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ABSTRACT
The classic problems of testing uniformity of and learning
a discrete distribution, given access to independent samples
from it, are examined under general `p metrics. The intu-
itions and results often contrast with the classic `1 case. For
p > 1, we can learn and test with a number of samples that
is independent of the support size of the distribution: With
an `p tolerance ε, O(max{

√
1/εq, 1/ε2}) samples suffice for

testing uniformity and O(max{1/εq, 1/ε2}) samples suffice
for learning, where q = p/(p− 1) is the conjugate of p. As
this parallels the intuition that O(

√
n) and O(n) samples

suffice for the `1 case, it seems that 1/εq acts as an upper
bound on the “apparent” support size.

For some `p metrics, uniformity testing becomes easier over
larger supports: a 6-sided die requires fewer trials to test
for fairness than a 2-sided coin, and a card-shuffler requires
fewer trials than the die. In fact, this inverse dependence
on support size holds if and only if p > 4

3
. The uniformity

testing algorithm simply thresholds the number of “collisions”
or “coincidences” and has an optimal sample complexity up
to constant factors for all 1 ≤ p ≤ 2. Another algorithm gives
order-optimal sample complexity for `∞ uniformity testing.
Meanwhile, the most natural learning algorithm is shown to
have order-optimal sample complexity for all `p metrics.

The author thanks Clément Canonne for discussions and
contributions to this work.

This is the full version of the paper appearing at ITCS
2015.

Categories and Subject Descriptors
F.2.0 [Analysis of Algorithms and Problem Complex-
ity]: general; G.3 [Probability and Statistics]: proba-
bilistic algorithms

General Terms
Algorithms, Theory

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ITCS’15, January 11–13, 2015, Rehovot, Israel.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3333-7/15/01 ...$15.00.
http://dx.doi.org/10.1145/2688073.2688095 .

Keywords
uniformity testing; property testing; learning; discrete distri-
butions; lp norms

1. INTRODUCTION
Given independent samples from a distribution, what we

can say about it? This question underlies a broad line of
work in statistics and computer science. Specifically, we
would like algorithms that, given a small number of samples,
can test whether some property of the distribution holds or
can learn some attribute of the distribution.

This paper considers two natural and classic examples.
Uniformity testing asks us to decide, based on the samples
we have drawn, whether the distribution is uniform over
a domain of size n, or whether it is “ε-far” from uniform
according to some metric. Distribution learning asks that,
given our samples, we output a sketch or estimate that
is within a distance ε of the true distribution. For both
problems, we would like to be correct except with some
constant probability of failure (e.g. 1

3
). The question studied

is the number of independent samples required to solve these
problems.

In practical applications we might imagine, such as a web
company wishing to quickly test or estimate the distribution
of search keywords in a given day, the motivating goal is
to formally guarantee good results while requiring as few
samples as possible. Under the standard `1 distance metric
(which is essentially equivalent to total variation distance
– we will use the term `1 only in this paper), the question
of uniformity testing over large domains was considered by

Paninski [16], showing that Θ
(√

n
ε2

)
samples are necessary

and sufficient for testing uniformity on support size n, and it
is known by “folklore” that Θ

(
n
ε2

)
samples are necessary and

sufficient for learning. Thus, these questions are settled1 (up
to constant factors) if we are only interested in `1 distance.

However, in testing and learning applications, we may be
interested in other choices of metric than `1. And more
theoretically, we might wonder whether the known `1 bounds
capture all of the important intuitions about the uniformity
testing and distribution learning problems. Finally, we might
like to understand our approaches for the `1 metric in a
broader context or seek new techniques. This paper addresses
these goals via `p metrics.

1[16] focused on the regime where support size is very large,
so order-optimal `1 uniformity testing for the case of smaller
n may have been technically open prior to this work.
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1.1 Motivations for `p Metrics
In the survey “Taming Big Probability Distributions” [17],

Rubinfeld notes that even sublinear bounds such as the above
Θ
(√

n
ε2

)
may still depend unacceptably on n, the support

size. If we do not have enough samples, Rubinfeld suggests
possible avenues such as assuming that the distribution in
question has some very nice property, e.g. monotonicity, or
assuming that the algorithm has the power to make other
types of queries.

However, it is still possible to ask what can be done without
such assumptions. One answer is to consider what we can say
about our data under other measures of distance than the
`1 distance. Do fewer samples suffice to draw conclusions?
A primary implication of this paper’s results is that this
approach does succeed under general `p metrics. The `p
distance between two probability distributions A,B ∈ Rn for
any p ≥ 1, where Ai is the probability of drawing coordinate i
from distribution A, is the `p norm of the vector of differences
in probabilities:

‖A−B‖p =

(
n∑
i=1

|Ai −Bi|p
)1/p

.

The `∞ distance is the largest difference of any coordinate,
i.e. ‖A−B‖∞ = maxi |Ai −Bi|.

Unlike the `1 case, it will turn out that for p > 1, we can
draw conclusions about our data with a number of samples
that is independent of n and depends only on the desired error
tolerance ε. We also find smaller dependences on the support
size n; in fact, for uniformity testing we find sometimes (per-
haps counterintuitively) that there is an inverse dependence
on n. The upshot is that, if we have few samples, we may
not be able to confidently solve an `1 testing or learning
problem, but we may have enough data to draw conclusions
about, say, `1.5 distance. This may also be useful in saying
something about the `1 case: If the true distribution A has
small `1.5 distance from our estimate Â, yet actually does
have large `1 distance from Â, then it must have a certain
shape (e.g. large support with many “light hitters”).2

Thus, this is the first and primary motivation for the study
of `p metrics: to be able to draw conclusions with few samples
but without making assumptions.

A second motivation is to understand learning and testing
under other `p metrics for their own sake. In particular, the `2
and `∞ cases might be considered important or fundamental.
However, even these are not always well understood. For
instance, “common knowledge” says that Θ

(
1
ε2

)
samples are

required to determine if one side of a coin is ε-more likely
to come up than it should be; one might naively think that
the same number of trials are required to test if any card is
ε-more likely to be top in a shuffle of a sorted deck. But the
latter can be far less, as small as Θ

(
1
ε

)
(depending on the

relationship of ε to the support size), so a large improvement
is possible.

Other `p norms can also be of interest when different fea-
tures of the distribution are of interest. These norms trade
off between measuring the tail of the distribution (p = 1
measures the total deviation even if it consists of many tiny
pieces) and measuring the heavy portion of the distribution
(p = ∞ measures only the single largest difference and ig-

2I thank the anonymous reviewers for suggestions and com-
ments regarding this motivation, including the `1.5 example.

nores the others). Thus, an application that needs to strike a
balance may find that it is best to test or estimate the distri-
bution under the particular p that optimizes some tradeoff.

General `p norms, and especially `2 and `∞, also can have
immediate applications toward testing and learning other
properties. For instance, [1] developed and used an `2 tester
as a black box in order to test the `1 distance between two
distributions. Utilizing a better `2 tester (for instance, one
immediately derived from the learner in this paper) leads to
an immediate improvement in the samples required by their
algorithm for the `1 problem.3

A third motivation for `p testing and learning, beyond
drawing conclusions from less data and independent inter-
est/use, is to develop a deeper understanding of `p spaces and
norms in relation to testing and learning problems. Perhaps
techniques or ideas developed for addressing these problems
can lead to more simple, general, and/or sharp approaches
in the special `1 case. More broadly, learning or sketching
general `p vectors have many important applications in set-
tings such as machine learning (e.g. [13]), are of independent
interest in settings such as streaming and sketching (e.g.
[12]), and are a useful tool for estimating other quantities
(e.g. [5]). Improved understandings of `p questions have been
used in the past to shed new light on well-studied `1 problems
[14]. Thus, studying `p norms in the context of learning and
testing distributions may provide the opportunity to apply,
refine, or develop techniques relevant to these areas.

1.2 Organization
The next section summarizes the results and describes some

of the key intuitions/conceptual takeaways from this work.
Then, we will describe the results and techniques for the
uniformity testing problem, and then the learning problem.
We then conclude by discussing the broader context, prior
work, and future work.

Most proofs are omitted in the body of the paper (though
sketches are usually provided). There is attached an appendix
containing all proofs.

2. SUMMARY AND KEY THEMES
At a technical level, this paper proves upper and lower

bounds for number of samples required for testing uniformity
and learning for `p metrics. These problems are formally
defined as follows. For each problem, we are given i.i.d. sam-
ples from a distribution A on support size n. The algorithm
must specify the number of samples m to draw and satisfy
the stated guarantees.

Uniformity testing: If A = Un, the uniform distribution
on support size n, then output “uniform”. If ‖A− Un‖p ≥ ε,
then output “not uniform”. In each case, the output must
be correct except with some constant failure probability δ
(e.g. δ = 1

3
).

Learning: Output a distribution Â satisfying that ‖A−
Â‖p ≤ ε. This condition must be satisfied except with some
constant failure probability δ (e.g. δ = 1

3
).

In both cases, the algorithm is given p, n, ε, δ.

Summary Theorem 1. For the problems of testing uni-
formity of and learning a distribution, the number of samples
necessary and sufficient satisfy, up to constant factors de-
pending on p and δ, the bounds in Table 1.

3Further improvement for this problem is achieved in [4].



In particular, for each fixed `p metric and failure probability
δ, the upper and lower bounds match up to a constant factor
for distribution learning for all parameters and for uniformity
testing when 1 ≤ p ≤ 2, when p =∞, and when p > 2 and n
is “large” (n ≥ 1

ε2
).

Table 1 is intended as a reference and summary; the reader
can safely skip it and read on for a description and explana-
tion of the key themes and results, after which (it is hoped)
Table 1 will be more comprehensible.

Later in the paper, we give more specific theorems con-
taining (small) explicit constant factors for our algorithms.

Some of these bounds are new and employ new techniques,
while others are either already known or can be deduced
quickly from known bounds; discussion focuses on the novel
aspects of these results and Section 6 describes the relation-
ship to prior work.

The remainder of this section is devoted to highlighting
the most important themes and conceptually important or
surprising results (in the author’s opinion). The following
sections detail the techniques and results for the uniformity
testing and learning problems respectively.

2.1 Fixed bounds for large n regimes
A primary theme of the results is the intuition behind `p

testing and learning in the case where the support size n is
large. In `p spaces for p > 1, we can achieve upper bounds
for testing and learning that are independent of n.

Summary Theorem 2. For a fixed p > 1, let q be the
Hölder conjugate4 of p with 1

p
+ 1

q
= 1. Let n∗ = 1/εq.

Then O
(
max

{√
n∗ , 1

ε2

})
samples are sufficient for testing

uniformity and O
(
max

{
n∗ , 1

ε2

})
are sufficient for learning.

Furthermore, for 1 < p ≤ 2, when the support size n exceeds
n∗, then Θ

(√
n∗
)

and Θ (n∗) respectively are necessary and
sufficient.

Intuitively, particularly for 1 < p ≤ 2, we can separate into
“large n”and“small n” regimes5, where the divider is n∗ = 1

εq
.

In the small n regime, tight bounds depend on n, but in
the large n regime where n ≥ n∗, the number of samples
is Θ (n∗) for learning and Θ

(√
n∗
)

for uniformity testing.
This suggests the intuition that, in `p space with tolerance
ε, distributions’ “apparent” support sizes are bounded by
n∗ = 1

εq
. We next make two observations that align with

this perspective, for purposes of intuition.

Observation 2.1. Let 1 < p and q = p
p−1

. If the distri-

bution A is “thin” in that maxiAi ≤ εq, then ‖A‖p ≤ ε. In
particular, if both distributions A and B are thin, then even
if they are completely disjoint,

‖A−B‖p ≤ ‖A‖p + ‖B‖p ≤ 2ε.

Proof. The claim holds immediately for p = ∞. For
1 < p < ∞, by convexity, since

∑
iAi = 1 and maxiAi ≤

εq, we have that ‖A‖pp =
∑
iA

p
i is maximized with as few

nonzero entries as possible, each at its maximum value εq.

4Note that 1 and ∞ are considered conjugates. This paper
will also use math with infinity, so for instance, when q =∞,
n1/q = 1 and it is never the case that n ≤ 1

εq
.

5For p ≥ 2, this separation still makes sense in certain ways
(see Observations 2.1 and 2.2 below) but does not appear in
the sample complexity bounds in this paper.

Learning for 1 ≤ p ≤ 2:

regime n ≤ 1
εq

n ≥ 1
εq

necessary
and sufficient

n
(n1/qε)2

1
εq

Uniformity testing for 1 ≤ p ≤ 2:

regime n ≤ 1
εq

n ≥ 1
εq

necessary
and sufficient

√
n

(n1/qε)2

√
1
εq

Learning for 2 ≤ p ≤ ∞:
1
ε2

(necessary and sufficient, all regimes).

Uniformity testing for p =∞:

regime Θ
(

n
ln(n)

)
≤ 1

ε
1
ε
≤ Θ

(
n

ln(n)

)
necessary
and sufficient

ln(n)
nε2

1
ε

Uniformity testing for 2 < p <∞:

regime Θ
(

n
ln(n)

)
≤ 1

ε
1
ε
≤ Θ

(
n

ln(n)

)
,

n ≤ 1
ε2

n ≥ 1
ε2

necessary
ln(n)
nε2

1
ε

1
ε

sufficient
1√
nε2

1√
nε2

1
ε

Table 1: Results summary. In each problem, we are given
independent samples from a distribution on support size n.
Each entry in the tables is the number of samples drawn
necessary and/or sufficient, up to constant factors depending
only on p and the fixed probability of failure. Throughout
the paper, q is the Hölder conjugagte of p, with q = p

p−1

(and q =∞ for p = 1).
In uniformity testing, we must decide whether the distribu-
tion is Un, the uniform distribution on support size n, or is
`p distance at least ε from Un. [16] gave the optimal upper
and lower bound in the case p = 1 (with unknown constants)
for large n; other results are new to my knowledge.
In learning, we must output a distribution at `p distance at
most ε from the given distribution, which has support size at
most n. Optimal upper and lower bounds for learning in the
cases p = 1, 2, and ∞ seem to the author to be all previously
known as folklore (certainly for `1 and `∞); others are new
to my knowledge.



