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Abstract—We focus on (partial) functions that map input
strings to a monoid such as the set of integers with addition
and the set of output strings with concatenation. The notion
of regularity for such functions has been defined using
two-way finite-state transducers, (one-way) cost register
automata, and MSO-definable graph transformations. In
this paper, we give an algebraic and machine-independent
characterization of this class analogous to the definition of
regular languages by regular expressions. When the monoid
is commutative, we prove that every regular function can be
constructed from constant functions using the combinators
of choice, split sum, and iterated sum, that are analogs
of union, concatenation, and Kleene-*, respectively, but
enforce unique (or unambiguous) parsing. Our main result
is for the general case of non-commutative monoids, which
is of particular interest for capturing regular string-to-
string transformations for document processing. We prove
that the following additional combinators suffice for con-
structing all regular functions: (1) the left-additive versions
of split sum and iterated sum, which allow transformations
such as string reversal; (2) sum of functions, which allows
transformations such as copying of strings; and (3) function
composition, or alternatively, a new concept of chained sum,
which allows output values from adjacent blocks to mix.

I. INTRODUCTION

To study string transformations, given the success of
finite-state automata and the associated theory of regular
languages, a natural starting point is the model of finite-
state transducers. A finite-state transducer emits output
symbols at every step, and given an input string, the
corresponding output string is the concatenation of all
the output symbols emitted by the machine during its
execution. Such transducers have been studied since the
1960s, and it has been known that the transducers have
very different properties compared to the acceptors: two-
way transducers are strictly more expressive than their
one-way counter-parts, and the post-image of a regular
language under a two-way transducer need not be a
regular language [1]. For the class of transformations
computed by two-way transducers, [9] establishes closure
under composition, [16] proves decidability of functional

equivalence, and [13] shows that their expressiveness coin-
cides with MSO-definable string-to-string transformations
of [11]. As a result, [13] justifiably dubbed this class as
regular string transformations. Recently, an alternative
characterization using one-way machines was found for
this class: streaming string transducers [2] (and their
more general and abstract counterpart of cost register
automata [5]) process the input string in a single left-to-
right pass, but use multiple write-only registers to store
partially computed output chunks that are updated and
combined to compute the final answer.

There has been a resurgent interest in such transducers
in the formal methods community with applications
to learning of string transformations from examples
[15], sanitization of web addresses [18], and algorithmic
verification of list-processing programs [3]. In the context
of these applications, we wish to focus on regular
transformations, rather than the subclass of classical one-
way transducers, since the gap includes many natural
transformations such as string reversal and swapping of
substrings, and since one-way transducers are not closed
under basic operations such as choice.

For our formal study, we focus on cost functions,
that is, (partial) functions that map strings over a finite
alphabet to values from a monoid (D,+, 0). While the
set of output strings with concatenation is a typical
example of such a monoid, cost functions can also
associate numerical values (or rewards) with sequences of
events, with possible application to quantitative analysis
of systems [8] (it is worth pointing out that the notion
of regular cost functions proposed by Colcombet is quite
distinct from ours [10]). An example of such a numerical
domain is the set of integers with addition. In the case of
a commutative monoid, regular functions have a simpler
structure, and correspond to unambiguous weighted
automata (note that weighted automata are generally
defined over a semiring, and are very extensively studied—
see [12] for a survey, but with no results directly relevant
to our purpose). As another interesting example of a
numerical monoid, each value is a cost-discount pair,
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and the (non-commutative) addition is the discounted
sum operation. The traditional use of discounting in
systems theory allows only discounting of future events,
and corresponds to cost functions computed by classical
one-way transducers, while regular functions allow more
general forms of discounting (for instance, discounting
of both past and future events).

A classical result in automata theory characterizes
regular languages using regular expressions: regular
languages are exactly the sets that can be inductively
generated from base languages (empty set, empty string,
and alphabet symbols) using the operations of union,
concatenation, and Kleene-*. Regular expressions provide
a robust foundation for specifying regular patterns in
a declarative manner, and are widely used in practi-
cal applications. The goal of this paper is to identify
the appropriate base functions and combinators over
cost functions for an analogous algebraic and machine-
independent characterization of regularity.

We begin our study by defining base functions and
combinators that are the analogs of the classical opera-
tions used in regular expressions. The base function L/d
maps strings σ in the base language L to the constant
value d, and is undefined when σ /∈ L. Given cost
functions f and g, the conditional choice combinator
f B g maps an input string σ to f (σ), if this value is
defined, and to g (σ) otherwise; the split sum combinator
f ⊕ g maps an input string σ to f (σ1) + f (σ2) if the
string σ can be split uniquely into two parts σ1 and
σ2 such that both f (σ1) and g (σ2) are defined, and is
undefined otherwise; and the iterated sum

∑
f is defined

so that if the input string σ can be split uniquely such
that σ = σ1σ2 . . . σk and each f (σi) is defined, then∑
f (σ) is f (σ1)+f (σ2)+· · ·+f (σk), and is undefined

otherwise. The combinators conditional choice, split sum,
and iterated sum are the natural analogs of the operations
of union, concatenation, and Kleene-* over languages,
respectively. The uniqueness restrictions ensure that the
input string is parsed in an unambiguous manner while
computing its cost, and thus, the result of combining two
(partial) functions remains a (partial) function.

Our first result is that when the operation + is
commutative, regular functions are exactly the functions
that can be inductively generated from base functions
using the combinators of conditional choice, split sum,
and iterated sum. The proof is fairly straightforward, and
builds on the known properties of cost register automata,
their connection to unambiguous weighted automata in
the case of commutative monoids, and the classical
translation from automata to regular expressions.

When the operation + is not commutative, which is

the case when the output values are strings themselves
and addition corresponds to string concatenation, we
need additional combinators to capture regularity. First,
in the non-commutative case, it is natural to introduce
symmetric left-additive versions of split sum and iterated
sum. Given cost functions f and g, the left-split sum
f
←−⊕g maps an input string σ to g (σ2) + f (σ1) if the

string σ can be split uniquely into two parts σ1 and σ2
such that both f (σ1) and g (σ2) are defined. The left-
iterated sum is defined analogously, and in particular, the
transformation that maps an input string to its reverse is
simply the left-iterated sum of the function that maps each
symbol to itself. It is easy to show that regular functions
are closed under these left-additive combinators.

The sum f + g of two functions f and g maps a string
σ to f (σ) + g (σ). Though the sum combinator is not
necessary for completeness in the commutative case, it is
natural for cost functions. For example, the string copy
function that maps an input string σ to the output σσ
is simply the sum of the identity function over strings
with itself. It is already known that regular functions are
closed under sum [13], [5].

To motivate our final combinator, consider the string-
transformation shuffle that maps a string of the form
am1bam2b . . . amkb to am2bm1am3bm2 . . . amkbmk−1 .
This function is definable using cost register automata,
but we conjecture that it cannot be constructed using the
combinators discussed so far. We introduce a new form
of iterated sum: given a language L and a cost function
f , if the input string σ can be split uniquely so that
σ = σ1σ2 . . . σk with each σi ∈ L, then the chained sum∑

(f, L) of σ is f (σ1σ2)+f (σ2σ3)+ · · ·+f (σk−1σk).
In other words, the input is (uniquely) divided into
substrings belonging to the language L, but instead of
summing the values of f on each of these substrings,
we sum the values of f applied to blocks of adjacent
substrings in a chained fashion. The string-transformation
shuffle now is simply chained sum where L equals the
regular language a∗b, and f maps aibajb to ajbi (such
a function f can be constructed using iterated sum and
left-split sum). It turns out that this new combinator can
also be defined if we allow function composition: if f
is a function that maps strings to strings and g is a cost
function, then the composed function g ◦f maps an input
string σ to g (f (σ)). Such rewriting is a natural operation,
and regular functions are closed under composition [9].

