
Dodona: Automated Oracle Data Set Selection

Pablo Loyola‡, Matt Staats∗, In-Young Ko†, and Gregg Rothermel⋆
‡Dept. of Industrial

Engineering
University of Chile

Santiago, Chile
ployola@ing.uchile.cl

∗SnT Centre
University of Luxembourg

Luxembourg
matthew.staats@uni.lu

†Div. of Web Science
& Technology

KAIST
Daejeon, South Korea

iko@kaist.ac.kr

⋆Dept. of Comp. Science
Univ. of Nebraska-Lincoln

Lincoln, NE
grother@cse.unl.edu

ABSTRACT
Software complexity has increased the need for automated
software testing. Most research on automating testing, how-
ever, has focused on creating test input data. While careful
selection of input data is necessary to reach faulty states
in a system under test, test oracles are needed to actually
detect failures. In this work, we describe Dodona, a sys-
tem that supports the generation of test oracles. Dodona
ranks program variables based on the interactions and de-
pendencies observed between them during program execu-
tion. Using this ranking, Dodona proposes a set of variables
to be monitored, that can be used by engineers to construct
assertion-based oracles. Our empirical study of Dodona re-
veals that it is more effective and efficient than the current
state-of-the-art approach for generating oracle data sets, and
can often yield oracles that are almost as effective as oracles
hand-crafted by engineers without support.

1. INTRODUCTION
A test case is composed of two essential elements: test

input data and test oracles. Test input data consists of
values passed or provided to the system under test, while
test oracles are the artifacts used to judge the correctness
of the system’s execution. Both test input data and oracles
impact the effectiveness of test cases – test input data de-
termines what behavior the system will exhibit, while test
oracles determine what failures (and hence, ultimately, what
faults) can be detected [21]. Most work on automating test-
ing, however, focuses on issues related to test inputs, while
largely ignoring the impact of test oracles.
A small, but growing body of work has recognized the

value of creating test oracles that are tailored to specific test
inputs [9, 14, 18, 21]. While several approaches for automat-
ically generating such oracles have been proposed, most of
these approaches attempt to completely automate the pro-
cess. This results in a “generate and fix” approach, whereby
the generation process produces effective test oracles, but
only if developers can correct the output from the tools, a
challenging task [8, 19]. In contrast, in this work, we seek

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’14 Bay Area, California, USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

not to completely automate oracle generation, but instead to
support test engineers in the construction of expected value
test oracles. Expected value test oracles are oracles that
specify, for a single test input, the concrete expected value
for one or more program values.

Our interest in expected value test oracles stems from
their role in automatic test case generation. When gener-
ating test cases, automated test case generation techniques
can typically fully generate only test inputs, because with-
out a formal program specification, techniques cannot spec-
ify what it is for an execution to be “correct”. In practice,
it is then up to test engineers to define the expected be-
havior of the system under test. In this context, manual
oracle generation can be difficult, because, having not con-
structed the test inputs, test engineers may find it difficult
to understand expected program behavior for those inputs,
or to know where to look for failures [5]. We believe that
by providing testers with recommendations as to what ora-
cles should consist of (i.e., what aspects of system state are
worth monitoring), we can make oracle construction easier,
and maximize the potential return on engineers’ efforts.

In prior work, we presented an approach for supporting
oracle construction based on specifying an oracle data set
– a set of variables for which expected values can be de-
fined. While effective in the domain in which it was em-
ployed (avionics systems), this approach’s generalizability is
limited for two reasons: lack of scalability due to its reliance
on mutation analysis, and a simple model of program observ-
ability that assumes that an oracle can consider a program’s
entire state. These problems limit the approach’s applica-
bility, making it difficult to apply it to other areas such as
object-oriented unit testing, where much of the work on au-
tomatic test case generation currently exists [20].

In this work, we present Dodona, a system that imple-
ments a new approach for specifying oracle data sets when
unit testing Java applications. Dodona is applied for each
test case. Initially, a test input is executed, and Dodona
monitors the relationships that occur between variables dur-
ing execution (i.e., via dataflow analysis). Following this,
Dodona ranks the relevance of each program variable using
techniques from network centrality analysis. Dodona then
maps variables to observable points, i.e., methods and pub-
lic variables. Finally, Dodona recommends an oracle data
set for the given test input. A test engineer can then define
an expected value oracle for the given test input, confident
that their effort is directed towards aspects of the system
behavior that are relevant under that input.

Dodona overcomes the obstacles preventing prior work on

1

oracle data selection from being applied to Java unit testing.
This, in turn, addresses a long standing issue with automatic
test case generation for such programs; namely, while test
case generation tools have become increasingly competent
at generating test inputs, they provide little guidance to
test engineers concerning how to use such tests, i.e., how to
define the necessary test oracles. Dodona fulfills this need,
and does so efficiently and independent of the method used
for test case generation.
We evaluated Dodona against the current state of the

art oracle data set selection approach (based on mutation
analysis) using nine open source Java programs drawn from
prior work on automatic test generation [9]. Our results
indicate that Dodona is both more efficient and more ef-
fective than mutation-based previous approach. In the case
studied, Dodona required 17.3%-89.8% less time than the
mutation-based approach to generate oracle data sets. Fur-
thermore, for four of the nine Java programs studied, the
oracle data sets generated via Dodona were clearly more
effective at detecting faults producing improvement in fault
finding up to 115%, whereas for only two programs was the
older mutation-based approach more effective (effectiveness
on other programs was comparable). These results represent
a clear improvement over the state-of-the-art approach, and
bring practical oracle data selection to a much wider set of
software domains.

