
A GENERALIZED ASYNCHRONOUS COMPUTABILITY THEOREM

ELI GAFNI1, PETR KUZNETSOV2, AND CIPRIAN MANOLESCU3

Abstract. We consider the models of distributed computation defined as subsets of the runs of
the iterated immediate snapshot model. Given a task T and a model M , we provide topological
conditions for T to be solvable in M .

When applied to the wait-free model, our conditions result in the celebrated Asynchronous
Computability Theorem (ACT) of Herlihy and Shavit.

To demonstrate the utility of our characterization, we consider a task that has been shown
earlier to admit only a very complex t-resilient solution. In contrast, our generalized computability
theorem confirms its t-resilient solvability in a straightforward manner.

1. Introduction

This paper characterizes task solvablility in models of distributed computing, where processes
communicate via reading from and writing to a shared memory. We treat a model as a set of runs,
i.e., interleaving of read and write steps issued by different processes.

What do we mean by a characterization? We say that a task T is solvable in a model M , if
there exists a protocol by which, in every run of M , each process taking sufficiently many steps
eventually outputs, so that the outputs satisfy the task’s specification with respect to the provided
inputs. The conventional definition of solvability is therefore operational, based on the existence
of a protocol. A topological characterization replaces the operational definition with the existence
of a continuous map between topological spaces, capturing the sets of possible inputs and outputs
of the task. This topological characterization may provide insights about the (in)solvability of the
task that are not easy to grasp operationally [1, 21,32].

In 1993, Herlihy and Shavit [21,22] characterized read-write communication with no restrictions
on the runs; this is referred to as the wait-free model. They formulated the Asynchronous Com-
putability Theorem (ACT) stating that a task T is wait-free solvable if and only if there exists a
simplicial, chromatic map from a subdivision of simplexes of an appropriately defined input sim-
plicial complex to an appropriately defined output simplicial complex, satisfying the specification
of T .

The original proof of ACT is given in [22] directly for the conventional read-write shared-memory
model (referred to as the standard shared-memory and denoted SM), where memory consists of
persistent objects which can be written and read by a given process arbitrarily often. However, the
original proof can be simplified by casting the problem to the iterated immediate-snapshots (IIS) [3]
shared memory model, in which processes march through a sequence of Immediate-snapshots (IS)
tasks invoking the next one with their output from the previous one.

1Computer Science Department, UCLA, 3731F Boelter Hall, Los Angeles, CA 90095, USA (Corre-
sponding author)

2Télécom ParisTech, INFRES, 46 Rue Barrault, 75013 Paris, France
3Department of Mathematics, UCLA, 520 Portola Plaza, Los Angeles, CA 90095, USA
E-mail addresses: eli@ucla.edu, petr.kuznetsov@telecom-paristech.fr, cm@math.ucla.edu.
CM was supported by NSF grant DMS-1104406.

1

ar
X

iv
:1

30
4.

12
20

v3
 [

cs
.D

C
]

 2
0

M
ay

 2
01

4

The IIS model can be thought of as convenient mathematical tool to analyze and understand
distributed computing, contrasting with the more realistic but less convenient standard shared-
memory model (SM). Casting distributed computation in SM to IIS is not unlike analyzing electro-
magnetic communication in the complex-number domain. We start with the real-world, we move
the reasoning to an abstract mathematical world, and then we translate the results back to reality.

The proof of ACT in [22] can thus be simplified along the following lines:

(1) The wait-free runs in standard shared-memory can be simulated in the IIS model [3, 13],
and the IIS model can be simulated by the standard shared-memory model [1]. Thus all
we need is to characterize task solvability in IIS.

(2) If a task T is wait-free solvable in the IIS model, then there exists an integer kT such that
after the first kT invocations of immediate snapshots, each process can output in T . This
can be shown by a compactness argument or König’s lemma (cf., e.g., [3]).

(3) Solving a task by kT immediate snapshots can be interpreted topologically as constructing
a simplicial map from the kT -th standard chromatic subdivision of the input complex to
the output complex. This is because each immediate snapshot can be represented by a
standard subdivision [23,25].

(4) A chromatic map from an arbitrary subdivision of a complex can be approximated by a
chromatic map from an iterated standard chromatic subdivision. This is a chromatic version
of the standard simplicial approximation theorem, and a proof can be found in Section 5
of [22]. It also follows from an operational argument in [3].

In this paper we extend this method of proof to models representing proper subsets of the runs
of the wait-free standard shared-memory model.

To this end, we start with a formal definition of the very notion of solving a task in IIS. Sur-
prisingly, no such definition appeared in the literature until now.1 In particular, we introduce the
notions of participating (taking at least one step) and infinitely participating (taking infinitely many
steps) processes in an IIS run.

Further, to benefit from Step (1) in the list above, we need a mapping between SM and IIS, that
preserves the notions of participating and infinitely participating sets. Furthermore, in addition to
this forward simulation F : SM → IIS we need a backward simulation B : IIS → SM, such that
for all M ⊆ SM we have B(F (M)) ⊆ M . We also ask for the restriction of B to the image of F
to preserve the notions of participating and infinitely participating sets. Given that the standard
simulations [2, 3] do not meet these requirements, we employ a new two-way simulation presented
in [4]. This applies to a large set of adversarial SM models [7, 24], specified by sets of processes
that can be infinitely participating in a model run.

Thus, we can cast an adversarial SM model to its equivalent model in IIS. Moreover, the IIS
model is, in a strict sense, richer than SM: multiple IIS runs collapse into a single SM run by the
simulation [4]. Our characterization of IIS task solvability applies to any sub-IIS model (that is, a
subset of the runs in the IIS model), including those that have no equivalents in SM.

Imitating Step (2) in sub-IIS models is in general impossible. For example, in the 1-resilient
3-process model, the task of 2-set agreement can be easily solved. However, every such solution
has a run in which two processes fail and the remaining process never outputs [1, 21, 32]. In every
1-resilient extension of a finite prefix of this run, all infinitely participating processes output. Since
such a prefix may have an arbitrary length, a uniform bound kT on the number of steps sufficient
to output in a run of the 1-resilient sub-IIS model does not exist. This observation is related to
the fact that the model is non-compact, with respect to a metric that will be defined in Section 5.

Therefore, our main theorem, which we call the generalized asynchronous computability theorem
(GACT), is a generalization of Step (3) in the outline above, without relying on Step (2). Instead,

1Some specific compact subsets of IIS runs were formally treated in [29].

2

the characterization proposes to “approximate” a non-compact model by a sequence of compact
models. The sequence converges to a superset of the target model. Thus, if the task is solvable by
each compact model in the sequence, it is solvable by the target model. Each compact model is
represented as subcomplex of a subdivided simplex. Hence GACT deals with a sub-complex of a
subdivided simplex instead of a subdivided simplex (as ACT does), and instead of saying that there
exists a single subdivision (as in ACT) it requires the existence of a sequence of sub-complexes.

Step (4) now applies individually to each subdivision in the sequence. In this paper we do
not deal with this step, because the formulation would be too cumbersome, and because it is not
necessary for our examples. Nevertheless, we believe that our theorem can be extended to arbitrary
rather than standard chromatic subdivisions.

