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ABSTRACT

We present a controlled experiment for the empirical evalua-
tion of Example-Driven Modeling (EDM), an approach that
systematically uses examples for model comprehension and
domain knowledge transfer. We conducted the experiment
with 26 graduate and undergraduate students from elec-
trical and computer engineering (ECE), computer science
(CS), and software engineering (SE) programs at the Univer-
sity of Waterloo. The experiment involves a domain model,
with UML class diagrams representing the domain abstrac-
tions and UML object diagrams representing examples of
using these abstractions. The goal is to provide empirical
evidence of the effects of suitable examples in model com-
prehension, compared to having model abstractions only, by
having the participants perform model comprehension tasks.
Our results show that EDM is superior to having model ab-
stractions only, with an improvement of 39% for diagram
completeness, 30% for questions completeness, 71% for effi-
ciency, and a reduction of 80% for the number of mistakes.
We provide qualitative results showing that participants re-
ceiving model abstractions augmented with examples expe-
rienced lower perceived difficulty in performing the compre-
hension tasks, higher perceived confidence in their tasks’
solutions, and asked fewer clarifying domain questions, a re-
duction of 90%. We also present participants’ feedback re-
garding the usefulness of the provided examples, their num-
ber and types, as well as, the use of partial examples.

Categories and Subject Descriptors

D.2 [Software]: Software Engineering; D.2.1 [Require-
ments/Specifications]: Elicitation methods; D.2.1 [Re-
quirements/Specifications]: Methodologies; D.2.13 [Re-
usable Software]: Domain engineering; 1.6.5 [Model De-
velopment|: Modeling methodologies
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1. INTRODUCTION

The process of knowledge transfer occurs in most activities
of software development. In this paper, we consider the
transfer of domain knowledge among project stakeholders.

The main challenge in domain knowledge transfer is that
much of the knowledge is complicated in nature, difficult to
articulate, and communicate among stakeholders who have
different backgrounds and skills [29]. Subject Matter Ex-
perts (SMEs) usually assume that business analysts (BAs)
possess the same level of knowledge and they are able to
infer the business rules that are required to build a software
system that addresses the problems of SMEs. The problem
is worsened when the BAs mistakenly think that they under-
stand the domain and they do not require further elicitation
sessions. This contributes to the production of incomplete
and/or incorrect requirements artifacts, which is one of the
major reasons for the failure of software projects [23, 11].

To help with knowledge transfer, structural modeling can
be used for articulating, capturing, and communicating do-
main knowledge [29]. However, the constructed models often
only contain domain abstractions that cannot be easily val-
idated by other stakeholders who usually are not modeling
experts [14]. Based on research results in cognitive psychol-
ogy and in software engineering, we propose that explicit
examples should be used together with the abstrac-
tions for effective domain knowledge transfer [10].

The process of collecting, communicating, and verifying
domain knowledge iteratively through examples is what we
refer to as ezample-driven modeling (EDM) [10]. Since the
process of domain knowledge transfer is not exclusive to the
phase of creating models, EDM is of equal importance when
creating or exchanging models. In EDM, the purpose of
examples is to explore and learn about the domain during
all phases of software development.

Examples are commonly used in software engineering. Test
cases are examples of what the software should do. Traces
are example executions of behavioral models used for model
validation [13, 27]. Approaches such as test-driven devel-
opment [19], behavior-driven development [25], story test
driven development [29], all postulate that examples should
be used for specifying software behavior. The importance of
using examples in structural modeling, on the other hand,
seems to be underestimated [30, 39]. For example, UML
object diagrams, which represent examples of more abstract



class diagrams, are rarely used in practice [30, 39].

It is important to verify whether the use of examples of-
fers significant benefits in structural modeling. It is also
important to know which types of examples, the number of
examples, and their presentation forms are best for improv-
ing the comprehension of the model and, consequently, of
the domain. This paper presents a controlled user experi-
ment targeting these questions. The objective is to provide
the missing empirical evidence about the effects of using ex-
amples on structural model and domain comprehension.

The results of the experiment show that augmenting model
abstractions with explicit examples improved model and do-
main comprehension by participants who were novices to
the application domain. The highest score for diagram com-
pleteness (69.6%) achieved by the participants who received
the model abstractions only is lower than the lowest score
of those who received the abstractions together with exam-
ples (81.1%). On average, participants receiving the exam-
ples asked 1 instead of 10 domain questions (a reduction of
90%), had 5 times fewer mistakes per object diagram (a re-
duction of 80%), scored 1.5 times higher for the questions
response completeness, and had nearly double the efficiency
as compared to the control group. EDM group participants
also experienced lower perceived difficulty of performing the
comprehension tasks, while at the same time, higher confi-
dence in their answers. We conjecture that these significant
results could potentially translate into significant time and
cost savings in industry; however, industrial evaluation re-
mains future work.

Structure of the paper. Section 2 presents a modeling
approach where abstractions and examples are equally im-
portant parts of a model. Section 3 describes the design of
our experiment and details its operational phase. Section 4
describes our data collection techniques. Section 5 presents
our preliminary data and subjects analysis. Section 6 dis-
cusses our results and major findings, followed by a presen-
tation of the threats to validity in Section 7. Concluding
remarks and future work are in Section 9.

2. EXAMPLE-DRIVEN MODELING

In order to better understand and judge our experimental
design and make the implications of our hypotheses testing
more apparent [22], this section presents the theory from
which our hypotheses are derived.