2. ORACLE DATA SET SELECTION
Dodona operates in a context in which test input data

has already been generated. Extensive research has been
performed on automatic test input generation, and various
promising approaches exist [3]. In some cases, these ap-
proaches include methods for creating test oracles, but such
approaches always — albeit often implicitly — require man-
ual intervention by test engineers to inspect and correct the
results [9, 7]. Evidence supporting the effectiveness of these
approaches is mixed, with user studies noting a tendency for
test engineers to accept incorrect oracles [19, 8].
In this work, our goal is to avoid the “generate-and-fix”

paradigm. Thus, with Dodona, we do not attempt to fully
automate the construction of test oracles. Instead, Dodona
is meant to assist test engineers who use existing test case
generation techniques by supporting their construction of
test oracles. For each test input, Dodona specifies an oracle
data set : a set of elements to be used to construct a test
oracle for that input. Dodona’s goal is to select oracle data
sets that are likely to reveal faults relative to given test
inputs. Using oracle data sets, the test engineer’s efforts
can be directed to where they are most likely to have impact,
saving them the effort required to understand which aspects
of program state are most relevant.
In prior work, we developed an approach for oracle data

set selection based on mutation analysis; here, we refer to
this approach as mutation-analysis oracle data selection, or
MAODS. As noted in Section 1, this approach suffered from
limited generalizability, rendering it difficult to apply in the
context of object-oriented unit testing, where much of the
work on automated test case generation has occurred.
In this work, we propose a new approach suited for use

with object-oriented unit testing – specifically, unit testing
for Java programs. We address two issues that prevent de-
ployment of MAODS on general Java programs: observ-
ability and scalability. First, MAODS does not consider

observability issues relative to the system under test, i.e.,
it does not distinguish between public/private variables and
methods. This is inappropriate when testing Java programs,
for which test oracles are typically based on observer meth-
ods (e.g., get methods) and public variables. Second, mu-
tation analysis has scalability issues in the context of oracle
data selection. For the class of systems studied in our prior
work — critical avionics systems — these issues were man-
ageable. However, Java systems can be quite large, and in
our experience, the number of mutants created for a system
must scale with the size of the system in order for MAODS
to consistently create effective oracle data. In situations in
which mutation analysis is also used to construct test inputs
this may be acceptable [9], but in other cases (e.g. symbolic
execution, random generation) we do not wish to follow an
expensive test input generation process with an expensive
oracle data selection process.

2.1 Overview of Dodona
Dodona relies on three assumptions: (1) erroneous val-

ues in program variables propagate to further uses (both
direct and transitive) during program execution, (2) vari-
ables whose values are influenced by many other variables
are more likely to contain erroneous values than other vari-
ables, and (3) the likelihood that an erroneous value will
propagate to a variable decreases as the number of interme-
diate computations (computations lying between the occur-
rence of the erroneous value and a later use of that value
increases. An effective oracle data set, then, should consist
of a small set of variables that are computationally highly
related to other program variables.

Figure 1 provides a visualization of the approach used
by Dodona. To identify variables that meet these criteria,
Dodona utilizes dynamic data flow analysis and network
centrality techniques. Dodona first uses data flow analysis to
construct a network of program variables for each test input
(Algorithm 1, top of Figure 1). Next, Dodona uses network
centrality metrics to rank variables in terms of relevance or
centrality to the resulting network (Algorithm 2, lower right
Figure 1). Dodona uses this ranking to create an oracle data
set for each test input. In both of Dodona’s algorithms, steps
are taken to ensure that the oracle data set is constructed
in terms of observable points, i.e., public member variables
and public method calls (bottom left Figure 1). In the next
two subsections we describe the two algorithms, in turn.

2.2 Building a Variable Relationship Network
Given a test case t and program P , Dodona uses Algo-

rithm 1 to map the flow of information from the input data
in t to all potentially observable points in P . This is done
by executing t (in our case a JUnit test case) and tracking
the flow of data from t’s inputs (i.e., parameters of method
calls in the JUnit test), through intermediate variable as-
signments and method calls to member variables in objects.
When tracking data flow, care is taken to consider the con-
text of the variable, including variable scope and the method
call used to reach the variable. This information is used later
to determine how to observe the variable.

For example, consider the statement int c = a + b. Here,
c is initialized using operands a and b, resulting in a unidi-
rectional relationship from a and b to c, that we denote as
c← a and c← b (line 6 of Algorithm 1). In addition, when c
is added to the adjacency matrix, its dynamic scope as part

2

Figure 1: Visualization of the steps taken by Dodona. Note the final step in which assertions are inserted is to be done
manually using the oracle data set produced by Dodona.

Algorithm 1 Test Input Dataflow Recording

Require: Test case t
Require: Program P
1: adjMat = ∅
2: map obs = {}
3: while t runs over P do
4: for all yi in x := y1 op y2 ... yn do
5: s = getCurrentScope()
6: adjMat = adjMat ∪ (s.x, s.yi)
7: if s.x ̸∈ obs then
8: obs[s.x] = getCurrentMethodCall()
9: end if
10: end for
11: end while
12: return adjMat, obs

of a method call (and an object) is also captured, along with
the method call’s parameters (i.e. the values of a and b), as
shown on lines 5, 6, and 8 of Algorithm 1. As each instruc-
tion is executed sequentially, the network is built with each
relationship represented as a new edge. At the end of the
test case’s execution, the algorithm produces, in adjMat, an
asymmetric adjacency matrix, and a map for each variable
to the method call that references that variable.
We have implemented this analysis in Dodona by using

Java Pathfinder (JPF) (version six) [24]. JPF is an open-
source framework for executing and verifying Java bytecode.
The framework consists of an extensible custom Java Virtual
Machine (JVM) and listener support for monitoring and in-
fluencing JPF’s search. Dodona’s dynamic data flow anal-
ysis is implemented via JPF listeners that monitor Java’s
execution. Specifically, when running a Java test, Dodona
monitors all executions of bytecodes which result in a value
being assigned, method calls, and method returns. When an
assignment (of any kind) is performed, Dodona extends and
updates the Java adjacency matrix accordingly, tracking the
relationships between operands and the assigned variable,
and recording the scope, the current method call, and what
source code variable (if any) the assignment corresponds to.
Thus “variable” in this context refers to operands used by
bytecode assignment(s), and thus arrays (for example) con-
sist of multiple variables; one for each element in the array.
When a method call occurs, Dodona tracks the flow of

information from variables used as method parameters in
the current method to the called method. Note that by
constructing the adjacency matrix at the bytecode level,
Dodona avoids potentially troublesome issues related to, for
example, method calls as operands, e.g., x = a + someMethod(b)—
during compilation, these operations are reduced to assign-
ments to temporary variables.

2.3 Ranking Variables in Terms of Relevance
Dodona’s goal in selecting variables is to “cover” all vari-

ables, i.e., to ensure that all computed values propagate to
the test oracle, and do so in a minimal number of intermedi-
ate computations. However, a tradeoff exists when selecting
variables for a test oracle: we must often choose between
a variable that covers previously uncovered variables, and
one that reduces the number of intermediate computations
performed on variables already covered.

