An Overview on Analysis Tools for Software Product Lines

Jens Meinicke, Thomas Thim, Reimar Schréter, Fabian Benduhn, Gunter Saake
University of Magdeburg, Germany

ABSTRACT

A software product line is a set of different software products
that share commonalities. For a selection of features, specia-
lized products of one domain can be generated automatically
from domain artifacts. However, analyses of software pro-
duct lines need to handle a large number of products that
can be exponential in the number of features. In the last de-
cade, many approaches have been proposed to analyze soft-
ware product lines efficiently. For some of these approaches
tool support is available. Based on a recent survey on analy-
sis for software product lines, we provide a first overview on
such tools. While our discussion is limited to analysis tools,
we provide an accompanying website covering further tools
for product-line development. We compare tools according
to their analysis and implementation strategy to identify un-
derrepresented areas. In addition, we want to ease the reuse
of existing tools for researchers and students, and to simplify
research transfer to practice.

Keywords

Software product lines, tool support, sampling, testing, type
checking, static analysis, model checking, theorem proving,
non-functional properties, code metrics

1. INTRODUCTION

A software product line is a set of different software sy-
stems that share commonalities, described by means of fea-
tures [16]. A feature is a user-visible aspect or characteri-
stic of a system [26]. Feature-oriented software development
(FOSD) is a paradigm for the construction, customization,
and synthesis of large-scale software systems [3]. In FOSD, a
product of a software product line is generated automatically
for a selection of features. FOSD facilitates the constructi-
on of customized software products, while artifacts can be
reused and thereby time and resources can be saved.

Customizable software is necessary for a broad spectrum
of domains (e.g., operating systems for diverse hardware).
However, just like single systems, software product lines need

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 2014 ACM X-XXXXX-XX-X/XX/XX ...$15.00.

to be analyzed (e.g., for type safety). Because analysis tools
from single system engineering can only be applied to one
product at once, these tools are not sufficient for an efficient
analysis of all products (e.g., to ensure type safety of all
products). In the last decade, several approaches have been
proposed that transfer the analysis of single systems to an
efficient analysis of product lines. With these strategies there
also came tools that can be applied to analyze a product
line. To get a representative list of current tools, we base this
overview on a recent survey on analyses for software product
lines [68]. However, for brevity, we focus on the analysis of
source code and byte code (i.e., analysis of software models
and variability models is excluded). Furthermore, because of
the high number of tools and the limited space in this paper,
we cannot discuss the approaches of each tool in detail.
With this paper and our website, we aim to help rese-
archers, students, and practitioners working in the field of
FOSD. According to our experience, the effort of building a
research prototype or creating a proof of concept is greatly
reduced if existing tools can be leveraged. It is also import-
ant to know which tools exist and on which other tools they
are built on, which can also reduce the effort of building a
new tool. This work provides the following contributions:

e A brief overview on distinguishing characteristics of
product-line analysis tools

e An overview on analysis tools

e We maintain a website for product-line tools in gene-
ral, because new tools will be developed in future.!

Our goal with this workshop is to discuss characteristics of
analysis tools and identification of tools that could be added
to our website.

The paper is structured as follows. In Section 2, we briefly
introduce the background of FOSD and characteristics of
product-line analysis tools. We present tools for testing in
Section 3, tools for verification in Section 4, and further
analysis tools in Section 5. We summarize our results in
Section 6 and conclude in Section 7.

2. CHARACTERISTICS OF
PRODUCT-LINE TOOLS

FOSD is the process of developing software product li-
nes in terms of their features. According to Apel et al. [3],
FOSD can be divided into the four phases: (1) domain ana-
lysis, (2) domain design and specification, (3) domain im-

1www. fosd.net/tools

plementation, and (4) product configuration and generati-
on. In domain analysis, commonalities and differences of the
domain of interest are identified, resulting in a feature mo-
del [26]. Domain design and specification is the process in
which the architecture of the product line is designed and
specified. Domain implementation is the phase of designing,
implementing, analyzing, and refactoring the source code of
the product line. In product configuration and generation,
a product containing a desired selection of features is crea-
ted. In our work, we focus on tools for software analysis of
product lines. For domain analysis we refer to the survey of
Benavides et al. [10] about approaches for analysis of feature
models, and the survey of Lisboa et al. [40] about tools for
domain analysis. Because we focus on tools, we can only give
brief introductions to the aspects of FOSD, thus we refer to
previous works that give a general overview on FOSD [3],
and analysis [68] thereof.

In this overview, we present tools for product-line analysis.
To ease the choice of an appropriate tool, we categorize the
tools with respect to four dimensions, namely, product-line
implementation technique, analysis technique, strategies for
product-line analysis, and strategy of the tool.

Product-Line Implementation Techniques. Implemen-
tation techniques for product lines can be divided in-
to annotation-based and composition-based approaches [3].
With annotation-based approaches, code segments can be
annotated with a feature or a feature expression, and then
activated or deactivated depending on the selection of the
features. Annotation-based approaches include preproces-
sors and virtual separation of concerns [27]. Products from
composition-based product lines are composed out of a set of
composable units [3]. Composition-based approaches inclu-
de feature-oriented programming [52], aspect-oriented pro-
gramming [31], and delta-oriented programming [58]. For
brevity, we distinguish only between tools for annotation-
based and composition-based product lines. However, we
classify the tools into the specific implementation approach
on our website.

Software Analyses. In this paper we survey tools for dif-
ferent analysis techniques. To simplify the choice of an ap-
propriate tool, we differentiate the analysis techniques into
three categories; testing, verification, and further analyses.
In the category of testing, we collect tools that execute pro-
grams during analyses. In the category verification, we col-
lect tools that analyze the validity of the program without a
need to execute the program. Finally, we collect further ana-
lysis tools that do not match in the previous groups, such
as code metrics.