ACT turned out to be an essential tool in distributed computing [6,12,17–20]. We show that our
GACT holds that promise too. We consider a task T , solvable t-resiliently, but (to our knowledge)
only with a very involved algorithm [8]. In contrast, by applying the methods developed in this
paper, we show that determining the t-resilient solvability of T is relatively simple.

The paper is organized as follows: In Section 2 we describe the IIS model and give some examples
of sub-IIS models. In Section 3 we review some notions from combinatorial topology. In Section 4
we review the topological definition of a task, and explain what it means for a task to be solvable
in a model. In Section 5 we describe sub-IIS models topologically. In Section 6 we prove our main
result, GACT. In Section 7 we explain how GACT gives back the well-known ACT in the wait-free
case. In Section 8 we introduce a new topological tool: a version of the simplicial approximation
for infinite chromatic complexes. Using this tool, in Section 9 we show how GACT can be applied
to a class of tasks called link connected; in particular, we use GACT to prove that a particular task
can be solved in the t-resilient model. In Section 10 we recall some related work, and in Section 11
we draw the conclusions.

2. Sub-IIS models

In this section, we describe our perspective on the Iterated Immediate Snapshot (IIS) model [3]
and give examples of sub-IIS models.

2.1. The IIS model. Suppose we have n+ 1 processes p0, p1, . . . , pn. A run r in IIS is a sequence
of non-empty sets of processes S1 ⊇ S2 ⊇ . . . , with each Sk ⊆ {p0, . . . , pn} consisting of those
processes that participate in the kth iteration of immediate snapshot (IS). Furthermore, each Sk is
equipped with an ordered partition: Sk = S1

k ∪ · · · ∪ S
nk
k (for some nk ≤ n), corresponding to the

order in which processes are invoked in the respective IS.
Let R be the set of runs in IIS. Fix a run r ∈ R, with r = S1, S2, . . . as above. The processes

pi ∈ S1 are called participating. If pj appears in all the sets Sk, we say that pj is infinitely
participating in r. The sets of participating and infinitely participating processes in a run r are
denoted part(r) and ∞-part(r), respectively.

If either k = 0 or pi ∈ Sk for some k ≥ 1, then we define a set called the kth view of pi in the
run r, view(pi, k), recursively, as follows:

(1) view(pi, 0) = {pi};
(2) For k ≥ 1, the view of pi ∈ Sjk ⊆ Sk is view(pi, k) = {view(ps, k − 1) | ps ∈ S1

k ∪ · · · ∪ S
j
k}.

Our definitions can be interpreted operationally as follows. Every process proceeds through an
infinite series of one-shot immediate snapshot (IS) instances [2]: IS1, IS2 Then Sk is interpreted

as the set of processes accessing memory ISk, and each Sjk is the set of processes obtaining the

same view after accessing ISk. Recall that in IS, the view of a process pi ∈ Sjk is defined by the

values written by the processes in S1
k ∪ · · · ∪ S

j
k.

3

The original definition of IIS [3] can be thought of as the variant of our model, in which we
impose the condition S1 = S2 = · · · = {p0, . . . , pn}, i.e., every process is infinitely participat-
ing. What is the advantage of our new, more refined, definition of IIS? It allows a run to be
extended to more processes without changing the views of the already existing processes. For
instance, in the run r = {{p0}}, {{p0}}, . . . we have part(r) = ∞-part(r) = {p0}. In the run
r′ = {{p0}, {p1}}, {{p0}, {p1}}, {{p0}, {p1}}, . . . we have part(r′) = ∞-part(r′) = {p0, p1}. How-
ever, p0 cannot tell whether it is in r or in r′, because the corresponding views of p0 are the same
in both runs. In this situation, we say that r′ is an extension of r.

Formally, we say that a run r′ = S′1, S
′
2, . . . is an extension of a run r = S1, S2, . . . , and we write

r ≤ r′, if (i) Sj ⊆ S′j for all j, and (ii) the views of the processes in part(r) are the same in r′ as in
r. This defines a partial order on R.

If r is a run, let minimal(r) be the smallest run r0 such that r0 ≤ r (that is, for all r′ ≤ r,
we have r0 ≤ r′). It is not difficult to see that minimal(r) exists and is unique. We then define
fast(r) =∞-part(minimal(r)). We define slow(r) to be the complement set of fast(r).

Intuitively, fast(r) is the largest set of processes that “see” each other (appear in each other’s
view) infinitely often in r. In other words, for all pi, pj ∈ fast(r) and all k ≥ 0, there exists ` ≥ k
such that view(pi, k) appears in view(pj , `).

2.2. Examples of models. We define a sub-IIS model M to be any subset of R.

Example 2.1. The wait-free (or completely asynchronous) model WF is the set R itself. The
interpretation of WF is that anything can happen (all sorts of step interleavings are allowed).

Example 2.2. For t ≤ n, the t-resilient model Rest consists of the runs r ∈ R such that |fast(r)| ≥
n+ 1− t. This is the model in which at most t processes are slow.

Example 2.3. For k ≤ n+ 1, the k-obstruction-free model OF k consists of all the runs r in which
no more than k processes are fast, i.e., |fast(r)| ≤ k. This model was previously discussed in [11],
following a suggestion of Guerraoui.

Example 2.4. More generally, consider the model with adversary A [7], which we denote by
Madv(A). Here, A is any subset of the power set of {0, 1, . . . , n}. We then define Madv(A) to
consist of all runs r such that slow(r) ∈ A.

3. Topological definitions

Before moving forward, we need to review several notions from topology. We will assume that
the reader has a basic knowledge of metric spaces (open sets, continuity, compactness), as in [31,
Chapter 7].

3.1. Simplicial complexes. A good reference for the material in this section is Chapter 3 in [33].
A simplicial complex is a set V , together with a collection C of finite nonempty subsets of V

such that:

(a) For any v ∈ V , the one-element set {v} is in C;
(b) If σ ∈ C and σ′ ⊆ σ, then σ′ ∈ C.

The elements of V are called vertices, and the elements of C are called a simplices. We usually
drop V from the notation, and refer to the simplicial complex as C.

A simplicial complex C is called finite if the collection C is finite. A weaker notion is locally
finite: C is said to be locally finite if every vertex of C belongs to only finitely many simplices in
C. For simplicity, we will assume that our complexes are locally finite.

A subset of a simplex is called a face of that simplex.
A subcomplex of C is a subset of C that is also a simplicial complex.

4

The dimension of a simplex σ ∈ C is its cardinality minus one. The k-skeleton of a complex C,
denoted Skelk C, is the subcomplex formed of all simplices of C of dimension k or less.

A simplicial complex C is called pure of dimension n if C has no simplices of dimension > n,
and every k-dimensional simplex of C (for k < n) is a face of an n-dimensional simplex of C.

Given a simplex σ ∈ C, we denote by stσ the open star of σ, that is, the set of all simplices in
C that have σ as a face. The closed star of σ, denoted Stσ, is the smallest simplicial complex that
contains stσ. The difference (Stσ) \ (stσ) is called the link of σ.

Let A and B be simplicial complexes. A map f : A→ B is called simplicial if it is induced by a
map on vertices; that is, f maps vertices to vertices, and for any σ ∈ A, we have

f(σ) =
⋃
v∈σ

f({v}).