In prior work on test case prioritization, we developed a
metric for measuring how well a set of program variables is
covered by a test suite based on a variable adjacency ma-
trix [20]. We have subsequently discovered, however, that
our metric is essentially an example of a network centrality
metric. Network centrality metrics measure the relative im-
portance of nodes within a graph, and are frequently applied
in the analysis of social networks to measure the influence
of individuals [10]. Increasingly, these metrics are used in
software engineering contexts to measure the importance of
connected components in software, e.g., to measure the im-
portance of program dependencies [28, 6]. Given that our
chief technical challenge in selecting oracle data is identify-
ing the most relevant variables in the flow of program exe-
cution, these metrics are a natural fit, and have the benefit
of years of careful study behind them.

In this work, therefore, we have used network centrality
metrics to allow Dodona to measure the importance — and
hopefully, the fault finding ability — of the variables in the
variable adjacency matrix. We outline this process in Al-
gorithm 2. After applying a network centrality metric to
the adjacency matrix (line 1), Dodona filters and maps the
list of variables with centrality scores, retaining only those
variables that are either public variables, or that have pub-
lic scope, i.e., that are referenced by a public method call.

3

Variables referenced by a public method call are mapped to
the appropriate method call (often a“get”method). Finally,
Dodona sorts the mapped list by descending centrality score.
This is visualized on the bottom of Figure 1, which shows
us moving from a network of variables to, in the end, calls
inserted into a Java test suite.

Algorithm 2 Ranked Observable Points Computation

Require: Adjacency matrix adjMat
Require: Observable mapping obs
Require: Network centrality metric ncm
1: varV alues = ncm(adjMat)
2: mappedList = []
3: for all (var, value) ∈ varV alues do
4: if isPublicVariable(var) then
5: mappedList+ = (var, value)
6: end if
7: if isPublicScope(var) then
8: mappedList+ = (obs[var], value)
9: end if
10: end for
11: ranking =sortByValue(mappedList)
12: return ranking

2.3.1 Network Centrality Metrics
A network centrality metric consists of a function f that

computes, for all nodes n in a graph G, a centrality in-
dex f(n). Many centrality metrics have been proposed, and
when implementing Dodona, it was not clear how effective
various centrality metrics might be. We therefore allowed
the metric to vary to empirically compare the effectiveness
of several metrics in the context of oracle data selection.
We explore four network centrality metrics in this work:

Degree centrality. Given graph G, the degree centrality
of a node n ∈ G is defined as deg(n), i.e., the number
of other nodes connected to n. In our context, this
represents the number of operands used to compute a
variable.

Closeness centrality. The closeness of a node n ∈ G is
defined as the inverse of the sum of its distance to all
other nodes in G. Thus, as the distance from node n to
other nodes decreases, its closeness increases. Close-
ness is often interpreted as a metric indicating how
much time is required for information to propagate.
The closeness of a variable v represents, roughly, how
far an error must propagate from some variable to
reach v.

Betweenness centrality. The betweenness of a node n ∈
G is the frequency with which n must be traversed
when traveling the shortest path between any two nodes
n1, n2 ∈ G. A high score for a variable v indicates that
v often stores an intermediate computation.

Eigenvector centrality. Eigenvector centrality assigns a
node n ∈ G a high score if it is adjacent to nodes that
have high scores. A high score for a variable v indicates
that v is computed using other influential variables.

The foregoing metrics are discussed in further detail in [10].
Note that in our context, we are concerned with data flow-
ing to a variable, and thus our computations are based on
the in-degree of a node/variable, i.e. the number of edges di-
rected at the node. We implemented the computation of all
four centrality metrics in Dodona using the JUNG frame-
work, an open-source Java library for graph-based compu-
tations [2].

2.3.2 Mapping Variables to Observable Points
After applying the centrality metric, Dodona must map

each variable to an observable point, and filter out any vari-
ables that cannot be mapped. This is accomplished using
information recorded during dataflow analysis. Public vari-
ables do not need to be mapped; they can be referenced
directly as object.variable. For each non-public variable,
Dodona first checks whether the method call in which the
variable was observed is public. If so, this method call, with
the parameters used when the variable was observed, is used.
If the variable was at no point observed in a public method
call, it is considered unobservable, and Dodona removes it
from the ranking.

In theory, our approach can result in inaccurate mappings
due to changes in program state. Specifically, after record-
ing the method call used to observe a variable, it is possible
that calling that method a second time may, in fact, not ac-
cess that variable a second time. In practice, however, many
variables are mapped to accessor methods or are otherwise
accurately mapped. We considered alternative methods of
mapping variables, including static analysis and Java reflec-
tion, but concluded that these methods were too expensive
to justify using, given the the small number of mistakes that
must be corrected.

2.4 Construction of Test Oracles
Using the foregoing analysis, Dodona produces a list of

observable points for each test input, ordered by their impor-
tance according to a network centrality metric. To construct
an oracle data set, a test engineer selects the top n observ-
able points from the ranked list, with n determined by the
engineer according to the level of effort he or she believes
is warranted. The engineer then constructs a complete test
oracle, by defining expected values for each element in the
oracle data set and placing them after the test input. In JU-
nit testing, the engineer will construct an assertEquals call
for each variable, asserting that the variable has the value
he or she expects for the given test input.

In prior work, we provided a method for estimating an
effective size n. In this work, we do not use such a method.
The prior analysis was based on estimating the point of di-
minishing returns on testing effort using mutation analysis.
While a similar analysis could be performed here, we be-
lieve that estimating diminishing returns using a centrality
metric — an abstraction of variable importance — is not
conceptually sound. Furthermore, in practice, testers typi-
cally construct only 1-4 assertions, with the size of the oracle
determined via tester judgement [8]. We therefore believe
that any suggestion about oracle data size might not only
be conceptually unsound, but also likely to be ignored.

3. EVALUATION
We had two goals when evaluating Dodona. We wished

to first determine what network centrality metric is typi-
cally the most effective with respect to fault finding with
Dodona or, failing that, develop a set of guidelines. Sec-
ond, we wished to assess the effectiveness and the cost of
using Dodona to specify oracle data sets.