The main technical result of the paper is that every
regular function can be inductively generated from
base functions using the combinators of conditional
choice, sum, split sum, either chained sum or func-
tion composition, and their left additive versions. The
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proof in section V constructs the desired expressions
corresponding to executions of cost register automata.
Such automata have multiple registers, and at each step
the registers are updated using copyless (or single-use)
assignments. Register values can flow into one another in
a complex manner, and the proof relies on understanding
the structure of compositions of shapes that capture
these value-flows. The proof provides insights into the
power of the chained sum operation, and also offers an
alternative justification for the copyless restriction for
register updates in the machine-based characterization of
regular functions.

II. FUNCTION COMBINATORS

Let Σ be a finite alphabet, and (D,+, 0) be a monoid.
Two natural monoids of interest are those of the integers
(Z,+, 0) under addition, and of strings (Γ∗, ·, ε) over
some output alphabet Γ under concatenation. By conven-
tion, we treat ⊥ as the undefined value, and express partial
functions f : A → B as total functions f : A → B⊥,
where B⊥ = B ∪ {⊥}. We extend the semantics of the
monoid D to D⊥ by defining d+⊥ = ⊥+ d = ⊥, for
all d ∈ D. A cost function is a function Σ∗ → D⊥.

A. Base functions

For each language L ⊆ Σ∗ and d ∈ D, we define the
constant function L/d : Σ∗ → D⊥ as

L/d (σ) =

{
d if σ ∈ L, and
⊥ otherwise.

The everywhere-undefined function ⊥ : Σ∗ → D⊥ is
defined as ⊥ (σ) = ⊥. ⊥ can also be defined as the
constant function ∅/0 .

Example 1. Let Σ = {a, b} in the following examples.
Then, the constant function a/a : Σ∗ → Σ∗maps a to
itself, and is undefined on all other strings. We will often
be interested in functions of the form a/a : when the
intent is clear, we will use the shorthand a.

By base functions, we refer to the class of functions
L/d , where L is a regular language.

B. Conditional choice and sum operators

Let f, g : Σ∗ → D⊥ be two functions. We then define
the conditional choice f B g as

f B g (σ) =

{
f (σ) if f (σ) 6= ⊥, and
g (σ) otherwise.

Example 2. The indicator function 1L : Σ∗ → Z is
defined as 1L (σ) = 1 if σ ∈ L and 1L (σ) = 0 otherwise.

This function can be expressed using the conditional
choice operator as L/1 B Σ∗/0 .

The sum f+g is defined as f+g (σ) = f (σ)+g (σ). If
there exist unique strings σ1 and σ2 such that σ = σ1σ2,
and f (σ1) and g (σ2) are both defined, then the split sum
f ⊕ g (σ) = f (σ1) + g (σ2). Otherwise, f ⊕ g (σ) = ⊥.
Over non-commutative monoids, this may be different
from the left-split sum f

←−⊕g: if there exist unique strings
σ1 and σ2, such that σ = σ1σ2, and f (σ1) and g (σ2) are
both defined, then f←−⊕g (σ) = g (σ2)+f (σ1). Otherwise,
f
←−⊕g (σ) = ⊥.
Observe that B is the analogue of union in regular

expressions, with the important difference being that
B is non-commutative. Similarly, ⊕ is similar to the
concatenation operator of traditional regular expressions.

C. Iteration

The iterated sum
∑
f of a cost function is defined as

follows. If there exist unique strings σ1, σ2, . . . , σk
such that σ = σ1σ2 . . . σk and f (σi) is defined for
each σi, then

∑
f (σ) = f (σ1) + f (σ2) + · · ·+ f (σk).

Otherwise,
∑
f (σ) = ⊥. The left-iterated sum

←−∑
f is

defined similarly: if there exist unique strings σ1, σ2, . . . ,
σk such that σ = σ1σ2 . . . σk and f (σi) is defined for
each σi, then

←−∑
f (σ) = f (σk)+f (σk−1)+ · · ·+f (σ1).

Otherwise,
←−∑
f (σ) = ⊥. The reverse combinator f rev

is defined as f rev (σ) = f (σrev ). Observe that the left-
iterated sum and reverse combinators are interesting in
the case of non-commutative monoids, such as string
concatenation.

Example 3. The function |·|a : Σ∗ → Z counts the
number of a-s in the input string. This is represented by
the function expression

∑
(a/1 B b/0). The identity

function id : Σ∗ → Σ∗ is given by the function
expression

∑
(a B b). The function copy which maps an

input σ to σσ is then given by the expression id + id . On
the other hand, the expression

←−∑
(a B b) is the function

which reverses its input:
←−∑

(a B b) (σ) = σrev for all σ.
This is also equivalent to the expression idrev .

Example 4. Consider the situation of a customer who
frequents a coffee shop. Every cup of coffee he purchases
costs $2, but if he fills out a survey, then all cups of
coffee purchased that month cost only $1 (including
cups already purchased). Here Σ = {C, S,#} denoting
respectively the purchase of a cup of coffee, completion
of the survey, and the passage of a calendar month.
Then, the function expression m = (

∑
C/2) B

((
∑

C/1)⊕ S/0 ⊕
∑

(C/1 B S/0)) maps the pur-
chases of a month to the customer’s debt. The first sub-
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expression –
∑

C/2 – computes the amount provided
no survey is filled out and the second sub-expression
– (
∑

C/1) ⊕ S/0 ⊕
∑

(C/1 B S/0) – is defined
provided at least one survey is filled out, and in that
case, charges $1 for each cup. The expression coffee =∑

(m⊕ #/0)⊕m maps the entire purchase history of
the customer to the amount he needs to pay the store.

Example 5. Let Σ = {a, b,#}, and consider the function
swap which maps strings of the form σ#τ where
σ, τ ∈ {a, b}∗ to τ#σ. Such a function could be used to
transform names from the first-name-last-name format to
the last-name-first-name format. swap can be expressed
by the function expression

(
{a, b}∗#

/
ε ⊕

∑
(a B b)

)
+

Σ∗/# +
(∑

(a B b)⊕ # {a, b}∗
/
ε
)
. The first subex-

pression skips the first part of the string – {a, b}∗#
/
ε

– and echoes the second part –
∑

(a B b). The second
subexpression Σ∗/# inserts the # in the middle. The
third subexpression is similar to the first, echoing the
first part of the string and skipping the rest.

Example 6. With Σ = {a, b,#}, consider the function
strip which map strings of the form σ1#σ2# . . . σn
where σi ∈ {a, b}∗ for each i to σ1#σ2# . . . σn−1.
This function could be used, for example, to locate the
directory of a file given its full path, or in processing
website URLs. This function is represented by the
expression id ⊕ # {a, b}∗

/
ε .

From the appropriate definitions, we have:

Proposition 7. Over all monoids (D,+, 0), the following
identity holds:

←−∑
f (σ) = (

∑
(f rev ))

rev
(σ).

D. Chained sum

Let L ⊆ Σ∗ be a language, and f be a cost
function over Σ∗. If there exists a unique decomposi-
tion σ = σ1σ2 . . . σk such that k ≥ 2 and for each
i, σi ∈ L, then the chained sum

∑
(f, L) (σ) =

f (σ1σ2) + f (σ2σ3) + · · · + f (σk−1σk). Otherwise,∑
(f, L) (σ) = ⊥. Similarly, if there exist unique

strings σ1, σ2, . . . , σk such that k ≥ 2 and for all
i, σi ∈ L, then the left-chained sum

←−∑
(f, L) (σ) =

f (σk−1σk)+f (σk−2σk−1)+ · · ·+f (σ1σ2). Otherwise,←−∑
(f, L) (σ) = ⊥.

Example 8. Let Σ = {a, b} and let shuffle :
Σ∗ → Σ∗ be the following function: for σ =
am1bam2b . . . amkb, with k ≥ 2, shuffle (σ) =
am2bm1am3bm2 . . . amkbmk−1 , and for all other σ,
shuffle (σ) = ⊥. See figure II.1a.

We first divide σ into chunks of text Pi, each of the
form a∗b. Similarly the output may also be divided into

patches, P ′i . Each input patch Pi should be scanned twice,
first to produce the a-s to produce P ′i−1, and then again
to produce the b-s in P ′i . Let L = a∗b be the language of
these patches. It follows that shuffle =

∑
(f, L), where

f = (
∑

a/b ⊕ b/ε )
←−⊕ (
∑

a/a ⊕ b/ε ).

