to automatically generate hypotheses about what in-
fluences the measure. We want to synthesize SQL queries
which highlight what causes crime to vary, and how these
variations occur. Given such queries, even lay users could
explore their data and detect unexpected patterns.

We believe that this problem is extremely common in both
business and science, where multi-dimensional data ware-
houses have been deployed for years. Addressing it with
an automated method would allow analysts and researchers
to make discoveries more quickly, focusing on interpretation
rather than writing queries. Such a technique could also pro-
voke serendipitous findings, e.g., highlighting a surprising
correlation or confronting an ill-posed hypothesis. Besides,
the problem is getting more pressing as data warehouses
grow in size and complexity: manual exploration can turn
out to be a painful exercise when dealing with hundreds of
columns.

Automating data exploration is a difficult problem for two
reasons. First, how do we recognize “interesting” queries?
There is, to our knowledge, no universal measure of inte-
restingness. The challenge is to devise a theoretically well-
founded model, general enough to cover a wide range of use
cases. The second problem is efficiency: given a measure
of interest, how can we explore the space of all database
queries quickly enough to support large datasets? We must
design efficient methods to traverse all possible combinations
of dimensions.

Several semi-automated exploration frameworks were pro-
posed in the past, in the context of OLAP data cubes [17,
10]. They assumed that databases contained less than a
dozen well-known dimensions. The whole challenge was to
drill-in correctly, in order to locate “exceptions”, e.g., local
anomalies. We believe that many of these assumptions do
not hold anymore. In our model, databases can contain more
than a hundred dimensions with mixed types. Analysts have
little to no knowledge about the effects of these dimensions,
even less about their combination and their effect on a given
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Figure 1: Example view, with two points of interest. All
values are normalized.

measure. Therefore, our challenge is to depict a general pic-
ture of how the measure varies across any possible view on
the database.

In this paper, we introduce Claude, a hypothesis generator
for data warehouses. Claude’s aim is to detect interesting
views, i.e., interesting combination of dimensions, and high-
light local patterns in these views. We make three contribu-
tions: (1) We derive a model of what makes a view “interest-
ing” from fundamental information theory. (2) We present
aggressive methods to detect good views in large databases,
based on approximations and greedy search. (3) We apply
our model to real-life situations, involving either humans
(data exploration by subgroup discovery) or automatic pre-
dictors (classification algorithms).

The rest of this paper is organized as follows. Section 2
gives an overview of our model, which we refine in Section 3.
Sections 4 describes how to compute the quality a view, Sec-
tion 5 presents our view detection algorithm, and Section 6
introduces how to detect points of interest. We present our
experiments in Section 7, related work in Section 8 and con-
clude in Section 9.

2. PROBLEM FORMULATION

Let us define our problem setting. We assume that the
data is given in flat database table DB. This table contains
two types of columns: the dimensions Xo,...,Xn and a
measure (or target) T. This model is logical, we are obliv-
ious to the physical structure of the data. Our aim is to
describe how the measure varies across the dimensions. To
do so, we want to detect views, i.e. interesting selections of
dimensions. We also want to show why these views are in-
teresting, by detecting points of interests (POI). A point
of interest is a region in the view where the measure behaves
unusually.

We demonstrate these notions with a running example.
We want to understand what causes crime in US commu-
nities. We have a database of cities with several dozen

1322

socio-economic indicators (for instance, employment, age, or
diplomas). For each city we also have the annual number of
violent crimes: this is our target variable. Figure 1 presents
an example view. The leftmost scatterplot pictures the di-
mensions Unemployment and Population Density. Why did
Claude pick these two columns? The two POIs provide ex-
planations. Cities with high densities and high unemploy-
ment rates have more crimes (cf. POI). In contrast, cities
with low densities and lower employment rates tend to be
safer (cf. POIy).

In our example, Unemployment and Population Density
are interesting because their combination influences the tar-
get Crime. We can measure this relationship with statistical
dependence. This is the most basic assumption behind our
study: a view is interesting if its dimensions are jointly de-
pendent to the measure. We evaluate the degree of this
dependence with our notion of view strength.

DEFINITION 1. Consider a view V = {X1,...,Xp}, the
target T, and measure of statistical dependence &. We de-
fine the strength of the view V' as follows:

o(V)=6(X1,...,Xp;T) (1)

We assume that each database column X contains samples
from a random variable X and measure the dependence ac-
cordingly.

Observe the two POls in Figure 1. The measure’s distri-
bution in these regions differs from its distribution in the
rest of the database: it is skewed to the right in POI, it
is skewed to the left in POI;. We name this property POI
divergence. Intuitively, a region is divergent if the target
behaves unexpectedly for its tuples. Consider a view based
on the random variables X1, ..., Xp, with respective sample
spaces 1,...,92p. The set R C Q1 X ... X Qp represents
a region in this view. The random variable 7 represents
the target for the whole database. The random variable
[T1(Xi1,...,Xp) € R] represents the target for the tuples
within R. We shorten this notation to 7|R. The region R is
a good point of interest if 7|R and T have large differences
in distribution.