Strategies for Product-Line Analysis. Software analy-
ses are crucial for the efficient development of software. Ho-
wever, applying mechanisms and tools for analysis of single
systems on generated products involves redundant analyses
and is not feasible for large product lines [68]. More effi-
cient approaches have been developed for analysis of softwa-
re product lines, which avoid the generation and individual
analysis of all products. For our overview we reuse the cate-
gories for product-line analysis of a recent survey [68]. One
strategy is to generate representative products that cover as
many errors as possible; this is called optimized product-
based analysis. Generally, analyses that are based on gene-
rated products are called product-based. Approaches that
take variability into account and do not need to generate all

products are called family-based. Approaches that analyze
the artifacts of each feature in isolation are called feature-
based analyses. Furthermore, combinations of the analysis
strategies are possible (e.g., feature-family-based).

Strategy of the Tool. The goal of a tool is to implement a
software analysis with a specific product-line analysis stra-
tegy. To apply an analysis to product-lines, there are three
main strategies. First, the tool uses product-based analysis
where the actual analysis is done on generated products.
Second, the tool is wariability-aware and can handle the
product line as-is (e.g., the tool considers variability defi-
ned with #ifdef statements). The third strategy is to use
variability encoding (a.k.a. configuration lifting) [51]. With
variability encoding, compile-time variability is translated
into run-time variability (e.g., for preprocessors: #ifdef
FEATURE is translated into if (FEATURE)). The result of
variability encoding is a metaproduct (a.k.a. product simula-
tor) which can simulate all products using a feature selection
as input [51]. Using such a metaproduct, existing tools that
can handle run-time variability (e.g., model checker) can be
applied to efficiently analyze the product line.

In the following Sections 3, 4, and 5, we give overview
on existing tools for product-line analysis. Based on this
overview, we discuss the current state of tool support in
Section 6 (e.g, which parts are well or not supported).

3. PRODUCT-LINE TESTING

Testing is an analysis technique that needs to execute the
program to analyze a given property. In this section, we
first cover sampling tools. These tools support testing by
generating a representative subset of products. In the second
part, we cover tools that support testing of product lines
beyond sampling.

Sampling. In sample-based analyses, a representative sub-
set of all products for a given coverage criterion is analy-
zed [3, 68]. With this approach, it is possible to efficiently
detect errors by applying analysis tools from single-system
engineering. Sampling is often used in combination with te-
sting, but can be applied to verification and other analyses
as well [8, 24, 39, 50, 68]. Sampling strategies are sound but
always incomplete, since they can only detect errors that are
contained in the subset that is analyzed [3].

A popular sampling strategy is T-wise coverage which
aims to detect interactions of T features, because feature
interactions are likely to cause errors for few features (e.g.,
pairwise coverage for T = 2) [3]. Sampling for T = 2 is imple-
mented by, MOSO-POLITE [46] integrated in the configura-
tion management tool PURE::VARIANTS [53], PACOGEN [23]
which can generate a minimal-sized set of configurati-
ons, and Perrouin et al. who developed a scalable tool-
set for T-wise coverage using Alloy [48]. SPLCAToOOL [25]
supports sampling with several algorithms, such as ICPL
(T € {1,..,3}), MoSo-PoLiTe (T € {2,..3}), Chvat-
al (T € {1,..4}), IPOG (T € {1,..,6}), and CASA
(T € {1,...,6}). T-wise testing for product lines is a spe-
cial case of combinatorial testing [44]. For an overview on
conventional tools for combinatorial testing, we refer to the
website of Jacek Czerwonka.?

The UNDERTAKER [66] tool can generate Linux configura-
tions for a given source file to achieve nearly full configurati-

2 R
WWW.palrwise.org

on coverage [65] (aka. feature coverage [3]). With configura-
tion coverage, each feature has to be selected at least once.
In contrast, at T-wise sampling with T = 1 each feature
has to be unselected at least once additionally. The tools
PLEDGE [22] and GENETICTESTCASEGENERATION [18]
use genetic algorithms to generate products. There are more
sampling strategies than T-wise and feature coverage. Ho-
wever, because tools for such approaches are missing, we do
not discuss these approaches here and refer to Apel et al. [3].

Testing. Similar to testing of single systems, software pro-
duct line testing aims to uncover defects, however, with ad-
ditional management of variability [47]. The main challen-
ges of testing software product lines are reusing test cases,
and reducing redundancies in test cases and executions. Ho-
wever, in this section we only mention tools that do not
focus on sampling, because they are already covered under
sampling. Because we focus on tools, we refer to recent sur-
veys [17, 13] for more information on product-line testing.
We discovered three categories of tools for product-line te-
sting namely, test-case generation, product reduction, and
family-based testing. However, these categories should not
be complementary to the main categories for product-line
analysis.

Tools for test-case gemeration of product lines automa-
tically generate customized test cases for a given pro-
duct. The GENERATIVE ASPECT-ORIENTED TESTING FRA-
MEWORK (GATE) [19] can generate unit tests out of a unit
test case repository. The tool KESIT [73] uses AHEAD [9]
and SAT-based analysis to automatically generate test in-
puts for each product in a product line. ASADAL [35] and the
MOBILE APPLICATION TEST ENVIRONMENT (MATE) [54]
provide model-based testing for product lines. The tool
PARTEG [75] generates unit tests automatically based on
model-based testing.