The motivation behind the chained sum is two-fold:
first, we believe that shuffle is inexpressible using the
remaining operators, and second, the operation naturally
emerges as an idiom during the proof of theorem 26.

E. Function composition

Let f : Σ∗ → Γ∗⊥ and g : Γ∗ → D be two cost
functions. The composition g◦f is defined as g◦f (σ) =
g (f (σ)), if f (σ) and g (f (σ)) are defined, and g ◦
f (σ) = ⊥ otherwise.

Example 9. Composition is an alternative to chained sum
for expressive completeness. Let copyL = (

∑
a⊕ b) +

(
∑
a⊕ b) be the function which accepts strings from L

and repeats them twice. The first step of the transforma-
tion is therefore the expression

∑
copyL. We then drop

the first copy of P1 and the last copy of Pk – this is
achieved by the expression drop = L/ε ⊕ id ⊕ L/ε .
The function ensurelen = id + Σ+/ε echoes its
input, but also ensures that the input string contains
at least two patches. The final step is to specify the
function f which examines pairs of adjacent patches,
and first echoes the a-s from the second patch, and then
transforms the a-s from the first patch into b-s. f =
(
∑

a/b ⊕ b/ε )
←−⊕ (
∑

a/a ⊕ b/ε ). Thus, shuffle = f ◦
ensurelen ◦ drop ◦

∑
copyL.

Observe that the approach in example 9 can be used
to express the chained sum operation itself in terms
of composition. Pick a symbol @ /∈ Σ, and extend f
to (Σ ∪ {@})∗ → D by defining f (σ) = ⊥ whenever
σ contains an occurrence of @. Let id be the identity
function for strings over Σ, and copyL be that function
which maps strings σ ∈ L to σ@σ@, and undefined
otherwise. copyL = (id ⊕ ε/@) + (id ⊕ ε/@). Let
dropL be L@/ε⊕

∑
(id ⊕ @/ε ⊕ id ⊕ @/@)⊕L@/ε .

Therefore, given a string σ uniquely decomposed as σ =
σ1σ2 . . . σk, where for each i, σi ∈ L, dropL ◦

∑
copyL

maps it to σ1σ2@σ2σ3@ . . . σk−1σk@. We then have the
following:

Proposition 10. For each cost function f , language L ⊆
Σ∗, and string σ ∈ Σ∗,

1)
∑

(f, L) (σ) =
∑

(f ⊕ @/ε )◦ensurelen ◦dropL◦∑
copyL (σ), and

2)
←−∑

(f, L) (σ) =
←−∑

(f ⊕ @/ε )◦ensurelen ◦dropL◦∑
copyL (σ).

4



shuffle (σ): am2 bm1 am3 bm2

σ: am1 b am2 b am3 b . . . amk−1 b amk b

. . .
amk bmk−1

(a) Definition of shuffle (σ).

σ: P1

P1 P1 P2

P2

P2 P3

P3

P3
. . .

. . .

Pk−1

Pk−1

Pk−1 Pk

Pk

Pk

f (P1, P2)f (P2, P3) f (Pk−1, Pk)

(b) Each patch Pi is a string of the form a∗b.

Figure II.1: Defining and expressing shuffle (σ) using function combinators.

III. REGULAR FUNCTIONS ARE CLOSED UNDER
COMBINATORS

As mentioned in the introduction, there are multiple
equivalent definitions of regular functions. In this paper,
we will use the operational model of copyless cost
register automata (CCRA) as the yardstick for regularity.
A CCRA is a finite state machine which makes a single
left-to-right pass over the input string. It maintains a
set of registers which are updated on each transition.
Examples of register updates include v := u+ v+ d and
v := d + v, where d ∈ D is a constant. The important
restrictions are that transitions and updates are test-free –
we do not permit conditions such as “q goes to q′ on input
a, provided v ≥ 5” – and that the update expressions
satisfy the copyless (or single-use) requirement. CCRAs
are a generalization of streaming string transducers to
arbitrary monoids. The goal of this paper is to show that
functions expressible using the combinators introduced
in section II are exactly the class of regular functions. In
this section, we formally define CCRAs, and show that
every function expression represents a regular function.

A. Cost register automata

Definition 11. Let V be a finite set of registers. We call
a function f : V → (V ∪ D)

∗ copyless if the following
two conditions hold:

1) For all registers u, v ∈ V , v occurs at most once in
f (u), and

2) for all registers u, v, w ∈ V , if u 6= w and v occurs
in f (u), then v does not occur in f (w).

Similarly, a string e ∈ (V ∪ D)
∗ is copyless if each

register v occurs at most once in e.

Definition 12 (Copyless CRA [5]). A CCRA is a tuple
M = (Q,Σ, V, δ, µ, q0, F, ν), where

1) Q is a finite set of states,
2) Σ is a finite input alphabet,
3) V is a finite set of registers,
4) δ : Q× Σ→ Q is the state transition function,
5) µ : Q× Σ× V → (V ∪ D)

∗ is the register update
function such that for all q and a, the partial
application µ (q, a) : V → V ∗ is a copyless function
over V ,

6) q0 ∈ Q is the initial state,
7) F ⊆ Q is the set of final states, and
8) ν : F → (V ∪ D)

∗ is the output function, such that
for all q, the output expression ν (q) is copyless.

The semantics of a CCRA M is specified using
configurations. A configuration is a tuple γ = (q, val)
where q ∈ Q is the current state and val : V → D
is the register valuation. The initial configuration is
γ0 = (q0, val0), where val0 (v) = 0, for all v. For
simplicity of notation, we first extend val to V ∪D→ D
by defining val (d) = d, for all d ∈ D, and then further
extend it to strings val : (V ∪ D)

∗ → D, by defining
val (v1v2 . . . vk) = val (v1) + val (v2) + · · · + val (vk).
If the machine is in the configuration γ = (q, val), then
on reading the symbol a, it transitions to the configu-
ration γ′ =

(
q′, val ′

)
, and we write γ →a γ′, where

q′ = δ (q, a), and for all v, val ′ (v) = val (µ (q, a, v)).
We now define the function JMK : Σ∗ → D⊥ computed

by M . On input σ ∈ Σ∗, say γ0 →σ (qf , valf ). If qf ∈
F , then JMK (σ) = val (ν (qf )). Otherwise, JMK (σ) =
⊥.

A cost function is regular if it can be computed by a
CCRA. A streaming string transducer is a CCRA where
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the range D is the set of strings Γ∗ over the output
alphabet under concatenation.

Example 13. We present an example of an SST in figure
III.1. The machine computes the function shuffle from
example 8. It maintains 3 registers x, y and z, all initially
holding the value ε. The register x holds the current
output. On viewing each a in the input string, the machine
commits to appending the symbol to its output. Depending
on the suffix, this a may also be used to eventually
produce a b in the output. This provisional value is stored
in the register z. The register y holds the b-s produced
by the previous run of a-s while the machine is reading
the next patch of a-s.

B. Additive cost register automata
We recall that when D is a commutative monoid,

CCRAs are equivalent in expressiveness to the simpler
model of additive cost register automata (ACRA). In
theorem 25, where we show that regular functions over
commutative monoids can be expressed using the base
functions over regular languages combined using the
choice, split sum and function iteration operators, we
assume that the regular function is specified as an ACRA.
These machines drop the copyless restriction on register
updates, but require that all updates be of the form
“u := v + d”, for some registers u and v and some
constant d.

Definition 14 (Additive CRA). An additive cost
register automaton (ACRA) is a tuple M =
(Q,Σ, V, δ, µ, q0, F, ν), where

1) Q is a finite set of states,
2) Σ is a finite input alphabet,
3) V is a finite set of registers,
4) δ : Q× Σ→ Q is the state transition function,
5) µ : Q × Σ × V → V × D is the register update

function,
6) q0 ∈ Q is the initial state,
7) F ⊆ Q is the set of final states, and
8) ν : F → V × D is the output function.