DEFINITION 2. Let R C Q1 X ... X Qp represent a region
in the view {X1,...,Xp}, and let T represent our target
variable. The function ® measures the dissimilarity between
two probability distributions. We define R’s divergence:

0(R) =D(TIR;T) (2)

Before we present our instantiation of strength and diver-
gence in Section 3, we formulate our general problem state-
ment:

PROBLEM 1. Consider a dataset DB, a target column T,
a measure of statistical dependence & and a measure of dis-
tribution dissimilarity ©. Find the top K strongest views
with at most D columns. For each of these views, find the
top P divergent POls.

To solve this problem, Claude operates in two steps. First,
it detects K strong sets of columns. We call this step column
search. Then, it extracts P POIs for each view. This is the
POI detection step.

In the rest of this paper, we will illustrate Claude’s views
with mathematical notation or visualizations. In practice
however, Claude expresses its recommendations with SQL
queries. It returns points of interest as follows:



SELECT X1, , Xd, T

FROM DB

WHERE X1 BETWEEN [L1, H1i]
AND ...

AND Xd BETWEEN [Ld, Hd]

In this query, X1,...,Xd represent the variables of the view,
[L1, H1]...[Ln, Hn] represents the bounds of the POI,
and T represents the target.

3. INTERESTINGNESS MODEL

We presented views and POIs without specifying any mea-
sure of dependence & or dissimilarity ®. In the following
section, we instantiate these quantities using fundamental
information theory.

3.1 View Strength

A set of dimensions is interesting if its columns are jointly
dependent to the target. To quantify this dependence, we
use mutual information. This measure presents many advan-
tages: it is sensible to non-linear dependences, it can cope
with any kind of variables, and it is practical to compute.

The entropy H(X) of a variable X describes its variabi-
lity [3]. If X has a constant value, then H(X) = 0. In
contrast, if X is highly unpredictable (e.g., X is the outcome
of flipping a perfectly balanced coin) then H(X) is maximal.
Formally, if X is a discrete variable with sample space 2,

then we have:
=-> P&
zeN

) -log P(X = x) (3)

If X is continuous with density p, we define it as follows:

“+oo
B =~ [ pla) - logp(a)de

= (4)
We can use the entropy to describe how variables interact.
If two variables are dependent, then conditioning (e.g., re-
stricting the range of values) on one variable will affect the
other. In our example, cities with high unemployment have
high levels of crime. Therefore, conditioning on the vari-
able Unemployment decreases the uncertainty of the variable
Crime. This causes a loss in entropy, and the value of this
loss is the mutual information. Formally, if X and 7 are two
random variables, the expression H (7 |X = x) describes the
entropy of T given X = z. If we average this expression
over all possible values of x, we obtain the conditional en-
tropy: H(T|X) = E.[H(T|X = z)]. We define the mutual
information I as follows:

I(X;7T) = H(T) - ()

The mutual information is the loss in entropy between T
and T|X. It is symmetric, and it is always positive or null.
We can generalize this quantity to joint distributions, which
gives us our new, refined version of view strength:

o(V)=I(X1,...,Xp;T) (6)

A view is strong if the mutual information between the tar-
get and its dimensions is high.

In practice, we do not know the distributions of the vari-
ables X,,, but we have access to the samples X,,. Therefore,
we estimate the strength. If the variables are discrete, we
set P(X, = z) to be the proportion of tuples with X,, = z.

H(T|X)
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Figure 2: Example of view with three discrete variables
V = {X1, X2, X3}. The average divergence of the cells §(x)
equals the strength of the view o(V).

We “plug” this estimator in Equations 3, to obtain the es-
timated entropy H(X). We then use this approximation in
Equation 5. Dealing with continuous vari‘ables is more diffi-
cult, for two reasons. First, estimating the density function
in Equation 4 is costly, especially with multivariate distri-
butions. Second, it is not clear how to deal with mixed
datasets, e.g. continuous and discrete dimensions, or dis-
crete target and continuous dimensions. Therefore, Claude
bins all the continuous variables, and treats them like dis-
crete columns.

