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ABSTRACT
Meta paths are good mechanisms to improve the quality of graph
analysis on heterogeneous information networks. This paper presents
a meta path graph clustering framework, VEPathCluster, that com-
bines meta path vertex-centric clustering with meta path edge-centric
clustering for improving the clustering quality of heterogeneous
networks. First, we propose an edge-centric path graph model to
capture the meta-path dependencies between pairwise path edges.
We model a heterogeneous network containing M types of meta
paths as M vertex-centric path graphs and M edge-centric path
graphs. Second, we propose a clustering-based multigraph model
to capture the fine-grained clustering-based relationships between
pairwise vertices and between pairwise path edges. We perfor-
m clustering analysis on both a unified vertex-centric path graph
and each edge-centric path graph to generate vertex clustering and
edge clusterings of the original heterogeneous network respective-
ly. Third, a reinforcement algorithm is provided to tightly integrate
vertex-centric clustering and edge-centric clustering by mutually
enhancing each other. Finally, an iterative learning strategy is p-
resented to dynamically refine both vertex-centric clustering and
edge-centric clustering by continuously learning the contributions
and adjusting the weights of different path graphs.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining

Keywords
Meta Path Graph Clustering; Vertex/Edge-centric Path Graph/Multigraph;
Edge-centric Random Walk; Vertex/Edge-centric Clustering

1. INTRODUCTION
Heterogeneous information networks are graphs with heteroge-

neous types of entities and links. A meta path is a path connecting
multiple types of entities through a sequence of heterogeneous meta
links, representing different kinds of semantic relations among dif-
ferent types of entities. For example, DBLP dataset has four types
of entities: authors (A), publishing venues (V), papers (P) and pa-
per terms (T). Figure 1 (a) gives nine example meta paths between
authors in the DBLP dataset, each is composed of three types of
meta links: A-P, V-P and T-P, representing different types of rela-
tionships between authors. More meta paths between authors can
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(b) Example Vertex-centric Path Graph
Figure 1: Example Meta Paths and Path Graphs from DBLP

be generated through link combination and propagation. The meta
path A-P-A captures the coauthor relationship, whereas the path
A-P-V-P-A represents the relationship between a pair of authors
through their papers published on the common venues. For each
type of meta paths, we can construct a vertex-centric path graph
to capture an individual type of relationships between authors. For
example, Figure 1 (b) shows that we join one type of links (A-P)
and its opposite form (P-A) to generate a vertex-centric A-P-A path
graph, where vertices represent authors and edges denote the coau-
thor relationships between authors. For each pair of coauthors, say
Kun-Lung Wu and Philip S. Yu, we can represent the A-P-A path by
using parallel edges, each representing one of their coauthored pa-
pers (p1, · · · , p17). By join composition, we obtain the total number
of their coauthored papers (17), Clearly, mining heterogeneous in-
formation networks through multiple path graphs can provide new
insights about how ideas and opinions on different subjects propa-
gate differently among the same set of people.

Meta path-based social network analysis is gaining attention in
recent years [1–6]. Existing efforts utilize a selection of meta paths
between the same type of entities to improve the quality of simi-
larity search, classification, clustering, link prediction and citation
recommendation in heterogeneous networks. However, none of the
existing methods have addressed all of the following challenges.
• Vertex-centric clustering w.r.t. multiple path graphs. As shown

in Figure 1, different meta paths exhibit different semantic mean-
ings about the same type of entities. Thus, the vertex clustering
results based on different path graphs are typically not identical.
It is critical to develop a unified clustering model that can effi-
ciently integrate the clustering results from multiple path graphs
and improve the overall clustering quality. Specifically, a dy-
namic weight assignment scheme should be employed to assign
different weights to different path graphs to reflect their possibly
different contributions towards the clustering convergence.
• Fine-grained vertex assignment and clustering objective. Meta-

path graph analysis differentiates the semantics carried by dif-
ferent meta paths in a heterogeneous network. Consequently,
it demands fine-grained vertex assignment and clustering objec-
tive to further improve the clustering quality. However, exist-
ing partitioning clustering approaches, such as K-Means and K-



Medoids [7], usually assign each vertex to its closest center. We
argue that this kind of vertex assignment may not always produce
an accurate clustering result. Consider Figure 2 (a), by perform-
ing K-Means on the A-P-A path graph to assign Kun-Lung Wu
to two centers of Bugra Gedik and Philip S. Yu, Figure 2 (b)
shows a vertex assignment, i.e., by simply using the coarse path
edge weight (the total number of coauthored papers) to measure
vertex closeness, Kun-Lung Wu and Philip S. Yu are closer than
Kun-Lung Wu and Bugra Gedik. However, in reality, Kun-Lung
Wu and Bugra Gedik are known as database researchers with no
or very few data mining papers but Philip S. Yu is a well-known
expert on data mining with much more data mining papers than
database publications, thus the vertex assignment in Figure 2 (c)
is more accurate and better quality. This is because the similarity
measures used in vertex assignment and clustering objective of
existing methods are too coarse to reflect the above ground truth.
• Edge-centric clustering w.r.t. multiple path graphs. Conven-

tional graph clustering models are usually based on the existence
of vertex homophily. However, we argue that vertex homophily
without edge clustering is insufficient for meta-path graph anal-
ysis on heterogeneous networks. Consider Figures 2 (b) and (c)
again, there is only one of 17 coauthored papers between Kun-
Lung Wu and Philip S. Yu published on DM conference (KDD)
but all 8 coauthored papers between Kun-Lung Wu and Bugra
Gedik are published on DB conferences, indicating that Kun-
Lung Wu, Bugra Gedik and the path edge between them belong
to cluster DB with very high probability. In comparison, it is
highly probable that Philip S. Yu and the path edge between Kun-
Lung Wu and Philip S. Yu belong to different clusters. Without
considering edge clustering, the vertex homophily alone can lead
to inaccurate vertex clustering.
• Integrating vertex-centric clustering and edge-centric clus-

tering. Vertex clustering and edge clustering on heterogeneous
networks may have individual clustering goals and due to the d-
ifferent semantic relationships implied by different meta paths.
Relying on either of them alone may result in incomplete and
possibly inaccurate clustering results. However, none of existing
methods study how to effectively combine the above two tech-
niques into a unified meta path graph clustering model.

To address the above challenges, we develop an efficient vertex/edge-
centric meta path graph clustering approach, VEPathCluster, with
four original contributions.
• We model a heterogeneous network containing multiple types of

meta paths in terms of multiple vertex-centric path graphs and
multiple edge-centric path graphs. Each meta path corresponds
to one vertex-centric path graph and one edge-centric path graph.
• We propose a clustering-based multigraph model to capture the

fine-grained clustering-based relationships between pairwise ver-
tices and between pairwise path edges about given K clusters.
• We integrate multiple types of vertex-centric path graphs with

different semantics into a unified vertex-centric path graph in
terms of their contributions towards the clustering objective. We
cluster both the unified vertex-centric path graph and each edge-
centric path graph to generate vertex clustering and edge cluster-
ings of the original heterogeneous network respectively.
• We design a reinforcement algorithm to tightly integrate vertex-

centric clustering and edge-centric clustering by mutually en-
hancing each other: (1) good vertex-centric clustering promotes
good edge-centric clustering and (2) good edge-centric clustering
elevates good vertex-centric clustering. We devise an iterative
learning method to dynamically refine both vertex-centric clus-
tering and edge-centric clustering by continuously learning the
contributions and adjusting the weights of different path graphs.
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(a) A-P-A Vertex Graph
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Figure 2: Coarse Vertex Assignment/Clustering Objective

• Empirical evaluation over real datasets demonstrates the compet-
itiveness of VEPathCluster against the state-of-the-art methods.