This extreme example is simply the uniform distribution on
n = 1

εq
, when ‖A‖pp = n

(
1
n

)p
= 1

np−1 = ε. The rest is the
triangle inequality.

One takeaway from Observation 2.1 is that if we are inter-
ested in an `p error tolerance of Θ (ε), then any sufficiently
“thin” distribution may almost as well be the uniform dis-
tribution on support size 1

εq
. This perspective is reinforced

by Observation 2.2, which says that under the same circum-
stances, any distribution may almost as well be “discretized”
into 1

εq
chunks of weight εq each.

Observation 2.2. Fixing 1 < p, for any distribution A,
there is a distribution B whose probabilities are integer mul-
tiples of 1

εq
such that ‖A − B‖p ≤ 2ε. In particular, B’s

support size is at most 1
εq

.

Proof. We can always choose B such that, on each coor-
dinate i, |Ai−Bi| ≤ 1

εq
. (To see this, obtain the vector B′ by

rounding each coordinate of A up to the nearest integer mul-
tiple of εq, and obtain B′′ by rounding each coordinate down.
‖B′‖1 ≥ 1 ≥ ‖B′′‖1, so we can obtain a true probability dis-
tribution by taking some coordinates from B′ and some from
B′′.) But this just says that the vector A−B is “thin” in the
sense of Observation 2.1. The same argument goes through
here (even though A−B is not a probability distribution):
Since maxi |Ai−Bi| ≤ εq and

∑
i |Ai−Bi| ≤ 2, by convexity

‖A−B‖p is maximized when it has dimension 2
εq

and each
entry |Ai −Bi| = εq, so we get ‖A−B‖p ≤ 2ε.

2.2 Testing uniformity: biased coins and die
Given a coin, is it fair or ε-far from fair? It is well-known

that Ω
(

1
ε2

)
independent flips of the coin are necessary to

make a determination with confidence. One might naturally
assume that deciding if a 6-sided die is fair or ε-far from fair
would only be more difficult, requiring more rolls, and one
would be correct — if the measure of “ε-far” is `1 distance.

Indeed, it is known [16] that Θ
(√

n
ε2

)
rolls of an n-sided die

are necessary if the auditor’s distance measure is `1.
But what about other measures, say, if the auditor wishes

to test whether any one side of the die is ε more likely to
come up than it should be? For this `∞ question, it turns out
that fewer rolls of the die are required than flips of the coin;
specifically, we show that Θ

(
lnn
nε2

)
are necessary and sufficient,

in a small n regime (specifically, Θ
(

n
ln(n)

)
≤ 1

ε
). Once n

becomes large enough, only Θ
(
1
ε

)
samples are necessary and

sufficient.
Briefly, the intuition behind this result in the `∞ case is as

follows. When flipping a 2-sided coin, both a fair coin and
one that is ε-biased will have many samples that are heads
and many that are tails, making ε difficult to detect ( 1

ε2
flips

are needed to overcome the variance of the process). On the
other hand, imagine that we roll a die with n =one million
faces, for which one particular face is ε = 0.01 more likely
to come up than it should be. Then after only Θ

(
1
ε

)
= a

few hundred rolls of the die, we expect to see this face come
up multiple times. These multiple-occurrences or “collisions”
are vastly less likely if the die is fair, so we can distinguish
the biased and uniform cases.

So when the support is small, the variance of the uniform
distribution can mask bias; but this fails to happen when the
support size is large, making it easier to test uniformity over
larger supports. These intuitions extend smoothly to the `p

1/ε0 1/ε1 1/ε2 1/ε3 1/ε4 1/ε5 1/ε6 1/ε7

support size n

1/ε0.5

1/ε1

1/ε1.5

1/ε2

1/ε2.5

1/ε3

1/ε3.5

1/ε4

1/ε4.5

no
.o
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am
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m

p =1 (q =∞)

p =5
4 (q =5)

p =4
3 (q =4)

p =3
2 (q =3)

p =2 (q =2)

Figure 1: Samples (necessary and sufficient, up to constant
factors) for testing uniformity with a fixed `p tolerance ε.
On the horizontal axis is the support size n of the uniform
distribution, and on the vertical axis is the corresponding
number of samples required to test uniformity. The function

plotted is
√
n

(n1/qε)2
for n ≤ 1

εq
and

√
1
εq

for n ≥ 1
εq

, for

various choices of p and corresponding q = p
p−1

. There is a

phase transition at p = 4
3
: For p < 4

3
, the bound is initially

increasing in n; for p > 4
3
, the bound is initially decreasing in

n. For all p except p = 1, the number of necessary samples
is constant for n ≥ 1

εq
. Note the log-log scale.

metrics below p =∞: First, to be ε-far from uniform on a
large set, it must be the case that the distribution has “heavy”
elements; and second, these heavy elements cause many more
collisions than the uniform distribution, making them easier
to detect than when the support is small. However, this
intuition only extends “down” to certain values of p.

Summary Theorem 3. For 1 ≤ p ≤ 2, for n ≤ n∗ = 1
εq

,

the sample complexity of testing uniformity is Θ
( √

n

(n1/qε)2

)
.

For 1 ≤ p < 4
3

, this is increasing in the support size n, and

for 4
3
< p ≤ 2, this is decreasing in n. For p = 4

3
, the sample

complexity is Θ
(

1
ε2

)
for every value of n.

Figure 1 illustrates these bounds for different values of p,
including the phase transition at p = 4

3
.



3. UNIFORMITY TESTING FOR 1 ≤ p ≤ 2
Recall the definition of uniformity testing: given i.i.d.

samples from a distribution A, we must satisfy the following.
If A = Un, the uniform distribution on support size n, then
with probability at least 1 − δ, output “uniform”. If ‖A −
Un‖p ≥ ε, then with probability at least 1− δ, output “not
uniform”.

Algorithm 1 Uniformity Tester

On input p, n, ε, and failure probability δ:
Choose m to be “sufficient” for p, n, ε, δ according to proven
bounds.
Draw m samples.
Let C be the number of collisions:

C =
∑

1≤j<k≤m 1[jth sample = kth sample].

Let T be the threshold: T =
(
m
2

)
1
n

+
√

1
δ

(
m
2

)
1
n

.

If C ≤ T , output “uniform”.
If C > T , output “not uniform”.

The upper bounds for 1 ≤ p ≤ 2 rely on a very simple
algorithm, Algorithm 1, and straightforward (if slightly deli-
cate) argument. We count the number of collisions: Pairs of
samples drawn that are of the same coordinate. (Thus, if m
samples are drawn, there are up to

(
m
2

)
possible collisions.)

The number of collisions C has the following properties.6

Lemma 3.1. On distribution A, the number of collisions
C satisfies:

1. The expectation is
µA =

(
m
2

)
‖A‖22 =

(
m
2

) (
1
n

+ ‖A− U‖22
)
.

2. The variance is
V ar(C) =

(
m
2

) (
‖A‖22 − ‖A‖42

)
+ 6
(
m
3

) (
‖A‖33 − ‖A‖42

)
.

Thus, the `2 distance to uniform, ‖A − U‖2, intuitively
controls the number of collisions we expect to see, with a
minimum when A = U . This is why Algorithm 1 simply de-
clares the distribution nonuniform if the number of collisions
exceeds a threshold.

Theorem 3.1. For uniformity testing with 1 ≤ p ≤ 2,
it suffices to run Algorithm 1 while drawing the following
number of samples:

m =
9

δ


√
n

(εn1/q)2
n ≤ 1

εq

1
2

√(
2
ε

)q
n ≥ 1

εq
.

The proof of Theorem 3.1 uses Chebyshev’s inequality to
bound the probability that C is far from its expectation
in terms of V ar(C), for both the case where A = Un and
‖A−Un‖p ≥ ε. It focuses on a careful analysis of the variance
of the number of collisions, to show that, for m sufficiently
large, the variance is small. For 1 ≤ p ≤ 2, the dominant
term eventually falls into one of two cases, which correspond
directly to “large n” (n ≥ 1

εq
) and “small n” (n ≤ 1

εq
).

6A possibly interesting generalization: The expected number
of k-way collisions, for any k = 2, 3, . . . , is equal to

(
m
k

)
‖A‖kk.

To prove it, consider the probability that each k-sized subset
is such a collision (i.e. all k are of the same coordinate), and
use linearity of expectation over the

(
m
k

)
subsets.

Collisions, also called “coincidences”, have been implicitly,
but not explicitly, used to test uniformity for the `1 case
by Paninski [16]. Rather than directly testing the number
of collisions, that paper tested the number of coordinates
that were sampled exactly once. That tester is designed for
the regime where n > m. Collisions have also been used for
similar testing problems in [11, 1]. One interesting note is
that T is defined in terms of m, so that no matter how m is
chosen, if A = U then the algorithm outputs “uniform” with
probability 1− δ.

We also note that, if very high confidence is desired, a
logarithmic dependence on δ is achievable by repeatedly
running Algorithm 1 for a fixed failure probability and taking
a majority vote. The constants in the Theorem 3.2 are chosen
to optimize the number of samples.

Theorem 3.2. For uniformity testing with 1 ≤ p ≤ 2, it
suffices to run Algorithm 1 160 ln(1/δ)/9 times, each with
a fixed failure probability 0.2, and output according to a
majority vote; thus drawing a total number of samples

m = 800 ln(1/δ)


√
n

(εn1/q)2
n ≤ 1

εq

1
2

√(
2
ε

)q
n ≥ 1

εq
.

This improves on Theorem 3.1 when the failure probability
δ ≤ 0.002 or so.

The following lower bound shows that Algorithm 1 is
optimal for all 1 ≤ p ≤ 2, n, and ε, up to a constant factor
depending on p and the failure probability δ.

Theorem 3.3. For uniformity testing with 1 ≤ p ≤ 2, it
is necessary to draw the following number of samples:

m =


√

ln (1 + (1− 2δ)2)
√
n

(εn1/q)2
n ≤ 1

εq√
2(1− 2δ)

√
1

(2ε)q
n ≥ 1

εq
.

In the large-n regime, the lower bound can be proven sim-
ply. We pick randomly from a set of nonuniform distributions
A where, if not enough samples are drawn, then the proba-
bility of any collision is very low. But without collisions, the
input is equally likely to come from Un or from one of the
nonuniform As, so no algorithm can distinguish these cases.

In the small-n regime, the order-optimal lower bound
follows from the `1 lower bound of Paninski [16], which does
not give constants. We give a rewriting of this proof with
two changes: We make small adaptations to fit general `p
metrics, and we obtain the constant factor. The idea behind
the proof of [16] is to again pick randomly from a family of
distributions that are close to uniform. It is shown that any
algorithm’s probability of success is bounded in terms of the
distance from the distribution of the resulting samples to
that of samples drawn from Un.



4. UNIFORMITY TESTING FOR p > 2
This paper fails to characterize the sample complexity

of uniformity testing in the p > 2 regime, except for the
case p = ∞ in which the bounds are tight. However, the
remaining gap is relatively small.

First, we note that Algorithm 1 can be slightly adapted
for use for all p > 2, giving an upper bound on the number
of samples required. The reason is that, by an `p-norm
inequality, whenever ‖A−U‖p ≥ ε, we also have ‖A−U‖2 ≥ ε.
So an `2 tester is also an `p tester for p ≥ 2. This observation
proves the following theorem.

Theorem 4.1. For uniformity testing with any p > 2,
it suffices to run Algorithm 1 while drawing the number of
samples for p = 2 from Theorem 3.1, namely

m =
9

δ


1√
nε2

n ≤ 1
ε2

1
ε

n ≥ 1
ε2
.

(A logarithmic dependence on δ is also possible as in Theorem
3.2.)

Proof. If A = U , then by the guarantee of Algorithm 1,
with probability 1− δ it outputs “uniform”. If ‖A− U‖p ≥
ε, then ‖A − U‖2 ≥ ε: It is a property of `p norms that
‖V ‖2 ≥ ‖V ‖p for all vectors V when p ≥ 2. Then, by the
guarantee of Algorithm 1, with probability 1− δ it outputs
“not uniform”.

The same reasoning, but in the opposite direction, says that
a lower bound for the `∞ case gives a lower bound for all
p <∞. Thus, by proving a lower bound for `∞ distance, we
obtain the following theorem.

Theorem 4.2. For uniformity testing with any p, it is
necessary to draw the following number of samples:

m =


1
2

ln(1+n(1−2δ)2)
nε2

for all n

1−2δ
2

1
ε

n ≥ 1
ε
.

We find that the first bound is larger (better) for Θ
(

n
ln(n)

)
≤

1
ε
, and the second is better for all larger n.

Proof. In the appendix (Theorems C.1 and C.2), it is
proven that this is a lower-bound on the number of samples
for the case p = ∞. By the p-norm inequality mentioned
above, for any p ≤ ∞ and any vector V , ‖V ‖p ≥ ‖V ‖∞. In
particular, suppose we had an `p testing algorithm. When
the sampling distribution A = Un, then by the guarantee
of the `p tester it is correct with probability at least 1− δ;
when ‖A − Un‖∞ ≥ ε, we must have ‖A − Un‖p ≥ ε and
so again by the guarantee of the `p tester it is correct with
probability 1− δ. Thus the lower bound for `∞ holds for any
`p algorithm as well.

The lower bound for `∞ distance is proven by again splitting
into the large and small n cases. In the large n case, we can
simply consider the distribution

A∗ =

(
1

n
+ ε,

1

n
− ε

n− 1
, . . . ,

1

n
− ε

n− 1

)
.

If m is too small, then the algorithm probably does not draw
any sample of the first coordinate; but conditioned on this,

A∗ is indistinguishable from uniform (since it is uniform on
the remaining coordinates).

In the small n case, we adapt the general approach of [16]
that was used to prove tight lower bounds for the case p ≤ 2.
We consider choosing a random permutation of A∗ and then
drawing m i.i.d. samples from this distribution. As before,
we bound the success probability of any algorithm in terms
of the distance between the distribution of these samples and
that of the samples from Un.