3.2 Points of Interest and Divergence

Let us now refine our definition of divergence. We es-
tablished that the divergence of a POI is the dissimilarity
between the target’s distribution within this POI, and the
target’s distribution in the whole database. To measure this
dissimilarity, we use the Kullback-Leibler divergence (KL).
The KL divergence measures the difference between two
probability distributions. It is null if the two distributions
are similar, and it grows when the distributions differ. For-
mally, if X and ) are two discrete random variables with
the same sample space €2, we have:

=Y P&

zeQ

o P(X =x)
= g; _—
SPV =1
As Claude discretizes the continuous variables, we ignore the
continuous case (cf. Section 3.1). Our region R is a good
point of interest if KL(T|R || T) is as large as possible:

5(R)=KL(T|R| T)

LX) (7)

(®)

In our model, view strength and POI divergence are closely

related. Consider a view V', made of discrete variables. If
we compute the divergence of each tuple and average the
results, we obtain the V’s strength. We illustrate this prop-
erty with Figure 2. Therefore, strength and divergence are
“two sides of the same coin”. We formalize this property
with the lemma below.

LEMMA 1. If V is a view with d discrete variables and
x € X ...0p is a tuple from this view, then:

o(V) = Ex[6({x})] (9)

PROOF. The random vector X describes the columns of
V. Applying Bayes’s theorem to Cover and Thomas, Equa-
tion 2.35 [3], we obtain I(X;T) = Ex[KL(T|{x} || T')]. Sub-
stituting the left side with Equation 6, and the right side
with Equation 8, we obtain the lemma. [J



Suppose that we obtained a view V by discretizing a set of
continuous variables V*. The average divergence of V’s bins
equals the strength of V', but not that of V*. Fortunately,
these quantities converge as the bins get small.

LEMMA 2. The view V' is a set of continuous variables,
VY is a discretized version of V' in which each variable is
binned with bin size b, and x° is a tuple from V°. We have
Eyb [6({x"})] = o(V) as b— 0.

PROOF. Let the D-dimensional random vector X describe
the (continuous) variables of V, and X° describe the (dis-
crete) variables of V®. By generalizing Cover and Thomas,
Theorem 8.3.1 [3], we infer that H(X®) + D -logb — H(X)
as b — 0 . Thus, using Equation 5, we have I(X®,7) —
I(X,T). We conclude that o(V?) — (V). We apply Equa-
tion 9 to obtain the lemma. []

4. APPROXIMATE VIEW STRENGTH

We now have a functional definition of view strength. At
this point, we could easily envision a greedy heuristic to
detect the top K views in a database. We start with simple
views, based on one dimension. We then add columns, one
by one. To test if a column X is worth adding to a view V,
we compute the strength o(V U {X}). If the result is high
enough, we keep the candidate. If not, we discard it. We
will present such an algorithm in Section 5. However, we
must first discuss how to compute o(V U {X}).

Equations 6 and 9 describe several methods to compute
the strength of a view. Nevertheless, none of these fit ite-
rative algorithms. Suppose that we wish to compute the
strength of a view V, then the strength of another view
V U{X}. These equations give us no opportunity to share
computations, we must obtain o(V) and o(V U {X}) sepa-
rately. Furthermore, both expressions are expensive, as they
involve group-by queries over the whole database. There-
fore, we need an alternative recursive formulation for the
strength of a view:

LEMMA 3. Consider a viewV = {X1,..
get T'. For any column Xy1:

U(V U {Xi+1}) = O'(V) +I(Xi+1;T‘X1, ..

ProOOF. This lemma is a consequence of the Mutual Infor-
mation’s chain rule, Cover and Thomas, Theorem 2.5.2 [3].

., X}, and a tar-

&) (10)

This lemma describes how adding a column impacts the
strength of a view. For any random variables X;, X;, T,
the notation I(X;;7T|X;) expresses the conditional mutual
information. The conditional mutual information is a con-
ditioned version of the mutual information: it describes the
dependency between X; and T given restrictions on X;. To
obtain it, we compute the mutual information between X
and 7T given all the possible values of X;, and average the
results. Formally:

(X5 T|X:) = B, [1(X55T)| X = 23)] (11)

The influence of X; can go either way: it can weaken the
dependency between X; and T, or it can strengthen it. The
conditional mutual information is positive or null, and it is
bounded by the entropy of X; and T

Unfortunately, we cannot directly exploit Lemma 3 in
our algorithm: estimating I(Xjy1;7|X1,..., ;) for every
candidate {X1,...,Xi4+1} is as expensive as computing the

O
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Figure 3: Example of co-dependency graph with 5 dimen-
sions. To approximate the strength of VU{ X5}, we add the
weight of edge (X4, X5) to V’s strength - in this case 0.5.

strength directly. However, we can use an approximation.
Recall that V = {X1,..., X}, we exploit the following ob-
servation:
o(VU{Xit1}) = o(V) + I(Xig1; T| X, . ..
~o(V)+ 1(Xiga; T|X)

%) (12)

The idea behind this approximation is naive: we assume that
I(Xig1; T\ X, ., ) &= I(Xig1;T)X). We simply ignore
the high order dependencies. Thanks to this assumption,
we can compute the strength of our candidates much faster.