The semantics of ACRAs are also specified using
configurations. The initial configuration γ0 = (q0, val0)
maps all registers to 0. If the machine is in a configuration
γ = (q, val), and reads a symbol a, then it transitions
to the configuration γ′ =

(
q′, val ′

)
, written as γ →a γ′,

where
1) q′ = δ (q, a), and
2) for each register u, if µ (q, a, u) = (v, d), then

val ′ (u) = val ′ (v) + d.
We then define the function JMK computed by M as
follows. On input σ ∈ Σ∗, if γ0 →σ (qf , valf ), and qf ∈

q¬S
x

start
qS
x

C

/
x := x+ 2
y := y + 1

S/x := y

#/y := x

C/x := x+ 1

S
#/y := x

Figure III.2: ACRA computing coffee.

F , then JMK (σ) = valf (ν (qf )). Otherwise, JMK (σ) =
⊥.

Example 15. In figure III.2, we present an ACRA which
computes the function coffee described in example 4. In
the state q¬S , the value in register x tracks how much
the customer owes the establishment if he does not fill
out a survey before the end of the month, and the value
in register y is the amount he should pay otherwise.

C. Regular look-ahead

An important property of regular functions is that they
are closed under regular look-ahead [3]: a CCRA can
make transitions based not simply on the next symbol of
the input, but on regular properties of the as-yet-unseen
suffix. To formalize this, we introduce the notion of a look-
ahead labelling. Let σ = σ1σ2 . . . σn ∈ Σ∗ be a string,
and A = (Q,Σ, δ, q0) be a DFA over Σ. Starting in state
q0, and reading σ in reverse, say A visits the sequence
of states q0 →σn q1 →σn−1 q2 →σn−2 · · · →σ1 qn.
Then, the state of A at position i, qi determines a regular
property of the suffix σn−i+1σn−i+2 . . . σn. We term the
string of states qnqn−1 . . . q0 the labelling of σ by the
look-ahead automaton A.

Proposition 16. Let A be a look-ahead automaton over
Σ, and let M be a CCRA over labellings in Q∗. Then,
there is a CCRA machine M ′ over Σ, such that for every
σ ∈ Σ∗, JM ′K (σ) = JMK (lab (σ)) where lab (σ) is the
labelling of σ by A.

D. From function expressions to cost register automata

Theorem 17. Every cost function expressible using the
base functions combined using the B, +, ⊕, ←−⊕ ,

∑
,
←−∑

,
input reverse, composition, chained sum, and left-chained
sum combinators is regular.

This can be proved by structural induction on the
structure of the function expression. We now prove each
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q0start q1
q2
x

a
/
z := zb

b

/ x := xy
y := z
z := ε

a

/
x := xa
z := zb

b

/ x := xy
y := z
z := ε

a

/
x := xa
z := zb

b

/ x := xy
y := z
z := ε

Figure III.1: Streaming string transducer computing shuffle . q2 is the only accepting state. The annotation “x” in
state q2 specifies the output function. On each transition, registers whose updates are not specified are left unchanged.

case as a separate lemma, and these together establish
the present theorem.

Lemma 18. For all regular languages L ⊆ Σ∗, and
d ∈ D, L/d is a regular function.

Proof: Consider the DFA A = (Q,Σ, δ, q0, F )
accepting L, and construct the machine M =
(Q,Σ, ∅, δ, µ, q0, F, ν), where ν (q) = d, for all q ∈ F .
This machine has the same state space as A, but does not
maintain any registers. In every final state, the machine
outputs the constant d ∈ D. The domain of the register
update function µ is empty, and so we do not specify
it. Clearly, JMK (σ) = L/d (σ) = d, for each σ,and it
follows that L/d is a regular function.

Lemma 19. Whenever f and g are regular functions,
f B g and f + g are also regular.

Proof: Let f and g be computed by the CCRAs
Mf = (Qf ,Σ, Vf , δf , µf , q0f , Ff , νf ) and Mg =
(Qg,Σ, Vg, δg, µg, q0g, Fg, νg) respectively. We use the
product construction to create the machines MfBg and
Mf+g that compute f B g and f + g respectively. The
idea is to run both machines in parallel, and in the
case of MfBg, output depending on which machines
are in accepting states. In Mf+g , we output only if both
machines are accepting, and then output the sum of the
outputs of both machines.

Assume, without loss of generality, that Vf ∩
Vg = ∅. Define MfBg = (Qf × Qg,Σ, Vf ∪
Vg, δ, µ, (q0f , q0g), FfBg, νfBg) and Mf+g = (Qf ×
Qg,Σ, Vf ∪ Vg, δ, µ, (q0f , q0g), Ff+g, νf+g), where

1) for each q1, q2 and a, δ((q1, q2), a) =
(δf (q1, a), δg(q2, a)),

2) if v ∈ Vf , then µ ((q1, q2) , a, v) = µf (q1, a, v),
and otherwise, µ ((q1, q2) , a, v) = µg (q2, a, v),

3) FfBg = Ff ×Qg ∪Qf ×Fg , and Ff+g = Ff ×Fg ,

4) for all (q1, q2) ∈ FfBg , if q1 ∈ Ff , then ν (q1, q2) =
νf (q1), and otherwise ν (q1, q2) = νg (q2), and

5) for all (q1, q2) ∈ Ff+g, ν (q1, q2) = νf (q1) +
νg (q2).

Since the sets of registers are disjoint, observe that the
register updates and output functions just defined are
copyless. It follows that MfBg and Mf+g compute f B g
and f + g respectively.

Lemma 20. Whenever f and g are regular functions,
f ⊕ g and f←−⊕g are also regular.

Proof: Let f and g be computed by the CCRAs
Mf = (Qf ,Σ, Vf , δf , µf , q0f , Ff , νf ) and Mg =
(Qg,Σ, Vg, δg, µg, q0g, Fg, νg) respectively. We recall that
the domain L ⊆ Σ∗ over which a regular function is
defined is a regular language. Let Lf and Lg be the
domains of f and g respectively. The idea is to use regular
lookahead and execute Mf on the prefix σ1 ∈ Lf , and
when the lookahead automaton indicates that the suffix
σ2 ∈ Lg, we switch to executing Mg, and combine the
results in the output function.

Let A1 be a lookahead automaton with state space
Σ ∪ {q01}, so that the state of A1 indicates the next
symbol of the input. Let A2 be a lookahead automaton
which accepts strings σ such that σrev ∈ Lg , and let F2

be the set of its accepting states. The combined lookahead
automaton is the product A1 × A2, such that the state
(a, q) of this product indicates the next symbol in the
input, and depending on whether q ∈ F2, whether the
suffix σ2 ∈ Lg .

Let A3 (with accepting states F3) be a DFA, which
on input σ, determines whether σ can be unambiguously
split as σ = σ1σ2, with σ1 ∈ Lf and σ2 ∈ Lg . Construct
the machine M = ((Qf ∪Qg)×A3, Q1×Q2, Vf ∪Vg ∪
{total} , δ, µ, (q0f , q03), Fg × F3, ν), where δ, µ, and ν
operate as follows:
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1) In a state (q1, q3) ∈ Qf ×A3, on reading the input
symbol (a, ql), where q1 /∈ Ff or ql /∈ F2, the
machine transitions to (δf (q1, a) , δ3 (q3, a)). The
registers of Mf are updated according to µf , and
the other registers are left unchanged.

2) In a state (q1, q3) ∈ Qf ×A3, on reading the input
symbol (a, ql), where q1 ∈ Ff and ql ∈ F2, the
machine transitions to (q0g, δ3 (q3, a)). The machine
stores the output of Mf in the register total , and
the other registers are left unchanged.

3) In the state (q2, q3) ∈ Qg × A3, on reading
the input symbol (a, ql), the machine transitions
to (δg (q2, a) , δ3 (q3, a)). The registers of Mg are
updated according to µg , and the other registers are
left unchanged.

4) In the final state (q2, q3f ) ∈ Fg × F3, the machine
outputs the value total + ν (q2).