A simplicial map f is called noncollapsing (or dimension-preserving) if dim f(σ) = dimσ for all
σ ∈ A.

Any simplicial complex C has an associated geometric realization |C|, defined as follows. Let
V be the set of vertices in C. As a set, we let C be the subset of [0, 1]V = {α : V → [0, 1]}
consisting of all functions α such that {v ∈ V | α(v) > 0} ∈ C and

∑
v∈V α(v) = 1. For each

σ ∈ C, we set |σ| = {α ∈ |C| | α(v) 6= 0 ⇒ v ∈ σ}. Each |σ| is in one-to-one correspondence
to a subset of Rn of the form {(x1, . . . , xn) ∈ [0, 1]n |

∑
xi = 1}. We put a metric on |C| by

d(α, β) =
∑

v∈V |α(v)− β(v)|.
Given a simplicial map f : A → B, there is an associated continuous, piecewise linear map

|f | : |A| → |B|, defined by the formula

|f |(α)(v′) =
∑

f(v)=v′

α(v).

A nonempty complex C is called k-connected if, for each m ≤ k, any continuous map of the
m-sphere into |C| can be extended to a continuous map over the (m+ 1)-disk.

A subdivision of a simplicial complex C is a simplicial complex C ′ such that:

(1) The vertices of C ′ are points of |C|.
(2) For any σ′ ∈ C ′, there exists σ ∈ C such that σ′ ⊂ |σ|.
(3) The piecewise linear map |C ′| → |C| mapping each vertex of C ′ to the corresponding point

of C is a homeomorphism.

In particular, every complex C admits a barycentric subdivision Bary(C), defined as follows. The
vertices of Bary(K) are the barycenters of the simplices of C (in the geometric realization). The
simplices of Bary(K) correspond to ordered sequences (σ0, . . . , σm) of simplices of C, where σi is a
face of σi+1; the barycenters of σi are then the vertices of the corresponding simplex in Bary(K).

By iterating this construction k times we obtain the kth barycentric subdivision, Baryk(C).

3.2. Chromatic complexes. We now turn to the chromatic complexes used in distributed com-
puting, and recall some notions from [22].

Fix n ≥ 0. The standard n-simplex s has n+ 1 vertices, in one-to-one correspondence with n+ 1
colors 0, 1, . . . , n. A face t of s is specified by a collection of vertices from {0, . . . , n}. We view s
as a complex, with its simplices being all possible faces t. Note that the open star of a face t is
st t = {t′ | t ⊆ t′}, while the closed star of any face is the whole simplex s.

A chromatic complex is a simplicial complex C together with a noncollapsing simplicial map
χ : C → s. Note that C can have dimension at most n. We usually drop χ from the notation. We
write χ(C) for the union of χ(v) over all vertices v ∈ C. Note that if C ′ ⊆ C is a subcomplex of a
chromatic complex, it inherits a chromatic structure by restriction.

In particular, the standard n-simplex s is a chromatic complex, with χ being the identity.
5

Every chromatic complex C has a standard chromatic subdivision ChrC. Let us first define Chr s
for the standard simplex s. The vertices of Chr s are pairs (i, t), where i ∈ {0, 1, . . . , n} and t is a
face of s containing i. We let χ(i, t) = i. Further, Chr s is characterized by its n-simplices; these
are the (n+ 1)-tuples ((0, t0), . . . , (n, tn)) such that:

(a) For all ti and tj , one is a face of the other;
(b) If j ∈ ti, then tj ⊆ ti.

The geometric realization of s can be taken to be the set {x = (x0, . . . , xn) ∈ [0, 1]n+1 |
∑
xi = 1},

with the vertex i corresponding to the point xi with i coordinate 1 and all other coordinates 0.
Then, we can identify a vertex (i, t) of Chr s with the point

1

2k − 1
xi +

2

2k − 1

(∑
{j∈t|j 6=i}

xj

)
∈ |s| ⊂ Rn+1,

where k is the cardinality of t. (Compare [22, Definition 5.7].) Thus, Chr s becomes a subdivision
of s and the geometric realizations are identical: |s| = |Chr s|.

Next, given a chromatic complex C, we let ChrC be the subdivision of C obtained by replacing
each simplex in C with its chromatic subdivision. Thus, the vertices of ChrC are pairs (p, σ),
where p is a vertex of C and σ is a simplex of C containing p. If we iterate process this m times
we obtain the mth chromatic subdivision, ChrmC.

Let A and B be chromatic complexes. A simplicial map f : A → B is called a chromatic map
if for all vertices v ∈ A, we have χ(v) = χ(f(v)). Note that chromatic map is automatically
noncollapsing. A chromatic map has chromatic subdivisions Chrm f : ChrmA → ChrmB. Under
the identifications of topological spaces |A| ∼= |ChrmA|, |B| ∼= |ChrmB|, the continuous maps |f |
and |Chrm f | are identical.

A chromatic multi-map between A and B is a map ∆ : A→ 2B that, for any m ≤ n, takes every
m-simplex of A to a pure m-dimensional subcomplex of B, such that: (i) For every simplex σ of
A, we have χ(σ) = χ(∆(σ)), and (ii) For all simplices σ, τ ∈ A, we have ∆(σ ∩ τ) ⊆ ∆(σ) ∩∆(τ).
In particular, if σ′ is a face of σ, then ∆(σ′) ⊆ ∆(σ).

4. Tasks

4.1. Definitions. A task T = (I,O,∆) on n+ 1 processes {p0, . . . , pn} consist of two finite, pure
n-dimensional chromatic complexes I and O, together with a chromatic multi-map ∆ : I → 2O.
The input complex I specifies the possible input values, the output complex O specifies the possible
output values, and ∆ describes which output values are allowed for a given input. The colors
specify to which process each input or output value corresponds.

A task is called input-less if the input complex is the standard simplex s, colored by the identity.
Then each process starts with input only its own id.2

4.2. Affine tasks. Many examples of input-less tasks can be constructed as follows. Let L ⊆ Chrk s
be a pure n-dimensional subcomplex of the kth chromatic subdivision of s, for some k. For each
face t ⊆ s, the intersection L ∩ Chrk t is a subcomplex of Chrk s; we assume that this subcomplex
is pure of the same dimension as t (and possibly empty).

2Note that in the definition of a multi-map we allowed images to be empty. This is somewhat non-standard, as it
means that processes in a task do not have to output. If one prefers to avoid that, for every task T = (I,O,∆) we can
construct a new, equivalent task T+ = (I+,O+,∆+) as follows. We let I+ = I. The output complex O+ is obtained
from O by adding extra vertices v0, . . . , vn (with vi corresponding to “no output” for the process i); moreover, for
each simplex σ in O, we add an n-simplex σ+ in O+ by adjoining vertices vi for the colors i not represented in σ.
Finally, we let ∆+(τ) = (∆(τ))+.

6

We define an input-less task (s, L,∆) by setting ∆(t) = L ∩ Chrk t for any face t ⊆ s. Tasks
constructed like this are called affine. To depict an affine task, we can simply draw the corresponding
complex L.

By abuse of notation, we will usually write L for the affine task (s, L,∆). We chose the name
affine because if we have a task L as above, the geometric realizations of the simplices of L can
be depicted as lying on affine subspaces of Rn. Similar terminology appears in algebraic geometry,
where one talks about affine varieties.