2. PROBLEM DEFINITION
We define the problem of vertex/edge-centric meta path graph

clustering in terms of the following four concepts.
A heterogeneous information network is denoted as G = (V, E),

where V is the set of heterogeneous entity vertices in G, consisting
of s types of entity vertices, i.e., V =

∪s
i=1 Vi, each Vi (1 ≤ i ≤ s)

represents the ith types of entity vertices. E is the set of heteroge-
neous meta links denoting the relationships between entity vertices
in V . Due to heterogeneous entity vertices with s types, E can be
divided into s×s subsets Ei j (1 ≤ i, j ≤ s) such that E =

∪s
i=1, j=1 Ei j,

where Ei j is the set of meta links connecting vertices of the ith type
(Vi) to vertices of the jth type (V j). E ji is the opposite form of Ei j,
specifying the set of meta links from V j to Vi.

The mth meta path of length l, denoted by MPm =< Ea0a1 , Ea1a2 , · · ·
, Eal−1al >, is a sequence of different types of meta links, with source
vertex type Va0 and destination vertex type Val (1 ≤ a0, a1, · · · , al ≤
s), such that < Ea0a1 , Ea1a2 , · · · , Eal−1al > are l meta link types con-
nected through join composition. For example, meta path A-P-A is
of length 2 and comprises two meta link types: A-P and P-A.

For each meta path in G, we construct a vertex-centric path graph
to capture the meta-path based relationships between vertices. For-
mally, a vertex-centric path graph for MPm is denoted as VGm =

(Va0 ,Val , Em), where Va0 ∈ V is the set of source vertices and
Val ∈ V is the set of destination vertices in MPm, and Em ∈ E is the
set of path edges between Va0 and Val . For the path edge set Em, we
compute its adjacency matrix Pm by multiplying adjacency matrix
of each type of composite meta links Ea0a1 , Ea1a2 , · · · , Eal−1al , de-
noted by Wa0a1 ,Wa1a2 , · · · ,Wal−1al respectively. For Figure 1 (b),
we use WAP and WPA to denote the adjacency matrices of two types
of meta links A-P and P-A respectively. We calculate an adjacency
matrix PAA = WAP ×WPA to obtain the path edge between Kun-
Lung Wu and Philip S. Yu with a value of 17. For presentation
brevity, when the type of source vertices is the same as the type of
destination vertices in VGm, i.e., Va0 = Val = Vc ∈ V , we simplify
VGm = (Va0 ,Val , Em) as VGm = (Vc, Em), and path edges in Em

measure the pairwise closeness between vertices in Vc. We denote
the size of Vc as NVc = |Vc| and denote the size of Em as NEm = |Em|.

In VEPathCluster, for a specific clustering task, users can se-
lect a subset of entity vertices of a certain type as the set of target
vertices, denoted by Vc, and a subset of M target meta paths MPm.
We construct M vertex-centric path graphs VGm. The problem of
Vertex/Edge-centric meta Path graph Clustering (VEPathClus-
ter) is to simultaneously perform two clustering tasks: (1) assign
all entity vertices in Vc to K soft clusters with an NVc ×K clustering
membership matrix X with each row summing to 1, and (2) cluster
all path edges in each Em (1 ≤ m ≤ M) into K soft clusters with an
NEm ×K clustering membership matrix Ym with each row summing
to 1. The desired clustering result should achieve the two goals: (1)
both path edges and their associated vertices should belong to the
same clusters, and vertices within each cluster are close to each oth-
er in terms of path edges between them in the same cluster; and (2)
vertices belonging to different clusters are relatively distant from
each other in terms of clustered path edges between them.
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(a) A-P-A Path Graph
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(b) A-P-V-P-A Path Graph
Figure 3: Vertex-centric Path Graph

Figure 3 gives an illustrative example of two vertex-centric path
graphs about authors. For A-P-A path graph in Figure 3 (a), the
number associated with an author vertex represents the number of
coauthored papers by this author. Here, we only consider coau-
thored papers on three DB conferences: SIGMOD, VLDB, ICDE
and three DM conferences: KDD, ICDM, SDM. For A-P-V-P-A
meta path graph in Figure 3 (b), the number associated to an author,
e.g., Philip S. Yu (199), represents the total number of papers pub-
lished by this author on the above six venues. Similarly, the num-
ber on a path edge specifies the value of this path edge through link
composition by multiplying adjacency matrices, e.g., WAP ×WPA

in Figure 3 (a), and WAP ×WPV ×WVP ×WPA) in Figure 3 (b).

3. THE VEPathCluster APPROACH
VEPathCluster improves the clustering quality by utilizing four

novel mining strategies: (1) edge-centric random walk model; (2)
clustering-based multigraph model; (3) integration of vertex-centric
clustering and edge-centric clustering; and (4) dynamic weight learn-
ing. VEPathCluster iteratively performs the following three tasks to
achieve high quality clustering: (1) fix edge clustering and weight
assignment to update vertex clustering; (2) fix vertex clustering and
weight assignment to update edge clustering; and (3) fix vertex
clustering and edge clustering to update weight assignment.

3.1 Initialization
Given a heterogeneous network G = (V, E), the set of target ver-

tices Vc ⊂ V , and the M target meta paths, the number of clusters K,
we first construct the M vertex-centric path graphs: VG1, · · · ,VGM .
Then we initialize the weight assignment and produce the initial
vertex clustering of Vc on K clusters.

Let ω(1)
m (1 ≤ m ≤ M) be the weight for the mth vertex-centric

path graph VGm at the first iteration, and Pm be the adjacency ma-
trix of VGm. We use the initial weights ω(t)

1 , · · · , ω
(t)
M to integrate M

vertex-centric path graphs into a unified vertex-centric path graph
VG. The matrix form of VG, denoted by P(1), is defined below.

P(1) = ω(1)
1 P1 + · · · + ω(1)

M PM s.t.
M∑

m=1

ω(1)
m = 1, ω(1)

1 , · · · , ω
(1)
M > 0 (1)

Random weight assignment often performs poorly and results in
incorrect clustering results due to the sharp difference in edge val-
ues from path graph to path graph, e.g., the edge values in Figure 3
(a) are between 1 and 32 but the edge values in Figure 3 (b) are
between 79 and 2219. We normalize edge values in each VGm by
assigning an initial weight for each VGm in terms of its maximal
edge value, i.e., ω(1)

1 =
1/max P1∑M

m=1 1/max Pm
, . . . , ω(1)

M =
1/max PM∑M

m=1 1/max Pm
, where

max Pm represents the maximal element in Pm.
For two path graphs in Figure 3, we multiply the edge values

by the initial weights 1/32
1/32+1/2219 = 0.986 and 1/2219

1/32+1/2219 = 0.014
to generate two path graphs in Figures 4 (a) and (b). Figure 4 (c)
shows the combination of them with the above initial weights.

Next we employ a soft clustering method, Fuzzy C-Means (FCM)
[8], on the unified vertex-centric path graph VG, to cluster each ver-
tex to K clusters such that it has up to K membership probabilities.
We use symbol X(1)

k (i) to represent the membership probability of
a vertex vi ∈ Vc (1 ≤ i ≤ NVc ) belonging to cluster ck (1 ≤ k ≤ K)
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(a) A-P-A Path Graph
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(c) Unified Path Graph
Figure 4: Unified Vertex-centric Path Graph

at the first iteration. Figure 6 (a) exhibits the FCM clustering result
of author vertices in Figure 4 (c), where each green number and
ochre number in the bracket denotes the membership probability of
an author belonging to cluster DB or DM respectively.

3.2 Edge-centric Random Walk Model
Edge-centric random walk model is constructed by performing

two tasks: (1) for each vertex-centric path graph, construct an edge-
centric path graph and define its vertex values and edge values; and
(2) define the transition probability on the edge-centric path graph.