The machine M just constructed computes the function
f ⊕ g using regular lookahead, and it follows that f ⊕ g
is regular. Similarly, it can be shown that f←−⊕g is also
regular.

Along similar lines, we have:

Lemma 21. Whenever f is a regular function,
∑
f and←−∑

f are also regular.

Proof: The main difference between this and the
construction of lemma 20 are the following: the state
space Q of M is defined as Q = Qf ×A3, since there
is only one CCRA Mf . The set of registers is V =
V ∪ {total}, and the accepting states F = Ff × F3.

In a state (q1, q3) ∈ Qf × A, on reading the input
symbol (a, ql), where q1 ∈ Ff , and ql ∈ F2, the machine
transitions back to (q0f , δ3 (q3, a)). The machine appends
the output of Mf to the right of the register total , and
all other registers are cleared to 0.

The machine thus constructed computes
∑
f . If the

machine were to append the output of Mf to the left of
total , then it would compute

←−∑
f . Thus, both function

expressions are regular.
The next lemma was first proved in [5]. It can also

be seen as a consequence of lemma 23, because for all
σ, f rev (σ) = f ◦ reverse (σ), where reverse =

←−∑
B

{a/a | a ∈ Σ} is the function which reverses its input.

Lemma 22. Whenever f is a regular function, so is f rev .

Lemma 23. Whenever f : Γ∗ → D and g : Σ∗ → Γ∗

are regular functions, f ◦ g is also a regular function.

Proof: Since SSTs are closed under composition, if
f : Γ∗ → D and g : Σ∗ → Γ∗ are regular functions, it
follows that f ◦ g is also a regular function.

Lemma 24. Whenever f is a regular function, and L ⊆
Σ∗ is a regular language,

∑
(f, L) and

←−∑
(f, L) are

also regular functions.

Proof: From proposition 10 and lemma 23.
This completes the proof of theorem 17.

IV. COMPLETENESS OF COMBINATORS FOR
COMMUTATIVE MONOIDS

In this section, we show that if D is a commutative
monoid, then constant functions combined using the
choice, split sum and function iteration are expressively
equivalent to the class of regular functions. Consider the
ACRA M shown in figure IV.1a. The idea is to view M as
a non-deterministic automaton A over the set of vertices
Q× V : for every path π = q0 →σ1 q1 →σ2 · · · →σn qn
through the ACRA, there is a corresponding path through
A, πA = (q0, v0) →σ1 (q1, v1) →σ2 · · · →σn (qn, vn),
where vn is the register which is output in the final
state qn, and at each position i, vi indicates the register
whose current value flows into the final value of vn.
Observe that this NFA A is unambiguous – for every
string σ that is accepted by A, there is a unique
accepting path. Furthermore, the final value of register
vn is simply the sum of the increments accumulated
along each transition of this accepting path. Therefore,
if the label (q, v) →ad (q′, v′) along each edge is
also annotated with the increment value d, so that
the update expression reads µ (q, a, v′) = v + d, then
the regular expression for the language accepted A
– (a1 + b0)

∗
+ (a1 + b1 + e1)

∗
e1 (a1 + b0)

∗ – can be
alternatively viewed as a function expression for JMK
–
∑

(b/0 B a/1) B (
∑

(b/1 B a/1 B e/1) ⊕ e1 ⊕∑
(b/0 B a/1)).

Theorem 25. If (D,+, 0) is a commutative monoid, then
every regular function f : Σ∗ → D can be expressed
using the base functions combined with the choice, split
sum and iterated sum operators.

Proof: We need to show an arbitrary ACRA M =
(Q,Σ, V, δ, µ, q0, F, ν) can be expressed by these combi-
nators.

We construct an NFA A with states Q × V and an
alphabet Γ consisting of a finite subset of Σ×D which are
those elements (a, d) such that for some state q ∈ Q and
two registers v, v′ ∈ V there is an update µ (q, a, v) =
v′ + d. We will denote (a, d) as ad.

We define the transition relation as follows: (q′, v′) ∈
δ′ ((q, v) , ad) iff µ (q, a, v′) = v + d and δ (q, a) = q′.

Assume without loss of generality that our output
function takes values in V . The start states of the NFA
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A are all states in {q0} × V and the final states are
{(q, v) | ν (q) = v}.

Consider any unambiguous regular expression of
strings accepted by the NFA A: interpret regular expres-
sion union ∪ as B, regular expression concatenation · as
⊕, Kleene-* as the iterated sum

∑
f and input symbols

ad as the constant functions a/d .
It can be shown by an inductive argument that the

regular expression corresponding to paths in our NFA
from (q, v) to (q′, v′), when interpreted as a regular
function f is defined exactly on those σ ∈ Σ∗ such that σ
is a path from q to q′ with the effect that v flows into v′.
Moreover, the total effect of this path σ is v′ := v+f (σ)
for all of these σ. It follows that a function expression for
JMK can be obtained from the union of the unambiguous
regular expressions from some state in {q0}×V to some
state in {(q, v) | ν (q) = v}.

V. COMPLETENESS OF COMBINATORS FOR GENERAL
MONOIDS

In this section, we describe an algorithm to express
every regular function f : Σ∗ → D as a function ex-
pression. To simplify the presentation, we prove theorem
26 only for the case of string transductions, i.e. where
D = Γ∗, for some finite output alphabet Γ. Note that this
is sufficient to establish the theorem in its full generality:
let ΓD ⊆ D be the (necessarily finite) set of all constants
appearing in the textual description of M . M can be
alternatively viewed as an SST mapping input strings
in Σ∗ to output strings in Γ∗D. The restricted version
of theorem 26 can then be used to convert this SST to
function expression form, which when interpreted over
the original domain D represents JMK.

Theorem 26. For an arbitrary finite alphabet Σ and
monoid (D,+, 0), every regular function f : Σ∗ → D
can be expressed using the base functions combined with
choice, sum, split sum, iterated sum, chained sum, and
their left-additive versions.

A. From DFAs to regular expressions: A review

The procedure to convert a CCRA into a function
expression is similar to the corresponding algorithm
[17] that transforms a DFA A = (Q,Σ, δ, q0, F ) into
an equivalent regular expression; we will also use this
algorithm in our correctness proof – hence this review.

Let Q = {q1, q2, . . . , qn}. For each pair of states
q, q′ ∈ Q, and for i ∈ N, 0 ≤ i ≤ n, r(i) (q, q′) is
the set of strings σ from q to q′, while only passing
through the intermediate states {q1, q2, . . . , qi}. This can
be inductively constructed as follows:

1) r(0) (q, q′) = {a ∈ Σ ∪ {ε} | q →a q′}.
2) r(i+1) (q, q′) = r(i) (q, q′) +

r(i) (q, qi+1) r(i) (qi+1, qi+1)
∗
r(i) (qi+1, q

′).
The language L accepted by A is then given by the
regular expression

∑
qf∈F r

(n) (q0, qf ). Note that the
regular expression thus obtained is also unambiguous.

B. A theory of shapes

In a CCRA M , the effect of processing a string σ
starting from a state q can be summarized by the pair
(δ(q, σ), µ(q, σ)) – δ (q, σ) is the state of the machine
after processing σ, and the partial application of the
register update function µ(q, σ) : V → (V ∪ Γ)∗

expresses the final values of the registers in terms of
their initial ones.

Consider the expression µ (q, σ, u) = aubcvd, where
u, v ∈ V are registers, and a, b, c, d ∈ Γ∗ are string
constants. Because of the associative property, any update
expression can be equivalently represented – as in
µ (q, σ, u) = aub′vd where b′ = bc – so that there is
at most one string constant between consecutive registers
in this update expression. The summary for σ therefore
contains the shape Sσ : V → V ∗ indicating the sequence
of registers in each update expression and, for each
register v and each position k from 1, 2, . . . , |Sσ (v)|+1,
a string γk ∈ Γ∗ indicating the kth string constant
appearing in µ (q, σ, u).