Comparing Theorems 4.1 and 4.2, we see a relatively small
gap for the small n regime for 2 < p <∞, which is left open.
A natural conjecture is that the sample complexity will be
1
ε

for the regime n ≥ 1
εq

. For the small n regime, it is not

clear what to expect; perhaps 1

n1/qε2
. New techniques seem

to be required, since neither the analysis of collisions as in
the case p ≤ 2, nor the analysis of the single most different
coordinate, as we will see for the p =∞ case below, seems
appropriate or tight for the case 2 < p <∞.

A better `∞ tester. For the `∞ case, the `2 tester is
optimal in the regime where n ≥ 1

ε2
, as proven in Theorem

4.1. For smaller n, a natural algorithm (albeit with some
tricky specifics), Algorithm 2, gives an upper bound that
matches the lower bound up to constant factors. We first
state this upper bound, then explain.

Theorem 4.3. For uniformity testing with `p distance,
it suffices to run Algorithm 2 with the following number of
samples:

m =


23

ln( 2n
δ )

nε2
ε ≤ 2α(n)

35
ln( 1

δ )
ε

ε > 2α(n)

where α(n) = 1
n

(
1 + ln(2n)

ln(1/δ)

)
. In particular, for a fixed

failure probability δ, we have

α(n) = Θ

(
ln(n)

n

)
.

To understand Algorithm 2, consider separately the two

regimes: Θ
(

n
ln(n)

)
≤ 1

ε
and otherwise. For details of the

analysis, rather than phrasing the threshold in this way, we

phrase it as ε ≤ 2α(n) where α(n) = Θ
(

ln(n)
n

)
, but the

actual form of α is more complicated because it depends on
δ.

In the first, smaller-n regime, our approach will essentially

be a Chernoff plus union bound. We will draw m = Θ
(

ln(n)

nε2

)
samples. Then Algorithm 2 simply checks for any coordinate
with an “outlier” number of samples (either too many or too
few). The proof of correctness is that, if the distribution
is uniform, then by a Chernoff bound on each coordinate
and union-bound over the coordinates, with high probability
no coordinate has an “outlier” number of samples; on the
other hand, if the distribution is non-uniform, then there is
an “outlier” coordinate in terms of its probability and by a
Chernoff bound this coordinate likely has an “outlier” number
of samples.

In the second, larger-n regime (where ε > 2α(n)), we
will use the same approach, but first we will “bucket” the
distribution into n̂ groups where n̂ is chosen such that ε =
2α(n̂). In other words, no matter how large n is, we choose



n̂ so that ε = Θ
(

ln(n̂)
n̂

)
and treat each of the n̂ groups as its

own coordinate, counting the number of samples that group
gets.

In this larger-n regime, note that ε is large compared to
the probability that the uniform distribution puts on each
coordinate, or in fact on each group. So if ‖A− U‖∞ ≥ ε,
then there is a “heavy” coordinate (and thus group containing
it) that should get an outlier number of samples. We also
need, by a Chernoff plus union bound, that under the uniform
distribution, probably no group is an outlier. The key point
of our choice of n̂ is that it exactly balances this Chernoff
plus union bound.

Algorithm 2 Uniformity Tester for `∞

On input n, ε, and failure probability δ:
Choose m to be “sufficient” for n, ε, δ according to proven
bounds.
Draw m samples.

Let α(x) = 1
x

(
1 + ln(2x)

ln(1/δ)

)
= Θ

(
ln(x)
x

)
.

if ε ≤ 2α(n) then

Let t =
√

6m
n

ln
(
2n
δ

)
.

If, for all coordinates i, the number of samples Xi ∈
m
n
± t, output “uniform”.
Otherwise, output “not uniform”.

else
Let n̂ satisfy ε = 2α(n̂).
Partition the coordinates into at most 2dn̂e groups,

each of size at most bn
n̂
c.

For each group j, let Xj be the total number of samples
of coordinates in that group.

Let t =
√

6mε ln
(
1
δ

)
.

If there exists a group j with Xj ≥ mε− t, output “not
uniform”.

Otherwise, output “uniform”.
end if

5. DISTRIBUTION LEARNING
Recall the definition of the learning problem: Given i.i.d.

samples from a distribution A, we must output a distribution
Â satisfying that ‖A − Â‖p ≤ ε. This condition must be
satisfied except with probability at most δ.

5.1 Upper Bounds
Here, Algorithm 3 is the natural/naive one: Let the prob-

ability of each coordinate be the frequency with which it is
sampled.

Algorithm 3 Learner

On input p, n, ε, and failure probability δ:
Choose m to be “sufficient” for p, n, ε, δ according to proven
bounds.
Draw m samples.
Let Xi be the number of samples drawn of each coordinate
i ∈ {1, . . . , n}.
Let each Âi = Xi

m
.

Output Â.

The proofs of the upper bounds rely on an elegant proof
approach which is apparently “folklore” or known for the
`2 setting, and was introduced to the author by Clément
Canonne[3] who contributed it to this paper. The author and
Canonne in collaboration extended the proof to general `p
metrics in order to prove the bounds in this paper. Here, we
give the theorem and proof for perhaps the most interesting
and novel case, that for 1 < p ≤ 2, O

(
1
εq

)
samples are

sufficient independent of n. The other cases have a similar
proof structure.

Theorem 5.1. For 1 < p ≤ 2, to learn up to `p distance ε
with failure probability δ, it suffices to run Algorithm 3 while
drawing the following number of samples:

m =

(
3

δ

) 1
p−1 1

εq
.

Proof. Let Xi be the number of samples of coordinate i
and Âi = Xi

m
. Note that Xi is distributed Binomially with

m independent trials of probability Ai each. We have that

E ‖Â−A‖pp =
1

mp

n∑
i=1

E |Xi − EXi|p .

We will show that, for each i, E |Xi − EXi|p ≤ 3EXi. This
will complete the proof, as then

E ‖Â−A‖pp ≤
1

mp

n∑
i=1

3EXi

=
1

mp

n∑
i=1

3mAi

=
3

mp−1
;

and by Markov’s Inequality,

Pr[‖Â−A‖pp ≥ εp] ≤
3

mp−1εp
,

which for m =
(
3
δ

) 1
p−1 1

εq
is equal to δ.

To show that E |Xi − EXi|p ≤ 3EXi, fix any i and con-
sider a possible realization x of Xi. If |x− EXi| ≥ 1, then
|x−EXi|p ≤ |x−EXi|2. We can thus bound the contribution
of all such terms by E |Xi − EXi|2 = V arXi.

If, on the other hand, |x− EXi| < 1, then |Xi − EXi|p ≤
|Xi − EXi|; furthermore, at most two terms satisfy this
condition, namely (letting β := bEXic) x = β and x = β+ 1.
These terms contribute a total of at most

Pr[Xi = β]|EXi − β|+ Pr[Xi = β + 1]|β + 1− EXi|
≤EXi + Pr[Xi = β + 1].

Consider two cases. If EXi ≥ 1, then the contribution is
at most EXi + 1 ≤ 2EXi. If EXi < 1, then β + 1 = 1,
and by Markov’s Inequality, Pr[Xi ≥ 1] ≤ EXi, so the total
contribution is again bounded by 2EXi.

Thus, we have

E |Xi − EXi|p ≤ V arXi + 2EXi
≤ 3EXi

because V arXi = (1−Ai)EXi.

A slightly tighter analysis can be obtained by reducing
to the `2 algorithm, in which the above proof technique is
“tightest”. It produces the following theorem:



Theorem 5.2. For learning a discrete distribution with
1 ≤ p ≤ 2, it suffices to run Algorithm 3 with the following
number of samples:

m =
1

δ


n

(n1/qε)2
n ≤

(
2
ε

)q
1
4

(
2
ε

)q
n ≥

(
2
ε

)q
.

With p ≥ 2, it suffices to draw the sufficient number for `2
learning, namely

m =
1

δ

1

ε2
.

In fact, ‖A − Â‖p is tightly concentrated around its ex-
pectation, allowing a better asymptotic dependence on δ
when high confidence is desired. This idea is also folklore
and not original to this paper. Here we apply it as follows.
We must draw enough samples so that, first, the expectation
of ‖Â − A‖p is smaller than ε

2
; and second, we must draw

enough so that, with probability 1− δ, ‖Â− A‖p is no more
than ε

2
greater than its expectation. It suffices to take the

maximum of the number of samples that suffice for each
condition to hold, resulting in the following bounds.

Theorem 5.3. For learning a discrete distribution with
1 ≤ p ≤ 2 and failure probability δ, it suffices to run Algo-
rithm 3 with the following number of samples:

m = max

{
2

2
p
+1

ln(1/δ)

ε2
, M

}
,

where

M =

4 n

(n1/qε)2
n ≤

(
4
ε

)q
1
4

(
4
ε

)q
n ≥

(
4
ε

)q
.

For p ≥ 2, it suffices to use the sufficent number of samples
for `2 learning, namely

m = max

{
4 ln(1/δ)

ε2
,

4

ε2

}
.

In particular, for `1 learning, it suffices to draw

m = max

{
8 ln(1/δ)

ε2
,

4n

ε2

}
.

5.2 Lower bounds

Theorem 5.4. To learn a discrete distribution in `p dis-
tance, the number of samples required for all p, δ is at least

m =

Ω
(

1
ε2

)
2 ≤ p ≤ ∞

Ω
(

1
εq

)
1 < p ≤ 2, n ≥ 1

εq
.

For 1 ≤ p ≤ 2 and n ≤ 1
εq

, there is no γ > 0 such that

m = O

(
n

(n1/qε)
2−γ

)
samples, up to a constant factor depending on δ, suffice for
all δ.

As detailed in Appendix D.2, these bounds can be proven
from the folklore `1 bound for the case 1 ≤ p ≤ 2 (which

seems to give a slightly tighter guarantee than the theorem
statement); and the lower bound for `∞ uniformity testing
gives the tight bound for 2 ≤ p ≤ ∞. Finding it somewhat
unsatisfying to reduce to the `1 folklore result, we attempt
an independent proof. This approach will give tight bounds
up to (unspecified) constant factors for all p and δ in the
1 < p ≤ 2, “large n” (n ≥ 1

εq
) regime. In the small n regime,

we will get bounds that look like n

(n1/qε)2(1−δ)
instead of

n

(n1/qε)2
(interpreted as in the above theorem). Thus, in this

paper, the lower bound for this regime matches the upper
bound in a weak sense; it would be nice if the below approach
can be improved to yield a stronger statement.

We begin by defining the following game and proving the
associated lemma:
Distribution identification game: The game is parame-
terized by maximum support size n, distance metric ρ, and
tolerance ε. First, a finite set S of distributions is chosen
with ρ(A,B) > 2ε for all A,B ∈ S. Every distribution in S
has support n̂ ≤ n (it will be useful to choose n̂ 6= n). The
algorithm is given S. Second, a distribution A ∈ S uniformly
at random. Third, the algorithm is given m i.i.d. samples
from A. Fourth, the algorithm wins if it correctly guesses
which A ∈ S was chosen, and loses otherwise.

Lemma 5.1. Any algorithm for learning to within distance
ε using m(n, p, ε) samples with failure probability δ can be
converted into an algorithm for distribution identification
using m(n, p, ε) samples, with losing probability at most δ.

Proof. Suppose the true oracle is A ∈ S. Run the learn-
ing algorithm, obtaining Â, and output the member B of S
that minimizes ρ(Â, B) (where ρ is the distance metric of
the game; for us, it will be `p distance). With probability
at least 1 − δ, by the guarantee of the learning algorithm,
‖Â − A‖p ≤ ε. When this occurs, we always output the
correct answer, A: For any B 6= A in S, by the triangle
inequality ‖Â−B‖p ≥ ‖B −A‖ − ‖Â−A‖ > 2ε− ε = ε.

The proofs of the lower bounds then proceed in the follow-
ing fashion, at a high level:

1. Construct a large set S of distributions. For instance,

for 1 ≤ p ≤ 2, we have |S| ≈
(

1

(n̂)1/qε

)n̂
. The main

idea is to use a sphere-packing argument as with e.g.
the Gilbert-Varshamov bound in error-correcting codes.
(In particular, the “construction” is not constructive;
we merely prove that such a set exists.)

2. Relate the probability of winning the game to the
information obtained from the samples. Intuitively,
we need a good ratio of the entropy of the samples,
≈ n̂ log

(√
m
n̂

)
, to the entropy of the choice of distribu-

tion, log |S|.

3. Combine these steps. For instance, for 1 ≤ p ≤ 2, we get

that the probability of winning looks like
(
n̂1/qε

√
m
n̂

)n̂
,

implying that, for a constant probability of winning,
we must pick m ≈ n̂

((n̂)1/qε)2
.

4. Choose n̂ ≤ n. For 1 ≤ p ≤ 2, in the small n regime
where n ≤ 1

εq
, the best choice turns out to be n̂ = n;

in the large n regime, the choice n̂ = 1
εq

turns out



to be optimal and gives a lower bound Θ (n̂) that is
independent of n for that range (since for any large
enough n, we make the same choice of n̂).

6. PRIOR AND FUTURE WORK

6.1 Discussion of Prior Work
The study of problems under `p metrics crops up in many

areas of theoretical computer science and probability, as men-
tioned in the introduction. Similar in spirit to this paper
is Berman et al 2014 [2], which examined testing properties
of real-valued functions such as monotonicity, Lipschitz con-
stant, and convexity, all under various `p distances. Another
case in which“exotic”metrics have been studied in connection
with testing and learning is in Do et al 2011 [9], which studied
the distance between and equality of two distributions under
Earth Mover Distance.

For the problem of testing uniformity, Paninski 2008 [16]
examines the `1 metric in the case of large-support distribu-
tions. The lower bound technique, which is slightly extended

and utilized in this paper, establishes that Ω
(√

n
ε2

)
samples

are necessary to test uniformity under the `1 metric (with
constants unknown). This lower bound holds for all support
sizes n. The algorithm that gives the upper bound in that

paper, a matching m = O
(√

n
ε2

)
, holds for the case of very

large support size n, namely n > m. This translates to
n = Ω

(
1
ε4

)
. The reason is that the algorithm counts the

number of coordinates that are sampled exactly once; when
n > m, this indirectly counts the number of collisions (more
or less).