In this evaluation, we do not yet consider data on hu-
man effort. Studies of humans are expensive, and before
conducting them, it makes sense to first determine whether
techniques possess qualities necessary to enable their effec-
tiveness. This is typical when evaluating testing approaches;

4

early work refines the approach, after which human stud-
ies begin to rigorously assess the human factor (e.g. fault-
localization [16], invariant generation [19]).
We designed an empirical study to explore the following

research questions:

RQ1. How do different centrality metrics used impact the
effectiveness of Dodona?

RQ2. Is Dodona more effective than the existing state-of-
the-art approach for specifying oracle data sets?

RQ3. Is Dodona more effective than oracle data specified
by developers?

RQ4. What is the cost associated with using Dodona to
specify oracle data sets?

3.1 Objects of Study
As stated in Section 2, one of our original goals in devel-

oping Dodona was to bring oracle data set specification to
Java testing. We therefore wished to apply our technique
to programs that: (1) have limited observability, and thus
present the a challenge for oracle data set specification; (2)
have associated, manually constructed Java unit tests (for
comparison); and (3) are amenable to the use of test case
generation techniques.
We thus chose as objects of study the set of libraries used

by Fraser et al. [9]. These objects exhibit the types of observ-
ability issues that motivated the development of Dodona,
ranging from APIs to data structures to support libraries.
Additionally, each object program has an associated test
suite constructed by their developers, together with a set
of oracles constructed by their developers. Finally, having
been utilized in a prior test case generation study, these
objects are known to be well suited to automatic test case
generation for object oriented programs.

Table 1: Object Program Characteristics

Object Pckgs Classes Lines Test Branch
Program Cases Coverage

CLI 1 21 882 187 92%
CDC 6 85 3131 616 93%
COL 16 447 11311 13677 77%
LOG 2 28 1500 26 -
MTH 62 1063 41228 4993 84%
PRI 4 294 5586 4452 96%
JGT 17 264 5775 188 72%
JOT 7 232 13547 4000 81%
GUA 15 1175 >800K >200K 77%

Ultimately, we chose nine object programs, as follows.1

Commons CLI (CLI) provides an API for parsing com-
mand line options. Commons Codec (CDC) implements
common encoders and decoders such as Base64. Commons
Collections (COL) is a collection of data structures. Com-
mons Logging (LOG) establishes communication between
logging systems. Commons Math (MTH) provides math
and statistics tools for numerical analysis. Commons Primi-
tives (PRI) provides utilities for manipulating primitive data
types. JGraphT (JGT) provides graph-theory objects and
algorithms for graph analysis. Joda Time (JOT) provides

1We omitted the NanoXML system used by Fraser et al., due
to problems encountered applying our prototype to it. These
problems are strictly implementation related, and could be
surmounted through an improved prototype.

new functionalities for Java time classes. Guava (GUA) (for-
merly Google Collections) is a set of collection types.

Table 1 provides basic data on these object programs, in-
cluding the numbers of packages, classes, and lines in the
code bases for the objects, the numbers of test cases that
we utilize, and the branch coverage of the object programs’
code achieved by those test cases. Statistics were gathered
using the Cobertura tool 2 [1].

3.2 Variables and Measures
3.2.1 Independent Variables
We investigate the impact of three independent variables.
Our first independent variable involves oracle selection

techniques. We explore the relative merits of three tech-
niques: Dodona, outlined in Section 2; MAODS, the previ-
ous state-of-the-art approach based on mutation testing [18];
and manual oracle specification. MAODS serves as our
baseline, because to the best of our knowledge, there are no
other automated approaches for specifying oracle data sets.
For the purpose of this study, we reimplemented MAODS
for use with Java programs, using the MAJOR mutation
system for Java programs [12]. To use MAODS in Java,
this approach now employs the observability mapping used
by Dodona, but otherwise is the same as before [18]. In
contrast, manually constructed oracles, being built by devel-
opers with a deep understanding of the source code, serves
as a representation of the current state of practice.

Our second independent variable is the centrality metric
used for Dodona. We explore how this metric impacts the
effectiveness of Dodona, using the four centrality metrics
outlined in Section 2.3.1.

Our third independent variable is the oracle data set size;
we vary data set size to understand how the relative ef-
fectiveness of the techniques and the centrality metric vary
depending on the size of the test oracle.

3.2.2 Dependent Variable
To investigate our research questions, we measure the

fault detection effectiveness and the cost of oracle data se-
lection approaches. Let T be a set of test inputs, and let O
be an oracle data set for T , created by oracle data selection
technique M . To measure the fault detection effectiveness
of technique M on object program P , for T and O, we com-
pute the percentage of faults in P that can be detected by
T augmented with O. (The faults utilized in our study are
mutation faults, and are described further in the following
section).

To measure the cost of M on object program P , for T and
S, we compute the runtime (as wall clock time) for the en-
tire oracle data selection process. For Dodona this includes
running T over P to generate the adjacency matrix, compu-
tation of network centrality, mapping data sets to observable
points and computation of the ranking. For MAODS this
includes running T against all the mutants and computing
the ranking.

3.3 Controlled Factors
3.3.1 Test Inputs

2Accurate branch coverage statistics for LOG could not be
produced due to an incompatibility with this system and
Cobertura

5

In prior work, we used random test inputs to evaluate the
effectiveness of oracle data set specification approaches [18].
This was necessitated by the closed source nature of the
projects studied, which prevented us from using the test
suites actually developed for the systems. In this work,
we wished to compare Dodona not only against MAODS
(RQ2), but also against test oracles developed by actual
testers (RQ3). Such test oracles, using oracle data sets care-
fully selected by the test developers, represent a challenging
target for our approach and a good baseline for comparison.
To do this, we needed test suites containing manually con-

structed test oracles. Constructing such a test suite our-
selves for each object would be prohibitively costly for an
initial study, but fortunately each of our object programs is
part of a mature, open source project, and thus has an as-
sociated set of test cases constructed by the developer. We
thus used each test suite — with the developer’s assertions
removed — as the set of test inputs when evaluating both
MAODS and Dodona.
Our goal is to support testers via automated oracle data

set specification; we expect that the actual choices of ex-
pected data values will be manual. In this work, however,
we are interested in first developing our approach, with work
evaluating the human factor to come later. To allow for
evaluation without a user study, we specify expected val-
ues for each proposed oracle data set by executing the test
suite over the original, unmutated Java program, filling in
expected values using the results.