Definition 27 (Shape of a path). A shape S : V → V ∗

is a copyless function over a finite set of registers V . Let
π = q1 →σ1 q2 →σ2→ · · · →σn qn+1 be a path through
a CCRA M . The shape of the path π is the function
Sπ : V → V ∗ such that for all registers v ∈ V , Sπ (v)
is the string projection onto V of the register update
expression µ (q1, σ, v): Sπ (v) = πV (µ (q1, σ, v)).

We refer to a string constant in the update expression
as a patch in the corresponding shape. Because of the
copyless restriction on the register update function, the
set of all shapes over V is finite.

The following is an immediate consequence of the
space of shapes being finite:

Proposition 28. Let q, q′ ∈ Q be two states in a CCRA
M , and S be a shape. The set of all strings from q to q′

in M with shape S is regular.

Example 29. It is helpful to visualize shapes as bipartite
graphs (figure V.1), though this representation omits some
important information about the shape. Since the shape of
a path indicates the pattern in which register values flow
during computation, an edge u → v can be informally
read as “The value of u flows into v”. Because of the

9



q0
x

start a

/
x := x+ 1
y := y + 1

b

/
x := x
y := y + 1

e

/
x := y + 1
y := y + 1

(a)

(q0, x) (q0, y)

a1

b0

a1

b1

e1

e1

(b)

Figure IV.1: Translating an ACRA to the commutative calculus. The machine operates over the alphabet Σ = {a, b, e},
and when given a string σ = σ1eσ2e . . . σk, where each σi ∈ {a, b}∗, it counts the number of a-s and e-s, but
only counts those b-s which occur before the final e. Figure IV.1b is the NFA that results from the construction of
theorem 25. Both states in the NFA are initial.

copyless restriction, every node on the left is connected
to at most one node on the right.

When two paths are concatenated, their shapes are
combined. We define the concatenation S1 · S2 of two
shapes S1 and S2 as follows. For some register v ∈ V ,
let S2 (v) = v1v2 . . . vk. Then S1 · S2 (v) = s1s2 . . . sk,
where si = S1 (vi). By definition, therefore,

Proposition 30. Let π1 and π2 be two paths through a
CCRA M such that the final state of π1 is the same as the
initial state of π2. Then, for all registers v, Sπ1π2

(v) =
Sπ1 · Sπ2 (v).

C. Proof outline

To summarize the effect of a set of paths with the same
shape, we introduce the notion of an expression vector –
for a shape S, an expression vector A is a collection of
function expressions, such that for each register v, and for
each patch k in S (v), there is a corresponding function
expression Av,k : Σ∗ → Γ∗. An expression vector A
summarizes a set of paths L with shape S, if for each
path π ∈ L with initial state q, and input string σ, and
for each register v, in the update expression µ (q, σ, v),
the constant value γk ∈ Γ∗ at position k is given by
Av,k (σ).

Example 31. Consider the loop a∗ at the state q1 in
the SST of figure III.1. Consider some concrete string,
ak. The effect of this string is to update x := xak,
y := y, and z := zbk. The shape of this set of paths
is the identity function S (v) = v, for all v. Define the
expression vector A as follows: Ax,1 = Ay,1 = Ay,2 =
Az,1 = Σ∗/ε , Ax,2 =

∑
a/a , and Az,2 =

∑
a/b .

Then A summarizes the set of paths a∗ at the state q1.

The outer loop of our algorithm is an iteration which
proceeds in lock-step with the DFA-to-regular expression
translator. In step i, for each pair of states q, q′ ∈ Q, and
shape S, we maintain an expression vector R

(i)
S (q, q′).

The invariant maintained is that R(i)
S (q, q′) summarizes

all paths σ ∈ r(i) (q, q′) with shape S.
After this iteration is complete, pick a state qf ∈ F ,

a shape S, and some register v. Construct the function
expression fS,v = R

(n)
S,v,1 (q0, qf )+R

(n)
S,v,2 (q0, qf )+· · ·+

R
(n)
S,v,|S(v)|+1 (q0, qf ). Because v initially held the empty

string ε, it follows that for each path q0 →σ qf with shape
S, the final value in the register v is given by fS,v (σ).
We will then have constructed a function expression
equivalent to the given CCRA M .

There are therefore two steps in this construction:

1) Construct R
(0)
S (q, q′), for each pair of registers

q, q′ ∈ Q, and shape S.
2) For each 1 ≤ i < n, 0 ≤ j ≤ i, and for all shapes

S, and pairs of states q, q′ ∈ Q, given R
(j)
S (q, q′),

construct R(i+1)
S (q, q′).

D. Operations on expression vectors

In this subsection, we create a library of basic opera-
tions on expression vectors, including concatenation and
union.

1) Restricting expression domains : Given an expres-
sion vector A for a shape S, the domain of the expression
vector, written as Dom (A), is defined as the language⋂
v,k Dom (Av,k), where Dom (Av,k) is the domain of

the component function expressions. We would want to
restrict the component expressions in a vector so that
they all have the same domain – given a cost function
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(d) Shape of the
update x := yz,
y := x, z := ε.
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z

(e) Shape S1 of
the update x := x,
y := yz, z := ε.

x

y

z
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z

(f) Shape S2 of the
update x := xz,
y := y, z := ε.

Figure V.1: Visualizing shapes as bipartite graphs. Figures V.1a-V.1c describe the shapes of some paths in the
earlier SST example of figure III.1.

f : Σ∗ → Γ∗ and a language L ⊆ Σ∗, we define the
restriction of f to L as f ∩ L = f + L/ε . This is
equivalent to saying that f ∩ L (σ) = f (σ), if σ ∈ L,
and f ∩L (σ) = ⊥, otherwise. We extend this to restrict
expression vectors A to languages L, A∩L, by defining
(A ∩ L)v,k as Av,k ∩ L.

2) Shifting expressions : Given a cost function f and a
language L, the left-shifted function f � L is the function
which reads an input string in Dom (f) ·L, and applies f
to the prefix and ignores the suffix, provided the split is
unique, i.e. f � L = f⊕L/ε . Similarly, the right-shifted
function f � L = L/ε ⊕ f . The shift operators can also
be extended to expression vectors: A� L is defined as
(A� L)v,k = Av,k ∩ Dom (A) � L, and A � L is
defined as (A� L)v,k = Av,k ∩ Dom (A)� L.

3) Concatenation : Let L be a set of paths with shape
S, and L′ be a set of paths with shape S′. Let the
expression vectors A and B summarize paths in L and
L′ respectively. We now construct an expression vector
A ·B which summarizes unambiguous paths in L · L′.

Consider a path π ∈ L·L′ which can be unambiguously
decomposed as π = π1π2 with π1 ∈ L and π2 ∈ L′.
When applying A (resp. B) to this path, we should shift
the expression vector to examine only π1 (resp. π2). Thus,
define A′ = A� Dom (B), and B′ = B� Dom (A).

Pick a register v, and let v := f1v1f2v2 . . . vkfk+1 be
the update expression for v in B′. For each register vi in
the right-hand side, let vi := fi1vi1fi2vi2 . . . vikifiki+1

be the update expression for vi in A′. View string con-
catenation as the function combinator +, and substitute
the expression for each vi in A′ into the expression for v
in B′. Then, observe that (A ·B)v,k is the kth function
expression in the string that results.

4) Choice : Let A and B be expression vectors, both
for some shape S. Let A′ = A ∩ Dom (A) and B′ =
B ∩ Dom (B). Then, define the choice A B B is the
expression vector for shape S such that for each register
v and patch k, (A B B)v,k = A′v,k B B′v,k.

Claim 32. If L and L′ are disjoint sets of paths with
the same shape S, such that A summarizes paths in L
and B summarizes paths in L′, then A B B summarizes
paths in L ∪ L′.

The notation B {f1, f2, . . . , fk} is shorthand for the
expression f1 B f2 B · · · B fk. We ensure that when
this notation is used, the functions have mutually disjoint
domains, so the order is immaterial.