Our new approach operates in two steps, an offline step
and an online step. Offline, we compute the conditional mu-
tual information I(X;;7|X;) between every pair of variable
(Xi, X;). We call the resulting structure co-dependency
graph. In this graph, the vertices represent the dimensions,
and the edges represent the conditional mutual information.
The co-dependency graph is oriented and weighted. Online,
we run a greedy algorithm as described previously, but we
use Equation 12 to evaluate new candidates. To compute the
strength of a view V U {X;41} with V ={X4,..., Xi} , we
fetch the value of I(X;+1; T|X;) in the co-dependency graph
and add it to V'’s strength. We illustrate this method in Fig-
ure 3. Previously, computing o(V U{X;;+1}) involved heavy
groupings and aggregations on the whole dataset. Now, we
simply perform a lookup in a graph with N edges, where NV
is the number of columns in the database.

Note that our approximation has a drawback: it depends
on the order in which we include the variables in the view.
If we enrich a view by successively adding variables X, X»
and X3, then we obtain a different strength than if we incor-
porate X3, Xo then X;. Similarly, in Equation 12, we obtain
different approximations if we change the indexing of the di-
mensions X, ..., X;. For more robustness, we introduce a
“pessimistic” variant:

G'(V U {X7.+1}) x~ min
nell,i]
Instead of adding the strength I(Xjy1;7T|X;), where X is
the last variable inserted, we add I(X;41;7T|X,), where X,
is the variable which weakens X;11 the most. We will use
this version in the rest of the paper.

o(V) 4+ I(Xig1; T|AR) (13)

S. PRACTICAL COLUMN SELECTION

This section presents our view search strategy. Our aim
is to find the top K views with at most D columns. If our
database includes N dimensions, our search space contains
>onenN (N) = 2" combinations, which is clearly impractical.

n
Therefore, we resort to a greedy, level-wise heuristic.



DB unemployment, density, age, income, rent, ageHouses,
medicalCosts, policeRequests, carsinsured, divorced, ...
| Level1l |  Level2 | Level 3

unemploy. 1.2 unemploy., income 1.4 unemploy., income, density 1.4 |
@
o
density 1.1 unemploy., density 1.3 unemploy., income, age 133
income 0.7 unemploy., income 1.1 unemploy., density, age 1.1 aD,
Q
g
age 0.4 unemploy., age 0.9 unemploy., density, rent 1.0 %
Q

Figure 4: Example of Beam Search, with D = 3 and beam
size B =2

Algorithm 1 Beam Search for view selection

function TorVIEWS(K, D, B, DB)
Beam « {}
for i € [1,D] do
Cand « {}, Scores «+ {}
for V € Beam do
for X € columns(DB) do
Cand + Cand U {V U{X}}
Scores < Scores Uo(V U{X})
end for
end for
Beam < findTopK (Cand, Scores, B)
end for
return findTopK(Cand, Scores, K)
end function

2 4 - 2

oy

R +
s
- 4

oty X, T X

»
>

Figure 5: Limit cases of the beam search strategy. The
variables X7 and X2 represent two dimensions. The symbol
and color of the plots represent the value of the target.

5.1 Base algorithm

Our algorithm is based on beam search, illustrated in Fig-
ure 4. To initialize the algorithm, we compute the strength
of each variable separately. We sort the candidates, and
keep the top B elements. We call this set the beam, greyed
in the figure. Then, we generate new candidates, by ap-
pending each variable of the database to each variable in
the beam. We obtain views with two columns. We compute
the strength of these views, keep the top B strongest and
discard the others. This gives us a new beam. We repeat the
procedure until the views in the beam contain D variables,
or the views stop improving. Algorithm 1 presents the full
procedure.

Thanks to our strategy, we avoid exploring an exponen-
tially large search space. Instead, we compute the strengths
of at most N.B candidates at each level. The size of the
beam lets us control the trade-off between accuracy and run-
time. With a small beam, we evaluate less candidates, and
thus terminate earlier. Oppositely, a large beam lets us ex-
plore more candidates. Let us explain why this is necessary.
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R

Figure 6: Beam search augmented with a deduplication step.
We display in italic the size of the intermediate results. Note
that N-B > B’ > B.
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At each level of the algorithm, we discard the views which
are too weak to reach the top B candidates. We assume
that if a combination of columns is weak at level 4, then
it will be weak at all subsequent levels. Unfortunately, this
assumption does not hold: we can form strong views by com-
bining weak columns; there are “jumps” in the search space.
Consider for instance the two classic scenarios pictured in
Figure 5. The dimensions X; and X5 taken in isolation are
weak: we can infer no useful information about the target
from either of them. However, their combination is very in-
teresting. Equivalently, the views {Xi} and {X>} have a
very poor strength, but {X1, X5} is an excellent candidate.
If the beam is too tight, we may discard {X1} and {X>}
early because of low scores. We lose the opportunity to dis-
cover {X1, X2}. Therefore, we recommend to set B > K.
During our experiments, we obtained excellent results with
B > 2 K (cf. Section 7.3).