3.3.2 Faults
To measure the fault detection effectiveness of oracle data

selection approaches, we embedded mutation faults into our
object programs. This process proceeded in two steps. First,
we used MAJOR, the mutant generation tool on which
MAODS is based, to generate single fault mutants for each
object program [12]. The faults seeded by MAJOR model
fault classes found in object-oriented programs, and are sim-
ilar to those used in our previous work [18].
MAJOR generates as many as possible for the operators

specified, and for our objects at least 400 mutants were gen-
erated for each system, with a larger number being generated
for larger programs. These mutants were then divided into
an evaluation set (roughly half) which was used for comput-
ing all fault finding numbers, and a training set used with
MAODS. The evaluation set was then subdivided into sub-
sets of roughly equal size, resulting in 10 or more evaluation
mutant sets for each case example, each of at least size 40.
Note that using the same tool for both MAODS and our

evaluation represents a risk. MAODS may appear more
effective during evaluation than it would be in practice, be-
cause the mutants used to select the oracle data are similar
to those used in the evaluation.

3.4 Experiment Process
We performed the following process for each object.

1. Remove the test oracles from the original developers
test suite.

2. Generate the mutant sets for evaluation.

3. Generate the Dodona-enhanced test suite using the
oracle-free test suite, recording the time required.

4. Generate the MAODS-enhanced test suite using the
oracle-free test suite, recording the time required.

5. Run both enhanced test suites over the original pro-
gram, and use the results to fill in the expected values
for their respective oracle data sets.

6. Execute each test suite against each mutant set, com-
puting the number of mutants killed.

The foregoing process results in at least 50 fault-detection
effectiveness measurements per technique.

3.5 Threats to Validity
External: Our study is limited to nine mid-sized Java

libraries. Nevertheless, these objects are common targets in
automatic test case generation work, and given that our goal
is to help testers use automatic test case generation tools,
are representative for our purposes.

We have used manually constructed test suites in our
study to allow us to compare our results to manually con-
structed test oracles. Other methods of generating test
suites are possible, notably, approaches using automatically
generated test suites. However, the test suites used in this
study are comparable in terms of coverage and fault finding
to automatically generated tests.

We have generated at least 40 mutants for each mutant
set evaluated. This value was chosen to yield a reasonable
study run-time, and it is possible that larger sets may yield
different results. However, in our experience, larger sets of
mutants typically result in similar levels of fault finding.

Internal: It is possible that our implementations ofMAODS
and Dodona, or the automation used in our experiment,
contain faults. The tools underlying our competing ap-
proaches (JPF and MAJOR), however, are well tested, and
we have extensive experience using both [12, 24].

Construct: We have measured fault detection effective-
ness based on seeded faults introduced via mutation analy-
sis. Nevertheless, empirical studies have suggested that for
the purpose of testing experimentation, results with muta-
tion faults are comparable to actual faults [4].

When measuring fault detection, we have assumed a “per-
fect” tester; that is, we have assumed that the tester always
specifies the correct value for a proposed set of oracle data.
In practice this is unlikely to be true [8]. However, this is a
problem affecting all approaches to testing, even the “fully
automatic” approaches. In this work we wish only to evalu-
ate whether our approach can quickly find an effective oracle
data set. Once we have established whether our approach is
technically sound, user studies will be required to determine
the effectiveness of the approach in-vitro.

4. RESULTS AND DISCUSSION
In this section, we discuss the conclusions and implications

of our results in the context of our four research questions.
We begin by visualizing our results (we use the abbreviated
program names given in Section 3.1).

In Figure 2 we plot the median fault detection effectiveness
for each network centrality metric used (RQ1). Note that we
highlight the apparent “best” centrality metric, eigenvalue,
with a dotted blue line (this is discussed in Section 4.2).
This designation of best is assumed in subsequent figures;
for these figures, Dodona refers to the approach given in
Section 2 used with eigenvalue centrality.

In Figure 3 we plot the median fault detection effectiveness
of test suites using oracle data set generated by Dodona,
MAODS, and the manually constructed test oracles associ-

6

ated with the original system. We visually represent the sta-
tistical analysis (presented below) comparing Dodona and
MAODS on the line for Dodona as follows: green rect-
angles indicate that Dodona outperforms MAODS with
statistical significance (α = 0.05), yellow triangles indicate
that there is no statistically significant difference between
the techniques, and red xs indicate that Dodona is outper-
formed by MAODS with statistical significance.
In Figure 3, we also plot the fault detection effectiveness of

the original, manual test oracles as a horizontal red dashed
line. For this line, the x-axis does not represent oracle size –
in general, computing the size of manually constructed ora-
cle data sets is not feasible. While we control for the size of
automatically generated oracle data sets, we naturally can-
not for the size of developer constructed test oracles and for
a given test suite, the size of the manually constructed ex-
pected value test oracles varies. Thus, rather than present a
potentially misleading oracle size, we plot the fault detection
for test oracles as a horizontal line.
Finally, in Figure 4 we plot the average wallclock runtime

required to compute the oracle data sets using Dodona and
MAODS.

4.1 Statistical Analysis
As shown in Figures 3 and 4, Dodona appears to be both

more effective and more efficient that MAODS in most sce-
narios. However, in the case of fault detection effectiveness,
there is a fair amount of overlap between the approaches.
We therefore wished to determine (with statistical signifi-
cance) at which oracle sizes and for which objects Dodona
outperforms MAODS in terms of fault detection. We begin
by restating our research questions as statistical hypothe-
ses34:

H1. For a given system S and oracle size m, Dodona out-
performs MAODS.

H2. For a given system S, Dodona requires less time to
generate an oracle data set than MAODS.

We have a large number of observations (30+), and thus the
t-test is appropriate (even in the absence of normality). We
apply this test at for each case example and oracle size for
H1, and for each case example for H2. This produces a large
number of p-values in the case of H1. Rather than report
p-values, we visually indicate the statistical significance of
each comparison at the level of α = 0.05 in Figure 3 as
described above.
In considering H2, we can reject each null hypothesis in

each case and thus accept H2. We therefore conclude that
for each object, Dodona is more efficient than MAODS
with statistical significance at α = 0.05.
Note that no statistical hypothesis testing is presented for

RQ1 or RQ3. In the former case, this is due to the very large
number of observations – one per combination of oracle size
and metric, resulting in an unwieldy amount of data. In the
latter case, there exists only a single manually constructed

3Null hypotheses are omitted for space reasons.
4 Note that we do not generalize across objects as the ap-
propriate statistical assumption—random selection from the
population of Java programs—is not met. Furthermore we
do no generalize across oracle sizes as our approach’s effec-
tiveness may vary depending on size. The tests are used to
determine if observed differences are likely due to chance.

test oracle for each object, and thus we have insufficient data
on which to perform statistical hypothesis testing.