Tools for product reduction reduce the number of products
to test for a specific test case. Shi et al. [60] developed a pro-
totype for compositional symbolic execution (denoted by us
as CSE) that works in concert with a feature dependence
graph to reduce feature interactions that must be tested.
SHARQ [74] is a framework of projects dealing with hardware
and software testing for FOP. SPLTESTER [32] is a tool that
reduces the combinatorial number of programs to test by de-
termining behavior-irrelevant features for a given test case.
Stricker et al. [64] developed a prototype for their model-
based technique SCENTED-DF which avoids redundant te-
sting in application engineering. The tool SPLMONITOR [33],
solves the problem of run-time monitoring of annotation-
based product-lines for a safety-property, by reducing the
set of possible programs by identifying variants where the
property can never be violated.

Family-based testing tools can execute all products in
parallel for a given test case saving intermediate states.
A tool for parallel testing based on the interpreter from
JAVAPATHFINDER [21] is provided by Kim et al. (denoted
by us as SHARED-EXECUTION) [34]. Késtner et al. [30] deve-
loped a prototype interpreter (denoted by us as VAI) for the
WHILE language which stores different values for variables
depending on selected features at the same time. Similar to
this, they developed the tool VAREX [43], a variability-aware
interpreter for PHP that performs computation in multi-
value data for testing of plug-in-based web applications.

4. PRODUCT-LINE VERIFICATION

In this section, we discuss tools for product-line verifica-
tion. We categorize the tools according to the analysis tech-
nique scaled to product lines, such as type checking.

Type Checking. The basis of most approaches that analy-
ze software product lines is type safety of all products, such
that each product can be compiled. Type checking is the ve-
rification process that ensures type safety [49]. Efficient type
checking tools for software product lines consider the varia-
bility defined at the feature model for family-based analyses
based on a unmodified product line.

Type checker for annotation-based product-lines consider
variability defined at annotations and at the feature model
to reason about type safety. The tool TYPECHEF [29] is a
type checker for the C preprocessor that is able to check
all configurations of the Linux kernel. CIDE [27] provides
a product-line-aware type system for virtual separation of
concerns.

Composition-based type-checking considers the de-
pendencies between feature modules to ensure type
safety after composition. The tool Fuir [5] provi-
des product-based, feature-based, and family-based type
checking of feature-oriented product-lines in Java. The
tool FEATURETWEEZER [6] provides a generalized ap-
proach that provides language-independent type checks of
FEATUREHOUSE [4] product lines. SAFECOMP [9] is a tool
for type-safe generation of products using a variability-aware
type system available with the AHEAD TooL SUITE [9].
DELTAJ [58] provides family-based type checks for delta-
oriented programming.

Static Analysis. Static analysis operates on compile-time
and can predict dynamic values or behaviors that arise at
run-time [45] (e.g., to avoid superfluous computations of un-
used values). Bodden et al. provide the static analysis tool
SPLEFT [12], which provides automatic family-based ana-
lysis based on the IFDS framework [55] and CIDE [27] for
virtual separation of concerns. The tool EMERGO [56] sup-
ports developers maintaining annotation-based product lines
using contracts between features, such that other features
cannot be broken. The ASPECT COMPOSITION VALIDATION
TOOL (ACVTooL) [36] provides automate static analysis of
feature dependencies for aspect-oriented programming using
design by contract [42]. SPEK [59] is a tool for automated
detection of feature interactions in feature-oriented product-
lines using the Java Modeling Language [37].

Software Model Checking. In software model checking,
the program is translated into a graph of states and tran-
sitions [14]. The analysis of such a graph is the verification
process of model checking. Because model checkers are able
to handle different values of variables, they can be used to si-
mulate different feature selections. Thus, model checkers can
be efficiently used for family-based verification of a metapro-
duct. There are also approaches and tools beyond variability
encoding, but they analyze models rather than source co-
de [15, 68] (e.g., product-lines transition systems [20]), and
thus are out of our scope.

The SOFTWARE VARIANT GENERATION SYSTEM
(SVGS) [51] wuses variability encoding to verify
annotation-based product lines, such as the Linux kernel.
FEATUREIDE [69, 71] provides support for family-based
model checking with the core implementation of the

Annotation-Based

Composition-Based

Independent

Sampling MoSo-POLITE [46], UNDERTAKER [66] GENETICTESTCASEGENERATION [18],
PACOGEN [23], Perrouin et al. [48],
PLEDGE [22], SPLCATooL [25]
Testing CSE [60], SHARED-EXECUTION [34], GATE [19], KEsIT [73], SHARQ [74], VAREX [43] ASADAL [35], MATE [54], PARTEG [75],

SPLMONITOR [33], VAI [30]

SCENTED-DF [64], SPLTESTER [32]

Type Checking CIDE [27], SVGS [51], TYPECHEF [29]

DELTAJ [58], FEATURETWEEZER [6], Fuut [5],

SAFECoMP [9]

Static Analysis EMmERrGo [56], SPLETET [12]

ACVTooL [36], SPEK [59]

Model Checking SVGS [51]

FEATUREIDE [69], JPF-BDD [30], SPLVERIFIER [7]

Theorem Proving

FEATUREIDE [69]

Consistency
Checking

FEATUREIDE [69], LIFE [63],
UNDERTAKER [67]

FeATUREIDE [69]

Non-Functional
Properties

FBPM [62] CLAFERMOO (1], SPLCONQUEROR [61]

Code Metrics CIDE [27], COLLIGENS [41], CPPSTATS [38],

FEATUREIDE [69]

AJDTSTATS (28], AJSTATS (2], FEATUREIDE [69]

Table 1: Analysis tools with respect to implementation technique and software analysis.