5.2 Approximations and Refinements

In total, we evaluate the strength of B - N candidates for
the D levels of the beam search. To carry out this computa-
tion, we can either use the exact formulation of strength, as
shown in Equation 6, or use the approximation scheme pre-
sented in Section 4. In Claude’s implementation, we opted
for a hybrid approach. We perform the first two levels of
search with the exact strength (which is equivalent to build-
ing the co-dependency graph). Then, for all subsequent
steps, we use the approximations. Finally, we revert to the
exact strength for the top k ranking, at the very end of the
procedure. Thanks to this method, we obtain significant
speed gains at little accuracy cost.

5.3 Deduplication

Our algorithm seeks strong views. In some cases however,
it may be preferable to have weaker but more diverse views.
To deal with those cases, we introduce an optional dedupli-
cation step, during which we reduce the number of views
with an algorithm from the literature. As pictured in Fig-
ure 6, we run this procedure at the end of each beam search
iteration. By definition, deduplication reduces the number
of candidates. Therefore, to obtain B views at the end of
the algorithm, we must generate B’ > B views beforehand.
A low B’ yields more variety, while a high B’ may lead to
stronger views.

Authors have proposed quantity of methods to dedupli-
cate itemsets in the pattern mining literature [25, 21]. We
opted for a simple compression-based approach. First, we
compute the dissimilarity between every pair of views with
the Jaccard dissimilarity. Given two views V; and Vj, it
is defined as follows: d;(V;,V;) = |VinV;|/|V: U V;|. We
then cluster the resulting matrix with Partitioning Around
Medoids, an algorithm of type k-medoids. We refer the in-
terested reader to the literature for more details [11].



Dataset Columns Rows  #Views #Variables View Score (normalized)
MuskMolecules 167 6,600 22 18 Police.Overtime, Pct.Vacant.Boarded, 0.51
Crime 128 1,996 20 17 Pct.Race.White

BreastCancer 34 234 10 13 Pct.Families.2.Parents, Pct.Race.White, 0.49

PenDigits 17 7,496 9 10 Police.Requests.Per.Officer
BankMarketing 17 45,213 11 8 Pct.Police. White, Pct.Police.Minority, 0.37

LetterRecog 16 20,000 10 12 Pct.Vacant.House.Boarded
USCensus 14 32,578 10 7 Pct.Empl.Profes.Services, 0.37

MAGICTelescope 11 19,022 1 10 Pct.Empl.Manual, Pct.Police.On.Patrol
Pct.Retired, Pct.Use.Public.Transports, 0.35
Table 1: Characteristics of the datasets. The last two Pct.Police.On.Patrol

Pct.Recently.Moved, 0.34

columns are used for comparison with 4S, cf. Section 7.3.

6. DETECTING POINTS OF INTEREST

We previously described how to find strong views. We
now explain how to identify P points of interests for each of
these views.

We instantiate POIs by a well-known analysis called sub-
group discovery [13, 23], which can be formulated as follows:
given a set of tuples, a target column and a measure of excep-
tionality, detect sets of tuples for which the target behaves
exceptionally. In our case, we instantiate the exceptionality
measure with divergence.

As pointed our by van Leeuwen and Knobbe [20], we can
also solve the subgroup discovery problem with beam search.
Let V represent the view to analyze. As the variables are
binned, can form a grid over V, as shown in Figure 2. We
denote by b the number of bins for each variable. To initialize
the algorithm, we compute the divergence of each cell and
keep the top Bpor most divergent. We obtain our beam. We
then “drill” into each of these cells: we decompose them into
smaller cells by splitting the edges into b bins. We evaluate
the new candidates and keep the top Bpor most divergent.
We reiterate until the algorithm converges. As shown in the
subgroup discovery literature [23, 20], we can generalize this
method to binary and nominal data. For each distinct level
xz; of a variable X, we create two groups: tuples for which
X = z;, and tuples for which X # x;.

In practice, KL-based approaches tends to favor smaller
regions. Therefore, Beam Search may converge late, or not
at all. A practical solution is to set a minimum count
threshold. Alternatively, we can alter our model to take
the size into account [20]. Let R represents a region with
count |R|, and |DB| represent the number of tuples in the
database. We introduce the weighted deviation d,(R) =
|R|/|DB| x §(R). This new score introduces a penalty for
small POlIs.