For example, consider the task of total order Lord, defined as follows. For each permutation α of
{0, 1, . . . , n}, there is a unique n-simplex σα in the second chromatic subdivision Chr2 s with the
property that the vertex of σα colored i is in the interior of an i-dimensional face of s. For example,
for 3 processes, the six simplices of the form σα are those shown here:

The total order task is the affine task associated to the complex Lord ⊆ Chr2 s is the union of
all the (n+ 1)! simplices of the form σα. The name total order refers to the fact that the possible
outputs (when all n + 1 processes are running) are in one-to-one correspondence with the total
orderings (i.e., permutations) of the set of processes {0, 1, . . . , n}, similar to one-shot total-order
broadcast [15] where every process proposes broadcasts its identifier and the processes agree on the
order in which the identifiers are delivered.

4.3. Views with input. Let r = S1, S2, . . . be a run in IIS. Recall that in Section 2.1 we defined
the kth view of a process in the run, view(pi, k). We now generalize this to allow arbitrary inputs.

Let I be a pure n-dimensional chromatic complex, and let ω ∈ I be an n-dimensional simplex.
The kth view of pi in the run r starting with input ω is denoted view(pi, ω, k) and defined recursively
as follows:

(1) view(pi, ω, 0) = {(pi, v)}, where v is the vertex colored i in the simplex ω;

(2) For k ≥ 1, the view of pi ∈ Sjk ⊆ Sk is view(pi, ω, k) = {view(ps, ω, k − 1) | ps ∈ S1
k∪· · ·∪S

j
k}.

4.4. Task Solvability. In a sub-IIS model, informally, a task T = (I,O,∆) is solvable in M if
for all runs r ∈ M , the infinitely participating processes output, and their output is a subsimplex
of the allowed outputs for the participating processes. An output is the result of a protocol. For
us, when dealing with solvability rather than complexity, a protocol is just a partial map from
views to outputs. Thus, requiring an infinitely participating process to output means requiring
that eventually it will have a view that is mapped by the protocol to an output value.

We define the set V = V(I) to consist of all possible view(pi, ω, k) in all runs r ∈ R, for all
processes pi, simplices ω ∈ I, and integers k ≥ 0. Formally, a protocol Π for the task T is a map
from a subset of V to the set of vertices in the output complex O.

Definition 4.1. A task T = (I,O,∆) is solvable in a sub-IIS model M if there exists a protocol
Π for T such that for all r ∈M (with r = S1, S2, . . . as before):

(1) For each pi, and for each n-dimensional simplex ω ∈ I, there exist k0 and a vertex v of O
colored i, such that:
• For all k < k0, view(pi, ω, k) /∈ domain(Π);
• For all k ≥ k0 such that pi ∈ Sk exists, we have Π(view(pi, ω, k)) = v.

(This condition is satisfied vacuously if pi is not infinitely participating, because we can find
k0 such that pi did not take k0 steps in r, so pi 6∈ Sk for k ≥ k0.)

7

(2) For all k, {Π(view(pi, ω, k)) | view(pi, ω, k) ∈ domain(Π)} is a sub-simplex of a simplex in
∆
(
ω ∩ χ−1(part(r))

)
.

In every run r ∈ M , condition (1) above requires every infinitely participating to eventually
produce an output, and condition (2) requires the produced output to respect the task specification
∆ given the inputs of participating processes.

4.5. Example: solving tasks in sub-IIS. Note that our definition of task solvability in sub-
IIS models brings illuminating subtleties that were not observed in the conventional SM model.
Consider a sub-IIS model M and the corresponding model Mfast = {r|∃r′ ∈ M, r = minimal(r′)}.
If a task T is solvable in M then it is obviously solvable in Mfast , but not necessarily vice-versa.
Indeed, consider the obstruction-free model OF = OF 1, consisting of runs with a single fast
process. Obviously, the total order task Lord cannot be solved in OF , because in runs r where
the process in fast(r) is always ahead of the rest (Sk = fast(r) for all k), the rest of the processes
essentially proceed wait-free. In contrast, we can easily solve Lord in OF fast using commit-adopt [9]
(implemented in IIS).

5. Topological interpretation

Recall that R denotes the set of runs in IIS. We put a metric on R as follows. Given runs
r, r′ ∈ R, we let k = k(r, r′) denote the largest k ≥ 0 such that the first k steps of r and r′ are
identical. (In particular, we let k = ∞ when r = r′.) We set the distance between r and r′ to be
d(r, r′) = 1/(1 +k). It is easy to see that d(r, r′) is a metric that captures how “close” the two runs
are.

Recall that a metric space is compact if every open cover has a finite subcover; or, equivalently,
if any infinite sequence has a convergent subsequence. (See [31, Section 7.7], for example.) For
future reference, we mention:

Lemma 5.1. The metric space R is compact.

Proof. Let r[1] = (S[1]1, S[1]2, . . .), r[2] = (S[2]1, S[2]2, . . .), . . . be an infinite sequence of runs.
(Each S[i]k is a set equipped with an ordered partition.) There are only finitely many possibilities

for the first step Sj1, so we can find a subsequence (r[1, 1], r[1, 2], . . .) of (r[1], r[2], . . .) such that
the first step in each r[1, i]q is a constant choice S1, with a constant partition S1 = S1

1 ∪ · · · ∪ S
n1
1 .

From the subsequence (r[1, 1], r[1, 2], . . .) we can extract a further subsequence (r[2, 1], r[2, 2], . . .)
such that the second step is a constant choice S2 = S1

2 ∪ · · · ∪ S
n2
2 , and so on. Hence, the diagonal

subsequence (r[1, 1], r[2, 2], r[3, 3], . . .) converges to r = (S1, S2, . . .). Thus, every sequence in R
has a converging subsequence. �

The metric space R is not easy to visualize. We can however get a partial understanding by
focusing on the views of the fast processes in each run.

Consider the standard chromatic subdivisions of the n-simplex s. Recall that a run in IIS can
be identified with a sequence of simplices σ0, σ1, σ2, . . . , with σk ∈ Chrk s and |σk+1| ⊂ |σk| [23,25].

Note that every run converges to a point of the geometric realization |s|, so there is a natural,
continuous map π : R → |s|, which we call the affine projection. The information captured in
p = π(r) exactly consists of the views of the fast processes in r. In fact, each point π(r) ∈ |s| can
be identified with the minimal run minimal(r).

There is a canonical coloring map χ : |s| → 2{0,1,...,n} that extends the colorings on all chromatic
subdivisions Chrm s to |s|. Precisely, given a point p ∈ |s|, we let χ(p) be the minimal subset

A ⊆ {0, 1, . . . , n} such that p lies in a simplex σ of a chromatic subdivision Chrk s with χ(σ) = A.
It is easy to see that χ(p) = fast(r), for any r such that π(r) = p.

8

A special case of a sub-IIS model is a set of runs of the form π−1(S), where S ⊆ |s|. We call such
models geometric, because they can be easily visualized as associated subsets of |s|. Notice that all
models in Examples 2.1-2.4 are geometric. However, our main results will apply equally well to all
(not necessarily geometric) sub-IIS models.