[16] justifies a focus on n > m because, for small n, one
could prefer to just learn the distribution, which tells one
whether it is uniform or not. However, depending on ε, this
paper shows that the savings can still be substantial: the
number of samples required is on the order of n

ε2
to learn ver-

sus
√
n
ε2

to test uniformity using Algorithm 1. To the author’s
knowledge an order-optimal `1 tester for all regimes may
have previously been open. However, independently to this
work, Diakonikolas et al 2015 [8] give an `2 uniformity tester
for the small-n regime (which is optimal in that regime) and
which implies an order-optimal `1 tester for all parameters.
They use a Poissonization and chi-squared-test approach.

More broadly, the idea of using collisions is common and
also arises for related problems, e.g. by [11] in a different
context, and by Batu et al 2013 [1] for testing closeness of two
given distributions in `1 distance. This latter problem was
resolved more tightly by Chan et al 2014 [4] who established

a Θ
(

max
{
n2/3

ε4/3
,
√
n
ε2

})
sample complexity. This problem

may be a good candidate for future `p testing questions. It
may be that the collision-based analysis can easily be adapted
for general `p norms.

The case of learning a discrete distribution seems to the
author to be mostly folklore. It is known that Θ

(
n
ε2

)
samples

are necessary and sufficient in `1 distance (as mentioned for
instance in [7]). It is also known via the “DKW inequal-
ity” [10] that Θ

(
1
ε2

)
samples are sufficient in `∞ distance,

with a matching lower bound coming from the biased coin
setting (since learning must be at least as hard as distin-
guishing a 2-sided coin from uniform). It is not clear to the
author exactly what bounds would be considered “known” or
“folklore” for the learning problem in `2; perhaps the upper

bound that O
(

1
ε2

)
samples are sufficient in `2 distance is

known. This work does provide a resolution to these ques-
tions, giving tight upper and lower bounds, as part of the
general `p approach. But it should be noted that the results
in at least these cases were already known and indeed the
general upper-bound technique, introduced to the author by
Clément Canonne [3], is not original here (possibly appearing
in print for the first time).

6.2 Bounds and Algorithms via Conversions
As mentioned at times throughout the paper, conversions

between `p norms can be used to convert algorithms from one
case to another. In some cases this can give easy and tight
bounds on the number of samples necessary and sufficient.
The primary such inequality is Lemma 6.1.

Lemma 6.1. For 1 ≤ p ≤ s ≤ ∞, for all vectors V ∈ Rn,

‖V ‖p
n

1
p
− 1
s

≤ ‖V ‖s ≤ ‖V ‖p.

For instance, suppose we have an `2 learning algorithm
so that, when it succeeds, we have ‖Â − A‖2 ≤ α. Then

for p > 2, ‖Â − A‖p ≤ ‖Â − A‖2 ≤ α, so we have an `p
learner with the same guarantee. This also says that any
lower bound for an `p learner, p > 2, immediately implies
the same lower bound for `2.

Meanwhile, for p < 2, ‖Â − A‖p ≤ ‖Â − A‖2n
1
p
− 1

2 ≤
αn

1
p
− 1

2 . This implies that, to get an `p learner for distance

ε, it suffices to use an `2 learner for distance α = εn
1
2
− 1
p =

εn1/q/
√
n. This can also be used to convert a lower bound

for `p, p < 2, into a lower bound for `2 learners.
While these conversions can be useful especially for obtain-

ing the tightest possible bounds, the techniques in this paper
primarily focus on using a general technique that applies to
all `p norms separately. However, it should be noted that
applying these conversions to prior work can obtain some of
the bounds in this paper (primarily for learning).

6.3 Future Work
An immediate direction from this paper is to close the gap

on uniformity testing with 2 < p < ∞, where n is smaller
than 1

ε2
. Although this case may be somewhat obscure or

considered unimportant and although the gap is not large, it
might require interesting new approaches.

A possibly-interesting problem is to solve the questions
considered in this paper, uniformity testing and learning,
when one is not given n, the support size. For uniformity
testing, the question would be whether the distribution is ε
far from every uniform distribution Un, or whether it is equal
to Un for some n. For each p > 1, these problems should be
solvable without knowing n by using the algorithms in this
paper for the worst-case n (note that, unlike the p = 1 case,
there is an n-independent maximum sample complexity).
However, it seems possible to do better by attempting to
learn or estimate the support size while samples are drawn
and terminating when one is confident of one’s answer.

A more general program in which this paper fits is to
consider learning and testing problems under more “exotic”
metrics than `1, such as `p, Earth Mover’s distance [9], or
others. Such work would benefit from finding motivating
applications for such metrics. An immediate problem along
these lines is testing whether two distributions are equal or
ε-far from each other in `p distance.



One direction suggested by the themes of this work is
the testing and learning of “thin” distributions: those with
small `∞ norm (each coordinate has small probability). For
p > 4/3, we have seen that uniformity testing becomes easier
over thinner distributions, where n is larger. It also seems
that we ought to be able to more quickly learn a thin dis-
tribution. At the extreme case, for 1 < p, if maxiAi ≤ εq,
then by Observation 2.1, we can learn A to within distance
2ε with zero samples by always outputting the uniform dis-
tribution on support size 1

εq
. Thus, it may be interesting to

consider learning (and perhaps other problems as well) as
parameterized by the thinness of the distribution.
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APPENDIX
The structure of the appendix matches the technical sections
in the body of the paper.

A Preliminaries
A.1 Useful Facts and Intuition . . . . . . . . . . .

B Uniformity Testing for 1 ≤ p ≤ 2
B.1 Upper Bounds (sufficient) . . . . . . . . . . .
B.2 Lower Bounds (necessary) . . . . . . . . . . .

C Uniformity Testing for p > 2
C.1 Lower Bounds (necessary) . . . . . . . . . . .
C.2 Upper Bounds (sufficient) . . . . . . . . . . .

D Distribution Learning
D.1 Upper Bounds (sufficient) . . . . . . . . . . .
D.2 Lower Bounds (necessary) . . . . . . . . . . .

A. PRELIMINARIES
We consider discrete probability distributions of support

size n, which will be represented as vectors A ∈ Rn where
each entry Ai ≥ 0 and

∑n
i=1 Ai = 1. We refer to 1, . . . , i, . . . , n

as the coordinates.
n will always be the support size of the distributions under

consideration. Un will always refer to the uniform distri-
bution on support size n, sometimes denoted U where n is
evident from context. m will always denote the number of
i.i.d. samples drawn by an algorithm.

For p ≥ 1, the `p norm of any vector V ∈ Rn is

‖V ‖p =

(
n∑
i=1

|Vi|p
)1/p

.

The `∞ norm is

‖V ‖∞ = max
i=1,...,n

|Vi|.

For 1 ≤ p ≤ ∞, the `p distance metric on Rn sets the distance
between V and U to be ‖V − U‖p.

For a given p, 1 ≤ p ≤ ∞, we let q denote the Hölder
conjugate of p: When 1 < p <∞, q = p

p−1
(and so 1

p
+ 1
q

= 1);
and 1 and∞ are conjugates of each other. We may use math
with infinity. For instance, 1

∞ is treated as 0. We may be

slightly sloppy and, for instance, write n ≤ 1
εq

when q may
be ∞, in which case (since ε < 1) the expression is true for
all n.

Goals.
In all of the tasks considered in this paper, we are given

n ≥ 2 (the support size), 1 ≤ p ≤ ∞ (specifying the distance
metric), and 0 < ε < 1 (the “tolerance”). We are given
“oracle access” to a discrete probability distribution, meaning
that we can specify a number m and receive m independent
samples from the distribution.

We wish to determine the neccessary and sufficient number
of i.i.d. samples to draw from oracle distributions in order to
solve a given problem. The number of samples will always be
denoted m; the goal is to determine the form of m in terms
of n, p, and ε. The goal will be to return the correct (or a
“good enough”) answer with probability at least 1 − δ (we
may call this the “confidence”; δ is the “failure probability”).
For uniformity testing, 0 < δ < 0.5; for learning, 0 < δ < 1.

A.1 Useful Facts and Intuition
The first lemma is well-known and will be used in many

places to relate the different norms of a vector. The second
is used to relate norms independently of the support size.

Lemma 6.1. For 1 ≤ p ≤ s ≤ ∞, for all vectors V ∈ Rn,

‖V ‖p
n

1
p
− 1
s

≤ ‖V ‖s ≤ ‖V ‖p.

Proof. To show ‖V ‖s ≤ ‖V ‖p: First, for s =∞, we only
need that (

max
i
|Vi|
)p
≤
∑
i

|Vi|p,

which is immediate. Now suppose s <∞. Then we just need
the following ratio to exceed 1:7(

‖V ‖p
‖V ‖s

)p
=
∑
i

(
|Vi|
‖V ‖s

)p
≥
∑
i

(
|Vi|
‖V ‖s

)s
= 1.

The inequality follows because, as already proven, for any s,
‖V ‖s ≥ maxi |Vi|; so each term is at most 1, and we have
s ≥ p, so the value decreases when raised to the s rather
than to the p.

It remains to show ‖V ‖p ≤ n
1
p
− 1
s ‖V ‖s. Rewriting, we

want to show

‖V ‖p
n1/p

≤ ‖V ‖s
n1/s

.

If s =∞, then we have(∑
i |Vi|

p

n

)1/p

≤ max
i
|Vi|,

which follows because the maximum exceeds the average. For
s <∞, raise both sides to the s power: We want to show(∑

i |Vi|
p

n

) s
p

≤
∑
i |Vi|

s

n
.

Since s
p
≥ 1, the function x 7→ x

s
p is convex, and the above

holds directly by Jensen’s inequality.

Lemma A.1. For any vector V ∈ Rn with ‖V ‖1 ≤ c:
1. For 1 < p ≤ 2 with conjugate q = p

p−1
,

‖V ‖qp ≤ cq−2‖V ‖22.

2. For 2 ≤ p ≤ ∞ with conjugate q = p
p−1

,

‖V ‖qp ≥ cq−2‖V ‖22.
Proof. We have

‖V ‖qp =

(∑
i

|Vi|p
) 1
p−1

=

(
‖V ‖1

∑
i

|Vi|
‖V ‖1

|Vi|p−1

) 1
p−1

=
(
‖V ‖1 E |Vi|p−1) 1

p−1 , (1)

7The idea of this trick was observed from
http://math.stackexchange.com/questions/76016/is-p-
norm-decreasing-in-p.



treating
(
|V1|
‖V ‖1

, . . . , |Vn|‖V ‖1

)
as a probability distribution on

{1, . . . , n}. For the first claim of the lemma, by Jensen’s
inequality, since p − 1 ≤ 1 and the function x 7→ xp−1 is
concave,

E |Vi|p−1 ≤ (E |Vi|)p−1

=

(
1

‖V ‖1

∑
i

V 2
i

)p−1

,

which (plugging back into Equation 1) gives

‖V ‖qp ≤ ‖V ‖
2−p
p−1

1 ‖V ‖22.

We have that 2−p
p−1

= q − 2. And since for the first case

q − 2 ≥ 0, the right side is maximized when ‖V ‖1 = c.
For the second claim of the lemma, p − 1 ≥ 1, so by

Jensen’s inequality we get the exact same conclusion but
with the inequality’s direction reversed. (Note that in this
case, q − 2 ≤ 0, so the right side is minimized when ‖V ‖1 is
at its maximum value c.)

In particular, if V is a probability distribution (so ‖V ‖1 = 1),
and 1 < p ≤ 2, then

‖V ‖qp ≤ ‖V ‖22 ≤ ‖V ‖pq .

B. UNIFORMITY TESTING FOR 1 ≤ p ≤ 2

B.1 Upper Bounds (sufficient)
The upper-bound analysis focuses on the properties of

C, the number of collisions, in Algorithm 1. Recall that
C =

∑
1≤j<k≤m 1[jth sample = kth sample]; in other words,

it is the number of pairs of samples that are of the same
coordinate.

Lemma 3.1. On distribution A, the number of collisions
C satisfies:

1. The expectation is
µA =

(
m
2

)
‖A‖22 =

(
m
2

) (
1
n

+ ‖A− U‖22
)
.

2. The variance is
V ar(C) =

(
m
2

) (
‖A‖22 − ‖A‖42

)
+ 6
(
m
3

) (
‖A‖33 − ‖A‖42

)
.

Proof. (1) We have

µA = E
∑

1≤j≤k≤m

1[Sj = Sk]

=

(
m

2

)
Pr[Sj = Sk]

=

(
m

2

)∑
i

Pr[Sj = Sk = i]

=

(
m

2

)∑
i

A2
i .

Meanwhile,

‖A− U‖22 =
∑
i

(
Ai −

1

n

)2

=
∑
i

(
A2
i −

2

n
Ai +

1

n2

)
=
∑
i

A2
i −

1

n

using that
∑
iAi = 1.

(2) Recall that we wrote C as a sum of random variables
1[Sj = Sk] for all pairs j 6= k. The variance of a sum
of random variables is the sum, over all pairs of variables
1[Sj = Sk] and 1[Sx = Sy], of the covariances:

V ar(C) =
∑
j 6=k

∑
x6=y

Cov(1[Sj = Sk], 1[Sx = Sy])

=
∑
j 6=k

∑
x6=y

(
E (1[Sj = Sk]1[Sx = Sy])

− E (1[Sj = Sk])E (1[Sx = Sy])
)

=
∑
j 6=k

∑
x6=y

(
Pr[Sj = Sk and Sx = Sy]

− Pr[Sj = Sk] Pr[Sx = Sy]
)
.

If all four of j, k, x, y are distinct, i.e. the two pairs of
samples have no samples in common, then the events Sj = Sk
and Sx = Sy are independent, so all of these terms in the
summation are zero. Otherwise, first note that the right
summand is

Pr[Sj = Sk] Pr[Sx = Sy] =

(∑
i

A2
i

)2

= ‖A‖42.

Now consider the case where the pairs are equal: {j, k} =
{x, y}. This case holds for

(
m
2

)
choices of {j, k, x, y} (namely,

all possible pairs j 6= k), and when it holds,

Pr[Sj = Sk and Sx = Sy] = Pr[Sj = Sk]

= ‖A‖22.