JAVAPATHFINDER [21] and supports runtime assertion
checking with the Java Modeling Language [37]. Another
metaproduct that can be verified efficiently with the
JAVAPATHFINDER extension JPF-BDD [30] can be genera-
ted with FEATUREHOUSE [4]. The tool SPLVERIFIER [7] sup-
ports family-based model checking with JAVAPATHFINDER
for Java or the CPACHECKER [11] for C, using aspects to
weave specifications into feature-oriented product-lines.

Theorem Proving. The verification technique theorem
proving is a deductive approach to prove logical formulas.
First, the program and its specification (e.g., a contract that
specifies the behavior of each method) are translated into lo-
gical formulas (a.k.a. proof obligations). Then the formulas
are used to proof correctness of the program.

Next to the metaproduct for model checking,
FEATUREIDE [69, 71] also provides a metaproduct with
variability-aware contracts of the Java Modeling Langua-
ge [37], for family-based theorem proving of feature-oriented
product-lines. Other variability-aware tool support, or sup-
port for other efficient techniques to verify software product
lines using theorem proving (e.g., proof composition [72]),
is currently missing.

Consistency Checking. The variability used in implemen-
tation artifacts (e.g., features in #ifdef statements) needs
to be valid according to variability defined at the feature
model. Consistency checking analyses the usage of features;
whether a feature has a corresponding implementation and
vice versa [70, 67]. Additionally, consistency checking ana-
lyzes the feature dependencies with the usage at the source
code (e.g., dead or superfluous code in case of incorrect com-
bination of #ifdef statements) [66].

The tool UNDERTAKER [67] can detect dead and super-
fluous code in preprocessor annotated C programs, and was
initially designed to analyze the Linux kernel. The LINUX
FEATURE EXPLORER (LIFE) [63] provides further consi-
stency checks of unused and undefined features for the Li-
nux kernel using UNDERTAKER [67] and KCONFIG. The tool
FEATUREIDE [69] provides consistency checking for prepro-
cessors, aspect-oriented, feature-oriented, and delta-oriented
programming, such as unused or undefined features, tautolo-
gies or contradictions in preprocessor annotations, and dead
code analysis.

S. FURTHER PRODUCT-LINE ANALYSES

In this section, we discuss tools for analyses of product
lines that are beyond verification and testing. We present
product-line tools for retrieving non-functional properties
and code metrics.

Non-Functional Properties. A goal of software develop-
ment is to optimize non-functional properties, such as foot-
print, performance, and energy consumption [57]. In single-
system engineering, such properties can be reached by a spe-
cialized implementation for the properties defined by stake-
holders. However, it is even more challenging to automa-
tically determine the optimal product for a given product
line related to a given non-functional property (e.g., with
the lowest energy consumption). The goal of research on
non-functional properties is to predict such properties for
all products based on measurements of some products.

The tool SPLCONQUEROR [61] is a framework to measure
and optimize non-functional properties in software product
lines. It supports user-defined measurements, and automatic
computation of optimized products. Siegmund et al. provide
an extension of FEATUREHOUSE [4] for family-based perfor-
mance measurements (FBPM) [62]. The tool CLAFERMOO,
a standalone extension of the CLAFER modeling language [1],
provides multi-objective optimization for attributed feature
models with quality attributes and optimization objectives.

Code Metrics. Code metrics are used to compare analy-
ses results and to evaluate their expressiveness. In software
product-line analyses often metrics such as lines of code and
numbers of features are used. However, such metrics do not
take feature dependencies, and variability in the source co-
de into account. To compare analysis results for different
software product lines, other metrics are required.

The tool CPPSTATS [38] is a C-program analyzer, which
can express variability of programs with preprocessor
annotations beyond quantity of annotations. The tool
COLLIGENS [41] provides information about preprocessor
directives for C. CIDE [27] can collect several statistics
about the source code, annotations and interactions bet-
ween annotations for virtual separation of concerns. The tool
AJSTATS [2] collects statistics about AspectJ programs. It
collects amount and lines of code of classes, interfaces, their
methods, constructors and field. Furthermore it collects this
statistics for aspects, their pointcuts, advices and inter-type
declarations. AJDTSTATS [28] collect statistics how aspects
are used in ASPECTJ programs, such as shared joint points,

Product-Based

Family-Based

Family-Product-Based Feature-Based

Sampling GENETICTESTCASEGENERATION [18],
Mo0S0-POLITE [46], PACOGEN [23],
Perrouin et al. [48], PLEDGE [22],
SPLCATooL [25], UNDERTAKER [66
Testing AsapAL [35], GATE [19], KesiT (73], SHARED-EXECUTION [34], VAI [30], CSE [60], SPLMONITOR [33]

MATE [54], PARTEG [75],
SCENTED-DF [64], SHARQ (74],
SPLTESTER [32]

VAREX |

43]

Type Checking Fuur [5] CIDE [27], DELtalJ [58], Fuur [5]
FEATURETWEEZER (6], FuJI [5],
SareComp (9], SVGS [51],
TYPECHEF [29]
Static Analysis ACVTooL [36], SPEK [59] Emerco [56], SPLETET [19]
Model Checking FEATUREIDE [69], JPF-BDD [30],
SPLVERIFIER (7], SVGS [51]
Theorem Proving FEATUREIDE [69]
Consistency FeATUREIDE [69], LIFE [63],
Checking UNDERTAKER [67]
Non-Functional FBPM [62] CLAFERMOO [1],
Properties SPLCONQUEROR [61]
Code Metrics CIDE [27], COLLIGENS [41], AJDTSTATS [28],
cPPSTATS [38], FEATUREIDE [69] AJStaTs [2],
FEATUREIDE [69]

Table 2: Analysis tools with respect to analysis strategy and software analysis. (Invalid combinations are marked with gray)

and homogeneous extension. FeatureIDE [69] provides sta-
tistics about the software product line, usage of preproces-
sor directives, and about the implementation with feature-
oriented programming.