4.2 RQ1: Impact of Centrality Metric
Our first task is to select a single centrality metric for

use with Dodona or, failing that, to develop a set of guide-
lines for when each metric should be used. From Figure 2,
we can see that the clear winner here is the eigenvalue cen-
trality metric. While other centrality metrics outperform
eigenvalue centrality for some oracle sizes (typically oracles
of size one or two) on most systems, the differences in fault
detection effectiveness are usually slight – under 5%.

In contrast, on all but one of the nine systems (LOG),
eigenvalue becomes the most effective metric for oracles of
size four or greater, often by a wide margin. For example, on
CDC, eigenvalue centrality outperforms the next best metric
(degree centrality) by 32%, for an increase in fault detection
effectiveness of 74%. Even on LOG, eigenvalue centrality
overtakes the next best metric (betweenness centrality) for
oracles of size seven and eight.

Initially, we had expected that the betweenness metric
would be the best fit for oracle data selection. Intuitively, be-
tweenness in our context captures the likelihood that a vari-
able is frequently in the path of data propagating through
the system. We expected that such variables would be good
candidates for a test oracle, being somewhat in the middle
of computations, a point which balances the likelihood of er-
rors being masked with the need for enough computation to
have occurred to make detecting a fault likely. In contrast,
we believed eigenvalue centrality—while also a reasonable
choice—would often select many highly related variables,
defeating the purpose of selecting an oracle data set.

We hypothesize that, in practice, the variables selected
by betweenness are difficult to actually observe. These vari-
ables, being in the middle of computations, may be too
far from a public method return to be observed with ac-
curacy, and are thus either filtered out of the ranking or
observed very indirectly (e.g., not using accessor methods).
In contrast, variables selected by eigenvalue centrality, be-
ing connected to other highly connected variables, typically
are found near the end of long computations. Consequently,
these variables are usually easy to observe, and the mapping
process is more accurate. Furthermore, in practice, several
fairly unrelated variables are selected by this process, as ev-
idenced by rapid increases in fault finding for small oracles.

In summary, on the object programs that we consider,
the eigenvalue centrality metric is clearly the best choice for
use with Dodona. Consequently, in the remainder of this
discussion we focus on the use of this metric.

4.3 RQ2: Effectiveness Relative to MAODS
As noted in Section 1, our goal in developing Dodona was

to improve on the efficiency of automated approaches select-
ing oracle data sets. Nevertheless, we still wish to produce
effective oracle data sets, and therefore we seek to determine
how Dodona compares, in terms of fault-detection effective-
ness, with MAODS.

As Figure 3 shows, Dodona typically produces oracle
data sets that are at least as effective as those produced
by MAODS, albeit with some variation between case exam-
ples. On four of the nine object programs — CLI, CDC,
JGT, and JOT — Dodona is clearly more effective. In
these cases, Dodona outperforms MAODS with statistical

7

(a) CLI (b) CDC (c) COL

(d) LOG (e) MTH (f) PRI

(g) JGT (h) JOT (i) GUA

Figure 2: Median effectiveness of each network centrality metric when used with Dodona.

significance for nearly all oracle sizes, with improvements of
up to 115% (for CDCwhen using an oracle size of six), and
for no oracle sizes does MAODS outperform Dodona.
Additionally, on three of the nine object programs — PRI,

MTH, GUA — Dodona and MAODS produce comparable
levels of fault detection effectiveness across oracle sizes. For
PRI we see that Dodona outperforms MAODS by up to
16% (for oracle sizes larger than 4). For MTH, oracle data
sets produced by Dodona typically achieve higher detection
effectiveness with statistical significance, but an exception
exists for oracles of size 12. For GUA, Dodona is more
effective than MAODS for lower oracle sizes.
Only for two object programs, LOG and COL, doesMAODS

consistently outperform Dodona. This is particularly pro-
nounced for LOG, where Dodona finds less than 50% of the
faults for oracle sizes of six or less, while MAODS achieves
no less than 58% fault detection effectiveness for any oracle
size. Only at oracles of size eight are the fault detection
effectiveness results for both approaches comparable.
Overall, Dodona appears to be a better choice thanMAODS

when selecting oracle data, despite some variation across ob-
ject programs. While in some cases Dodona can result in
the selection of a less effective oracle data set, these cases are
in the minority. In fact, in many cases Dodona produces
more effective oracle data sets than MAODS— sometimes
much more, as in the case of CDC and CLI. This is de-
spite the fact that, per Section 3.3.2, the implementation
and evaluation of MAODS both use MAJOR and thus our
evaluation somewhat favors MAODS.

4.4 RQ3: Effectiveness Relative to Manually
Constructed Oracles

Software developers, being familiar with their systems, are
well suited to construct test inputs and oracles, and in prac-
tice they must routinely do so. Thus while our goal is cre-
ate an effective automated approach for reducing effort—not
surpassing human intelligence—developers’ test oracles (and
by implication, the selected oracle data sets) are an inter-
esting datapoint to consider when assessing effectiveness.

We expected that in practice both Dodona and MAODS

8

(a) CLI (b) CDC (c) COL

(d) LOG (e) MTH (f) PRI

(g) JGT (h) JOT (i) GUA

Figure 3: Median effectiveness of each oracle data selection approach.

would be less effective than manually constructed test ora-
cles. However, as shown in Figure 3, we found that Dodona
and manually constructed oracles were often comparable.
For four systems— CLI, CDC, JGT, and PRI —Dodona

provides fault detection effectiveness within 5% of that of
manually constructed test oracles for oracles of moderate
size (size four or larger). For several other systems, Dodona
provides reasonable effectiveness – within 20% of that of
manually constructed test oracles. Only for LOG doesDodona
provide fault detection effectiveness considerably worse that
that of manually constructed test oracles (42%+ less for or-
acles of size five or less), and as noted above, this system
represents the outlier in terms of effectiveness for Dodona.
We find these results to be very encouraging. We expect

oracle data manually selected by developers to be very ef-
fective; our goal is find reasonably effective oracle data with
a level of automation that is capable of reducing program-
mer effort. The fact that Dodona can select oracle data not
only better than or comparable to that selected byMAODS,
but also often comparable to the data selected by developers

themselves demonstrates the promise of the approach.