E. Constructing R
(0)
S (q, q′)

For each string a ∈ Σ ∪ {ε}, and each pair of states
q, q′ ∈ Q such that q →a q′, if S is the shape of the
update expression of q →a q′, we define R

(a)
S (q, q′)

as follows. For each register v and patch k in S (v),
R

(a)
S,v,k (q, q′) = a/γv,k , where γv,k is the kth string

constant appearing in the update expression µ (q, a, v).
For all other a ∈ Σ ∪ {ε}, q, q′ ∈ Q, and shapes S,
define R

(a)
S (q, q′) = ⊥. Finally, R

(0)
S (q, q′) = B

{R(a)
S (q, q′) | a ∈ Σ ∪ {ε}}. By construction,

Claim 33. For each pair of states q, q′ ∈ Q and shape S,
R

(0)
S (q, q′) summarizes all paths σ ∈ r(0) (q, q′) from q

to q′ with shape S.

F. A total order over the registers

During the iteration step of the construction, we have
to provide function expressions for R

(i+1)
S (q, q′) in

terms of the candidate function expressions at step i.
Register values may flow in complicated ways: consider
for example the shape in figure V.1d. The construction
of R(i+1)

S (q, q′) is greatly simplified if we assume that
the shapes under consideration are idempotent under
concatenation.

Definition 34. Let V be a finite set of registers, and
� be a total order over V . We call a shape S over V
normalized with respect to � if

1) for all u, v ∈ V , if v occurs in S (u), then u � v,
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2) for all u, v ∈ V , if v occurs in S (u), then u itself
occurs in S (u), and

3) for all v ∈ V , there exists u ∈ V such that v occurs
in S (u).

A CCRA M is normalized if the shape of each of its
update expressions is normalized with respect to �.

For example, the shapes in figures V.1a, V.1c, V.1e,
and V.1f are normalized, while V.1b and V.1d are not.
Informally, the first condition requires that all registers
in the CCRA flow upward, and the second ensures that
shapes are idempotent. Observe that if the individual
transitions in a path are normalized, then the whole path
is itself normalized.

Proposition 35. For every CCRA M , there is an equiv-
alent normalized CCRA M ′.

Proof: Let M = (Q,Σ, V, δ, µ, q0, F, ν). Let V ′ =
{xi | 0 ≤ i ≤ |V |} (so that |V ′| = |V | + 1), and
define the register ordering as xi � xj iff i ≤ j. x0
is a sink register which accumulates all those register
values which are lost during computation. Let Q′ be
the set of all those pairs (q, f), where q ∈ Q is the
current state, and the permutation f : V → V ′ \ {x0}
is the register renaming function. For simplicity, let us
extend each register renaming function f to V ∪ Γ →
V ′ ∪ Γ by defining f (γ) = γ, for γ ∈ Γ. We further
extend it to (V ∪ Γ)

∗ → (V ′ ∪ Γ)
∗ by f(v1v2 . . . vk) =

f (v1) f (v2) . . . f (vk). Let F ′ = {(q, f) | q ∈ F}, and
define the output function ν′ as ν′ (q, f) = f (ν (q)).

For each state (q, f) ∈ Q′, and each symbol a ∈ Σ,
define f ′ as follows. For each register v ∈ V , if at
least one register occurs in µ(q, a, v), then f ′ (v) =
min{f(u) | u occurs in µ (q, a, v)}. Observe that, be-
cause of the copyless restriction, for every pair of
distinct registers u, v ∈ V , f ′ (u) 6= f ′ (v). For all
registers v such that f ′ (v) is still undefined, define
f ′ (v) arbitrarily such that f ′ is a permutation. Now
δ′((q, f), a) = (δ(q, a), f ′).

Define µ′((q, f), a, x0) = x0 + f (v1) + f (v2) + · · ·+
f (vk), where {v1, v2, . . . , vk} is the set of registers in M
whose value is lost during the transition. For all registers
v ∈ V , if µ(q, a, v) = v1v2 . . . vk ∈ (V ∪ Γ)

∗, define
µ′((q, f), a, f ′(v)) = f(v1) + f(v2) + · · ·+ f(vk).

For an arbitrary ordering v1 ≤ v2 ≤ · · · ≤ v|V | of the
original registers V , define f0 (vi) = xi. It can be shown
that the CCRA M ′ = (Q′,Σ, V ′, δ′, µ′, (q0, f0), F ′, ν′)
is equivalent to M , and that its transitions are
normalized.

We will now assume that all CCRAs and shapes
under consideration are normalized, and we elide this
assumption in all definitions and theorems.

G. A partial order over shapes

We now make the observation that some shapes cannot
be used in the construction of other shapes. Consider
the shapes S1 and S> from figure V.1. Let π be a path
through the CCRA with shape S1. Then, no sub-path of
π can have shape S>, because if such a sub-path were to
exist, then the value in register y would be promoted to x,
and the registers x and y could then never be separated.
We now create a partial-order v, and an equivalence
relation ∼ over the set S of upward flowing shapes which
together capture this notion of “can appear as a subpath”.

Definition 36. If S is a shape over the set of
registers V , then the support of S, supp (S) =
{v ∈ V | v occurs in S (v)}. If S1 and S2 are two
shapes, then S1 @ S2 iff supp (S1) ⊃ supp (S2). We
call two shapes S1 and S2 support-equal, written as
S1 ∼ S2, if supp (S1) = supp (S2).

For example, the shape S⊥ from figure V.1 is the
bottom element of v, and S> is the top element. S1 ∼ S2,
and both shapes are strictly sandwiched between S⊥ and
S>. Note that support-equality is a finer relation than
incomparability1 with respect to v. In an early attempt
to create a partial order over shapes, we considered
formalizing the relation Rsp , “can appear as the shape
of a sub-path”. However, this approach fails because
Rsp is not a partial order. In particular, observe that
S1 · S2 = S1, and S2 · S1 = S2. Thus, both (S1, S2)
and (S2, S1) occur in Rsp , and they are not equal. The
presence of “crossing edges” in the visualization of S2

is what complicates the construction, but we could not
find a syntactic transformation on CCRAs that would
eliminate these crossings.

Claim 37. Let π be a path through the CCRA M with
shape S, and π′ be a subpath of π with shape S′. If
S′ 6@ S, then S′ ∼ S.

Proof: Assume otherwise, so S′ 6∼ S. Then, for some
register v ∈ supp (S), v /∈ S′. The effect of the entire
path π is to make the initial value of v flow into itself, but
on the subpath π′, v is promoted to some upper register
v′. Because of the normalization condition (definition
34), it follows that on the suffix, the value in v′ ≺ v
cannot flow back into v, leading to a contradiction.

Claim 38. Let π be a path through the CCRA M with
shape S, and let π′ be the shortest prefix with shape S′

such that S′ 6@ S. Then S′ = S.

Proof: Assume otherwise. From claim 37, we know
that S′ ∼ S.

1Note that incomparability with respect to v is not even an
equivalence relation over shapes.
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Case 1. For some register u /∈ supp (S), and registers
v, w ∈ supp (S), with v 6= w, u → v in S,
and u→ w in S′. Once u has flowed into w,
the “superpath” cannot remove u from w. It
is thus a contradiction that u flows into v in
S.

Case 2. For some register v ∈ supp (S), the order
of registers in S (v) and S′ (v) are different.
For some registers u and w, u occurs before
w in S (v), and w occurs before u in S′ (v).
However, once the values of w and u have
been appended to v in the order wu, they
cannot be separated to be recast in the order
uw. It is thus a contradiction that u occurs
before w in S (v).

H. Kleene-* and revisiting states

At each step of the iteration, for each pair of states
q, q′ ∈ Q, and for each shape S, we construct a
new expression vector R(i+1)

S (q, q′), summarizing paths
in r(i+1) (q, q′) with shape S. Recall that, from the
DFA-to-regex translator, r(i+1) (q, q′) = r(i) (q, q′) +
r(i) (q, qi+1) r(i) (qi+1, qi+1)

∗
r(i) (qi+1, q

′).
Let BS be an expression vector which summarizes

paths in r(i) (qi+1, qi+1)
∗ with shape S. We can then

write R
(i+1)
S (q, q′) = R

(i)
S (q, q′) B CS , where CS =

B {R(i)
S1

(q, qi+1) ·BS2
·R(i)

S3
(qi+1, q

′) | S1 ·S2 ·S3 =
S}. Our goal is therefore to construct BS , for each S. We
construct these expression vectors inductively, according
to the partial order v. The remaining subsections are
devoted to expressing BS .