The final case is where the pairs have one index in common:
|{j, k} ∩ {x, y}| = 3. This case holds for all possible unequal
triples of indices,

(
m
3

)
triples, and for each one it appears 6

times in the sum: If a < b < c, we have (1)j = a, k = b, x =
b, y = c; (2) j = a, k = c, x = b, y = c; (3) j = a, k = b, x =
a, y = c, and the symmetric three cases with (j, k) swapped
with (x, y). So, to reiterate, this case holds for 6

(
m
3

)
terms

in the sum. When it holds,

Pr[Sj = Sk and Sx = Sy] = Pr[Sj = Sk = Sx = Sy]

= Pr[three samples are all equal]

=
∑
i

A3
i

= ‖A‖33.

Putting it all together, we get that

V ar(C) =

(
m

2

)(
‖A‖22 − ‖A‖42

)
+ 6

(
m

3

)(
‖A‖33 − ‖A‖42

)
.

(For a sanity check, we can notice that we got
(
m
2

)
+ 6
(
m
3

)
nonzero terms in the sum. Let us count the zero terms:
the ones where j, k, x, y are all distinct.8 Thus, count all
the ways we can first pick j 6= k, which is

(
m
2

)
, times all

8This is not
(
m
4

)
, because a given set of four distinct indices

can appear as j, k, x, y in 6 different ways (one can check),
giving 6

(
m
4

)
=
(
m
2

)(
m−2

2

)
.



the ways we can pick x 6= y from the remaining m − 2
indices, which is

(
m−2

2

)
. Thus, the number of zero terms

is
(
m
2

)(
m−2

2

)
. Now, to complete the sanity check, note that

in total there are
(
m
2

)2
terms in the sum, and we do have(

m
2

)(
m−2

2

)
+
(
m
2

)
+ 6
(
m
3

)
=
(
m
2

)2
.)

Theorem 3.1. For uniformity testing with 1 ≤ p ≤ 2,
it suffices to run Algorithm 1 while drawing the following
number of samples:

m =
9

δ


√
n

(εn1/q)2
n ≤ 1

εq

1
2

√(
2
ε

)q
n ≥ 1

εq
.

We give a proof sketch before giving the full proof.
Proof sketch. Given Lemma 3.1, the proof is intuitively

straightforward (if slightly tedious). Recall that the threshold
is

T =

(
m

2

)
1

n
+

√√√√1

δ

(
m

2

)
1

n
.

We output “uniform” if and only if C ≤ T .
T was chosen to “fit” the expectation and variance of the

collisions when the oracle A is the uniform distribution. In
that case, the expected number of collisions is µA =

(
m
2

)
1
n

and the variance is V ar(C) ≤ µA (it turns out). Thus,

by Chebyshev, Pr[C ≥ T ] ≤ Pr[|C − µA| ≥
√
µA/δ] ≤

δVar(C)/µA ≤ δ. This argument holds for all choices of m,
since we chose T depending on m.

If the oracle is some A with ‖A − U‖p ≥ ε, then we
again apply Chebyshev’s inequality, looking to bound the
Pr[C < T ]. The variance is made up of several additive
terms, and in different regimes different terms will dominate.
Knowing the correct form of m “in advance”, and plugging it
in, simplifies the case analysis somewhat and enables us to
solve for a constant.

Proof. First, we prove that, if A = U , then with proba-
bility at least 1− δ, we output “uniform”. By Chebyshev’s
Inequality,

δ ≥ Pr
[
|C − µU | ≥

√
V ar(C)/δ

]
≥ Pr

[
C ≥ µU +

√
µU/δ

]
= Pr [C ≥ T ] .

We used Lemma 3.1, the definition of T , and the observation
that when drawing from the uniform distribution, V ar(C) ≤(
m
2

)
‖U‖22 = µU , because ‖U‖33 = ‖U‖42 = 1

n2 . (Note that this
proof works for any m, since the threshold is chosen as the
“correct” function of m. The bound on m is only needed for
the next part of the proof.)

Next, and more involved, is the proof that, if ‖A−U‖p ≥ ε,
then with probability at least 1 − δ, we output “different”.

Again, we will employ Chebyshev, this time to bound9

Pr [C ≤ T ] = Pr [µA − C ≥ µA − T ]

≤ Pr [|µA − C| ≥ µA − T ]

≤ V ar(C)

(µA − T )2
.

So we need to pick m so that, when ‖A− U‖p ≥ ε,

V ar(C) ≤ δ (µA − T )2 . (2)

Recall that µA =
(
m
2

) (
1
n

+ ‖A− U‖22
)

and T =
(
m
2

)
1
n

+√
1
δ

(
m
2

)
1
n
. Thus,

µA − T =

(
m

2

)
‖A− U‖22 −

√√√√(m
2

)
1

δn
,

so the right side of Inequality 2 is

δ (µA − T )2

= δ

(
m

2

)2

‖A− U‖42 − 2

(
m

2

)3/2

‖A− U‖22

√
δ

n
+

(
m

2

)
1

n
.

(3)

Meanwhile, we claim that the left side satisfies the inequality

V ar(C) ≤

(
m

2

)
1

n
+(

m

2

)
‖A− U‖22

(
1 + 2(m− 2)

(
1

n
+ ‖A− U‖2

))
.

(4)

We defer the proof of Inequality 4 and first show how it is
used to prove the lemma. Recall that the goal is to choose m
so that Inequality 2 holds. We can be assured that Inequality
2 holds if the right side of Inequality 4 is at most the right
side of Equation 3. After subtracting

(
m
2

)
1
n

from both sides

and dividing both sides by
(
m
2

)
‖A− U‖22, this reduces to

1 + 2(m− 2)

(
1

n
+ ‖A− U‖2

)
≤ δ

(
m

2

)
‖A− U‖22 − 2

√(
m
2

)
δ

n
.

Apply on the right side that
(
m
2

)
≤ m2

2
,10 move the rightmost

term to the other side, and divide through by δm
2

2
‖A− U‖22:

it suffices that

2
√

2

m
√
δn‖A− U‖22

+
2

δm2‖A− U‖22

+
4

δnm‖A− U‖22
+

4

δm‖A− U‖2
≤ 1. (5)

Now, suppose that m satisfies

m ≥ k

δ
max

{
1√

n‖A− U‖22
,

1

‖A− U‖2

}
. (6)

9Note this argument requires µA − T > 0, which will turn

out from the math below to be true if m ≥
√
6√

n‖A−U‖22
, and

it will turn out that we always pick m larger than this.
10Justified because the right side is positive implies that this
substitution increases it.



Then we get the requirement

2
√

2δ

k
+

2δ

k2
+

4

k
√
n

+
4

k
≤ 1,

which, since δ < 0.5 and n ≥ 2, we can check is satisfied for
k = 9 (or actually k ≥ 8.940...).

It remains to ensure that m satisfies Inequality 6, which is
in terms of ‖A− U‖2; but we are given a guarantee of the
form ‖A− U‖p ≥ ε. For p ≤ 2, since ‖A− U‖p ≥ ε, we have
by Lemmas 6.1 and A.1 that

‖A− U‖2 ≥ α := max

{
ε

n
1
2
− 1
q

,
εq/2

2
q−2
2

}
,

plugging in that ‖A− U‖1 ≤ 2. For n ≤ 1
(2ε)q

, the first term

is larger, and we get that

m ≥ 9

δ
max

{
n

1
2
− 2
q

ε2
,

2
q−2
2

εq/2

}
samples suffices. This completes the proof, except to show
Inequality 4 as promised.

To prove it, start by dropping the relatively insignificant
first ‖A‖42 term:

V ar(C) ≤

(
m

2

)(
‖A‖22 + 2(m− 2)

(
‖A‖33 − ‖A‖42

))

We will show that

‖A‖33 − ‖A‖42 ≤ ‖A‖22
(

1

n
+ ‖A− U‖2

)
.

One can check that this will complete the proof of Inequality
4, by substituting and rearranging (also using that ‖A‖22 =
1
n

+ ‖A− U‖22).

To show that ‖A‖33 − ‖A‖42 ≤ ‖A‖2
(
1
n

+ ‖A− U‖2
)
, intro-

duce the notation δi = Ai − 1
n

. (This is unrelated to the
failure probability.) Then with some rearranging (note that∑
i δi = 0),

‖A‖33 =
∑
i

(
1

n
+ δi

)3

=
1

n2
+
∑
i

δ2i

(
3

n
+ δi

)
and

‖A‖42 =

(
1

n
+
∑
i

δ2i

)2

=
1

n2
+
∑
i

δ2i

(
2

n
+
∑
j

δ2j

)
.

Thus, the difference is at most (dropping the relatively in-
significant

∑
j δ

2
j term)

‖A‖33 − ‖A‖42 ≤
∑
i

δ2i

(
1

n
+ δi

)
= ‖A− U‖22

1

n
+ ‖A− U‖33.

At this point, use the fact from Lemma 6.1 that ‖A−U‖3 ≤
‖A− U‖2 to get

‖A‖33 − ‖A‖42 ≤ ‖A− U‖22
(

1

n
+ ‖A− U‖2

)
.

Theorem 3.2. For uniformity testing with 1 ≤ p ≤ 2, it
suffices to run Algorithm 1 160 ln(1/δ)/9 times, each with
a fixed failure probability 0.2, and output according to a
majority vote; thus drawing a total number of samples

m = 800 ln(1/δ)


√
n

(εn1/q)2
n ≤ 1

εq

1
2

√(
2
ε

)q
n ≥ 1

εq
.

This improves on Theorem 3.1 when the failure probability
δ ≤ 0.002 or so.

Proof. Suppose we run Algorithm 1 k times, each with
a fixed failure probability δ′. The number of samples is k
times the number given in Theorem 3.1 (with parameter
δ′). Each iteration is correct independently with probability
at least 1− δ′, so the probability that the majority vote is
incorrect is at most the probability that a Binomial of k
draws with probability 1− δ′ each has at most k/2 successes;
by a Chernoff bound (e.g. Mitzenmacher and Upfal [15],
Theorem 4.5),

Pr[# successes ≤ k/2] ≤ exp

[
−
(
(1− δ′)k − k

2

)2
2(1− δ′)k

]

= exp

[
−k
(
1
2
− δ′

)2
2 (1− δ′)

]
.

Thus, it suffices to set

k = ln

(
1

δ

)(
2(1− δ′)(
1
2
− δ′

)2
)
.

(Technically there ought to be a ceiling function around this
expression in order to make k an integer.) This holds for
any choice of δ′ < 0.5, but it is approximately minimized
by δ′ = 0.2, when k = 160

9
ln(1/δ). Each iteration requires

the number of samples stated in Theorem 3.1 with failure
probability δ′ = 0.2, which completes the proof of the theo-
rem.

B.2 Lower Bounds (necessary)
Theorem 3.3. For uniformity testing with 1 ≤ p ≤ 2, it

is necessary to draw the following number of samples:

m =


√

ln (1 + (1− 2δ)2)
√
n

(εn1/q)2
n ≤ 1

εq√
2(1− 2δ)

√
1

(2ε)q
n ≥ 1

εq
.

Proof. The proof will be given separately for the two
separate cases by (respectively) Theorems B.2 and B.1.

Theorem B.1. For uniformity testing with 1 < p ≤ 2 and
n ≥ 1

εq
, with failure probability δ, it is necessary to draw at

least the following number of samples:

m =

√
2(1− 2δ)

1

(2ε)q
.



Proof sketch. We will construct a family of distributions, all
of which are ε-far from uniform. We will draw a member
uniformly randomly from the family, and give the algorithm
oracle access to it. If the algorithm has failure probability
at most δ, then it outputs “not uniform” with probability at
least 1− δ on average over the choice of oracle (because it
does so for every oracle in the family).

However, the algorithm must also say “uniform” with prob-
ability at least 1− δ when given oracle access to U . The idea
will be that, on both the uniform distribution and one chosen
from the family, the probability of any collision is very low.
But, conditioned on no collisions, a randomly chosen member
of the family is completely indistinguishable from uniform.
So if the algorithm usually says “uniform” when the input
has no collisions, then it is usually wrong when the oracle is
drawn from our family; or vice versa.

Proof. Construct a family of distributions as follows.
We will choose a particular value n̂ ≤ n

2
(to be specified

later). Pick n̂ coordinates uniformly at random from the n
coordinates, and let each have probability 1

n̂
. The remaining

coordinates have probability zero.
We will need to confirm two properties: that ‖A−U‖p ≥ ε

for every A in the family, and that the probability of any
collision occurring is small. Toward the first property, we
have that on each of the n̂ nonzero coordinates, |Ai − 1

n
| =

1
n̂
− 1

n
≥ 1

2n̂
, using that 1

n
≤ 1

2n̂
. Thus,

‖A− U‖pp ≥ n̂
(

1

2n̂

)p
=

1

2p(n̂)p−1
. (7)

So for the first property, `p distance ε from uniform, we must
choose n̂ so that Expression 7 is at least εp. For the property
that the chance of a collision is small, we have by Markov’s
Inequality that for any A in the family,

Pr[C ≥ 1] ≤ E[C]

=

(
m

2

)
‖A‖22

=

(
m

2

)
n̂

(
1

n̂

)2

≤ m2

2n̂
. (8)

Now we choose n̂ =
(

1
2ε

)q
. Note that, if n ≥ 1

εq
, then

n̂ = n
2q
≤ n

2
. For the first property, for any distribution A in

the family, by Inequality 7, ‖A− U‖pp ≥ (2ε)q(p−1)

2p
= εp. For

the second property, by Inequality 8, Pr[C ≥ 1] ≤ m2 (2ε)q /2,

so if m <
√

2 1−2δ
(2ε)q

, then

Pr[C ≥ 1] ≤ 1− 2δ.

This shows that, if the oracle is drawn from the family, then
the expected number of collisions, and thus probability of
any collision, is less than 1− 2δ if m is too small. Meanwhile,
if the oracle is the uniform distribution U , then the expected
number of collisions is smaller (since ‖U‖22 = 1

n
≤ ‖A‖22).

So if m is smaller than the bounds given, then for either
scenario of oracle, the algorithm observes a collision with
probability less than 1− 2δ.