4.5 RQ4: Efficiency Comparisons
While the results for RQ2 demonstrate that Dodona is

relatively effective in terms of fault detection effectiveness,
the original motivation behind this work was to correct per-
ceived technical shortcomings in MAODS; notably, the re-
liance on potentially expensive mutation testing to select
oracle data. Thus, one of our primary concerns is the rela-
tive efficiency of Dodona relative to MAODS.

As shown in Figure 4, Dodona required less time to gen-
erate oracle data sets than MAODS, with decreases in the
time required ranging from of 17.3%-89.8%. (Per Section 4.1,
all differences were statistically significant at α = 0.05). We
thus conclude that Dodona does indeed reduce the time
required to produce oracle data sets.

While our results concerning efficiency were positive, we
were surprised at how competitive MAODS was relative to
Dodona. On paper, Dodona should clearly be the faster
approach. Instead of running a test suite multiple times,

9

Figure 4: Execution time for each approach.

once for each generated mutant (for MAODS), Dodona
runs each test suite once, tracks the flow of data during
execution, and applies a network centrality metric. While
there is some overhead for dataflow analysis, after which
we must compute the network centrality (always a runtime
linear to the number of vertices), we expected Dodona to
be at least twice as fast as MAODS for all objects. Instead,
for four of the nine study objects, MAODS required only
15.3%-42.5% more time to compute an oracle data set.
We also expected that for larger Java programs, the im-

provement in speed achieved by Dodona would be more
pronounced. In practice, however, we observed no relation-
ship between the number of statements in object programs,
and the time required to generate oracle data sets for those
programs. From this we infer that the relative scalability of
the approaches is not a simple function of program size.
Concerning the relative speed of the approaches, we note

that the dataflow computations done by Dodona rely on
Java Pathfinder (JPF). JPF was selected because it is easily
extensible, but this comes with a cost: it is a custom-built
research JVM, making it a heavyweight tool for tracking
dataflow relationships. In contrast, MAODS uses the stan-
dard (highly optimized) JVM for execution, and the mu-
tation analysis tool MAJOR is a product of an extensive
body of research on mutation testing. Thus, while our im-
plementation of Dodona could likely easily be made more
efficient by using more lightweight, dataflow-specific tools
based on a standard optimized JVM, improving the speed
of our MAODS implementation would be more challenging.
To better understand the limitations on Dodona’s scal-

ability, we analyzed the runtime for Dodona for each sys-
tem. For most systems, we found that the computation
of the eigenvalue network centrality metric was very fast –
less than one minute. However, for our problem systems
— MTH, JGT, JOT, GUA — we found that runtimes were
higher, ranging from 2.2 to 4.3 minutes. While this is a small
percentage of the overall runtime, the runtime for eigen-
value centrality is linear in the number of nodes (variables).
Thus we can infer that the increase in cost is linked to cap-
turing large dataflow networks: as the number of interme-
diate computations to be tracked grows, the workload for
Dodona alone increases. This suggests that future versions
of Dodona could be made more efficient by preemptively
dropping uninteresting/useless aspects of the dataflow net-

work, or again by simple performance increases in dataflow
tracking by using a more lightweight dataflow engine.

5. RELATED WORK
While significant work on automatic test generation ex-

ists, active work specific to test oracles is a recent phe-
nomenon [22]. For example, several authors have recently
discussed the need to focus on test oracles when evaluating
the quality of the testing process [22, 3], and Harman et
al. have recently conducted a comprehensive survey of test
oracle research [11].

However, there still exist little work specific to construct-
ing, or supporting the construction, of test oracles. Xie
and Memon explore methods of constructing test oracles
specifically for GUI systems, yielding several recommenda-
tions [27, 13]. Several tools exist for automatically generat-
ing invariant-based test oracles for use in regression testing,
including Eclat [15] and DiffGen [23], though such work as-
sumes the program is currently correct.

Work on generating oracles for non-regression testing also
exists. Several authors have proposed methods of inferring
invariants from programs for use in testing [26, 7]. Fraser
et al. [9] propose µTEST , which generates complete JU-
nit test cases for object oriented programs. Both bodies of
work assume the tester will later manually correct generated
test oracles, and are part of the “generate-and-fix”paradigm
for test oracle construction. Work evaluating this paradigm
with users is mixed, but on the whole discouraging [8, 19].

In contrast, we are trying to support creation of a test
oracle, rather than completely automate it. Towards this,
Staats et al. proposed a mutation-based approach for se-
lecting oracle data based on how often a variable reveals a
fault in a mutant [18]. This work’s limitations are scalabil-
ity and the need to estimate the number of required mutants
to select effective oracle data. Pastore et al. [17] have pro-
posed CrowdOracles, an approach to use crowdsourcing for
checking assertions. The main limitation here is the need
for qualified crowd to produce the test oracle.

To the best of our knowledge, this work is the first to
leverage network centrality metrics to produce oracle data
sets. Work by Zimmerman et al. leveraging network cen-
trality metrics in the context of software engineering work
does exist, though the context is very different (defect pre-
diction) [28]. Voas and Miller also note that errors typically
propagate through a system, but provide no method of se-
lecting oracle data based on this observation [25].

6. CONCLUSION
Test oracles, like test inputs, are a key aspect in achieving

effective test results, but research on oracle generation is rel-
atively scarce. In this work we have presented an approach
for automatically specifying oracle data sets, with the goal
of helping harness engineers’ understanding of systems to
create effective oracles. Our system, Dodona, in most case
outperforms the state-of-the-artMAODS system in terms of
effectiveness and efficiency, resulting in improvement in fault
finding of up to 115% and reduction in generation time by up
to 89.8%. Furthermore, Dodona performs surprisingly well
in comparison to oracles created fully manually by system
developers, resulting in very similar fault finding for four of
the nine objects studied.

10

7. REFERENCES
[1] Cobertura framework. Available at

http://cobertura.github.io/cobertura/.

[2] Jung framework. Available at
http://jung.sourceforge.net/.