6. OVERVIEW ON TOOL SUPPORT

In the previous sections, we gave an overview on analy-
sis tools for software product lines. In Table 1, we sum-
marize all these tools and categorize them into the analy-
sis technique they implement and into the product-line im-
plementation technique they are specialized for. For each
pair of composition mechanism and analysis technique the-
re is at least one tool that can be used or adopted, except
for theorem proving. Because sampling and non-functional
properties are generally independent of the generation me-
chanism, there are not many tools that are specialized on
one mechanism. In contrast, the other analysis techniques
often depend on the generation mechanism, because they
have to handle the variability defined in the source code.
The techniques sampling (7 tools), testing (13 tools), type
checking (7 tools), and code metrics (7 tools) are well sup-
ported for both, annotation-based and composition-based
product-lines with at least three tools for either of them. In
contrast, static analysis (4 tools), model checking (4 tools),
theorem proving (1 tool), consistency checking (3 tools), and
non-functional properties (3 tools) are currently less good
supported. Especially for theorem proving of product lines,
there is currently only one implementation available.

Some tools are specialized on one specific generation tool
(e.g., AHEAD [9]) or a specific programming language (e.g.,
C). However, a tool can be reused and adapted to support
product lines with an equivalent generation technique. For
example, tools for virtual separation of concerns should be
easy to extend to support preprocessors, and vice versa. Fur-
thermore, tools that operate on metaproducts can be app-
lied to other metaproducts of other implementation techni-
ques. Also tools specialized for one program generator (e.g.,
FEATUREHOUSE [4]) can be used to analyze product lines
of another generator (e.g., AHEAD [9]), if the generation
mechanism is similar and a translation from one to another
generator is possible [69].

Tools for the same analysis technique can be developed
with different analysis strategies. In Table 2, we categorize
the tools into the analysis strategies they use to scale an
analysis technique from single-system engineering to pro-
duct lines. Because family-based analysis is an efficient way
to analyze the product line [68], most implementations are
family-based (21 tools) for all analyses techniques, except for
testing and sampling. The majority of tools for testing and
sampling are product-based. For sampling it is obvious, be-
cause sampling is a product-based approach itself, so there
cannot be any tool for other strategies. Testing is usually do-
ne on a generated product, so the most tools for testing are
product-based (8 tools) or family-product-based (2 tools).
Family-based testing is only developed recently in the last 2
years (3 tools). Except of Fuul [5] and code metrics, tools for
feature-based analyses are currently missing, because cur-
rent approaches need knowledge about the whole product
line or at least about a specific product. To reason about
features individually can be very efficient, because feature
combinations do not need to be considered [68]. However,
only incomplete programs can be analyzed, which is hard
and can only lead to limited results, what might be one re-
ason that feature-based analysis tools are rare.

Tools operate on different kinds of representations of the
product-line. There are three types of tool strategies; they
can analyze products, use a variability encoding, or are va-
riability aware and consider the variability of the product
line. In Table 3, we categorize the tools into these strate-
gies with respect to their analyses technique. A main goal
of current research in product-line analysis is to apply ana-
lyses to the product line while considering its variability.
Many variability-aware tools where developed that can ope-
rate on the product line as-is (24 tools). However, static
analyses, model checking, and theorem proving do still need
a variability-encoding of the product line, because they reu-
se an analysis tool for single systems as-is. To analyze a
product-line without variability encoding, new tools need to
be developed that are aware of variability.

Product-Based

Variability-Aware Variability Encoding

Sampling GENETICTESTCASEGENERATION [18], M0S0-POLITE [46],
PACOGEN (23], Perrouin et al. [48], PLEDGE [22],
SPLCATOOL [25], UNDERTAKER [66]
Testing ASADAL [35], csE [60], GATE [19], KesIT [73], SHARED-EXECUTION [34], VAI [30], VAREX [43]
MATE [54], PARTEG [75], SHARQ [74],
SCENTED-DF [64], SPLMONITOR [33], SPLTESTER [32]
Type Checking Fuu [5] CIDE [27], DELTA] [58], FEATURETWEEZER [6],

Fua [5], SAFECowmP [9], SVGS [51], TYPECHEF [29]

Static Analysis ACVTooL [36], SPEK [59]

EmEerco [56], SPLELFT [12]

Model Checking

FeATUREIDE [69], JPF-BDD [30],
SPLVERIFIER [7], SVGS [51]

Theorem Proving

FEATUREIDE [69]

Consistency
Checking

FEATUREIDE [69], LIFE [63], UNDERTAKER [67]

Non-Functional
Properties

CLAFERMOO [1], FBPM [62], SPLCONQUEROR [61]

Code Metrics

AJDTSTATS (28], AJSTATS [2], CIDE [27],

COLLIGENS [41], cppsTATS [38], FEATUREIDE [69]

Table 3: Analysis tools with respect to strategy of the tool and software analysis. (Invalid combinations are marked with gray)

7. CONCLUSION

Efficient analysis of software is essential for its develop-
ment. This holds especially for software product lines, be-
cause an error may only occur in certain products. For deve-
lopment of software product lines, tools that implement soft-
ware analyses are necessary. An overview on such tools helps
researchers, lecturers, students, and practitioners to decide
whether a tool for a certain analysis strategy or generation
technique exists that could be used (e.g., for development of
commercial-quality tools, or proof of concepts). Furthermo-
re, the effort for development of new tools can be reduced
through knowledge about existing tools. Based on a recent
survey [68], we give an overview on such tools. To access
these tools easily, we provide a website that collects them,
and provides links directly to the tools websites. Analysis
is only one part of product-line engineering, thus we have
also collected tools for product generation, refactoring, and
development environments for product lines. Furthermore,
we provide additional information about the tools, such as
the supported generation mechanism (e.g., preprocessors),
the supported programming languages (e.g., Java), and re-
lated tools (e.g., to find an IDE that works in combination).
Tools for product configuration and domain modeling are
currently not covered but may be in future.