7. EXPERIMENTS

We now present our experimental results. All our experi-
ments are based on 8 datasets from the UCI Repository, de-
scribed in Table 1. The files are freely available online!. In
several experiments, we report the normalized view strength
instead of the usual strength; if V' is a view with entropy
H(V), we obtain it as follows: onorm (V) =c(V)/H(V).

7.1 Detailed Example: Crimes in the US

In this section, we showcase Claude with a real-life exam-
ple: we analyze the Communities and Crime dataset form
the UCI repository?. Our aim is to understand which US

'archive.ics.uci.edu/ml/
2archive.ics.uci.edu/ml/datasets/Communities+and+Crime
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Population.Density, Police.Cars

Table 2: Example of views generated by Claude for the US
Crime dataset.
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Figure 7: Heatmaps of the US Crime Dataset, based on
Claude’s output. Each box represents a Point of Interest.

cities are subject to violent crimes. Our database compiles
crime data and socio-economic indicators about 1994 com-
munities, with a total of 128 variables. The data comes
mostly from the 90’s, and it was provided by official US
sources - among others, the 1990 US census and the 1995
FBI Uniform Crime Report. All the variables are normal-
ized to have a minimum of 0 and a maximum of 100.

We generated K = 100 views with up to D = 3 dimen-
sions, both with and without deduplication. We present a
selection of views in Table 2, along with 2-dimension heat
maps in Figure 7. Observe that strong views have a visual
signature: in the top two maps, the blue and red areas are
neatly separated. In the bottom two views, the distinction
is less clear.
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USCensus MAGICTelescope PenDigits
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Figure 8: Strength vs. Classification accuracy for 500 ran-
dom views. We obtained the blue and red lines with simple
linear regression.

The first view of Table 2 is the best one we found: Police.
Overtime, Pct.Race.White, Pct.Vacant.Boarded. It has
a score of 0.51. which means that these three variables con-
tain 51% of the target’s information. The columns Police.
Overtime and Pct.White.Race respectively describe the av-
erage time overworked by the police and the percentage of
caucasian population. The third variable, Pct.Vacant .Boar-
ded was surprising to us: it describes the percentage of va-
cant houses which are boarded up. How does this relate to
crime? We could assume that boarded houses are associated
with long term abandon, and thus, poverty. The top-left
plot of Figure 7 shows the relation between race, boarded
houses and crime. Observe that the variables complement
each other: a high proportion of caucasians may or may not
lead to low crime. However, a high proportion of caucasians
combined with a low rate of boarded house correspond to
safe areas, while little caucasians and many boarded houses
correspond to more violent communities.

Our second view shows that cities with more monoparental
families tend to be more violent: the correlation is clearly
visible, and both POIs point to the bottom of the chart.
However, close inspection also reveals surprises: a few com-
munities have a relatively high number of two-parents fami-
lies, but also high indicators of police requests and crime (in
the top right corner of the chart). Manual queries reveals
that many of these cities are located in the suburbs of Los
Angeles, and contain a majority of Hispanics. Does this ex-
plain the peculiarity? We leave this question open for future
investigations. We see that some findings come from the re-
commendations directly while others are serendipitous. But
in both cases, Claude lets us discover “nuggets” with little
prior knowledge and few assumptions.

7.2 View Strength and Prediction

In this section, we show experimentally that our notion of
view strength “works”, e.g. that strong views effectively pro-
vide information about the target column. To verify this as-
sumption, we simulate users with statistical classifiers. Con-
sider a view V over a database. If a classifier can predict
the value of the target from V’s columns, then V is informa-
tive. Oppositely, if the classifier fails, then V' is potentially
uninteresting. In a nutshell, we should observe a positive
correlation between views strength and classification accu-
racy.

We now detail our experiment. We chose three datasets
from the UCI repository. For each dataset, we generated
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500 random views and measured their strengths. We then
trained classifiers on each of these views, and measured their
performance. We report the results in Figure 8. We chose
two classification algorithms: Naive Bayes, and 5-Nearest
Neighbors. We chose those because they contain no built-in
mechanism to filter out irrelevant variables (as opposed to,
e.g., decision trees). We measure classification performance
with 5-fold validation, to avoid the effects of overfitting.

In all three cases, we observe a positive correlation be-
tween the strengths of the views and the accuracy of the
predictions. We confirm these observations with statistical
tests: the coefficients of determination (R?) vary between
0.11 and 0.84, which indicates the presence of a trend (de-
spite some variability). Furthermore, the p-values associated
to the coefficients are all under 1073, this gives us excellent
confidence that the strength influences positively the predic-
tion accuracy. In conclusion, strong views are indeed more
instructive.