6. The Generalized Asynchronous Computability Theorem

6.1. Terminating subdivisions. Let C be a chromatic complex. Consider standard chromatic
subdivisions ChrmC for m > 0 (Section 4), and recall that the vertices of ChrmC can be identified
with a subset of the vertices in Chrm+1C.

A terminating subdivision T of C is specified by a sequence of chromatic complexes C0, C1, C2, . . . ,
and a sequence of subcomplexes Σ0 ⊆ Σ1 ⊆ Σ2 ⊆ . . . such that for all k ≥ 0:

(i) Σk is a subcomplex of Ck;
(ii) C0 = C, and Ck+1 is obtained from Ck by taking the partial chromatic subdivision in which

the simplices in Σk are “terminated”, i.e., not further subdivided. Precisely, we replace a
simplex σ in Ck by a coarser subdivision than Chr(σ). Whereas the vertices of Chr(σ) are
pairs (p, τ) with τ being a face of σ and p a vertex of τ , in Ck+1 we consider the pairs (p, τ) of
that form such that either τ 6∈ Σk, or τ consists of a single vertex in Σk. For example, if Σk is
zero-dimensional, then Ck+1 = Chr1Ck; if Ck is the standard 2-dimensional simplex and Σk

is one of its 1-dimensional faces, we have:

Ck Ck+1

Σk

A simplex of Σk for some k is called a stable simplex in the subdivision T ; such a simplex remains
unchanged in all further complexes Ck+1, Ck+2, The union ∪kΣk of stable simplices in T forms
a chromatic complex, which we denote by K(T); it usually has infinitely many vertices. Observe
that the geometric realization |K(T)| can be identified with a subset of |C|.

In particular, if there exists k such that Σk = Ck, then we must have Ck = Ck+1 = . . . , and T
is just a finite subdivision of C; in this case, all the simplices in Ck are stable, and |K(T)| = |C|.
At the other extreme, if Σk is empty for all k, then T consists of the kth chromatic subdivisions of
C for all k; in this case, no simplices are stable, and K(T) is empty.

Stable simplices intend to model processes that have produced outputs and thus, intuitively, do
not need to communicate among themselves any longer. Therefore, stable simplices are not further
subdivided. However, processes with outputs keep participating in the computation: simplices
that contain non-stabilized vertices continue to be subdivided. This will allow us to formulate the
conditions of task solvability in non-compact sub-IIS models.

6.2. The main result. We are now ready to formulate and prove our main result: a characteri-
zation of taks solvability in sub-IIS models.

Let M ⊆ R be a sub-IIS model on n + 1 processes. Let T be a terminating subdivision of a
pure n-dimensional chromatic complex I, and let χ : I → s be the coloring map. Let ρ : |I| → |s|
be the geometric realization (piecewise linear extension) of the map χ. Note that ρ maps vertices

of Chrk I to vertices of Chrk s of the same color.
Recall that each vertex v in T belongs to Chrk(σ) for some k ≥ 0 and some n-dimensional

simplex σ of I. Thus, ρ(v) is a vertex of Chrk(s). If we have a simplex τ ∈ K(T), then ρ(|τ |) is
the convex hull of ρ(v) for v ∈ τ .

We say that T is admissible for M if for any run r ∈ M (viewed as a sequence of simplices
σ0, σ1, . . . in s) and for every n-dimensional simplex ω in I, there exists k > 0 and a stable simplex

9

τ ∈ K(T) such that |τ | ⊆ |ω| and |σk| ⊆ ρ(|τ |). The intuition here is that every run of M with
inputs ω should eventually land in a simplex of T .

Theorem 6.1 (GACT). A sub-IIS model M solves a task T = (I,O,∆) if and only if there exists
a terminating subdivision T of I and a chromatic map δ : K(T)→ O such that:

(a) T is admissible for the model M ;
(b) For any simplex σ of I, if τ is a stable simplex of T such that |τ | ⊆ |σ|, then δ(τ) ∈ ∆(σ).

Proof. ”⇒” : Suppose M solves T using a protocol Π. By induction on the recursion that defines
view(pi, ω, k), it is easy to see that the kth view of pi in a run r ∈ M (with input ω) corresponds

to a vertex v ∈ Chrk(ω) ⊆ Chrk(I) with χ(v) = {pi}.
We construct a terminating subdivision T with desirable properties as follows. We proceed with

the standard subdivisions Chrk(I) for k = 0, 1, 2, . . . , and we examine all runs r ∈ M . At the
kth stage we take the inductively constructed Ck, whose vertices are a subset of the vertices of
Chrk(I). We then terminate those simplices for which Π has given an output: A simplex σ of Ck
(with |σ| ⊆ |ω|) is included in Σk if there exists a run r ∈M such that the vertices of σ are of the
form vi = view(pi, ω, k) for that run, and the outputs Π(vi) exist (that is, vi ∈ domain(Π)). Then
Σk determines Ck+1.

Given a simplex σ ∈ Σk with vertices vi, we set δ(σ) be the simplex with vertices Π(vi).
Part (a) (admissibility of T) follows from the construction: Given any run r ∈ M and a top-

dimensional simplex ω in I, pick k such that all the processes infinitely participating in r have
produced output at the kth step when they are given input from ω. Let σk be the corresponding
simplex of Chrk s. If ρ−1(|σk|) ∩ |ω| is an embedded simplex of Ck, then it is necessarily a stable
simplex (because all the processes have output), and we are done. If ρ−1(|σk|) ∩ |ω| is not an em-
bedded simplex of Ck, then, by construction, it is contained in a simplex of Ck that was terminated
before (because some of the processes have produced outputs at an earlier time).

Part (b) follows from the fact that M solves T using Π.

“⇐” : Conversely, suppose there exists a terminating subdivision T and a map δ : K(T)→ O as
in the statement of the theorem. We construct a protocol Π by which M solves T . Suppose we have
a run r ∈ M , corresponding to a sequence of simplices σ0 ⊆ σ1 ⊆ σ2 ⊂ . . . Since T is admissible
for M , for each input ω there exists a stable simplex τ such that |τ | ⊆ |ω| and |σk| ⊆ ρ(|τ |) for all
k � 0. Given a process pi ∈ ∞-part(r), we can assign it as output value the vertex of δ(τ) that
has color pi. Now, pi may obtain an output value (necessarily the same as before) through another
run, at a different step k. We take the minimum over all such k, to obtain the value k0 needed in
the definition of Π. Condition (b) implies that Π solves T . �

7. The wait-free model

For the wait-free model WF , let us see how we can derive the original Asynchronous Computabil-
ity Theorem of [22]. Indeed, Theorem 6.1 has the following:

Corollary 7.1. A task T = (I,O,∆) is solvable in the wait-free model if and only if there exists

k ≥ 0 and a chromatic map η : Chrk I → O such that, for any simplex τ ⊆ I and any subsimplex
σ of Chrk τ ⊂ Chrk I, we have η(σ) ∈ ∆(τ).

Proof. If η : Chrk I → C exists, solvability of T follows from GACT because Chrk I (with all the
vertices terminated at the kth step) is a terminating subdivision that is admissible for WF .