Let VGm be a vertex-centric path graph corresponding to the mth

meta path MPm. We build an edge-centric path graph EGm by con-
verting the edges and vertices of VGm to the vertices and edges
of EGm respectively. For example, we first transform the vertex-
centric graph in Figure 5 (a) into a vertex/edge bipartite graph in
Figure 5 (b) where rectangle vertices and circle vertices correspond
to the vertices and the edges in Figure 5 (a). The circle vertex (W,Y)
(17) in Figure 5 (b) corresponds to the edge between Kun-Lung Wu
and Philip Yu with weight of 17 in Figure 5 (a).

Next we convert the bipartite graph in Figure 5 (b) to the edge-
centric graph in Figure 5 (c) by shrinking each common rectangle
vertex shared by any pair of circle vertices to an edge between these
two circle vertices, and assign the edge value with the value of the
common rectangle vertex in Figure 5 (b). For instance, a common
rectangle vertex W (18) shared by two circle vertices (W, Y) (17)
and (W,G) (8) in Figure 5 (b) is converted to the edge between
(W, Y) (17) and (W,G) (8) in Figure 5 (c). In addition, to capture
the fact that a circle vertex connects to two rectangle vertices in
Figure 5 (b), we build a spin edge for each circle vertex in Figure 5
(c). The value of this spin edge is the sum of the values of two
rectangle vertices linked to this circle vertex in the bipartite graph.

We define the transition probability on EGm such that the edge-
centric random walk model can be employed to measure the close-
ness between a pair of edge vertices in EGm.

Definition 1. [Transition Probability on Edge-centric Path Graph]
Let VGm = (Vc, Em) be a vertex-centric path graph where Vc is the
set of target vertices, E is the set of path edges between vertices in
Vc and EGm = (Em, Em × Em) is a corresponding edge-centric path
graph. The transition probability on EGm is defined below.

Tm(emi, em j) =


Qm(emi, em j)∑NEm

l=1 Qm(eml, em j)
, (emi, em j) ∈ Em × Em,

0, otherwise.

, 1 ≤ m ≤ M

(2)
where Qm is the adjacency matrix of EGm and Tm(emi, em j) repre-
sents the transition probability from vertex emi to vertex em j in EGm.

Consider Figure 5, we compute the transition probabilities from
(W, Y) to all five circle vertices: Given that

∑NEm
l=1 Qm(eml, em j) =

(18+ 49)+ 18+ 18+ 49+ 49 = 201, the transition probability from
(W, Y) to (W,G) is 18/201 = 0.09.

We express the above transition probability in a matrix form.
Tm = QmD−1, 1 ≤ m ≤ M (3)

where D is a diagonal matrix D = diag(d1, · · · , dNEm
) and d j =∑NEm

l=1 Qm(eml, em j) (1 ≤ j ≤ NEm ).
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Figure 5: Random Walk on Edges

3.3 Clustering-based Multigraph Model
The second novelty is to perform clustering analysis on vertex-

centric multigraph and edge-centric multigraph to effectively com-
bine vertex homophily with edge homophily. Recall Figure 2 (b),
assigning Kun-Lung Wu to Philip S. Yu is due to the using of aggre-
gated edge weight (i.e., the total number of coauthored papers) to
measure the vertex closeness. We address this problem by introduc-
ing two clustering-based multigraph models, one for vertex-centric
path graphs and another for edge-centric path graphs.

Given that a vertex-centric path graph VGm = (Vc, Em), and
the clustering result on the corresponding edge-centric path graph
EGm = (Em, Em × Em) obtained at the previous iteration. A vertex-
centric path multigraph i.e., Y(t−1)

m , denoted as V MGm = (Vc, Fm),
is an edge augmented multigraph, where Fm is the set of edges sat-
isfying the following condition: for each edge (vi, v j) ∈ Em in VGm,
we create a set of parallel edges between vi and v j in Fm. Each set
of edges has up to K clustered edges and each of the parallel edges
corresponds to a certain cluster ck. The value of the parallel edge
with label ck between vi and v j in V MGm at the tth iteration, denoted
by P(t)

mk(vi, v j), are computed as follow.

P(t)
mk(vi, v j) = Pm(vi, v j) × Y(t−1)

mk ((vi, v j)), 1 ≤ m ≤ M, 1 ≤ k ≤ K (4)

where Pm(vi, v j) represents the value of the edge between vi and v j

in VGm. Y(t−1)
mk denotes the kth column vector of the edge clustering

membership matrix Y(t−1)
m and Y(t−1)

mk ((vi, v j)) specifies the member-
ship probability of vertex (vi, v j) belonging to cluster ck in EGm at
the last iteration. P(t)

mk is essentially a projection of Pm on ck.
Similarly, let X(t) (t ≥ 1) be the soft clustering result on the

unified vertex-centric path multigraph V MG at the current itera-
tion. For each edge-centric path graph EGm = (Em, Em × Em),
we create an edge-centric path multigraph EMGm: for each edge
(emi, em j) ∈ Em × Em, we create a set of up to K parallel edges.
Each of parallel edges corresponds to cluster ck. The edge values
on EMGm at the tth iteration are defined as follow.

Q(t)
mk(emi, em j) =

 Qm(emi, em j) × X(t)
k (emi ∧ em j), emi , em j,

Rm(va) × X(t)
k (va) + Rm(vb) × X(t)

k (vb), emi = em j.
,

1 ≤ m ≤ M, 1 ≤ k ≤ K

(5)

where Qm(emi, em j) specifies the edge value between two vertices
emi and em j in EGm, X(t)

k denotes the kth column vector of the vertex
clustering membership matrix X(t) and X(t)

k ((emi∧em j)) specifies the
membership probability of common vertex of two edges emi and em j

belonging to cluster ck in the unified vertex-centric path graph VG
at the tth iteration. Q(t)

mk is essentially a projection of Qm on cluster
ck. When emi = em j, edge (emi, em j) is a spin edge associated to emi

in EGm. In this situation, emi and em j correspond to the same edge
in VGm, and emi and em j will have the same two endpoints (va and
vb) in VGm, e.g., the spin edge ((W,Y), (W, Y)) in Figure 5 (b) and
the edge between Kun-Lung Wu and Philip S. Yu in Figure 5 (a).
Rm(vx) represents the value of endpoint vx in VGm, say 18 for Kun-
Lung Wu in Figure 5 (a), and X(t)

k (vx) denotes the probability of vx

belonging to ck in VG or V MG at the tth iteration.

For ease of presentation, we omit all spin edges in Figure 6.
Based on the A-P-A edge-centric path graph in Figure 6 (b) and
its vertex soft clustering result in Figure 6 (a), we generate the A-
P-A edge-centric path multigraph in Figure 6 (c). Using the prob-
abilities of Kun-Lung Wu on clusters DB and DM: (0.96, 0.04) in
Figure 6 (a) and the edge between (W, Y) and (W, A) in Figure 6
(b), we produce two parallel edges between (W, Y) and (W, A) in
Figure 6 (c) as 18× 0.96 = 17.28 and 18× 0.04 = 0.72 respectively.

3.4 Edge-centric Clustering
We perform edge-centric soft clustering in two steps: (1) convert

each edge-centric path graph EGm to an edge-centric path multi-
graph EMGm based on the vertex soft clustering X(1) on the unified
vertex-centric path graph VG or X(t) (t > 1) on the unified vertex-
centric path multigraph V MG; and (2) compute the edge soft clus-
tering Y(t)

m on each edge-centric path multigraph EMGm,
Different from traditional unsupervised graph clustering meth-

ods, at the first clustering iteration, we adopt a semi-supervised
manner on each EGm with the geometric mean of the probabilities
of two endpoints belonging to cluster ck as the initial membership
probability of an edge on ck. This is motivated by the observation
that if the membership probabilities of two associated endpoints of
an edge belonging to ck are very large, then it is highly probable
that this edge also has a large probability on ck.