7.3 View Selection

We now evaluate Claude’s output and runtime in detail.
In this section, we verify if Claude’s algorithm produces good
views in a short amount of time. To do so, we compare it to
four methods, three of which come from the machine learn-
ing literature. Our first baseline, Exact, is similar to Claude,
but we removed the approximation scheme presented in 4 -
instead we compute the exact the mutual information, as in
Equation 6 The method should be slower, but more accu-
rate.

The second algorithm, Clique, is a top-down approach
inspired by recent work on pattern mining [24]. We build a
graph where each vertex ¢ represents a column D;, and each
edge (7, j) represents the view {D;, D;}. We then eliminate
all the edges except those which represent the top B views.
To detect views with D > 2 columns, we seek cliques in this
degenerated graph. We used the igraph package from R.
We expect this algorithm to be very fast, but less accurate.

The third method, Wrap 5-NN, is a classic feature selec-
tion algorithm [9]. The idea is to train a 5-Nearest Neighbor
classifier with increasingly large sets of variables. We first
test each variable separately, and keep the column which
led to the best prediction. Then we keep adding variables in
a breadth-first manner, until the quality of the predictions
stops increasing or we reach n variables. Our implementa-
tion is based on the class package from R. We modified the
original algorithm to maintain and update ¢ distinct sets of
variables instead of just one. We chose the nearest neighbor
algorithm because it is fast, and it gave us good performance,
as shown in 7.2. We expect this algorithm to be very slow,
but close to optimal.

Finally, the last method, 4S is a state-of-the-art subspace
search method from the unsupervised learning literature [14].
The aim of the algorithm is to detect “interesting” subspaces
in large databases, independently of a target variable. To
do so, it seeks groups of variables which are mutually corre-
lated, with sketches and graph-based techniques. We used
the author’s implementation, written in Java. We expect
the algorithm to be very fast and reasonably accurate.

We use 8 public datasets, presented in Section 7. For a fair
comparison, we must ensure that each algorithm generates
the same number of views (K) with the same number of
variables (D). However, we have no way to specify these
parameters a priori with 4S, because the algorithm has a
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Figure 10: Execution time of the View Selection algorithms. A X symbol indicates that the experiment did not finish within

3,600 seconds.

built-in mechanism to pick optimal values. Therefore, we
run 48 first on each dataset, we let it chose K and D, and
we use these values for the remaining algorithms. We report
the obtained parameters in Table 1.

We implemented Claude in R, except for some information
theory primitives written in C. For practical reasons, we
interrupted all the experiments which lasted more than 1
hour. Our test system is based on a 3.40 GHz Intel(R)
Core(TM) i7-2600 processor. It is equipped with 16 GB
RAM, but the Java heap space is limited to 8 GB. The
operating system is Fedora 16.

Accuracy. In Figure 9, we compare the quality of the
views returned by each algorithm. For each competitor,
we generate g views with n variables, train a classifier on
each view and measure the quality of the predictions. For
the classification, we use both Naive Bayes and 5-Nearest
Neighbors, and report the highest score. We measure accu-
racy with the F1 score on 5-fold cross validation; higher is
better.

The method Wrap 5-NN comes first for all the datasets
on which it completed. This is not surprising since the
algorithm optimizes exactly what we measure: Wrap 5-NN
is our “gold standard”. Our two algorithms, Claude and
Exhaustive, come very close. This indicates that both algo-
rithms find good views, and that our approximation scheme
works correctly. The algorithms 4S and Clique come much
lower. As 4S8 is completely unsupervised, we cannot expect
it to perform as well as the other approaches. The assump-
tions behind Clique are apparently too naive.

Runtime. Figure 10 shows the runtime of our exper-
iments. The algorithms Exact and Wrap 5-NN are orders
of magnitude slower than the other approaches. The re-
maining three approaches are comparable: depending on
the datasets, either Clique or 4S come first. Claude comes
first for MuskMolecules, and close second for all the other
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Figure 11: Impact of the beam size on the execution time
and view strength. For each dataset, we generated 25 views
with beam size 25, 50, 100 and 250. The points represent the
medium scores, the bars represent the lowest and greatest
scores.

datasets. In conclusion, Claude is comparable to its com-
petitors in terms of runtime, but it generates better views.

Impact of the beam size. Figure 11 shows the impact
of the beam size B on Claude’s performance, for 4 databases.
To obtain these plots, we ran Claude with K = 25 and
D = 5, and varied B between 25 and 250. We observe
that smaller beams lead to lower execution times, while
larger beam lead to stronger views. However, the heuris-
tic converges fast: we observe little to no improvement for
B greater than 50.