Conversely, suppose that T is wait-free solvable. GACT provides a terminating subdivision T
that is admissible for WF , and a map δ : K(T) → O. For each run r ∈ WF = R and top-
dimensional input simplex ω ∈ I, there is a k such that |σk| is contained in a stable simplex τ of T
with |τ | ⊆ |ω|. Since there are finitely many possibilities for ω, we can find a k = k(r) that works

10

for all ω. Let Rk be the set of runs r for which k(r) ≤ k. We have inclusions R0 ⊆ R1 ⊆ R2 ⊆ . . . ,
and each Rk is open in the metric on R introduced in Section 5. We know from Lemma 5.1 that
the set R is compact. Hence, the open cover Rk of R admits a finite subcover; i.e., there exists k
such that Rk = R. We now define the desired map η : Chrk I → O by setting η(σ) = δ(τ), where
τ ∈ K(T) is the minimal simplex with |σ| ⊆ |τ |. �

As stated in [22], ACT characterizes solvability in terms of a map from an arbitrary colored
subdivision of I to the output complex. That any colored subdivided simplex can be approximated
by Chrk(I) for some k large enough is a purely topological result, proved in [22], and which can
be used here verbatim. (This corresponds to Step 4 in the outline of the proof of ACT from the
Introduction.)

8. Simplicial approximation

To be able to apply GACT, we need a tool for constructing chromatic maps between two chro-
matic complexes A and B (subject to some boundary conditions). In many cases, it is easier to
first construct a continuous map f : |A| → |B|. Standard results in algebraic topology (reviewed in
Subsection 8.1 below) say that after replacing A by a fine enough subdivision, we can deform f into
a geometric realization of a simplicial map. Such a map may collapse the dimension of simplices,
so it is not always clear how to turn it into a chromatic map. However, if we impose an additional
condition (link-connectedness for the target), we will show in Subsection 8.2 that one can do the
approximation using chromatic maps.

8.1. Classical results. Let A and B be simplicial complexes and let f : |A| → |B| be a continuous
map between their geometric realizations. If A′ is a subdivision of A, a simplicial map φ : A′ → B
is called a simplicial approximation to f if for every x ∈ |A| = |A′| and σ ∈ B we have

f(x) ∈ |σ| ⇒ |φ|(x) ∈ |σ|.
Roughly, the simplicial approximation theorem says that every continuous map between simpli-

cial complexes can be approximated by a simplicial map. There are several versions of this in the
literature. For finite simplicial complexes, we have:

Theorem 8.1. Let A and B be simplicial complexes such that A is finite, and let f : |A| → |B| be
a continuous map. Then:

(a) There exists an integer N such that for all n ≥ N , the map f admits a simplicial approximation
φ : Baryn(A)→ B.

(b) Furthermore, if we have a subcomplex C ⊆ A such that the restriction of f to C is the geometric
realization of a simplicial map g : C → B, then the approximation φ can be taken so that the
restriction of φ to |C| equals |g|.

Part (a) of this result is a special case of Theorem 8 in [33, p.128]. The theorem is stated in [33] in
more generality, for pairs of simplicial complexes. Part (b) above follows from this more statement,
taking into account Lemma 1 in [33, p.126].

In this paper we will need a different variant of the simplicial approximation theorem, one that
applies without the hypothesis that A is finite:

Theorem 8.2. Let A and B be simplicial complexes, and let f : |A| → |B| be a continuous map.
Then:

(a) There exists a subdivision A′ of A such that the map f admits a simplicial approximation
φ : A′ → B.

(b) Furthermore, if we have a subcomplex C ⊆ A such that the restriction of f to C is the geometric
realization of a simplicial map g : C → B, then the approximation φ can be taken so that the
restriction of φ to |C| equals |g|.

11

Theorem 8.2 is mentioned in the remarks at the bottom of p.128 in [33]; see [34] or [28] for a
more complete treatment.

Note that, in the case when A is countable and locally finite, we can deduce Theorem 8.2 from
Theorem 8.1 as follows. Let us write A as a union of finite simplicial complexes A1 ⊆ A2 ⊆ . . .
We construct the subdivision A′ and the map φ inductively. Suppose we found a simplicial
approximation φk : Barynk(Ak) → B for the restriction of f to Ak. Consider the restriction
of f to |Ak+1| = |Barynk(Ak+1)|. We extend the approximation φk to Ak+1 by using part
(b) of Theorem 8.1, applied to Barynk(Ak+1) and B. The result is a simplicial approximation
φk+1 : Barynk+1(Ak+1) → B for some nk+1 ≥ nk, such that |φk| = |φk+1| on |Ak|. The desired
approximation φ : A′ → B has |φ| = |φk| on each |Ak|. A subtle point here is the construction of
the subdivision A′, which is getting finer and finer as we go towards infinity. In principle, we would
like A′ to be Barynk(Ak) on each |Ak| \ |Ak−1|. This is not a simplicial complex, but we can turn
it into one by introducing additional simplices, as shown in the figure:

The local finiteness of A ensures that there is an upper bound on the number of times we have to
subdivide each simplex.

8.2. Chromatic approximations. Let us go back to Theorem 8.1. Note that if A is a chromatic
complex, then instead of the barycentric subdivisions Baryn(A), one could take standard chromatic
subdivisions Chrn(A). (The same proof applies.) However, we cannot a priori conclude that the
simplicial approximation is a chromatic simplicial map. For example, if the continuous map f
collapses a simplex of A to a single vertex in B, then any simplicial approximation would do the
same, but on the other hand chromatic maps are non-collapsing.

Nevertheless, we can avoid collapsing by assuming that the following property (for the target
complex B):

Definition 8.3 (Definition 4.14 in [22]). A pure n-dimensional complex B is called link-connected
if for all simplices σ ∈ B, the link of σ in B is (n− dim(σ)− 2)-connected.

For example, the output complex Lord for the total order task on three processes is not link-
connected, because the link (in Lord) of a vertex of s is not connected.

A variant of Theorem 8.2 for chromatic maps is proved in [22, Lemma 4.21] under the assumptions
that A and B are chromatic complexes, B is link-connected, A is a finite subdivision of the standard
simplex, and C is the boundary of A. The conclusion is that the map g can be taken to be chromatic.
Furthermore, Theorem 5.29 in [22] shows that, under the same assumptions, the subdivision A′ of A
can be taken to be a standard chromatic subdivision; this yields a chromatic variant of Theorem 8.1.

One can generalize the results of Herlihy and Shavit to the setting of infinite complexes:

Theorem 8.4. Let A and B be chromatic simplicial complexes, and let f : |A| → |B| be a contin-
uous map. Suppose that A is countable and locally finite, and that B is link-connected. Then:

(a) There exists a subdivision A′ of A such that the map f admits a chromatic simplicial approxi-
mation φ : A′ → B.

(b) Furthermore, if we have a subcomplex C ⊆ A such that the restriction of f to C is the geometric
realization of a chromatic simplicial map g : C → B, then the approximation φ can be taken so
that the restriction of φ to |C| equals |g|.