Formally, we convert each EGm to an EMGm by converting the
adjacency matrix of EGm to up to K independent adjacency ma-
trices in terms of the cluster labels of the edges in EGm, and then
learns the cluster probabilities of edge vertices in EGm on ck based
on the kth adjacency matrix. Let (vi, v j) be an edge vertex in EGm

where vi and v j are the target vertices in the corresponding VGm =

(Vc, Em), and X(1)
k (vx) be the cluster membership probability of vx ∈

Vc belonging to cluster ck at the first iteration. We define the initial
edge clustering membership matrix Y(0)

m for EMGm below.

Y(0)
mk((vi, v j)) =

√
X(1)

k (vi) × X(1)
k (v j)∑K

l=1

√
X(1)

l (vi) × X(1)
l (v j)

, 1 ≤ m ≤ M, 1 ≤ k ≤ K (6)

where Y(0)
mk is the kth column vector of Y(0)

m , Y(0)
mk((vi, v j)) represents

the initial membership probability of edge vertex (vi, v j) on ck in
EMGm, and X(1)

k (vx) specifies the probability of vx on ck in VG.
Based on the initial vertex clustering membership matrix X(1)

for VG or the vertex clustering membership matrix X(t) (t > 1)
for V MG, we transform each EGm into an edge-centric path multi-
graph EMGm by Eq. (5). In the first clustering iteration, we update
Y(1)

m with Y(0)
m based on X(1) for VG through label propagation and

update Y(t)
m with Y(t−1)

m in each subsequent iteration t (t > 1).
Similar to Eq.(2), the transition probability on each EMGm at

the current iteration is defined by normalizing each kind of parallel
edges with the same cluster labels in EMGm as follow.

T(t)
mk(emi, em j) =


Q(t)

mk(emi, em j)∑NEm
l=1 Q(t)

mk(eml, em j)
, Q(t)

mk(eml, em j) , 0,

0, otherwise.

,

1 ≤ m ≤ M, 1 ≤ k ≤ K

(7)
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Figure 6: Iterative Vertex Clustering on Vertex-centric Path Multigraph and Edge Clustering on Edge-centric Path Multigraph

where T(t)
mk(emi, em j) denotes the transition probability with cluster

label ck on one of parallel edges between edge vertices emi and em j

in EMGm. The transition matrix on EMGm is given below.

T(t)
mk = Q(t)

mk(D−1
mk)(t), 1 ≤ m ≤ M, 1 ≤ k ≤ K (8)

where (D−1
mk)(t) is a diagonal matrix (D−1

mk)(t) = diag(d1, · · · , dNEm
),

and d j =
∑NEm

l=1 Q(t)
mk(eml, em j) (1 ≤ j ≤ NEm ).

Thus, we produce K edge clustering kernels T(t)
mk, each corre-

sponding to cluster ck (1 ≤ k ≤ K). The transition operation in
each edge-centric path multigraph is divided into two steps: (1)
choose those parallel edges with the objective cluster label by clus-
tering objective; and (2) select an edge with the largest probability
from the above edges to jump.

Let Ym = [Ym1,Ym2, · · · ,YmK] ∈ RNEm×K be the edge clustering
membership matrix for Em in EMGm (1 ≤ m ≤ M). For each edge
clustering membership vector Ymk (1 ≤ k ≤ K) based on cluster ck,
we use an individual clustering kernel T(t)

mk to iteratively infer the
membership probabilities of all edge vertices in Em on ck.

Initilization : Ymk = Y(t−1)
mk

Iteration : Ymk = T(t)
mkYmk

(9)

Based on the edge clustering membership matrix Y(t−1)
mk at the last

clustering round, VEPathCluster iteratively infers the membership
probabilities of vertices in Em until Ymk converges. We then nor-
malize each entry Ymk(emi) (1 ≤ i ≤ NEm ) in Ymk as follow.

Y(t)
mk(emi) =

Ymk(emi)∑K
l=1 Yml(emi)

(10)

where emi ∈ Em represents an edge vertex in EMGm and Y(t)
mk speci-

fies the normalized edge clustering membership vector based on ck.
Thus, the edge clustering membership matrix is updated below.

Y(t)
m =
[
Y(t)

m1 Y(t)
m2 · · · Y(t)

mK

]
, 1 ≤ m ≤ M (11)

For example, based on the vertex clustering in Figure 6 (a) and
the edge-centric path multigraph in Figure 6 (c), we produce the
A-P-A edge clustering in Figure 6 (d).

3.5 Vertex-centric Clustering
The vertex clustering on the unified vertex-centric path multi-

graph V MG follows the heuristic rule: if vertex vi ∈ Vc in each
vertex-centric path graph VGm has many neighbors with large prob-
abilities on cluster ck and the edges between vi and these neighbors

have large probabilities on ck, then it is highly probable that vi be-
longs to ck with a larger probability. In each iteration, we use the
edge clustering result on each edge-centric path graph EGm at the
previous iteration (Y(t−1)

m ) to perform the vertex clustering on V MG
at the current iteration (X(t)) in three steps.

(1) Based on Y(t−1)
m and Eq.(4), we first convert each VGm to

an vertex-centric path multigraph V MGm by transforming the ad-
jacency matrix of VGm into K independent adjacency matrices in
terms of the cluster labels of parallel edges. For example, based
on the edge clustering result on the edge-centric path multigraph
in Figure 6 (d) (or Figure 6 (e)), we convert the vertex-centric path
graph in Figure 3 (a) (or Figure 3 (b)) to the vertex-centric path
multigraph in Figure 6 (f) (or Figure 6 (g)).

(2) We combining M vertex-centric path multigraphs V MGm into
the unified vertex-centric path multigraph V MG based on each of
K edge clusters with weighting factors ω(t)

1 , · · · , ω(t)
N . A dynamic

weight tuning mechanism will be detailed in Section 3.6. Thus, we
compute the value of the unified parallel edge between vertices vi

and v j in V MG about cluster ck at the tth iteration as follow.
P(t)

k (vi, v j) = ω
(t)
1 P(t)

1k(vi, v j) + · · · + ω(t)
M P(t)

Mk(vi, v j), 1 ≤ k ≤ K

s.t.
M∑

m=1

ω(t)
m = 1, ω(t)

1 , · · · , ω
(t)
M > 0

(12)

where ω(t)
m (1 ≤ m ≤ M) represents the weight for the mth vertex-

centric path multigraph V MGm at the tth iteration, and P(t)
mk(vi, v j)

specifies the value of the parallel edge with label ck between vi and
v j in V MGm. Note that P(t)

k (vi, v j) keeps changing with ω(t)
1 , · · · , ω(t)

M
through dynamic weight learning during each iteration.

The matrix form of V MG is defined based on K kinds of clus-
tered parallel edges.

P(t)
1 = ω

(t)
1 P(t)

11 + ω
(t)
2 P(t)

21 + · · · + ω
(t)
M P(t)

M1

· · ·

P(t)
K = ω

(t)
1 P(t)

1K + ω
(t)
2 P(t)

2K + · · · + ω
(t)
M P(t)

MK

,

s.t.
M∑

m=1

ω(t)
m = 1, ω(t)

1 , · · · , ω
(t)
M > 0

(13)

Figure 6 (h) shows the unified vertex-centric path multigraph by
combining the two vertex-centric path multigraphs in Figure 6 (f)
and (g) with the weights of ω1 and ω2 respectively such that the
clustered path edges with the same labels between the same pair of
vertices from two vertex-centric path multigraphs are combined.



(3) We compute the vertex clustering membership matrix X =
[X1,X2, · · · ,XK] ∈ RNVc×K for the target vertices Vc in V MG. We
below define the transition probability on V MG in terms of each of
K edge clusters.

S(t)
k (vi, v j) =


P(t)

k (vi, v j)∑NVc
l=1 P(t)

k (vl, v j)
, P(t)

k (vi, v j) , 0,

0, otherwise.