I. Decomposing loops

Consider any path σ in r(i) (qi+1, qi+1)
∗ with shape

S. From claims 37 and 38, we can unambiguously
decompose σ = σ1σ2 . . . σkσf , where

1) each σj ∈ r(i) (qi+1, qi+1)
∗ is a self-loop at qi+1,

2) for each j, 1 ≤ j ≤ k, the shape Sj of σj is support-
equal to S, Sj ∼ S, and Sf @ S, and

3) for each j, 1 ≤ j ≤ k, and for each proper prefix
σpre ∈ r(i) (qi+1, qi+1)

∗ of σj , Spre @ S.
Let us call the split σ = σ1σ2 . . . σkσf the S-
decomposition of σ. See figure V.2.

Consider some shape S′ ∼ S, and let Lfirst (S′) be the
set of all paths π ∈ r(i) (qi+1, qi+1)

∗ with shape S′ such
that no proper prefix πpre of π has shape Spre ∼ S. We
can then unambiguously write π = πpreπlast , with πpre ∈
r(i) (qi+1, qi+1)

∗, πlast ∈ r(i) (qi+1, qi+1), and such that

qi+1 qi+1 qi+1

v v v

w w

Sj ∼ S
σj

Sj+1 ∼ S
σj+1

Figure V.3: For any path in r(i) (qi+1, qi+1)
∗, inward

flows into a (support) register v have to be from non-
support registers.

Spre @ S. Define AS′ = B {R(i+1)
Spre

(qi+1, qi+1) ·
R

(i)
Spost

(qi+1, qi+1) | Spre · Spost = S and Spre @ S}.
Claim 39. For all shapes S′ ∼ S, the expression vector
AS′ summarizes all paths in Lfirst (S′).

J. Computing BS

We now construct the expression vector BS . Consider
a path σ, and its S-decomposition σ = σ1σ2 . . . σkσf .
Given a register v, and a patch 1 ≤ k ≤ |S (v)|+1, three
cases may arise:

First, if S (v) = ε, i.e. v is reset during the computation.
v was reset while processing σk. Any registers flowing
into it during this time were also reset by σk. Thus, its
value is entirely determined entirely by σk and σf . First
define F = B {AS1

· BS2
| S1 · S2 = S and S2 @

S}, and let Lf =
⋃
S′∼S Lfirst (S′). Observe that

µ (qi+1, σ, v) = µ (qi+1, σkσf , v) = Fv,1 (σkσf ), and
therefore define BS,v,1 = L∗f

/
ε ⊕ Fv,1.

Second, if 1 < k < |S (v)|+ 1, i.e. that k refers to an
internal patch in S (v). Once the registers are combined
in some order, any changes can only be appends at
the beginning and end of the register value. The kth

constant in µ (qi+1, σ, v) is consequently determined by
σ1. Therefore, define BS,v,k = AS,v,k ⊕ L∗f

/
ε .

Finally, if k = 1, or k = |S (v)|+1, i.e. k is either the
first or the last patch. First, we know that v ∈ supp (S).
Also, we know that any registers which flow into v have
to be non-support registers. See figure V.3. Thus, the value
being appended to v while processing σj is determined
entirely by σj and σj−1. The idea is to use chained sum
to compute this value.

We will now define BS,v,k for k = |S (v)| + 1. The
case for k = 1 is symmetric, and would involve reversing
the order of the operators, and replacing chained sum
with the left-chained sum.

We are determining the constant value appended to
the end of v while processing σ. We distinguish three
phases of addition: while processing σ1, only the constant
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qi+1 qi+1 qi+1 qi+1 qi+1 qi+1 qi+1 qi+1
S1 = S

σ1

S2 ∼ S
σ2

· · · Sj ∼ S
σj

· · · Sk ∼ S
σk

Sf @ S

σf

qi+1 qi+1 qi+1

Spre @ S

σpre ∈ r(i) (qi+1, qi+1)
∗

Ssuff

σsuff ∈ r(i) (qi+1, qi+1)

Figure V.2: Decomposing paths in r(i) (qi+1, qi+1)
∗ with shape S. σj can be unambiguously written as σpreσsuff ,

with σsuff ∈ r(i) (qi+1, qi+1).

at the end of AS,v,k is appended. While processing σj ,
j > 1, both string constants and registers appearing
after the occurrence of v in S (v) are appended. Third,
while processing σf , both string constants and registers
appearing after the occurrence of v in S (v) are appended.
The interesting part about the second case is that this
appending happens in a loop, and we therefore need
the lookback provided by the chained sum operator.
Otherwise, this case is similar to the simpler third case,
where a value is appended exactly once.

While processing σ1, some symbols are appended
to the kth position in S (v). This is given by fpre =

AS,v,k ⊕ L∗f

/
ε .

Similarly, while processing the suffix σf , some symbols
are appended. Say some register u→ v in Sf . Then u /∈
supp (Sf ), and hence u /∈ supp (S) and u /∈ supp (Sk).
Thus, the value appended by σf is determined by σkσf .
For each pair of shapes Sk and Sf such that Sk ∼ S,
and Sf @ S, consider A′Sk

= ASk
� Dom (Sf ),

and B′Sf
= BSf

� Dom (ASk
). Consider the update

expression B′Sf ,v
: say this is v := σvτ , where σ and

τ are strings over expressions and registers. For each
register u in τ , substitute the value A′Sk,u,1

– since u
was reset while processing Sk, this expression gives
the contents of the register u – and interpret string
concatenation in τ as the function combinator sum. Label
this result as fpost,Sk,Sf

. Define fpost = L∗f

/
ε ⊕ B

{fpre,Sk,Sf
| Sk ∼ S and Sf @ S}.

Finally, consider the value appended while processing
σj , for j > 1. This is similar to the case for σf : if u→ v
in Sj , when u /∈ supp (Sj) and u /∈ supp (Sj−1). Thus,
the value appended by σj is determined by σj−1σj . For
each pair of states Sj−1 ∼ S and Sj ∼ S, consider
A′Sj−1

= ASj−1 � Dom
(
ASj

)
, and A′Sj

= ASj �
Dom

(
ASj−1

)
. Consider the update expression A′Sj ,v,k

.
Let this be v := σvτ , where σ and τ are strings over ex-
pressions and registers. For each register u in τ , substitute
the value A′Sj−1,u,1

– since u was reset while processing
Sj−1, this expression gives the contents of the register u

– and interpret string concatenation in τ as the function
combinator sum. Label this result as fSj−1,Sj

. Define
f =

∑
(B {fSj−1,Sj

| Sj−1 ∼ S and Sj ∼ S}, Lf ).
Finally, define BS,v,k = (fpre + fpost) B (fpre + f +

fpost).
By construction, we have:

Claim 40. BS summarizes all paths in r(i) (qi+1, qi+1)
∗

with shape S.
This completes the proof of theorem 26.

VI. CONCLUSION

In this paper, we have characterized the class of
regular functions that map strings to values from a
monoid using a set of function combinators. We hope
that these results provide additional evidence of robust
and foundational nature of this class. The identification of
the combinator of chained sum, and its role in the proof
of expressive completeness of the combinators, should be
of particular technical interest. There are many avenues
for future research. First, the question whether all the
combinators we have used are necessary for capturing
all regular functions remains open (we conjecture that
the set of combinators is indeed minimal). Second, it is
an open problem to develop the notion of a congruence
and a Myhill-Nerode-style characterization for regular
functions (see [7] for an attempt where authors give
such a characterization, but succeed only after retaining
the “origin” information that associates each output
symbol with a specific input position). Third, it would be
worthwhile to find analogous algebraic characterizations
of regularity when the domain is, instead of finite strings,
infinite strings [6] or trees [14], [4] and/or when the range
is a semiring [12], [5]. Finally, on the practical side, we
plan to develop a declarative language for document
processing based on the regular combinators identified
in this paper.
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