[3] S. Anand, E. Burke, T. Y. Chen, J. Clark, M. B.
Cohen, W. Grieskamp, M. Harman, M. J. Harrold,
P. McMinn, A. Bertolino, et al. An orchestrated
survey on automated software test case generation.
Journal of Systems and Software, 2013.

[4] J. H. Andrews, L. C. Briand, and Y. Labiche. Is
mutation an appropriate tool for testing experiments?
In Proceedings of the 27th International Conference on
Software Engineering, pages 402–411, 2005.

[5] L. Baresi and M. Young. Test oracles. Technical
Report CISTR-01, 2, 2001.

[6] C. Bird, N. Nagappan, B. Murphy, H. Gall, and
P. Devanbu. Don’t touch my code!: Examining the
effects of ownership on software quality. In Proceedings
of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software
Engineering, ESEC/FSE ’11, pages 4–14, New York,
NY, USA, 2011. ACM.

[7] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,
C. Pacheco, M. S. Tschantz, and C. Xiao. The daikon
system for dynamic detection of likely invariants.
Science of Computer Programming, 69(1):35–45, 2007.

[8] G. Fraser, M. Staats, P. McMinn, A. Arcuri, and
F. Padberg. Does automated white-box test
generation really help software testers? In Proceedings
of the 2013 International Symposium on Software
Testing and Analysis, pages 188–198. ACM, 2013.

[9] G. Fraser and A. Zeller. Mutation-driven generation of
unit tests and oracles. IEEE Transactions on Software
Engineering, 38(2):278–292, 2012.

[10] L. C. Freeman. Centrality in social networks
conceptual clarification. Social networks, 1(3):215–239,
1979.

[11] M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. A
comprehensive survey of trends in oracles for software
testing. Technical report, Technical Report Research
Memoranda CS-13-01, Department of Computer
Science, University of Sheffield, 2013.

[12] R. Just, F. Schweiggert, and G. M. Kapfhammer.
Major: An efficient and extensible tool for mutation
analysis in a java compiler. In Proceedings of the 2011
26th IEEE/ACM International Conference on
Automated Software Engineering, pages 612–615.
IEEE Computer Society, 2011.

[13] A. Memon, I. Banerjee, and A. Nagarajan. What test
oracle should i use for effective gui testing? In
Proceedings of the 18th IEEE International
Conference on Automated Software Engineering,
2003., pages 164–173. IEEE, 2003.

[14] A. M. Memon, M. E. Pollack, and M. L. Soffa.
Automated test oracles for GUIs. SIGSOFT Software
Engineering Notes, 25(6):30–39, Nov. 2000.

[15] C. Pacheco and M. Ernst. Eclat: Automatic
generation and classification of test inputs. ECOOP
2005-Object-Oriented Programming, pages 504–527,
2005.

[16] C. Parnin and A. Orso. Are automated debugging

techniques actually helping programmers? In
Proceedings of the 2011 International Symposium on
Software Testing and Analysis, pages 199–209, 2011.

[17] F. Pastore, L. Mariani, and G. Fraser. Crowdoracles:
Can the crowd solve the oracle problem? In 2013
IEEE Sixth International Conference on Software
Testing, 2013.

[18] M. Staats, G. Gay, and M. P. Heimdahl. Automated
oracle creation support, or: How I learned to stop
worrying about fault propagation and love mutation
testing. In Proceedings of the International Conference
on Software Engineering, pages 870–880, 2012.

[19] M. Staats, S. Hong, M. Kim, and G. Rothermel.
Understanding user understanding: determining
correctness of generated program invariants. In
Proceedings of the 2012 International Symposium on
Software Testing and Analysis, pages 188–198. ACM,
2012.

[20] M. Staats, P. Loyola, and G. Rothermel.
Oracle-centric test case prioritization. In Proceedings
of the International Symposium on Software Reliability
Engineering, pages 311–320, 2012.

[21] M. Staats, M. W. Whalen, and M. P. Heimdahl.
Better testing through oracle selection. In Proceedings
of the International Conference on Software
Engineering (NIER Track), pages 892–895, 2011.

[22] M. Staats, M. W. Whalen, and M. P. Heimdahl.
Programs, tests, and oracles: the foundations of
testing revisited. In 2011 33rd International
Conference on Software Engineering (ICSE), pages
391–400. IEEE, 2011.

[23] K. Taneja and T. Xie. Diffgen: Automated regression
unit-test generation. In 23rd IEEE/ACM International
Conference on Automated Software Engineering, 2008.
ASE 2008., pages 407–410. IEEE, 2008.

[24] W. Visser, K. Havelund, G. Brat, S. Park, and
F. Lerda. Model checking programs. Automated
Software Engineering, 10(2):203–232, 2003.

[25] J. M. Voas. Pie: A dynamic failure-based technique.
IEEE Trans. Software Eng., 18(8):717–727, 1992.

[26] Y. Wei, C. A. Furia, N. Kazmin, and B. Meyer.
Inferring better contracts. In Proceedings of the 31st
International Conference on Software Engineering
(ICSE), pages 191–200, 2011.

[27] Q. Xie and A. M. Memon. Designing and comparing
automated test oracles for gui-based software
applications. ACM Transactions on Software
Engineering and Methodology (TOSEM), 16(1):4,
2007.

[28] T. Zimmermann and N. Nagappan. Predicting defects
using network analysis on dependency graphs. In
Proceedings of the 30th International Conference on
Software Engineering, ICSE ’08, pages 531–540, New
York, NY, USA, 2008. ACM.

11

http://cobertura.github.io/cobertura/
http://jung.sourceforge.net/

	Introduction
	Oracle Data Set Selection
	Overview of Dodona
	Building a Variable Relationship Network
	Ranking Variables in Terms of Relevance
	Network Centrality Metrics
	Mapping Variables to Observable Points

	Construction of Test Oracles

	Evaluation
	Objects of Study
	Variables and Measures
	Independent Variables
	Dependent Variable

	Controlled Factors
	Test Inputs
	Faults

	Experiment Process
	Threats to Validity

	Results and Discussion
	Statistical Analysis
	RQ1: Impact of Centrality Metric
	RQ2: Effectiveness Relative to MAODS
	RQ3: Effectiveness Relative to Manually Constructed Oracles
	RQ4: Efficiency Comparisons

	Related Work
	Conclusion
	References