, 1 ≤ k ≤ K (14)

where S(t)
k (vi, v j) denotes the transition probability with cluster label

ck on one of parallel edges between vertex vi and vertex v j in V MG.
The transition matrix on V MG is given as follow.

S(t)
k = P(t)

k (D−1
k )(t), 1 ≤ k ≤ K (15)

where (D−1
k )(t) is a diagonal matrix (D−1

k )(t) = diag(d1, · · · , dNVc
),

and d j =
∑NVc

l=1 P(t)
k (vl, v j) (1 ≤ j ≤ NVc ).

Similar to edge-centric clustering, we produce K vertex cluster-
ing kernels S(t)

k , each corresponding to cluster ck. The transition
operation in the unified vertex-centric path multigraph V MG is di-
vided into two steps: (1) choose those parallel edges with the objec-
tive cluster label; and (2) select an edge with the largest probability
from the above edges to move.

For each vertex clustering membership vector Xk (1 ≤ k ≤ K)
based on ck, we utilize an individual clustering kernel S(t)

k to itera-
tively infer the membership probabilities of vertices in Vc on ck.

Initilization : Xk = X(t−1)
k

Iteration : Xk = S(t)
k Xk

(16)

When the iterative vertex clustering converges, we further nor-
malize each entry Xk(vi) (1 ≤ i ≤ NVc ) in Xk (1 ≤ k ≤ K) below.

X(t)
k (vi) =

Xk(vi)∑K
l=1 Xl(vi)

(17)

where vi ∈ Vc denotes a target vertex in V MG and X(t)
k represents

the normalized vertex clustering membership vector based on ck.
Thus, the vertex clustering membership matrix is updated below.

X(t) =
[
X(t)

1 X(t)
2 · · · X(t)

K

]
(18)

X(t) will be used to enter the next vertex clustering round.

3.6 Clustering with Weight Learning
The objective function of VEPathCluster is defined to maximize

fuzzy intra-cluster similarity [22, 23] for both vertex clustering in
the unified vertex-centric path multigraph V MG and edge cluster-
ing on each edge-centric path multigraph EMGm.

Definition 2. [VEPathCluster Clustering Objective Function] Let
V MG be a unified vertex-centric path multigraph, V MGm (m ∈
{1, · · · ,M}) be M vertex-centric path multigraphs, EMGm (m ∈
{1, · · · ,M}) be M edge-centric path multigraphs, ω1, · · · , ωM be the
weighting factors for V MG1, · · · ,V MGM and EMG1, · · · , EMGM

defined in Eqs.(12) and (13) respectively, given K vertex soft clus-
ters for V MG with a membership matrix X and K path edge soft
clusters for each EMGm with a membership matrix Ym, the goal of
VEPathCluster is to maximize the following objective function.

O(X,Y1, · · · ,YM , ω1, · · · , ωM) =
NVc∑
i=1

NVc∑
j=1

K∑
k=1

Xk(vi)Xk(v j)Pk(vi, v j)

+

M∑
m=1

NEm∑
i=1

NEm∑
j=1

K∑
k=1

Ymk(emi)Ymk(em j)Qmk(emi, em j)

max
ω1 ,··· ,ωM

O(X,Y1, · · · ,YM , ω1, · · · , ωM), s.t.
M∑

m=1

ωm = 1, ω1, · · · , ωM > 0

(19)
According to Eqs.(4)-(18), the objective function O is a fraction-

al function of multi variables ω1, · · · , ωM with non-negative real
coefficients. On the other hand, the numerator and the denominator

of O are both polynomial functions of the above variables. Without
loss of generality, we rewrite Eq.(19) as follow.

max
ω1 ,··· ,ωM

O(X,Y1, · · · ,YM , ω1, · · · , ωM) = max
ω1 ,··· ,ωM

∑p
i=1 ai

∏M
j=1(ω j)bi j∑q

i=1 oi
∏M

j=1(ω j)ri j

ai, bi j, oi, ri j ≥ 0, bi j, ri j ∈ Z, s.t.
M∑

m=1

ωm = 1, ω1, · · · , ωM > 0

(20)
where there are p polynomial terms in the numerator and q poly-
nomial terms in the denominator, ai and oi are the coefficients of
the ith terms respectively, and bi j and ri j are the exponents of corre-
sponding variables in the ith terms respectively.

For ease of presentation, we revise the original objective as the
following nonlinear fractional programming problem (NFPP).

Definition 3. [Nonlinear Fractional Programming Problem] Let
f (ω1, · · · , ωM) =

∑p
i=1 ai

∏M
j=1(ω j)bi j and g(ω1, · · · , ωM) =

∑q
i=1 oi∏M

j=1(ω j)ri j , the clustering goal is revised as follow.

max
ω1 ,··· ,ωM

f (ω1, · · · , ωM)
g(ω1, · · · , ωM)

, s.t.
M∑

m=1

ωm = 1, ω1, · · · , ωM > 0 (21)

Our clustering objective is equivalent to maximize a quotient of
two polynomial functions of multiple variables. It is very hard to
perform function trend identification and estimation to determine
the existence and uniqueness of solutions. Therefore, we want to
transform this sophisticated NFPP into an easily solvable problem.

Definition 4. [Nonlinear Parametric Programming Problem] Let
f (ω1, · · · , ωM) =

∑p
i=1 ai

∏M
j=1(ω j)bi j and g(ω1, · · · , ωM) =

∑q
i=1 oi∏M

j=1(ω j)ri j , the NPPP is defined as follow.

z(γ) = max
ω1 ,··· ,ωM

f (ω1, · · · , ωM)−γg(ω1, · · · , ωM), s.t.
M∑

m=1

ωm = 1, ω1, · · · , ωM > 0

(22)

Theorem 1. The NFPP in Definition 3 is equivalent to the NPP-
P in Definition 4, i.e., γ = max

ω1 ,··· ,ωM

f (ω1 ,··· ,ωM )
g(ω1 ,··· ,ωM ) if and only if z(γ) =

max
ω1 ,··· ,ωM

f (ω1, · · · , ωM) − γg(ω1, · · · , ωM) = 0.

Proof. If (ω1, · · · , ωM) is a feasible solution of z(γ) = 0, then
f (ω1, · · · , ωM)−γg(ω1, · · · , ωM) = 0. Thus f (ω1, · · · , ωM)−γg(ω1,
· · · , ωM) 6 f (ω1, · · · , ωM) − γg(ω1, · · · , ωM) = 0. We have γ =
f (ω1, · · · , ωM)/g(ω1, · · · , ωM) > f (ω1, · · · , ωM)/g(ω1, · · · , ωM). Thus
γ is a maximum value of NFPP and (ω1, · · · , ωM) is an optimal so-
lution of NFPP.

Conversely, if (ω1, · · · , ωM) solves NFPP, then we have γ =
f (ω1, · · · , ωM)/g(ω1, · · · , ωM) > f (ω1, · · · , ωM)/g(ω1, · · · , ωM). Thus
f (ω1, · · · , ωM)−γg(ω1, · · · , ωM) 6 f (ω1, · · · , ωM)−γg(ω1, · · · , ωM) =
0. We have z(γ) = 0 and the maximum is taken at (ω1, · · · , ωM).

Now the original NFPP has been successfully transformed into
the straightforward NPPP. This transformation can efficiently speed
up the clustering convergence due to the following properties.