8. ACKNOWLEDGMENTS

We thank Wolfram Fenske for his help on refactoring tools
for software product lines, which are included on our website.
We also thank Norbert Siegmund for help on tools for non-
functional properties. This work is partially funded by DFG
grant SA 465/34-2.

9. REFERENCES

[1] Michat Antkiewicz, Kacper Bak, Alexandr Murashkin,
Rafael Olaechea, Jia Hui Jimmy Liang, and Krzysztof
Czarnecki. Clafer Tools for Product Line Engineering.
In SPLC, pages 130-135. ACM, 2013.

[2] Sven Apel and Don Batory. How AspectJ is Used: An
Analysis of Eleven AspectJ Programs. JOT,
9(1):117-142, 2010.

[3] Sven Apel, Don Batory, Christian Késtner, and
Gunter Saake. Feature-Oriented Software Product
Lines: Concepts and Implementation. Springer, 2013.

[4] Sven Apel, Christian Késtner, and Christian
Lengauer. Language-Independent and Automated
Software Composition: The FeatureHouse Experience.
TSE, 39(1):63-79, 2013.

[5] Sven Apel, Sergiy Kolesnikov, Jorg Liebig, Christian
Késtner, Martin Kuhlemann, and Thomas Leich.
Access Control in Feature-Oriented Programming.
SCP, 77(3):174-187, 2012.

[6] Sven Apel, Wolfgang Scholz, Christian Lengauer, and
Christian Késtner. Language-Independent Reference
Checking in Software Product Lines. In FOSD, pages
65-71. ACM, 2010.

[7] Sven Apel, Hendrik Speidel, Philipp Wendler,
Alexander von Rhein, and Dirk Beyer. Detection of
Feature Interactions Using Feature-Aware Verification.
In ASE, pages 372-375. IEEE, 2011.

[8] Sven Apel, Alexander von Rhein, Philipp Wendler,
Armin GroéBlinger, and Dirk Beyer. Strategies for
Product-Line Verification: Case Studies and
Experiments. In ICSE, pages 482-491. IEEE, 2013.

[9] Don Batory. A Tutorial on Feature Oriented
Programming and the AHEAD Tool Suite. In
GTTSE, pages 3-35. Springer, 2006.

[10] David Benavides, Sergio Segura, and Antonio
Ruiz-Cortés. Automated Analysis of Feature Models
20 Years Later: A Literature Review. Information
Systems, 35(6):615-708, 2010.

[11] Dirk Beyer and M. Erkan Keremoglu. CPAchecker: A
Tool for Configurable Software Verification. In CAV,
pages 184-190. Springer, 2011.

[12] Eric Bodden, T4rsis Tolédo, Mércio Ribeiro, Claus
Brabrand, Paulo Borba, and Mira Mezini. SPLLIFT:
Statically Analyzing Software Product Lines in
Minutes Instead of Years. In PLDI, pages 355—-364.
ACM, 2013.

[13] Ivan Do Carmo Machado, John D. McGregor,
Yguarata Cerqueira Cavalcanti, and Eduardo Santana
De Almeida. On Strategies for Testing Software
Product Lines: A Systematic Literature Review. IST,
2014. To appear.

[14] Edmund M. Clarke, Orna Grumberg, and Doron A.
Peled. Model Checking. MIT Press, 1999.

[15] Andreas Classen, Patrick Heymans, Pierre-Yves

[30]

Schobbens, Axel Legay, and Jean-Francois Raskin.
Model Checking Lots of Systems: Efficient Verification
of Temporal Properties in Software Product Lines. In
ICSE, pages 335-344. ACM, 2010.

Paul Clements and Linda Northrop. Software Product
Lines: Practices and Patterns. Addison-Wesley, 2001.
Paulo Anselmo Da Mota Silveira Neto, Ivan Do
Carmo Machado, John D. McGregor,

Eduardo Santana De Almeida, and Silvio Romero

De Lemos Meira. A Systematic Mapping Study of
Software Product Lines Testing. IST, 53(5):407-423,
2011.

Faezeh Ensan, Ebrahim Bagheri, and Dragan Gasevié.
Evolutionary Search-Based Test Generation for
Software Product Line Feature Models. In CAiSE,
volume 7328 of Lecture Notes in Computer Science,
pages 613—628. Springer, 2012.

Yankui Feng, Xiaodong Liu, and Jon Kerridge. A
Product Line Based Aspect-Oriented Generative Unit
Testing Approach to Building Quality Components. In
COMPSAC, volume 2, pages 403-408. IEEE, 2007.
Alexander Gruler, Martin Leucker, and Kathrin
Scheidemann. Modeling and Model Checking Software
Product Lines. In FMOODS, pages 113-131. Springer,
2008.

Klaus Havelund and Thomas Pressburger. Model
Checking Java Programs using Java PathFinder.
STTT, 2(4):366-381, 2000.

Christopher Henard, Mike Papadakis, Gilles Perrouin,
Jacques Klein, and Yves Le Traon. PLEDGE: A
Product Line Editor and Test Generation Tool. In
SPLC, pages 126-129. ACM, 2013.

Aymeric Hervieu, Benoit Baudry, and Arnaud
Gotlieb. Pacogen: Automatic Generation of Pairwise
Test Configurations From Feature Models. In ISSRE,
pages 120-129. IEEE, 2011.