Proof. We do this inductively on the skeleta of A. Suppose we have defined the map φ on a
subdivision the k-skeleton Skelk(A). We apply [22, Lemma 4.21] to the restriction of f to each
(k+ 1)-simplex σ of A, mapped to the (k+ 1)-skeleton of B. (Observe that if B is link-connected,

12

then so are its skeleta.) We obtain a simplicial approximation to f on σ, agreeing with the already
constructed approximation on the boundary of σ. In the process we have to subdivide the simplices
σ′ in Skelk(A), and each σ′ is on the boundary of several (k + 1)-simplices σ. However, by local
finiteness, we can find a sufficiently fine subdivision that works for all σ ⊃ σ′. By continuing this
ad infinitum, we obtain the approximation φ. Furthermore, if we have a subcomplex C as in part
(b), then at each step we arrange so that the approximation agrees with the one defined on the
corresponding skeleton of C. �

9. Link-connected tasks

9.1. A general result. The following proposition is an extension of the work of Herlihy and Shavit
from [22] to the case of infinite chromatic complexes.

Proposition 9.1. Let M be a sub-IIS model, and T a terminating subdivision of I that is admissi-
ble for M . Suppose we have a task T = (I,O,∆) such that the complexes ∆(τ) are link-connected,
for any τ ∈ I. Then, the task T is solvable in M if and only if there exists a continuous map
f : |K(T)| → |O| such that f(|K(T)| ∩ |τ |) ⊆ |∆(τ)| for all τ ∈ I.

Proof. If T and T ′ are terminating subdivisions of s, we say that T ′ is a stable refinement of T
if |K(T)| = |K(T ′)|, and every simplex of T ′ is contained in a simplex of T ; i.e., K(T ′) should
be a subdivision of K(T). Note that if T is admissible for a model M , then so is T ′.

Given the continuous map f , we shall construct a simplicial, chromatic approximation δ :
K(T ′)→ O as needed to apply GACT; here, T ′ is a stable refinement of T .

We first construct a chromatic subdivision K ′ of K(T), whose vertices are not necessarily in the
standard chromatic subdivisions of I, and a chromatic map δ′ : K ′ → O (an approximation to f)
such that δ′ is carrier-preserving: δ′(σ) ∈ ∆(τ) when |σ| ⊆ |τ |. We do this inductively on d ≥ 0:
For each d, we define the values of δ′ on the simplices that are contained in d-dimensional faces of
|I|. Suppose we have defined δ′ for d− 1, and pick a d-dimensional face τ of |I|. The restriction of
f to |K(T)| ∩ |τ | can be approximated by a simplicial map from a subdivision of K(T), extending
the already constructed δ′ on the (d − 1)-dimensional boundary. Further, since K(T) is locally
finite (by definition) and ∆(τ) is link-connected, it follows from Theorem 8.4 that we can arrange
for δ′ to preserve colors.

Thus, we find a sufficiently fine stable refinement T ′ of T and a chromatic, carrier-preserving
map g : K(T ′)→ K ′. We then set δ = δ′ ◦ g and apply Theorem 6.1.

Conversely, if T is solvable in M , we can apply GACT and obtain a terminating subdivision T
and a chromatic map δ : K(T) → O. The desired continuous map f is the geometric realization
of δ. �

9.2. An example of GACT in action. Consider the t-resilient model Rest from Example 2.2.
Let Lt be the affine task with output complex consisting of all the simplices σ in the second
chromatic subdivision Chr2 s such that no vertex of σ is on an (n − t − 1)-dimensional face of s.
For example, when n = 2 and t = 1, the output complex for L1 looks like:

L1

Proposition 9.2. The task Lt is solvable in the model Rest.

Proof. Note that for each face t ⊆ s = I, the complex ∆(t) for the task Lt is link-connected.
Therefore, it suffices to find a terminating subdivision T and a continuous map f with the properties
required in Proposition 9.1.

13

For n ≥ 0, let R̃n ⊂ |s| be the union of (the geometric realizations of) all the simplices σ ⊂
Chrn+2 s such that no vertex of σ is on an (n − t − 1)-dimensional face of s. Let R0 = |Lt| and,

for n > 0, let Rn be the closure of R̃n − R̃n−1. The union of all Rn’s is the complement of the
(n− t− 1)-skeleton of s:

R2

R0

R1
R2

R1

R1
R2

The terminating subdivision T is as follows: It starts with Σ0 = Σ1 = ∅, so that C0 = s, C1 =
Chr1 s, C2 = Chr2 s. We then let Σ2 be the subcomplex of Chr2 s supported in the region R0. This
defines C2 so that on the complement of R0 it consists of the simplices in Chr3 s. After this, we
terminate all the simplices in R1. Now on the complement of R0∪R1 we have the fourth chromatic
subdivision. We then terminate the simplices in R2, and so on. By construction, eventually, every
simplex contained in any Rk is stable in this terminating subdivision. Since the affine projection
π(Rest) is contained in the union |K(T)| of all the Rk’s, we deduce that T is admissible for Rest.

It remains to construct the continuous map f : |K(T)| → |Lt| = R0. We let the restriction of f
to R0 be the identity, and map everything else onto the boundary R0 ∩R1 using radial projection
away from the (n− t− 1)-skeleton of s:

R0

Observe that radial projection preserves boundaries, so Proposition 9.1 applies. �

Remark 9.3. An alternative, operational solution of task Lt via t-resilient atomic-snapshots was
given by the first author in [8]. More precisely, the Red-Yellow-Green algorithm in [8, Section 4]
specifies an intricate simulation scheme that allows for solving Lt.

10. Related work

The topological conditions of wait-free task solvability were expressed by Herlihy and Shavit [21,
22] in the form of ACT. In the restricted case of colorless tasks that, roughly, can be defined without
taking process identifiers in mind, Herlihy and Rajsbaum [19,20] derived task solvability conditions
in adversarial shared-memory models [7]. This paper proposes a characterization of generic (not
necessarily colorless) tasks in any (not necessarily adversarial) sub-IIS model.

The IIS model was introduced by Borowsky and Gafni [3] and shown to precisely capture the
standard chromatic subdivision of the input complex [23,25]. Due to the elegance of its topological
representation, IIS has been widely used topological reasoning about distributed computing [1, 3,
16, 21, 22]. In [3, 13], IIS has been shown equivalent to SM in terms of task solvability. Rajsbaum
et al. [29] and, more recently, Raynal and Stainer [30] relate proper subsets of sub-IIS and sub-SM
models restricted using specific failure detectors. A recent paper [4] extends these equivalences to
arbitrary sub-SM and sub-IIS models, thus justifying the choice of IIS as a model of study.

The difficulty of dealing with certain problems in certain non-compact models, such as consensus
and t-resilience, has been studied before by Lubitsch and Moran [26], Brit and Moran [5], Moses and
Rajsbaum [27]. By deriving topological solvability conditions for any task and any sub-IIS model,
this paper brings this work to a higher level of generality. The continuous space |s| has appeared

14

previously in the work of Saks and Zaharoglou [32] where it was used to derive the impossibility
wait-free set agreement.

11. Concluding remarks

We presented a version of a generalization of ACT. Other versions may be possible through the
relation between simplicial and continuous maps, as well as through defining terminating subdivi-
sions not necessarily with respect to Chrm(s), in analogy to the sufficiency condition of ACT [22].
We chose the simplest version which still provides us with the benefit of producing a “topological
solution” to the given task.