Theorem 2. z(γ) is convex.
Proof: Suppose that (ω1, · · · , ωM) is an optimum of z((1−λ)γ1+

λγ2) with γ1 , γ2 and 0 6 λ 6 1. z((1−λ)γ1+λγ2) = f (ω1, · · · , ωM)−
((1−λ)γ1+λγ2)g(ω1, · · · , ωM) = λ( f (ω1, · · · , ωM)−γ2g(ω1, · · · , ωM))+
(1−λ)( f (ω1, · · · , ωM)−γ1g(ω1, · · · , ωM)) 6 λ max

ω1 ,··· ,ωM
f (ω1, · · · , ωM)−

γ2g(ω1, · · · , ωM)+(1−λ) max
ω1 ,··· ,ωM

f (ω1, · · · , ωM)−γ1g(ω1, · · · , ωM) =

λz(γ2) + (1 − λ)z(γ1). Thus, z(γ) is convex.
Theorem 3. z(γ) is monotonically decreasing.
Proof: Suppose that γ1 > γ2 and (ω1, · · · , ωM) is an optimal so-

lution of z(γ1). Thus, z(γ1) = f (ω1, · · · , ωM) − γ1g(ω1, · · · , ωM) <
f (ω1, · · · , ωM)−γ2g(ω1, · · · , ωM) 6 max

ω1 ,··· ,ωM
f (ω1, · · · , ωM)−γ2g(ω1,

· · · , ωM) = z(γ2).



Algorithm 1 Vertex/Edge-centric meta PATH graph Clustering
Input: M vertex-centric path graphs VGm, M edge-centric path graphs
EGm, a clustering number K, and a parameter γ(1)=0.
Output: vertex clustering membership matrix X, M edge clustering mem-
bership matrices Y1, · · · ,YM .
1: Initialize weights ω(1)

1 , · · · , ω
(1)
M in terms of the scales of edge values in

each VGm;
2: for t=1 to z(γ(t)) converges to 0
3: if t = 1
4: Combine Pm of each VGm into P(t) of VG with Eq.(1);
5: Invoke FCM to cluster vertices Vo in VG to generate X(t) of VG;
6: else
7: Convert Pm of each VGm into P(t)

mk of each V MGm with Eq.(4);
8: Combine each V MGm into V MG by computing all P(t)

k in Eq.(13);
9: Calculate S(t)

k of V MG for each cluster ck in Eqs.(14)-(15);
10: Update X(t) of VG with Eqs.(16)-(18);
11: if t = 1
12: Initialize Y(t−1)

m of each EGm with Eq.(6);
13: Convert Qm of each EGm into Q(t)

mk of each EMGm with Eq.(5);
14: Calculate T(t)

mk of each EMGm for each cluster ck in Eqs.(7)-(8);
15: Update Y(t)

m of each EGm with Eqs.(9)-(11);
16: Compute O(X,Y1, · · · ,YM , ω1, · · · , ωM) in Eq.(19);
17: Solve z(γ(t)) in Eq.(22);
18: Update ω(t+1)

1 , · · · , ω(t+1)
M ;

19: Refine γ(t+1)= f (ω(t+1)
1 , · · · , ω(t+1)

M )/g(ω(t+1)
1 , · · · , ω(t+1)

M );
20: Return X(t) and Y(t)

1 , · · · ,Y
(t)
M .

Theorem 4. z(γ) = 0 has a unique solution.
Proof: Based on the above-mentioned theorems, we know z(γ) is

continuous as well as decreasing. In addition, limγ→+∞z(γ) = −∞
and limγ→−∞z(γ) = +∞.

The procedure of solving this NPPP includes two parts: (1) find
such a reasonable parameter γ (z(γ) = 0), making NPPP equivalent
to NFPP; (2) given the parameter γ, solve a polynomial program-
ming problem about the original variables ω1, · · · , ωM . Our weight
adjustment mechanism is an iterative procedure to find the solution
of z(γ) = 0 and the corresponding weights after each clustering
iteration. We first generate an initial matrix P(1) with initial weight-
s in terms of the scales of edge values in each vertex-centric path
graph VGm to produce an initial vertex clustering result through
FCM [8] on the unified vertex-centric path graph VG. Based on the
initial vertex clustering result, we construct an edge-centric path
multigraph EMGm for each edge-centric path graph EGm. We then
generate an initial edge clustering result on each EMGm. Accord-
ing to the initial result of both vertex clustering and edge cluster-
ings, we then calculate an initial z(γ). Since z(γ) is a monotonic
decreasing function and z(0) = max

ω1 ,··· ,ωM
f (ω1, · · · , ωM) is obviously

non-negative, we start with an initial γ = 0 and solve the subprob-
lem z(0) by using existing fast polynomial programming model to
update the weights ω1, · · · , ωM . The parameter γ is gradually in-
creased by γ = f (ω1, · · · , ωM)/g(ω1, · · · , ωM) to help the algorith-
m enter the next round. The algorithm repeats the above-mentioned
iterative procedure until z(γ) converges to 0.

By assembling all the pieces in Section 3 together, we provide
the pseudo code of our VEPathCluster algorithm in Algorithm 1.

4. EXPERIMENTAL EVALUATION
We have performed extensive experiments to evaluate the perfor-

mance of VEPathCluster on three real graph datasets.

4.1 Experimental Datasets
The first real dataset is extracted from the DBLP Bibliography

data 1, which contains 112,483 authors (A), 728,497 papers (P),
1http://dblp.uni-trier.de/xml/
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Figure 7: Vertex Clustering Quality on DBLP

2,633 venues (V), and 45,968 terms (T). We choose three meta
paths: A-P-A, A-P-V-P-A and A-P-T-P-A, to cluster authors and
three kinds of path edges into soft clusters simultaneously.

IMDb 2 is a searchable database of movies, TV and entertain-
ment programs. We extract 48,975 actors (A), 31,188 movies (M),
4,774 directors (D), and 28 movie genres (G) from the original
IMDb dataset. Three candidate meta paths: A-M-A, A-M-D-M-
A and A-M-G-M-A, are used to assign each actor and three types
of path edges to soft clusters.

The third real-world dataset is extracted from the Yelp’s academ-
ic dataset 3, which includes 15,715 businesses (B), 470,212 reviews
(R), 138,969 users (U), and 30,475 review terms (T). We select t-
wo meta paths: B-R-U-R-B and B-R-T-R-B, to generate the soft
clusterings of businesses and two kinds of path edges.

4.2 Comparison Methods and Measures
We compare VEPathCluster with two representative soft clus-

tering algorithms, Fuzzy C-Means (FCM) [8], Gustafson-Kessel
(GK) [24], and one recently developed method PathSelClus [4].
For the first two clustering methods, we add the adjacency matrices
of all vertex-centric path graphs together to get one single matrix.
The first two methods perform vertex-centric soft clustering on a s-
ingle graph and PathSelClus performs vertex-centric soft clustering
on multiple graphs based on the assumption of vertex homophily.

We also evaluate three partial versions of VEPathCluster to show
the strengths of edge clustering and weight learning respectively:
(1)VEPathCluster-VE with only vertex clustering and edge clus-
tering; (2) VEPathCluster-VW with only vertex clustering and
weight update; and (3) VEPathCluster-EW with only edge clus-
tering and weight update.

Evaluation Metrics We use three measures to evaluate the qual-
ity of vertex clustering by different methods. The fuzzy Dunn in-
dex [25,26] is defined as the ratio between the minimal fuzzy intra-
cluster similarity and the maximal fuzzy inter-cluster similarity.

Dunn(X) =

min
1≤k≤K

(
1

(Σ
NVc
i=1 Xk(vi))(Σ

NVc
j=i+1Xk(v j))

∑NVc
i=1
∑NVc

j=i+1 Xk(vi))Xk(v j))P(vi, v j)
)

max
1≤k<l≤K

(
1

(Σ
NVc
i=1 Xk(vi))(Σ

NVc
j=1 Xl(v j))

∑NVc
i=1
∑NVc

j=1 Xk(vi))Xl(v j))P(vi, v j)
)

(23)
where X is the vertex soft clustering membership matrix and Dunn(X)
is bounded in the range [0,+∞). A larger value of Dunn(X) indi-
cates a better clustering.