But if there are no collisions, then the input consists en-
tirely of distinct samples and every such input is equally
likely, under both the oracle being U and under a distribu-
tion chosen uniformly from our family (by symmetry of the
family). Thus, conditioned on zero collisions, the probabil-
ity γ of the algorithm outputting “uniform” is equal when
given oracle access to U and when it is given oracle access
to a uniformly chosen member of our family of distribu-
tions. If γ ≤ 1

2
, then the probability of correctness when

given oracle access to U is at most γ · Pr[no collisions] +
Pr[collisions] ≤ 1

2
+ 1

2
Pr[collisions] ≤ 1

2
+ 1

2
(1− 2δ) = 1− δ.

Conversely, if γ ≥ 1
2
, then the probability of correctness

when given oracle access to a member of the family is at most
(1−γ) Pr[no collisions]+Pr[collisions] ≤ 1

2
+ 1

2
Pr[collisions] ≤

1− δ again.

Theorem B.2. For uniformity testing with 1 ≤ p ≤ 2, if
n ≤ 1

εq
, then it is necessary to draw the following number of

samples:

m =
√

ln ((1− 2δ)2 + 1)

√
n

(εn1/q)
2 .

Proof. We know from [16] that, in `1 norm, Ω
(√

n
ε2

)
samples are required. This result actually immediately im-
plies the bound with an unknown constant, by a careful
change of parameters, as follows. Suppose that A satis-
fies ‖A − U‖p ≤ ε, for 1 ≤ p ≤ ∞. Then by Lemma 6.1,

‖A − U‖1 ≤ εn
1− 1

p = εn1/q. So let α = εn1/q. Then since
‖A−U‖1 ≤ α, the number of samples required to distinguish
A from U is on the order of

√
n

α2
=

√
n

(n1/qε)
2 .

Below, we chase through the construction and analysis
(somewhat modified for clarity, it is hoped) of [16], adapted
for the general case. The primary point of the exercise is to
obtain the constant in the bound, which is not apparent in
[16].

So fix 1 ≤ p ≤ 2. The plan is to construct a set of
distributions and draw one uniformly at random, then draw
m i.i.d. samples from it. These samples are distributed in
some particular way; let ~Z be their distribution (written as a
length-nm vector, since there are nm possible outcomes). Let
~U be the distribution of the m input samples when the oracle
distribution is U ; ~U =

(
1
nm

, . . . , 1
nm

)
since every outcome of

the m samples is equally likely.
Suppose that the algorithm, which outputs either “unif” or

“non”, is correct with probability at least 1− δ > 0.5. Then
first, a minor lemma:

δ ≥ 1− ‖~Z − ~U‖1
2

. (9)

Proof of the lemma: Letting PrA[event] be the probability
of “event” when the oracle is drawn from our distribution,



and analogously for PrU [event]:∣∣∣Pr
U

[alg says “unif”]− Pr
A

[alg says “unif”]
∣∣∣

=

∣∣∣∣∣∣
∑

s∈[nm]

Pr
U

[alg says “unif” on s]
(

Pr[s← ~U ]− Pr[s← ~Z]
)∣∣∣∣∣∣

≤
∑

s∈[nm]

∣∣∣~Us − ~Zs

∣∣∣
= ‖~U − ~Z‖1;

on the other hand, the first line is lower-bounded by |1 −
δ − δ| = 1− 2δ, which proves the lemma (Inequality 9).

Now we repeat Paninski’s construction, slightly generalized
for the `p case. We assume n is even; if not, apply the
following construction to the first n − 1 coordinates. The
family of distributions is constructed (and sampled from
uniformly) as follows. For each i = 1, 3, 5, . . . , flip a fair coin.
If heads, let Ai = 1

n
(1 + α) and let Ai+1 = 1

n
(1− α). If tails,

let Ai = 1
n

(1− α) and let Ai+1 = 1
n

(1 + α).

Here α = εn1/q. We need to verify that each A so con-
structed is a valid probability distribution and that ‖A −
U‖p ≥ ε. Since n ≤ 1

εq
, we have that α ≤ 1, so our con-

struction does give a valid probability distribution. And
‖A− U‖pp = n

(
α
n

)p
= n1−pεpnp/q = εp.

Now we just need to upper-bound ‖~U − ~Z‖1, and we will

be done. Utilize the inequality of Lemma 6.1, ‖~U − ~Z‖1 ≤
‖~U − ~Z‖2

√
nm, and upper-bound this 2-norm. We have

‖~U − ~Z‖22 =
∑

s∈[nm]

(
~Zs −

1

nm

)2

=
∑
s

(
~Z2
s −

2

nm
~Zs +

1

n2m

)

=

(∑
s

~Z2
s

)
− 1

nm
. (10)

Now,

∑
s

~Z2
s =

∑
s

∑
A,A′

1

2n
Pr[s | A] Pr[s | A′]

where A and A′ are random variables: They are distributions
drawn uniformly from our family, each with probability 1

2n/2

(since we make n/2 binary choices).
Let sj , for j = 1, . . . ,m, be the jth sample. Now, rear-

range:

∑
s

~Z2
s =

∑
A,A′

1

2n

∑
s

Pr[s | A]

m∏
j=1

A′sj

View the inner sum as follows: After fixing A and A′, we
take the expectation, over a draw of a sample s from A, of
the quantity Pr[s | A′], which is expanded into the product.
But now, each term A′sj is independent, since the m samples
are drawn i.i.d. from A (and recall that, in this expectation,
A and A′ are fixed and not random). The expectation of the

product is the product of the expectations:

∑
s

~Z2
s =

∑
A,A′

1

2n

m∏
j=1

∑
s

Pr[s | A]A′sj

=
∑
A,A′

1

2n

m∏
j=1

∑
sj∈[n]

Pr[sj | A]A′sj

=
∑
A,A′

1

2n

m∏
j=1

n∑
i=1

AiA
′
i

=
∑
A,A′

1

2n

(
n∑
i=1

AiA
′
i

)m

We can simplify the inner sum. After factoring out a 1
n

from
each probability, consider the odd coordinates i = 1, 3, 5, . . . .
Either Ai 6= A′i, in which case AiA

′
i = 1

n2 (1 + α)(1− α) =
1
n2 (1 − α2) = Ai+1A

′
i+1, or Ai = A′i. In this case, AiA

′
i +

Ai+1A
′
i+1 = 1

n2

(
(1 + α)2 + (1− α)2

)
= 2

n2 (1 + α2). So the
inner sum is equal to

n∑
i=1

AiA
′
i =

1

n

(
1 +

2α2

n

∑
i=1,3,5,...

σi(A,A
′)

)
.

where

σi(A,A
′) =

{
1 Ai = A′i
−1 Ai 6= A′i

.

Note that unless A = A′, σi(A,A
′) has a 0.5 probability of

taking each value, independently for all i.
OK, we now plug the inner sum back in and use the

inequality 1 + x ≤ ex:

∑
s

~Z2
s =

∑
A,A′

1

2n

(
1

n

(
1 +

2α2

n

∑
i=1,3,...

σi(A,A
′)

))m

≤ 1

nm

∑
A,A′

1

2n
e

2mα2

n

∑
i=1,3,... σi(A,A

′)

=
1

nm

∑
A,A′

1

2n

∏
i=1,3,...

e
2mα2

n
σi(A,A

′).

This double sum is an expectation over the random variables
A and A′, which now means it is an expectation only over
the σi(A,A

′)s. As each is independent and uniform on
{−1, 1}, we can convert the expectation of products into a
product of expectations, take the expectation, and use the

cosh inequality ex+e−x

2
≤ ex

2/2:

∑
s

~Z2
s ≤

1

nm

∏
i=1,3,...

E e
2mα2

n
σi(A,A

′)

=
1

nm

(
1

2
e

2mα2

n +
1

2
e
−2mα2

n

)n/2
≤ 1

nm

(
e

2m2α4

n2

)n/2
=

1

nm
e
m2α4

n .



Plugging this all the way back into Equation 10,

‖~U − ~Z‖22 ≤
1

nm

(
e
m2α4

n − 1

)
=⇒ ‖~U − ~Z‖1 ≤

1√
nm

√
e
m2α4

n − 1
√
nm

=

√
e
m2α4

n − 1.

It is already apparent that we need m ≥ Ω
(√

n
α2

)
, and by

construction
√
n

α2 =
√
n

(n1/qε)2
. More precisely, plugging in to

Inequality 9 (the “mini-lemma”), we find that to succeed with
probability ≥ 1− δ, an algorithm must draw

m ≥
√

ln ((1− 2δ)2 + 1)

√
n

(n1/qε)
2

samples.

C. UNIFORMITY TESTING FOR p > 2

C.1 Lower Bounds (necessary)

Theorem C.1. To test uniformity in `∞ distance for any
n > 1

ε
requires the following number of samples:

m =
1− 2δ

2

1

ε
.

Proof sketch. The proof is similar to the proof of Theorem
B.1, the lower bound for p ≤ 2 and n ≥ 1

εq
. In this case, we

only need one distribution A (not a family of distributions),
which has probability 1

n
+ ε on one coordinate and is uniform

on the others. Thus, ‖A − Un‖∞ = ε. Without enough
samples, probably the large coordinate is never drawn; but
conditioned on this, A and Un are indistinguishable.

Proof. Let

A =

(
1

n
+ ε,

1

n
− ε

n− 1
, . . . ,

1

n
− ε

n− 1

)
.

If m ≤ 1−2δ
2

1
ε
, then

Pr
A

[sample coord 1] = m

(
1

n
+ ε

)
< 2mε

≤ 1− 2δ

using that 1
n
< ε. Also note that

Pr
U

[sample coord 1] ≤ Pr
A

[sample coord 1] ≤ 1− 2δ.

Now, we claim that, conditioned on not sampling coordi-
nate 1, the distribution of samples is the same under A and
under U . This follows because, for both A and U , the distri-
bution over samples conditioned on not sampling coordinate
1 is uniform. Let γ be the probability that the algorithm says
“uniform” given that the samples do not contain coordinate
1 (again, we just argued that this probability is equal to
γ whether the distribution is A or U). If γ ≥ 1

2
, then the

probability of correctness when drawing samples from A is

at most

Pr
A

[sample coord 1] + (1− γ)
(

1− Pr
A

[sample coord 1]
)

≤ 1

2
+ Pr

A
[sample coord 1]

(
1− 1

2

)
<

1

2
(1 + 1− 2δ)

= 1− δ.

Similarly, if γ ≤ 1
2
, then the probability of correctness when

drawing samples from U is at most

Pr
U

[sample coord 1] + γ
(

1− Pr
U

[sample coord 1]
)

< 1− δ

by the same arithmetic. So the algorithm has a larger failure
probability than δ in at least one of these cases.

Theorem C.2. To test uniformity in `∞ distance for any
n requires at least the following number of samples:

m =
1

2

ln
(
1 + n(1− 2δ)2

)
ε2n

.

Proof. We proceed by the same general technique as in
Theorem B.2, the proof of Paninski in [16].

Our family of distributions will be the possible permuta-
tions of the distribution A from the proof of Theorem C.1;
namely, we will have a family of n distributions, each of
which puts probability 1

n
+ ε on one coordinate and puts

probability 1
n
− ε

n−1
on the remaining coordinates. We se-

lect a coordinate i ∈ {1, . . . , n} uniformly at random, which
chooses the distribution that puts higher probability on i.

As shown in the proof of Theorem C.1, letting ~Z be the
distribution of samples obtained by picking a member of the
family and then drawing m samples, and letting ~U be the
distribution of samples obtained by drawing m samples from
U , we have for any algorithm

δ ≥ 1− ‖~Z − ~U‖1
2

. (11)

Meanwhile, by the p-norm inequality (Lemma 6.1), recalling

that ~Z and ~U are vectors of length nm,

‖~Z − ~U‖1 ≤
√
nm‖~Z − ~U‖22

=

√
nm‖~Z‖22 − 1, (12)

using that

‖~Z − ~U‖22 =
∑
s

|~Zs − ~Us|2

=
∑
s

~Z2
s + ~U2

s − 2~Zs~Us

= ‖~Z‖22 +
1

nm
− 2

1

nm

∑
s

~Zs

= ‖~Z‖22 −
1

nm
.

Thus, our task is again to bound ‖~Z‖22. Our next step toward
this will be to obtain the following:∑

s

~Z2
s = EA,A′

(
Es∼A Pr[s ∼ A′]

)m
.



Here, A and A′ are two distributions draw randomly from
the family, and the notation s ∼ A means drawing a set
of samples s i.i.d. from A (so the inner expectation is over
a sample s drawn from A and is the expectation of the
probability of that sample according to A′). The proof is
precisely as in that of Theorem C.1:∑

s

~Z2
s =

∑
s

(EA Pr[s ∼ A])
(
EA′ Pr[s ∼ A′]

)
= EA,A′

∑
s

Pr[s ∼ A] Pr[s ∼ A′]

= EA,A′ Es∼A Pr[s ∼ A′]

= EA,A′ Es∼A
m∏
k=1

Pr[sk ∼ A′]

= EA,A′
(
Es∼A Pr[sk ∼ A′]

)m
.

We used that each sample sk in s is independent, so the
expectation of the product is the product of the expectations;
and since they are identically distributed, this is just the
inner expectation to the mth power.

Next, we claim that

Es∼A Pr[sk ∼ A′] =

{
1
n

+ ε2n
n−1

A = A′

1
n
− ε2n

(n−1)2
A 6= A′

.

To prove it, suppose that A has highest probability on coor-
dinate i and A′ on coordinate j. Then

Es∼A Pr[sk ∼ A′]

= Pr[j ∼ A]

(
1

n
+ ε

)
+ (1− Pr[j ∼ A])

(
1

n
− ε

n− 1

)
and since Pr[j ∼ A] is either 1

n
+ ε in the case A = A′ or else

1
n
− ε

n−1
otherwise, one can check the claim.

Thus we now have∑
s

~Z2
s = EA,A′

({
1
n

+ ε2n
n−1

A = A′

1
n
− ε2n

(n−1)2
A 6= A′

)m
.

And because A = A′ with probability exactly 1
n

when both
are chosen randomly,∑
s

~Z2
s =

1

n

(
1

n
+

ε2n

n− 1

)m
+
n− 1

n

(
1

n
− ε2n

(n− 1)2

)m
=

1

nm

(
1

n

(
1 +

ε2n2

n− 1

)m
+
n− 1

n

(
1− ε2n2

(n− 1)2

)m)
≤ 1

nm

(
1

n

(
1 + 2ε2n

)m
+
n− 1

n

)
≤ 1

nm

(
1

n
exp

[
2mε2n

]
+
n− 1

n

)
=

1

nm

(
1

n

(
exp

[
2mε2n

]
− 1
)

+ 1

)
.