The main technical challenge we faced was to define and view the IIS model directly, rather
than just through the prism of the simulations from the standard (non-iterated) model [3,13]. This
brought forth a coherent view of IIS, as well as exposed the richness of the model.

The generic IIS models considered in this paper are just arbitrary subsets of the various possible
interleaving of reads and writes, which is an extension with respect to the previous attempts to
model sub-IIS computations [29, 30]. Yet, distributed computing refers also to the availability of
one-shot objects, e.g., consensus, k-set agreement, etc. Of course, we can produce a sub-IIS model
which is equivalent to having consensus, or any other simple object. An open question is whether
our framework embedded in a large enough dimension can capture “all of distributed computing,”
at least with respect to terminating computations. In particular, what will be the sets of runs that
correspond to the availability of the Möbius task [14] or a task from the family of 0-1 exclusion [10]?
We know that, for instance, the “symmetric” task on n processes from [14] can also be formulated
as a regular task on 2n − 1 processes, hence increasing the task dimension does help here. Our
speculation is that any computability question for a “reasonable” one-shot problem in distributed
computing is equivalent to a question of task solvability in a sub-IIS model.

Acknowledgement. We are in debt to Robert F. Brown for helpful discussions in the very early
stages of this research.

References

[1] E. Borowsky and E. Gafni. Generalized FLP impossibility result for t-resilient asynchronous computations. In
STOC, pages 91–100, May 1993.

[2] E. Borowsky and E. Gafni. Immediate atomic snapshots and fast renaming. In PODC, pages 41–51, 1993.
[3] E. Borowsky and E. Gafni. A simple algorithmically reasoned characterization of wait-free computation (extended

abstract). In PODC, pages 189–198, 1997.
[4] Z. Bouzid, E. Gafni, and P. Kuznetsov. Live equals fast in iterated models. CoRR, abs/1402.2446, 2014.

http://arxiv.org/abs/1402.2446.
[5] H. Brit and S. Moran. Wait-freedom vs. bounded-freedom in public data structures. J. UCS, 2(1):2–19, 1996.
[6] A. Castañeda, M. Herlihy, and S. Rajsbaum. An equivariance theorem with applications to renaming. In LATIN,

pages 133–144, 2012.
[7] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, and A. Tielmann. The disagreement power of an adversary.

Distributed Computing, 24(3-4):137–147, 2011.
[8] E. Gafni. On the wait-free power of iterated-immediate-snapshots. Unpublished manuscript, online at http:

//www.cs.ucla.edu/~eli/eli/wfiis.ps, 1998.
[9] E. Gafni. Round-by-round fault detectors (extended abstract): Unifying synchrony and asynchrony. In PODC,

1998.
[10] E. Gafni. The 0-1-exclusion families of tasks. In OPODIS, pages 246–258, 2008.
[11] E. Gafni. Free-for-all execution: Unifying resiliency, set-consensus, and concurrency. Unpublished manuscript,

online at http://www.cs.ucla.edu/~eli/eli/concurrency25.pdf, 2008.
[12] E. Gafni and E. Koutsoupias. Three-processor tasks are undecidable. SIAM J. Comput., 28(3):970–983, 1999.
[13] E. Gafni and S. Rajsbaum. Distributed programming with tasks. In OPODIS, pages 205–218, 2010.
[14] E. Gafni, S. Rajsbaum, and M. Herlihy. Subconsensus tasks: Renaming is weaker than set agreement. In DISC,

pages 329–338, 2006.

15

http://www.cs.ucla.edu/~eli/eli/wfiis.ps
http://www.cs.ucla.edu/~eli/eli/wfiis.ps
http://www.cs.ucla.edu/~eli/eli/concurrency25.pdf

[15] V. Hadzilacos and S. Toueg. A modular approach to fault-tolerant broadcasts and related problems. Technical
Report TR 94-1425, Department of Computer Science, Cornell University, May 1994.

[16] M. Herlihy, D. N. Kozlov, and S. Rajsbaum. Distributed Computing Through Combinatorial Topology. Morgan
Kaufmann, 2014.

[17] M. Herlihy and S. Rajsbaum. The decidability of distributed decision tasks (extended abstract). In STOC, pages
589–598, 1997.

[18] M. Herlihy and S. Rajsbaum. Algebraic spans. Mathematical Structures in Computer Science, 10(4):549–573,
2000.

[19] M. Herlihy and S. Rajsbaum. Concurrent computing and shellable complexes. In DISC, pages 109–123, 2010.
[20] M. Herlihy and S. Rajsbaum. The topology of distributed adversaries. Distributed Computing, 26(3):173–192,

2013.
[21] M. Herlihy and N. Shavit. The asynchronous computability theorem for t-resilient tasks. In STOC, pages 111–120,

May 1993.
[22] M. Herlihy and N. Shavit. The topological structure of asynchronous computability. J. ACM, 46(2):858–923,

1999.
[23] D. N. Kozlov. Chromatic subdivision of a simplicial complex. Homology, Homotopy and Applications, 14(1):1–13,

2012.
[24] P. Kuznetsov. Understanding non-uniform failure models. Bulletin of the EATCS, 106:53–77, 2012.
[25] N. Linial. Doing the IIS. Unpublished manuscript, 2010.
[26] R. Lubitch and S. Moran. Closed schedulers: A novel technique for analyzing asynchronous protocols. Distributed

Computing, 8(4):203–210, 1995.
[27] Y. Moses and S. Rajsbaum. A layered analysis of consensus. SIAM J. Comput., 31(4):989–1021, 2002.
[28] J. R. Munkres. Elements of algebraic topology. Addison-Wesley Publishing Company, Menlo Park, CA, 1984.
[29] S. Rajsbaum, M. Raynal, and C. Travers. The iterated restricted immediate snapshot model. In COCOON, pages

487–497, 2008.
[30] M. Raynal and J. Stainer. Increasing the power of the iterated immediate snapshot model with failure detectors.

In SIROCCO, pages 231–242, 2012.
[31] H. L. Royden. Real analysis. Macmillan Publishing Company, New York, third edition, 1988.
[32] M. Saks and F. Zaharoglou. Wait-free k-set agreement is impossible: The topology of public knowledge. SIAM

J. on Computing, 29:1449–1483, 2000.
[33] E. H. Spanier. Algebraic topology. McGraw-Hill Book Co., New York, 1966.
[34] J. H. C. Whitehead. Simplicial Spaces, Nuclei and m-Groups. Proc. London Math. Soc., S2-45(1):243, 1939.

16

	1. Introduction
	2. Sub-IIS models
	2.1. The IIS model
	2.2. Examples of models

	3. Topological definitions
	3.1. Simplicial complexes
	3.2. Chromatic complexes

	4. Tasks
	4.1. Definitions
	4.2. Affine tasks
	4.3. Views with input
	4.4. Task Solvability
	4.5. Example: solving tasks in sub-IIS

	5. Topological interpretation
	6. The Generalized Asynchronous Computability Theorem
	6.1. Terminating subdivisions
	6.2. The main result

	7. The wait-free model
	8. Simplicial approximation
	8.1. Classical results
	8.2. Chromatic approximations

	9. Link-connected tasks
	9.1. A general result
	9.2. An example of GACT in action

	10. Related work
	11. Concluding remarks
	Acknowledgement

	References