The following two metrics are often used to evaluate the hard
clustering result, we thus map the soft clustering results by various
methods into hard clustering results with the maximum probability
of each vertex as its hard cluster labels.

b(vi) =
1

|VCk | − 1

∑
v j∈VCk , j,i

P(vi, v j), a(vi) = max
1≤l≤K,l,k

( 1
|VCl |

∑
v j∈VCl

P(vi, v j)
)

S ilhouette({VCk}Kk=1) =
1
K

K∑
k=1

( 1
|VCk |

∑
vi∈VCk

b(vi) − a(vi)
max{a(vi), b(vi)}

)
(24)

2http://www.imdb.com/interfaces
3http://www.yelp.com/academic_dataset
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(c) NMI
Figure 8: Vertex Clustering Quality on IMDb
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(c) NMI
Figure 9: Vertex Clustering Quality on Yelp

where {VCk}Kk=1 represents the mapped hard clustering of the target
vertices Vc, i.e., Vc =

∪K
k=1 VCk and VCk

∩
VCl = ϕ for ∀1 ≤ k, l ≤

K, k , l. P(vi, v j) is the edge value between two vertices vi and v j in
the unified vertex-centric path graph VG. The silhouette coefficien-
t [27] with the bound of [-1, 1] contrasts the average intra-cluster
similarity with the average inter-cluster similarity. The larger the
value, the better the quality.

Following the same strategy used in [4], we use NMI(X,Y) =
I(X;Y)√

H(X)H(Y)
to compare the generated vertex clustering with the ground

truth, where X and Y represent two cluster label vectors for the
ground truth clustering and the calculated clustering by a cluster-
ing method respectively. NMI(X,Y) is in the interval [0, 1] and a
larger NMI value indicates a better clustering.

Similarly, we use the same three measures to evaluate the quality
of edge clustering by VEPathCluster. We report the average metric
value for each measure based on M edge clustering results.

4.3 Vertex Clustering Quality
Figures 7-9 exhibit the vertex clustering quality on DBLP, IMD-

b and Yelp by varying the number of clusters. We divide six soft
clustering methods into three categories: (1) FCM and GK per-
form the basic vertex clustering only based on the matrix of the
unified vertex-centric path graph; (2) PathSelClus, VEPathCluster-
VW and VEPathCluster-VE utilize partial optimization techniques
to further improve the quality of vertex clustering; and (3) VEPath-
Cluster makes use of both techniques of edge clustering and weight
learning to achieve the promotion as much as possible.

First, PathSelClus, VEPathCluster-VW and VEPathCluster-VE
significantly outperform FCM and GK on all three evaluation mea-
sures. We know that the edges in different vertex-centric path graph-
s usually have values with different scales. As vertex-centric clus-
tering methods, both PathSelClus and VEPathCluster-VW efficien-
cy integrates the matrices of multiple vertex-centric path graphs
through the iterative weight learning mechanism to learn the op-
timal weight assignment for these matrices. Thus, the measure s-
cores obtained by them are often comparable to each other. On
the other hand, VEPathCluster-VE integrates vertex clustering and
edge clustering to mutually enhance each other. These results demon-
strate that the importance of exploiting both edge clustering and
weight learning for meta path graph clustering.

Second, it is observed that VEPathCluster-VE outperforms Path-
SelClus and VEPathCluster-VW on three graph datasets, even though
the dynamic weight refinement is not used in VEPathCluster-VE
while both PathSelClus and VEPathCluster-VW employed some
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Figure 10: Edge Clustering Quality on DBLP
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Figure 11: Edge Clustering Quality on Yelp

iterative weight learning method to find the optimal weight as-
signment and improve the clustering quality. This is because both
PathSelClus and VEPathCluster-VW are based solely on vertex ho-
mophily, without incorporating and integrating edge homophily in-
to the clustering analysis. These results illustrate that employing
edge clustering is more important than exploit weight learning in
solve the meta path graph clustering problem.

Finally, among all six clustering methods, VEPathCluster achieves
the best clustering performance for all three evaluation measures in
most cases. Compared to other algorithms, VEPathCluster aver-
agely achieves 18.7% Dunn increase, 14.1% Silhouette boost and
22.4% NMI improvement on DBLP, 10.6% Dunn growth, 10.4%
Silhouette increase and 8.7% NMI boost on IMDb, and 17.7%
Dunn increase, 23.9% Silhouette boost and 11.6% NMI improve-
ment on Yelp, respectively. Concretely, there are three critical
reasons for high accuracy of VEPathCluster: (1) the clustering-
based multigraph model integrates both vertex-centric clustering
and edge-centric clustering to accurately capture the cluster-specific
relationships between vertices and between edges; (2) the edge-
centric random walk model provides a natural way to capture the
dependencies among path edges within each vertex-centric path
graph; and (3) the iterative learning algorithm help the clustering
model achieve a good balance among different types of vertex-
centric path graphs and edge-centric path graphs.

4.4 Edge Clustering Quality
Given that FCM, GK, PathSelClus and VEPathCluster-VW are

vertex-centric soft clustering methods, we skip the experimental e-
valuation of edge clustering for these four approaches. Figures 10-
11 present the edge clustering quality by three versions of VEPath-
Cluster on two datasets with different K respectively. Similar trends
are observed for the edge clustering quality comparison: VEPath-
Cluster achieves the largest Dunn values (>0.62), the highest Sil-
houette around 0.39-0.89, and the largest NMI (>0.58), which are
obviously better than other two methods. As K increases, the mea-
sure scores achieved by VEPathCluster remains relatively stable,
while the measure scores of other two methods oscillate in a fair-
ly large range. In addition, in terms of three evaluation measures,
VEPathCluster-VE outperforms VEPathCluster-EW in some cases
but VEPathCluster-EW performs better than VEPathCluster-VE in
some cases. These results demonstrate that each of vertex cluster-
ing, edge clustering and weight learning plays an important role in
meta path clustering. Thus, we should integrate three optimization
techniques to further improve the clustering quality.
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Figure 13: Clustering Convergence

4.5 Clustering Efficiency
Figure 12 (a) presents the clustering time achieved by VEPath-

Cluster on DBLP, Last.fm and IMDb with the same K setups in the
experiments of clustering quality in Figures 7-11 respectively. Fig-
ure 12 (b) exhibits the scalability test of VEPathCluster by varying
the number of target vertices on three datasets respectively. For
DBLP and IMDb, we test four different setups of #Vertices, i.e.,
#Vertices = 15,715, 48,975, 112,483, 200,000 respectively. How-
ever, we only test #Vertices = 15,715, 42,153 for Yelp since the
original Yelp dataset contains up to 42,153 businesses. We observe
that VEPathCluster scales well with the size of graph for differen-
t graph datsets and shows good performance with varying K. A
careful examination reveals that the bottleneck component of the
overall time complexity for VEPathCluster is the execution time of
iterative vertex clustering and edge clusterings, which mainly con-
sist of a series of matrix-vector multiplications. Let K be the num-
ber of clusters, NVc be the number of target vertices in the unified
vertex-centric path multigraph, NEk (1 ≤ k ≤ K) be the number of
parallel edges on the kth cluster in the unified vertex-centric path
multigraph, M be the number of edge-centric path multigraphs,
NEm (1 ≤ m ≤ M) be the number of vertices in the mth edge-centric
path multigraph, NFmk (1 ≤ k ≤ K) be the number of parallel edges
on the kth cluster in the mth edge-centric path multigraph, ti is the
number of inner iterations, and to be the number of outer itera-
tions in the clustering process. At the worst case, i.e., the original
graph dataset is relatively dense, the complexity of performing ver-
tex clustering on the unified vertex-centric path multigraph is equal
to O(totiKN2

Vc
) and the cost of performing edge clustering on each

of M edge-centric path multigraphs is equal to O(to
∑M

m=1 tiKN2
Em

).
However, when the original graph dataset is very spare, the com-
plexity of matrix-vector multiplication is approximately bounded
by the size of edges. In this situation, the complexity of perform-
ing vertex clustering is reduced to O(toti

∑K
k=1 NEk ) and the cost of

performing edge clustering on all M edge-centric path multigraphs
is decreased to O(to

∑M
m=1 ti

∑K
k=1 NFmk ).