Plugging back in to Inequalities 12 and 11, it is necessary
that

δ ≥
1−

√
1
n

(exp [2mε2n]− 1)

2
;

equivalently,

1

n

(
exp

[
2mε2n

]
− 1
)
≥ (1− 2δ)2;

which equates to

exp
[
2mε2n

]
≥ n(1− 2δ)2 + 1.

Thus,

m ≥ 1

2

ln
(
1 + n(1− 2δ)2

)
ε2n

.

C.2 Upper Bounds (sufficient)
Let us briefly recall Algorithm 2. For a threshold α(n) =

Θ
(

ln(n)
n

)
, we condition on whether ε ≤ 2α(n) or ε > α(n).

These essentially correspond to the small n and large n
regimes for this problem.

If ε ≤ 2α(n), we draw Θ
(

ln(n)

nε2

)
samples and check whether

all coordinates have a number of samples close to their ex-
pectation; if not, we output “not uniform”.

If ε > 2α(n), we draw Θ
(
1
ε

)
samples. We choose n̂ such

that ε = 2α(n̂); in other words, ε = Θ
(

ln(n̂)
n̂

)
. We then

divide the coordinates into about n̂ “groups” where, if A = U ,
then each group has probability about 1

n̂
. We then check for

any group with a “large” outlier number of samples; if one
exists, then we output “not uniform”.

Theorem 4.3. For uniformity testing with `p distance,
it suffices to run Algorithm 2 with the following number of
samples:

m =


23

ln( 2n
δ )

nε2
ε ≤ 2α(n)

35
ln( 1

δ )
ε

ε > 2α(n)

where α(n) = 1
n

(
1 + ln(2n)

ln(1/δ)

)
. In particular, for a fixed

failure probability δ, we have

α(n) = Θ

(
ln(n)

n

)
.

Proof. For each case, we will prove two lemmas that
imply the upper bound. First, for the case, ε ≤ 2α(n),
Lemma C.1 states that if A = U then Xi ∈ m

n
± t for all

coordinates i except with probability δ; and Lemma C.2
states that if ‖A − U‖∞ ≥ ε then some coordinate has
Xi 6∈ m

n
± t except with probability δ.

Similarly, for the case ε > 2α, Lemma C.3 states that
if A = U then Xj < mε − t for all groups j except with
probability δ; and Lemma C.4 states that if ‖A− U‖∞ ≥ ε
then some group has Xj ≥ mε− t except with probability
δ.

Lemma C.1. If A = U , then (for any m,n, ε) with prob-
ability at least 1− δ, every coordinate i satisfies that Xi ∈
m
n
±
√

3m
n

ln
(
2n
δ

)
.

Proof. The number of samples of any particular coordi-
nate i is distributed as a Binomial(m, 1/n). Let µ = EXi =
m
n

. By a Chernoff bound (e.g. Mitzenmacher and Upfal [15],
Theorems 4.4 and 4.5), the following inquality holds for both
P = Pr[Xi ≤ µ− t] and P = Pr[Xi ≥ µ+ t]:

P ≤ e−
t2

3µ . (13)



Since µ = m
n

, if we set

t =

√
3
m

n
ln

(
2n

δ

)
,

then we get that Xi falls outside the range in either direc-
tion with probability at most δ

n
; a union bound over the n

coordinates gives that the probability of any of them falling
outside the range is at most δ.

Lemma C.2. Suppose ‖A− U‖∞ ≥ ε and ε ≤ 2α(n), and

we draw m ≥ 23
ln( 2n

δ )
nε2

samples. Then with probability at least

1−δ, some coordinate i satisfies that Xi 6∈ m
n
±
√

3m
n

ln
(
2n
δ

)
.

Proof. There must be some coordinate i such that either
Ai ≤ 1

n
− ε or Ai ≥ 1

n
+ ε. Take the first case. (Note that in

this case 1
n
≥ ε.) By the Chernoff bound mentioned above

(Inequality 13),

Pr
[
Xi ≥

m

n
− t
]

= Pr
[
Xi ≥ EXi +

(m
n
− t− EXi

)]
≤ exp

[
−
(
m
n
− t− EXi

)2
3EXi

]

≤ exp

[
− (mε− t)2

3m
(
1
n
− ε
)]

because EXi ≤ m
(
1
n
− ε
)

and this substitution only in-
creases the bound.

For this to be bounded by δ, it suffices that

mε− t ≥

√
3
m

n
ln

(
1

δ

)
.

Now we substitute t =
√

3m
n

ln
(
2n
δ

)
. Because t is larger

than the right-hand side, it suffices that

mε ≥ 2t

⇐⇒ mε ≥ 2

√
3m

n
ln

(
2n

δ

)
⇐⇒ m ≥

12 ln
(
2n
δ

)
nε2

.

That completes the proof for this case.
Now take the case that there exists some Ai ≥ 1

n
+ ε.

Pr
[
Xi ≤

m

n
+ t
]

= Pr
[
Xi ≤ EXi −

(
EXi −

m

n
− t
)]

≤ exp

[
−

(EXi − m
n
− t)2

3EXi

]
.

This bound is decreasing in EXi, so we can use the inequality
EXi ≥ m (ε+ 1/n):

≤ exp

[
− (mε− t)2

3m
(
1
n

+ ε
)] .

The above is bounded by δ if it is true that

mε− t ≥

√
3m ln

(
1

δ

)(
1

n
+ ε

)
.

Since ε ≤ 2α(n), we have

ln

(
1

δ

)(
1

n
+ ε

)
≤ ln

(
1

δ

)(
1

n
+

1

n

(
1 +

ln(2n)

ln(1/δ)

))
=

3 ln
(
1
δ

)
n

+
2 ln (2n)

n

≤
3 ln

(
2n
δ

)
n

.

Thus, it suffices to have m satisfy

mε− t ≥

√
9m ln

(
2n
δ

)
n

= 3

√
m ln

(
2n
δ

)
n

.

Because t =
√

3

√
m ln( 2n

δ )
n

, it suffices that

mε ≥
(

3 +
√

3
)√m ln

(
2n
δ

)
n

⇐⇒ m ≥
(

3 +
√

3
)2 ln

(
2n
δ

)
nε2

.

In particular,
(
3 +
√

3
)2 ≤ 23.

Lemma C.3. Suppose A = U and ε > 2α(n), and we draw

m ≥ 35 ln(1/δ)
ε

samples. Then with probability at least 1− δ,
every group j satisfies that Xj ≤ mε−

√
3mε ln

(
1
δ

)
.

Proof. Recall that we have divided into at most 2n̂
groups, each of size bn

n̂
c. When A = U , this implies that

each group has probability at most 1
n̂

. Therefore, by the
same Chernoff bound (Inequality 13), for any group j,

Pr[Xj ≥ mε− t] = Pr [Xj ≥ EXj + (mε− t− EXj)]

≤ exp

[
− (mε− t− EXj)2

3EXj

]
≤ exp

[
−
(
mε− t− m

n̂

)2
3m/n̂

]
.

We wish this probability to be bounded by δ
2n̂

, as then, by
a union bound over the at most 2n̂ groups, the probability
that any group exceeds the threshold is at most δ. Thus, it
suffices that

mε− t− m

n̂
≥

√
3
m

n̂
ln

(
2n̂

δ

)
Now we can apply our fortuitous choice of n̂: Note that

ln
(
2n̂
δ

)
n̂

=
ln
(
1
δ

)
+ ln(2n̂)

n̂

= ln

(
1

δ

)
α(n̂)

= ln

(
1

δ

)
ε

2
.

So it suffices that

mε− t− m

n̂
≥
√

3

2

√
mε ln

(
1

δ

)
.



We have that t =
√

3
√
mε ln

(
1
δ

)
, so it suffices that

m

(
ε− 1

n̂

)
≥
√

3

(
1 +

1√
2

)√
mε ln

(
1

δ

)
.

Since ε = 2α(n̂), in particular ε ≥ 2
n̂

, or ε− 1
n̂
≥ ε

2
. Therefore,

it suffices that

mε ≥ 2
√

3

(
1 +

1√
2

)√
mε ln

(
1

δ

)
⇐⇒ m ≥

(
2
√

3

(
1 +

1√
2

))2 ln
(
1
δ

)
ε

.

In particular,
(

2
√

3
(

1 + 1√
2

))2
≤ 35.

Lemma C.4. Suppose ‖A−U‖∞ ≥ ε and ε > 2α(n). Then
(for any m) with probability at least 1− δ, there exists some

group j whose number of samples Xj ≥ mε−
√

3mε ln
(
1
δ

)
.

Proof. This is just a Chernoff bound. Note that if co-
ordinate i has some number of samples, then there exists a
group (that containing i) having at least that many samples.
So we simply prove the lemma for the number of samples of
some coordinate Xi.

If ‖A − U‖∞ ≥ ε and ε > 2α(n), then in particular ε >
2
n

, which implies that there exists some coordinate i with

Ai >
1
n

+ ε (because 1
n
− ε < 0). Using the Chernoff bound

mentioned above (Inequality 13),

Pr[Xi < mε− t] = Pr[Xi < EXi − (EXi −mε+ t)]

≤ exp

[
− (EXi −mε+ t)2

3EXi

]
≤ exp

[
− t2

3mε

]
,

using that EXi ≥ mε; and this is bounded by δ if

t ≥

√
3mε ln

(
1

δ

)
.

D. DISTRIBUTION LEARNING

D.1 Upper Bounds (sufficient)
We first show the following bound for `2 learning, which

is slightly tighter than Theorem 5.1.

Theorem D.1. To learn in `2 distance with failure prob-
ability δ, it suffices to run Algorithm 3 while drawing the
following number of samples:

m =
1

δ

1

ε2
.

Before proving it, let us separately show the key fact:

Lemma D.1. If we draw m samples, then

E
[
‖A− Â‖22

]
≤ 1

m
.

Proof of Lemma D.1. As in the proof of Theorem 5.1,
letting Xi be the number of samples of coordinate i:

E ‖Â−A‖22 =
1

m2

n∑
i=1

E (Xi − EXi)2

=
1

m2

n∑
i=1

V ar(Xi)

=
1

m2

n∑
i=1

mAi(1−Ai)

≤ 1

m

n∑
i=1

Ai

=
1

m
.

Proof of Theorem D.1. Using Markov’s Inequality and
Lemma D.1,

Pr[‖Â−A‖2 ≥ ε] = Pr[‖Â−A‖22 ≥ ε2]

≤ E ‖Â−A‖22
ε2

≤ 1

mε2

= δ

if m = 1
δ

1
ε2

.

Theorem 5.2. For learning a discrete distribution with
1 ≤ p ≤ 2, it suffices to run Algorithm 3 with the following
number of samples:

m =
1

δ


n

(n1/qε)2
n ≤

(
2
ε

)q
1
4

(
2
ε

)q
n ≥

(
2
ε

)q
.

With p ≥ 2, it suffices to draw the sufficient number for `2
learning, namely

m =
1

δ

1

ε2
.

Proof. For the case p ≥ 2, we have (Lemma 6.1) that

‖A− Â‖p ≤ ‖A− Â‖2, so learning to within ε in `2 distance
implies learning for `p distance.

For p ≤ 2: By Theorem D.1, if we run Algorithm 3 while
drawing 1

δ
1
α2 samples, then with probability 1−δ, ‖Â−A‖2 ≤

α.
In this case, by the `p norm inequality of Lemma 6.1, for

p ≤ 2,

‖Â−A‖p ≤ n
1
p
− 1

2 ‖Â−A‖2

=

√
n

n1/q
‖Â−A‖2

≤
√
n

n1/q
α

= ε

if we set α = εn1/q
√
n

. Thus, we are guaranteed correctness

with probability 1− δ if we draw a number of samples equal
to

1

δ

1

α2
=

1

δ

n

(n1/qε)
2 .



This says that the above number of samples is sufficient.
However, in the large n regime, we can do better: By the `p
norm inequality of Lemma A.1, using that ‖Â−A‖1 ≤ 2,

‖Â−A‖qp ≤ 2q−2‖Â−A‖22

≤ 2q

4
α2

≤ εq

if we set α2 = 4 ε
q

2q
; but then we are guaranteed correctness

with probability 1− δ if we draw

m =
1

δ

1

α2
=

1

δ

1

4

(
2

ε

)q
samples. This number of samples is also unconditionally
sufficient; we find that the first is better (smaller) bound
when n ≤

(
2
ε

)q
.

A logarithmic dependence on the failure probability δ is
possible, in two steps.11 First, if we draw enough samples,
then the expected `p distance between A and Â (the empirical
distribution) is less than ε/2. Second, if we draw enough
samples, then this `p distance is concentrated within ε/2 of
its expectation. These two steps are formalized in the next
two lemmas.

Lemma D.2. For 1 ≤ p ≤ 2, if we draw m samples, then

E ‖Â−A‖p ≤ min

{√
n

n2/qm
,

2

22/qm1/q

}
.

Proof. Lemma D.1 stated that E ‖Â − A‖22 ≤ 1
m

. By

Jensen’s inequality,
(
E ‖Â−A‖2

)2
≤ E ‖Â−A‖22, so E ‖Â−

A‖2 ≤
√

1
m

. By Lemma 6.1 (the `p-norm inequality), this

implies

E ‖Â−A‖p ≤
√

1

m
n

1
p
− 1

2 ,

which by some rearranging (using 1
p

= 1− 1
q
) gives half of

the lemma. Now by Lemma A.1,

E ‖Â−A‖qp ≤ 2q−2 E ‖Â−A‖22

≤ 2q−2 1

m
,

implying by Jensen’s inequality that E ‖Â−A‖p ≤ 2
q−2
q /m1/q.

Rearranging gives the lemma.

Corollary 1. We have E ‖Â−A‖p ≤ ε
2

if

m ≥ min

{
4n

(n1/qε)
2 ,

1

4

(
4

ε

)q}
.

Lemma D.3. If we draw m samples, then

Pr
[
‖Â−A‖p ≥ E ‖Â−A‖p +

ε

2

]
≤ e−mε

2/2
2
p
+1

.