Praveen Jayaraman, Jon Whittle, Ahmed M.
Elkhodary, and Hassan Gomaa. Model Composition in
Product Lines and Feature Interaction Detection
Using Critical Pair Analysis. In MODELS, pages
151-165. Springer, 2007.

Martin Fagereng Johansen, Dystein Haugen, and
Franck Fleurey. An Algorithm for Generating T-Wise
Covering Arrays from Large Feature Models. In
SPLC, pages 46-55. ACM, 2012.

Kyo C. Kang, Sholom G. Cohen, James A. Hess,
William E. Novak, and A. Spencer Peterson.
Feature-Oriented Domain Analysis (FODA) Feasibility
Study. Technical Report CMU/SEI-90-TR-21,
Software Engineering Institute, 1990.

Christian Késtner and Sven Apel. Virtual Separation
of Concerns-a Second Chance for Preprocessors.
Journal of Object Technology, 8(6):59-78, 2009.
Christian Késtner, Sven Apel, and Don Batory. A
Case Study Implementing Features Using AspectJ. In
SPLC, pages 223-232. IEEE, 2007.

Christian Késtner, Paolo G. Giarrusso, Tillmann
Rendel, Sebastian Erdweg, Klaus Ostermann, and
Thorsten Berger. Variability-Aware Parsing in the
Presence of Lexical Macros and Conditional
Compilation. In OOPSLA, pages 805-824. ACM, 2011.
Christian Késtner, Alexander von Rhein, Sebastian

(31]

(32]

(33]

(34]

35]

(36]

37]

(38]

39]

(40]

[41]

42]

(43]

(44]

(45]

[46]

Erdweg, Jonas Pusch, Sven Apel, Tillmann Rendel,
and Klaus Ostermann. Toward Variability-Aware
Testing. In FOSD, pages 1-8. ACM, 2012.

Gregor Kiczales, John Lamping, Anurag Mendhekar,
Chris Maeda, Cristina Lopes, Jean-Marc Loingtier,
and John Irwin. Aspect-Oriented Programming. In
ECOOP, pages 220—242. Springer, 1997.

Chang Hwan Peter Kim, Don Batory, and Sarfraz
Khurshid. Reducing Combinatorics in Testing Product
Lines. In AOSD, pages 57—68. ACM, 2011.

Chang Hwan Peter Kim, Eric Bodden, Don Batory,
and Sarfraz Khurshid. Reducing Configurations to
Monitor in a Software Product Line. In RV, pages
285-299. Springer, 2010.

Chang Hwan Peter Kim, Sarfraz Khurshid, and Don
Batory. Shared Execution for Efficiently Testing
Product Lines. In ISSRE, pages 221-230. IEEE, 2012.
Kyungseok Kim, Hyejung Kim, Miyoung Ahn,
Minseok Seo, Yeop Chang, and Kyo C Kang.
ASADAL: a Tool System for Co-Development of
Software and Test Environment Based on Product
Line Engineering. In ICSE, pages 783-786. ACM,
2006.

Herbert Klaeren, Elke Pulvermueller, Awais Rashid,
and Andreas Speck. Aspect Composition Applying the
Design by Contract Principle. In GCSE, pages 57-69.
Springer, 2001.

Gary T. Leavens and Yoonsik Cheon. Design by
Contract with JML, 2006.

Jorg Liebig, Christian Késtner, and Sven Apel.
Analyzing the Discipline of Preprocessor Annotations
in 30 Million Lines of ¢ Code. In AOSD, pages
191-202. ACM, 2011.

Jorg Liebig, Alexander von Rhein, Christian Késtner,
Sven Apel, Jens Dérre, and Christian Lengauer.
Scalable Analysis of Variable Software. In ESECFSE,
pages 81-91. ACM, August 2013.

Liana Barachisio Lisboa, Vinicius Cardoso Garcia,
Daniel Lucrédio, Eduardo Santana de Almeida,

Silvio Romero de Lemos Meira, and Renata Pontin
de Mattos Fortes. A Systematic Review of Domain
Analysis Tools. Information and Software Technology,
52(1):1-13, 2010.

Flavio Medeiros, Thiago Lima, Francisco Dalton,
Miércio Ribeiro, Rohit Gheyi, and Baldoino Fonseca.
Colligens: A tool to support the development of
preprocessor-based software product lines in c. In
CBSoft, 2013.

Bertrand Meyer. Applying Design by Contract. I[EEE
Computer, 25(10):40-51, 1992.

Hung Viet Nguyen, Christian Késtner, and Tien N.
Nguyen. Exploring Variability-Aware Execution for
Testing Plugin-Based Web Applications. In ICSE.
ACM, 2014. To appear.

Changhai Nie and Hareton Leung. A Survey of
Combinatorial Testing. CSUR, 43(2):11:1-11:29, 2011.
Flemming Nielson, Hanne R. Nielson, and Chris
Hankin. Principles of Program Analysis. Springer,
2010.

Sebastian Oster, Ivan Zorcic, Florian Markert, and
Malte Lochau. Moso-polite: tool support for pairwise

[54]

[55]

[56]

and model-based software product line testing. In
VaMoS, pages 79-82. ACM, 2011.

Leonardo Passos, Jianmei Guo, Leopoldo Teixeira,
Krzysztof Czarnecki, Andrzej Wasowski, and Paulo
Borba. Coevolution of Variability Models and Related
Artifacts: A Case Study from the Linux Kernel. In
SPLC, pages 91-100. ACM, 2013.

Gilles Perrouin, Sagar Sen, Jacques Klein, Benoit
Baudry, and Yves Le Traon. Automated and Scalable
T-wise Test Case Generation Strategies for Software
Product Lines. In ICST, pages 459-468. IEEE, 2010.
Benjamin C. Pierce. Types and Programming
Languages. MIT Press, Cambridge, Massachusetts,
USA, 2002.