4.6 Clustering Convergence
Figure 13 (a) and (b) exhibit the convergence trend of vertex

clustering and edge clustering in terms of three evaluation measures
on DBLP. Both the Dunn values and the NMI scores in two figures
keep increasing or relatively stable and have convex curves when
we iteratively perform the tasks of vertex clustering, edge cluster-
ing and weight update during the clustering process. On the other
hand, the Silhouette values first fluctuate slightly within a range of

Author/Cluster DB DM AI IR
Ming-Syan Chen 0.258 0.588 0.021 0.134
W. Bruce Croft 0.058 0.006 0.026 0.909

Christos Faloutsos 0.346 0.539 0.012 0.102
Jiawei Han 0.373 0.459 0.057 0.111

H. V. Jagadish 0.904 0.048 0.014 0.034
Laks V. S. Lakshmanan 0.809 0.128 0.011 0.053
Hector Garcia-Molina 0.810 0.028 0.021 0.141

Eric P. Xing 0.009 0.123 0.830 0.038
Qiang Yang 0.012 0.265 0.512 0.210
Philip S. Yu 0.358 0.507 0.027 0.108

Chengqi Zhang 0.023 0.744 0.140 0.093

Table 1: Cluster Membership Probabilities of Authors Based
on Three Meta Paths from DBLP
[0.57, 0.95] and then converge very quickly. The entire clustering
process converges in nine iterations for DBLP. Figure 13 (c) shows
the tendency of weight update for three meta paths on DBLP. We
keep the constraint of weights for three meta paths unchanged, i.e.,∑M

m=1 ωm = 1, during the clustering process. We observe that all
three weights converge as the clustering process converges. An in-
teresting phenomenon is that the weight for the A-P-A meta path
first increases and then decreases with the iterations, the weight for
the A-P-V-P-A meta path keeps decreasing and the weight curve
for the A-P-T-P-A meta path has a converse trend. A reasonable
explanation is that people who have many publications on the same
conferences may have different research topics but people who have
many papers with the same terms usually have the same research
interests. On the other hand, for a pair of coauthors, their primary
research areas are not always consistent in terms of the number of
their coauthored papers, as illuminated in the example in Figure 2.
Another interesting finding is that the weight for the A-P-A meta
path is relatively large and other two weights are fairly small. This
is because that the edges in different path graphs usually have val-
ues with different scales, as shown in Figure 3. In addition, the
length of either of other two meta paths is larger than that of the A-
P-A meta path, and there are many venues and terms in the DBLP
dataset. To maintain a good balance among different meta paths,
the algorithm needs to set larger weights for the path graphs with
small-scale edges to maintain their contributions to clustering.

4.7 Case Study
We examine some details of the experiment results based on D-

BLP. Table 1 exhibits the set of authors and their cluster member-
ship probabilities after nine iterations based on three meta paths:
A-P-A, A-P-V-P-A and A-P-T-P-A. We only present most prolific
DBLP experts in the area of database (DB), data mining (DM), ar-
tificial intelligence (AI) and information retrieval (IR). We observe
that the predicted cluster memberships of authors are consisten-
t with their actual research areas. For those researchers known to
work in multiple research areas, the cluster membership distribu-
tions also correspond to their current research activities. For exam-
ple, both Jiawei Han and Philip S. Yu are experts on data mining
and database, though their DM probabilities are slightly higher s-
ince each of them and their circle of co-authors have more DM
papers. Table 2 shows the set of path edges between the above
authors in the A-P-A vertex-centric path graph and their cluster
membership probabilities after nine clustering iterations. We have
observed that most of author pairs associated to path edges usual-
ly have different primary research areas, e.g., the primary research
areas of W. Bruce Croft and Hector Garcia-Molina are IR and DB
respectively. In this situation, the cluster favorite of the path edges
between the pairwise authors are often dominated by the prima-
ry research area of one associated author. For example, the path
edge (W. Bruce Croft, Hector Garcia-Molina) has a main cluster
favorite of DB. An interesting phenomenon is that although both
Ming-Syan Chen and Philip S. Yu are experts on data mining, i.e.,
they both have more research publications in the area of data min-



Path Edge/Cluster DB DM AI IR
(Ming-Syan Chen, Philip S. Yu) 0.630 0.284 0.023 0.063

(W. Bruce Croft, Hector Garcia-Molina) 0.702 0.035 0.065 0.199
(Christos Faloutsos, H. V. Jagadish) 0.547 0.365 0.017 0.072
(Christos Faloutsos, Eric P. Xing) 0.238 0.713 0.015 0.034

(Jiawei Han, Laks V. S. Lakshmanan) 0.624 0.356 0.006 0.013
(Jiawei Han, Philip S. Yu) 0.518 0.424 0.013 0.045
(Qiang Yang, Philip S. Yu) 0.083 0.785 0.131 0.001

(Qiang Yang, Chengqi Zhang) 0.023 0.684 0.228 0.065

Table 2: Cluster Membership Probabilities of A-P-A Path
Edges from DBLP
ing than in any other academic area such as database. However,
the path edge (Ming-Syan Chen, Philip S. Yu) have a large prob-
ability on cluster DB. A careful examination reveals that most of
coauthored publications between two experts are database specific.

5. RELATED WORK
Meta path-based social network analysis is gaining attention in

recent years [1–6]. PathSim [1] presented a meta path-based simi-
larity measure for heterogeneous graphs. [2] proposed a meta path-
based ranking model to find entities with high similarity to a given
query entity. HCC [3] is a meta-path based heterogeneous collec-
tive classification method. PathSelClus [4] utilizes user guidance as
seeds in some of the clusters to automatically learn the best weight-
s for each meta-path in the clustering. MLI [5] is a multi-network
link prediction framework by extracting useful features from mul-
tiple meta paths.

Graph clustering has been extensively studied in recent years [9–
21]. Shiga et al. [9] presented a clustering method which integrates
numerical vectors with modularity into a spectral relaxation prob-
lem. SCAN [10] is a structural clustering algorithm to detect clus-
ters, hubs and outliers in networks. MLR-MCL [11] is a multi-
level graph clustering algorithm using flows to deliver significan-
t improvements in both quality and speed. TopGC [14] is a fast
algorithm to probabilistically search large, edge weighted, direct-
ed graphs for their best clusters in linear time. BAGC [16] con-
structs a Bayesian probabilistic model to capture both structural
and attribute aspects of graph. GenClus [17] proposed a model-
based method for clustering heterogeneous networks with differ-
ent link types and different attribute types. CGC [18] is a multi-
domain graph clustering model to utilize cross-domain relationship
as co-regularizing penalty to guide the search of consensus cluster-
ing structure. FocusCO [20] solves the problem of finding focused
clusters and outliers in large attributed graphs.

To the best of our knowledge, VEPathCluster is the first one
to tightly integrate vertex-centric clustering and edge-centric clus-
tering by mutually enhancing each other with combining different
types of meta paths over heterogeneous information network.

6. CONCLUSIONS
We have presented a meta path graph clustering framework for

mining heterogeneous information networks. First, we model a het-
erogeneous information network containing multiple types of meta
paths as multiple vertex-centric path graphs and multiple edge-
centric path graphs. Second, we cluster both vertex-centric path
graph and edge-centric path graphs to generate vertex clustering
and edge clusterings. Third, a reinforcement algorithm is provided
to tightly integrate vertex clustering and edge clustering by mutu-
ally enhancing each other. Finally, an iterative learning strategy is
proposed to dynamically refine both clustering results by continu-
ously learning the degree of contributions of different path graphs.
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