Proof. We will simply apply McDiarmid’s inequality.
Letting Yi denote the ith sample, we can let f(Y1, . . . , Ym) =

11This idea is also folklore and not original to this paper.

‖A − Â‖p. McDiarmid’s12 states that, if changing any Yi
changes the value of f by at most c, then

Pr[f(Y1, . . . , Ym) ≥ E f(Y1, . . . , Ym) + t] ≤ exp

[
−2t2

mc2

]
.

In our case, changing any Yi changes the value of f by

at most 21/p

m
, argued as follows. Let D ∈ Rn be a vector

with two nonzero entries, one of them 1
m

and the other −1
m

.
Changing one sample Yi changes the empirical distribution
to Â + D for some such D, so the new value of f is ‖A −
(Â+D)‖p ∈ ‖A− Â‖p±‖D‖p by the triangle inequality, and

‖D‖p = 21/p

m
.

McDiarmid’s inequality then states that

Pr[f(Y1, . . . , Ym) ≥ E f(Y1, . . . , Ym) + t]

≤ exp

[
−2t2

m (21/p/m)
2

]

= exp

[
−mt2

2
2
p
−1

]
,

and we plug in t = ε
2
.

Corollary 2. We have Pr
[
‖Â−A‖p ≥ E ‖Â−A‖p + ε

2

]
≤

δ if

m ≥ 2
2
p
+1

ln(1/δ)

ε2
.

Theorem D.2. For learning in `p distance for p ≥ 2 with
failure probability δ ≤ 1

e
, it suffices to run Algorithm 3 while

drawing the following number of samples:

m =
4 ln(1/δ)

ε2
.

Proof. First, note that it suffices to prove the theorem
for `2 distance, because for p ≥ 2, ‖Â − A‖p ≤ ‖Â − A‖2.

Now, for `2 distance, it suffices that E ‖Â − A‖2 ≤ ε
2

and

that, with probability 1−δ, ‖Â−A‖2 exceeds its expectation
by at most ε

2
. Therefore, Corollaries 1 and 2 state that it

suffices to have

m ≥ max

{
4

ε2
,

4 ln(1/δ)

ε2

}
.

Theorem 5.3. For learning a discrete distribution with
1 ≤ p ≤ 2 and failure probability δ, it suffices to run Algo-
rithm 3 with the following number of samples:

m = max

{
2

2
p
+1

ln(1/δ)

ε2
, M

}
,

where

M =

4 n

(n1/qε)2
n ≤

(
4
ε

)q
1
4

(
4
ε

)q
n ≥

(
4
ε

)q
.

For p ≥ 2, it suffices to use the sufficent number of samples
for `2 learning, namely

m = max

{
4 ln(1/δ)

ε2
,

4

ε2

}
.

12An application of the Azuma-Hoeffding martingale inequal-
ity method, e.g. Mitzenmacher and Upfal [15], Section 12.5.



Proof. It suffices that E ‖Â − A‖p ≤ ε
2

and ‖Â − A‖p
exceeds its expectation by at most ε

2
. Thus, the bounds

follow directly from Corollaries 1 and 2.

D.2 Lower Bounds (necessary)
The lower bounds as stated below are proven in this section,

but can also be deduced from folklore as follows.

Theorem 5.4. To learn a discrete distribution in `p dis-
tance, the number of samples required for all p, δ is at least

m =

Ω
(

1
ε2

)
2 ≤ p ≤ ∞

Ω
(

1
εq

)
1 < p ≤ 2, n ≥ 1

εq
.

For 1 ≤ p ≤ 2 and n ≤ 1
εq

, there is no γ > 0 such that

m = O

(
n

(n1/qε)
2−γ

)
samples, up to a constant factor depending on δ, suffice for
all δ.

Proof. For p ≥ 2, we can deduce this bound from the fact
that distinguishing a 2ε-biased coin from uniform requires
Ω 1
ε2

samples. This reduction is proven formally in Theorem
D.5.

In Theorem D.4, we prove the remaining bounds in this
theorem. However, bounds at least this good can apparently
be deduced from folklore as follows. It is “known” that learn-
ing in `1 distance requires Ω

(
n
ε2

)
samples. If we interpret

this statement to hold for every fixed δ (the author is unsure
if this is the correct interpretation), then we get bounds that
match the upper bounds up to constant factors for every
fixed p, δ: By Lemma 6.1 an `p learner to within distance ε is
an `1 learner to within distance εn1/q. `p learning therefore

requires Ω

(
n

(εn1/q)2

)
samples. Now, for 1 < p < ∞, if

n ≥ 1
εq

, note that learning on support size n is at least as
hard as learning on support size n̂ < n, so by setting n̂ to
be the optimal 1

εq
in the previous bound, we get the lower

bound Ω (n̂) = Ω
(

1
εq

)
.

Regardless of the folklore fact, we prove the stated lower
bounds for these cases (1 ≤ p ≤ 2) in Theorem D.4.

In the small n regime, we will only show that the upper
bound is tight as δ → 0. It is a problem in progress to
improve the following approach to give a tighter matching
bound.

Recall that the general approach is to first construct a
“large” set of distributions S, each of pairwise distance at
least 2ε. Then we show a lower bound on the probability of
identifying a member of S when it is chosen uniformly and
samples are drawn from it.

Lemma D.4. For any p ∈ [1,∞], for all n̂ ∈ N and ε > 0,
there is a set S of probability distributions on {1, . . . , n̂} of
size at least

|S| ≥
Γ
(

1 + n̂−1
p

)
(n̂− 1)!

(
4εΓ

(
1 + 1

p

))n̂−1

with pairwise `p distance greater than 2ε, i.e. ‖A−B‖p > 2ε
for all pairs A 6= B in S.

Proof. By a sphere packing argument as with, e.g., the
Gilbert-Varshamov bound in the field of error-correcting
codes.

Each probability distribution is a point in the n̂-dimensional
simplex, which is the set {A ∈ Rn̂ :

∑
iAi = 1, Ai ≥ 0∀i}.

Now, suppose we have a “maximal packing” of distributions
that are at least 2ε apart; that is, we have a set S of points
in this simplex such that:

1. For all pairs A,B ∈ S, ‖A−B‖p > 2ε, and

2. Adding any point in the simplex to S violates this
condition.

Then for any point x in the simplex, there exists at least one
A ∈ S with ‖A− x‖p ≤ 2ε. (Otherwise, we could add x to S
without violating the condition.) In other words, every point
in the simplex is contained in an `p ball of radius 2ε around
some member of S, or

n-dimensional simplex ⊆
⋃
A∈S

{y : ‖A− y‖p ≤ 2ε}

which implies that

Vol(n-dimensional simplex) ≤ |S|Vol(`p ball of radius 2ε).

The volume of an `p ball of radius r in k-dimensional space

is (2r)kΓ
(

1 + 1
p

)k
/Γ
(

1 + k
p

)
, where the Gamma function

Γ is the generalization of the factorial function, with Γ(x) =
(x− 1)! for positive integers x.

Viewing the n̂-dimensional simplex as a set in n̂ − 1-
dimensional space, it has volume 1

(n̂−1)!
. Meanwhile, the

`p balls in the simplex also lie in n̂ − 1-dimensional space.
So we obtain the inequality

|S| ≥ Vol(n̂-dimensional simplex)

Vol(`p ball of radius 2ε)

=
1/(n̂− 1)!

(4ε)n̂−1Γ
(

1 + 1
p

)n̂−1

/Γ
(

1 + n̂−1
p

)
=

Γ
(

1 + n̂−1
p

)
(n̂− 1)!

(
4εΓ

(
1 + 1

p

))n̂−1
.

Corollary 3. There exists a set S of distributions with
pairwise distance greater than 2ε of size

|S| ≥


1
5ε

any p, n̂ = 2

e
p
12 1√

p

(
1

4(n̂−1)1/qε

)n̂−1

p <∞, any n̂.

Proof. Picking n̂ = 2, we have Γ
(

1 + n̂−1
p

)
≥ 0.8856 . . . ,

which is the minimum of the Gamma function; and Γ
(

1 + 1
p

)
≤

1 for p ∈ [1,∞], so (since 0.8856 . . . /4 ≥ 1/5)

|S| ≥ 1

5ε
.

Otherwise, and assuming p <∞, we apply Stirling’s approx-

imation,
(
k
e

)k√
2πk ≤ Γ (1 + k) ≤ e

1
12k
(
k
e

)k√
2πk, to both



the numerator and denominator. We get

|S| ≥ e
p
12

√
2π n̂−1

p

(
n̂−1
pe

) n̂−1
p

√
2π(n̂− 1)

(
n̂−1
e

)n̂−1
(

4Γ
(

1 + 1
p

)
ε
)n̂−1

= e
p
12

1
√
p

( n̂− 1

e

) 1
p
−1

1

p
1
p

1

4Γ
(

1 + 1
p

)
ε

n̂−1

= e
p
12

1
√
p

(
1

(n̂− 1)1/qCpε

)n̂−1

where Cp = 4Γ
(

1 + 1
p

)
p

1
p /e1/q, which (by maximizing over

p) is at most 4.

The next step is to bound the entropy of the input samples.

Lemma D.5. For any distribution A on support size n̂,
the entropy of ~X, the result of m i.i.d. samples from A, is

H( ~X) ≤ n̂− 1

2
log
(

2πe
m

n̂

)
+O

(
n̂

m

)
.

Proof. The samples consist of ~X = X1, . . . ,Xn̂ where
Xi is the number of samples drawn of coordinate i. Thus

H( ~X) =

n̂∑
i=1

H(Xi | X1, . . . , Xi−1)

=

n̂−1∑
i=1

H(Xi | X1, . . . , Xi−1)

≤
n̂−1∑
i=1

H(Xi)

≤
n̂−1∑
i=1

1

2
log (2πemAi(1−Ai)) +O

(
1

m

)
≤ n̂− 1

2
log
(

2πe
m

n̂

)
+O

(
n̂

m

)
.

We used in the second line that the entropy of Xn̂, given
X1, . . . ,Xn̂−1, is zero because it is completely determined
(always equal to m minus the sum of the previous Xi). Then,
we plugged in the entropy of the Binomial distribution, as
each Xi ∼ Binom(m,Ai). Then, we dropped the (1− Ai)
from each term, and used concavity to conclude that the
uniform distribution Ai = 1

n̂
maximizes the bound. (We have

glossed over a slight subtlety, that as stated the optimizer is
uniform on coordinates 1, . . . , n̂− 1. The full proof is to first
note that any one of the coordinates may be designated Xn
and dropped from the entropy sum, since it is determined
by the others; in particular the largest may be. Maximiz-
ing the bound then results in the uniform distribution over
all n̂ coordinates, since any one with higher-than-average
probability would be the one dropped.)

To relate the entropy to the probability of success, we
simply use Fano’s Lemma, which is a basic inequality relating
the probability of a correct guess of a parameter given data
to the conditional entropy between the parameter and the
data. It is proved in e.g. Cover’s text [6], and gives us the
following lemma.

Lemma D.6. The probability of δ of losing the distribution
identification game is at least

δ ≥ 1− H( ~X) + 1

log |S| .

where ~X is the set of input samples.

Proof. By Fano’s Lemma recast into our terminology [6],

δ ≥ H(A | ~X)− 1

log |S| .

If the distribution A is selected uniformly from S, then

H(A | ~X) = H(A, ~X)−H( ~X)

≥ H(A)−H( ~X)

= log |S| −H( ~X),

which proves the lemma.

Now we can start combining our lemmas.

Theorem D.3. To win the distribution game with proba-
bility 1− δ against a set S with choice parameter n̂ requires
the following number of samples:

m = Ω

(
n̂|S|

2(1−δ)
n̂−1

)
.

Proof. Combining Lemmas D.6 and D.5,

1− δ < H( ~X) + 1

log |S|

≤
n̂−1
2

log
(
2πem

n̂

)
+O

(
n̂
m

)
log |S| .

Rearranging,

log
(

2πe
m

n̂

)
≥ (1− δ) 2

n̂− 1
log |S| −O

(
1

m

)
=⇒ m ≥ Ω

(
n̂|S|

2(1−δ)
n̂−1

)
.

We are now ready to prove the actual bounds.

Theorem D.4. To win the distribution identification game
(and thus, by Lemma 5.1, to learn in `p distance) with prob-
ability at least 1 − δ, the number of samples required is at
least

m =


Ω
(

1

ε2(1−δ)

)
unconditionally

Ω
(

n

(n1/qε)2(1−δ)

)
if p <∞

Ω
(

1
εq

)
if p <∞, n ≥ Ω

(
1
εq

)
.

Proof. By Lemma D.3, we must have

m = Ω

(
n̂|S|

2(1−δ)
n̂−1

)
.

Now we make three possible choices of n̂ and, for each,
plug in the lower bound for |S| from Corollary 3. First,
unconditionally, we may choose n̂ = 2 and the bound |S| ≥
1
5ε

, so

m ≥ Ω

(
1

ε2(1−δ)

)
.



Now suppose p <∞. For both the second and third choices,
we use the bound

|S| ≥ e
p
12

√
p

(
1

4(n̂− 1)1/qε

)n̂−1

.

We get (hiding dependence on p in the Omega):

m ≥ Ω

(
n̂

(
1

n̂1/qε

)2(1−δ)
)
.

To get the second case, we may always take n̂ = n. To get
the third, if n−1 ≥ 1

εq
, then we may always take n̂ = 1

εq
.

We can improve the lower bound for the case p ≥ 2 using
the problem of distinguishing a biased coin from uniform.

Theorem D.5. To learn in `p distance for for any p (in
particular p ≥ 2) requires at least the following number of
samples:

m =
1

16

ln
(
1 + 2(1− 2δ)2

)
ε2

.

Proof. If one can learn to within `p distance ε, then one
can test whether a distribution is 2ε-far from uniform in `∞
distance: Simply learn the distribution and output “uniform”
if your estimate is within `∞ distance ε of Un (note that if
we have learned to `p distance ε, then we have also learned
to `∞ distance ε). This is correct by the triangle inequality.
Therefore the lower bound for `∞ learning, Theorem C.2,
applies with n = 2 and 2ε substituted for ε.
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