Malte Plath and Mark Ryan. Feature Integration
Using a Feature Construct. SCP, 41(1):53-84, 2001.
Hendrik Post and Carsten Sinz. Configuration Lifting:
Software Verification meets Software Configuration. In
ASE, pages 347-350. IEEE, 2008.

Christian Prehofer. Feature-Oriented Programming: A
Fresh Look at Objects. In ECOOP, pages 419-443.
Springer, 1997.

pure::systems. pure::variants. Website. Available
online at http:
//www.pure-systems.com/pure_variants.49.0.html;
visited on June 16th, 2014.

Georg Piischel, Ronny Seiger, and Thomas Schlegel.
Test Modeling for Context-aware Ubiquitous
Applications with Feature Petri Nets. In
MODIQUITOUS, 2012.

Thomas Reps, Susan Horwitz, and Mooly Sagiv.
Precise Interprocedural Dataflow Analysis via Graph
Reachability. In SIGPLAN-SIGACT, pages 49-61.
ACM, 1995.

Marcio Ribeiro, Térsis Tolédo, Johnni Winther, Claus
Brabrand, and Paulo Borba. Emergo: A Tool for
Improving Maintainability of Preprocessor-Based
Product Lines. In AOSD, pages 23-26. ACM, 2012.
Suzanne Robertson and James Robertson. Mastering
the Requirements Process: Getting Requirements Right.
Pearson Education, 2012.

Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio
Damiani, and Nico Tanzarella. Delta-Oriented
Programming of Software Product Lines. In SPLC;
pages 77-91. Springer, 2010.

Wolfgang Scholz, Thomas Thiim, Sven Apel, and
Christian Lengauer. Automatic Detection of Feature
Interactions using the Java Modeling Language: An
Experience Report. In FOSD, pages 7:1-7:8. ACM,
2011.

Jiangfan Shi, Myra B. Cohen, and Matthew B. Dwyer.
Integration Testing of Software Product Lines Using
Compositional Symbolic Execution. In FASE, pages
270-284. Springer, 2012.

Norbert Siegmund, Marko Rosenmiiller, Martin
Kuhlemann, Christian Késtner, Sven Apel, and
Gunter Saake. SPL. Conqueror: Toward Optimization
of Non-Functional Properties in Software Product
Lines. SQJ, 20(3-4):487-517, 2012.

Norbert Siegmund, Alexander von Rhein, and Sven
Apel. Family-Based Performance Measurement. In

(63]

(64]

[65]

(66]

(67]

(68]

(69]

[70]

[71]

[72]

73]

[74]

[75]

GPCE, pages 95-104. ACM, 2013.

Julio Sincero, Reinhard Tartler, Christoph Egger,
Wolfgang Schroder-Preikschat, and Daniel Lohmann.
Facing the Linux 8000 Feature Nightmare. In FuroSys,
2010.

Vanessa Stricker, Andreas Metzger, and Klaus Pohl.
Avoiding Redundant Testing in Application
Engineering. In SPLC, pages 226-240. Springer, 2010.
Reinhard Tartler, Daniel Lohmann, Christian
Dietrich, Christoph Egger, and Julio Sincero.
Configuration Coverage in the Analysis of Large-Scale
System Software. ACM SIGOPS Operating Systems
Review, 45(3):10-14, January 2012.

Reinhard Tartler, Daniel Lohmann, Julio Sincero, and
Wolfgang Schroder-Preikschat. Feature Consistency in
Compile-Time-Configurable System Software: Facing
the Linux 10,000 Feature Problem. In Proceedings of
the sixzth conference on Computer systems, pages
47-60. ACM, 2011.

Reinhard Tartler, Julio Sincero, Wolfgang
Schroder-Preikschat, and Daniel Lohmann. Dead or
Alive: Finding Zombie Features in the Linux Kernel.
In FOSD, pages 81-86. ACM, 2009.

Thomas Thiim, Sven Apel, Christian Késtner, Ina
Schaefer, and Gunter Saake. A Classification and
Survey of Analysis Strategies for Software Product
Lines. CSUR, 2014. To appear.

Thomas Thiim, Christian Késtner, Fabian Benduhn,
Jens Meinicke, Gunter Saake, and Thomas Leich.
FeatureIDE: An Extensible Framework for
Feature-Oriented Software Development. SCP,
79(0):70-85, 2014.

Thomas Thiim, Christian Késtner, Sebastian Erdweg,
and Norbert Siegmund. Abstract Features in Feature
Modeling. In SPLC, pages 191-200. IEEE, 2011.
Thomas Thiim, Jens Meinicke, Fabian Benduhn,
Martin Hentschel, Alexander von Rhein, and Gunter
Saake. Potential synergies of theorem proving and
model checking for software product lines. In SPLC.
ACM, 2014. To appear.

Thomas Thiim, Ina Schaefer, Martin Kuhlemann, and
Sven Apel. Proof Composition for Deductive
Verification of Software Product Lines. In VAST,
pages 270-277. IEEE, 2011.

Engin Uzuncaova, Daniel Garcia, Sarfraz Khurshid,
and Don Batory. Testing Software Product Lines
Using Incremental Test Generation. In ISSRE, pages
249-258. IEEE, 2008.

Engin Uzuncaova, Sarfraz Khurshid, and Don Batory.
Incremental Test Generation for Software Product
Lines. TSE, 36(3):309-322, 2010.

Stephan Weiflleder, Dehla Sokenou, and Bernd-Holger
Schlingloff. Reusing State Machines for Automatic
Test Generation in Product Lines. MoTiP, pages
19-28, 2008.