Impact of the deduplication. We show the impact of
our deduplication strategy in Figure 12. We ran Claude with
K =25 and D = 5 and increased the level of deduplication,
i.e., varied the value of B’ between B and N.B (cf. Section
5.3). A level of 0% means that B = B. A level of 100%
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Figure 12: Impact of the deduplication. We generated 25
views for each dataset. The y-axis presents the average Jac-
card dissimilarity between every pair of views.

means that B’ = N.B. To measure the diversity of the
views, we measured the Jaccard dissimilarity between every
pair of views and averaged the results. We observe that the
strategy works in all four cases, but with different levels of
efficiency. In the BankMarketing case, our strategy almost
doubles the pairwise dissimilarity of the views. The effect is
much lighter on datasets with few columns, such as USCensus
and MAGICTelescope.

7.4 POI Detection

In this section, we evaluate Claude’s POI detection strat-
egy. We compare two approaches. The first approach is the
algorithm presented in the paper: first we search K views,
then we return P POIls per view. The second approach,
FullSpace, is the method used in much of the recent Sub-
group Discovery literature [20, 7]. The idea is to apply Beam
Search on the whole database directly. Instead of seeking P
POIs in K projections, we seek K.P selections from the full
column space; we skip the view selection step. We use the
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Claude is much faster than FullSpace. The difference grows
with the number of columns: the runtimes are almost sim-
ilar for datasets with few columns (MAGICTelescope), but
Claude is considerably faster for larger databases (more than
an order of magnitude difference for MuskMolecules). This
is a positive side-effect of our approach: decoupling view
search and POI extraction allows us to find subgroups faster
in high dimension datasets.

8. RELATED WORK

SQL Query Recommendation. We identify two types
of approaches: human-driven systems and data-driven sys-
tems. Human-driven systems learn from user feedback. For
instance, Chatzopoulou et al. make recommendations from
query logs, similarly to search engines [2]. In Explore-by-
Example, the system infers queries from examples provided
by the user [5]. With Charles, the engine decomposes user
queries into smaller queries, which can then be decomposed
further [18]. Sarawagi’s method builds a maximum entropy
model over the database from the user’s history [16]. Boni-
fati et al. propose a similar method to recommend joins [1].
Claude competes with neither of these approaches, since it
uses the content of the database only.

Our work is closer data-driven data recommendation. The
general idea is to build a statistical model of the database,
and find regions which behave unexpectedly. Sarawagi et al.



have published seminal work on this topic [17]. Their system
requires that the data is organized in an OLAP cube (with
hierarchical dimensions), it supposes that the users know
which variables to use, and it seeks thin-grained deviations.
Oppositely, our system uses regular tables, it recommends
views (not only selections) and it seeks large trends. Sim-
ilarly, constrained gradient analysis [10, 6] focuses only on
hierarchical data cubes. More recently, Dash et al. have
proposed a method to reveal surprising subsets in a faceted
search context [4]. This method is related to Claude, but it
targets document search, it does not recommend views.

Projection Search. Authors from the data visualization
literature have proposed methods to detect the “best” pro-
jections of multidimensional data sets, such as Projection
Pursuit [8], Scagnostics [22], or Tatu et al.’s relevance mea-
sures [19]. Such methods would form excellent complements
for Claude’s recommendations. Nevertheless, most of them
focus on 2-dimensional scatterplots, are limited to continu-
ous variables, and involve materializing and analyzing every
possible 2D projection of the data.

Feature Selection, Subspace Search. Choosing which
variables to use for classification or regression is a crucial
problem, for which dozens of methods were proposed [9].
Similarly to Claude, some of these methods rely on mutual
information [15]. Nevertheless, the objective is different. A
feature selection algorithm seeks one set of variables, on
which a statistical predictor will perform optimally. Claude
seeks several, small sets of variables, simple enough to be in-
terpreted by a humans. In fact, Claude is halfway between
inference and exploration. On the unsupervised learning
side, our work is close to subspace search. The idea is de-
tect subspaces where the data is clustered distinctly [12, 14].
We compare Claude to state-of-the-art methods in our Ex-
periments section.

9. CONCLUSION

We formalized what makes a query “interesting”, using
the mutual information and the Kullback-Leibler divergence.
We presented practical methods to detect these queries, us-
ing carefully designed approximations. Finally, we presented
and evaluated Claude, a system based on these ideas. The
methods we developed for this study have broader applica-
tions than the strict realm of query recommendation. Our
column selection scheme competes with state-of-the-art fea-
ture selection methods. Also, the idea to decouple column
selection selection from subgroup search could benefit a wide
range of subgroup discovery algorithms.

We are genuinely excited about the possible extensions
of this study. Future work includes dealing explicitly with
the structure of the data, e.g., hierarchical dimensions and
relational joins. We will study how to integrate Claude more
tightly with visualizations, for a fully interactive experience.
Finally, we will refine our framework with causation models.
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