We have previously proposed example-driven modeling
(EDM), an approach where modeling is based on exam-
ples [10]. EDM relies on the systematic use of examples for
eliciting, validating, and verifying complex domain knowl-
edge. The use of examples in current structural modeling
practices, at least in the UML context, is undervalued [30,
39]. This limits the use of models to highly trained ex-
perts [14] who are able to work with and understand ab-
stractions. However, many stakeholders who would benefit
from the models are not experts. Yet, they can understand
and prefer working with models via examples [14, 18]. Ac-
cording to Van God et. al. [36], the use of examples lowers
the mental effort required to understand problems.

In practice, class diagrams are much more frequently used
than object diagrams [30, 39]. This suggests that even if ex-
amples are used in the structural modeling world, they are
used informally. In EDM, models comprise both abstrac-
tions and examples (“model = abstractions + examples”),
where abstractions are representations that are disassoci-

ated from concrete objects, and the examples are concrete
instances of these abstractions. We hypothesize that fos-
tering model comprehension is achieved if model abstrac-
tions are augmented with examples, since humans experi-
ence optimum knowledge transfer when they learn abstrac-
tions together with examples [15, 17]. In this experiemnt,
we address the following questions: What is the impact of
examples on model comprehension? How to use examples
systematically? What kind of examples are more useful than
others?. We derive our hypotheses and attempt to answer
these questions based on cognitive science theories.

The use of examples varies between novices and experts.
While novices would benefit instantly from examples for
comprehension, experts would only need examples for clar-
ifications [21, 36, 12]. According to Kalyuga [21], examples
help compensate for the missing or partially available in-
formation. Hence, the difference in the need of examples
is attributed to the user’s level of expertise in the domain.
We hypothesize that BAs who are familiar with the domain
prefer abstractions and seek examples only for clarifications.
On the other hand, BAs who are new to the domain prefer
to work with examples first to understand the abstractions.

The choice of examples is important for effective com-
prehension and domain knowledge transfer. While posi-
tive (valid) examples specify correct model instances, neg-
ative (invalid) examples specify undesired or unacceptable
instances. Invalid examples can be abstracted as model con-
straints. According to Gick and Paterson [16], the most
effective types of examples are near-miss contrasting exam-
ples. They help humans build abstractions by emphasizing
the critical differences between the instances.

Partial examples are needed to allow expressing only the
relevant information. Partial examples can be expressed us-
ing partial instances, whereby some elements (e.g., objects,
attributes, links) can be ommitted or their presence can be
uncertain; and whereby values can be unspecified (it is un-
known whether a value is present or not) or partially speci-
fied (value is present but unknown) [8, 33]. We hypothesize
that having partial examples limited to a given context is
more beneficial than having full complete instances of the
model. This way the novices to the domain can focus on a
small subset of the domain at a time.

3. EXPERIMENTAL DESIGN

The purpose of our experiment is to quantitatively and
qualitatively evaluate the effectiveness of EDM as a struc-
tural modeling approach when compared to a modeling ap-
proach whereby the model consists of abstractions only. We
followed the guidelines for software engineering (SE) exper-
imentation presented in [20, 22, 40]. The goal of the experi-
ment is summarized using the GQM template [37] (Table 1).

3.1 Research Questions and Hypotheses

The research questions underlying our experiment are:

e RQ1: Does augmenting model abstractions with ex-
plicit examples improve model comprehension among
model receptors who are novices to the application do-
main, compared to having model abstractions only?

e RQ2: Does using a variety of valid and invalid ex-
amples improve the model receptors’ comprehension
of the model abstractions, compared to having valid
examples only?



Table 1: Experimental goal according to GQM template.

for the purpose of improving the comprehension

Analyze the effects of using examples on comprehension of structural models by model receptors

with respect to correctness, completeness, and efficiency of solving instantiation tasks and answering domain questions
from the perspective of the researcher who is the knowledge provider
in the context of knowledge transfer to model receptors who are novices to the domain.

We use several measures of comprehension as dependent
variables (in literature also referred to as “response variable”)
for running the experiment. Accordingly, we formulate the
following null/alternative hypotheses:

H1o/H1: Augmenting model abstractions with explicit
examples [does not impact]o/[improves| the completeness
of the object diagram created by each participant.

H20/H2: Augmenting model abstractions with explicit
examples [does not impact]o/[reduces| the number of mis-
takes in a given participant’s diagram.

H30/H3: Augmenting model abstractions with explicit
examples [does not impact]o/[increases| the number of the
questions answered correctly by each participant.

Hjo/H4: Augmenting model abstractions with explicit
examples [does not impact]o/[improves| the participant’s
efficiency in solving the questions.

H50/H5: Augmenting model abstractions with explicit
examples [does not impact]o /[reduces]| the participants’ per-
ceived difficulty in performing the comprehension tasks.

H60/H6: Augmenting model abstractions with explicit
examples [does not impact]o/[increases| the participants’
perceived confidence in the comprehension tasks’ solutions.

H70/HT7: Having a variety of valid and invalid examples
[does not impact]o/[improves] model comprehension by the
participants, compared to having valid examples only.

The last null and alternative hypotheses correspond to the
second research question. We perform quantitative analysis
to accept/reject the first four null and alternative hypothe-
ses, while we depend on qualitative feedback from the par-
ticipants for the last three null and alternative hypotheses.

3.2 Dependent and Independent Variables

The purpose of this experiment is to verify whether EDM
improves model and, consequently, domain comprehension
among stakeholders who are considered novices to the ap-
plication domain, compared to a structural modeling ap-
proach where the model consists of abstractions only. Con-
sequently, our experiment has one independent variable: the
modeling method used to understand the model abstractions.
The modeling method varies across two groups: the control
group which gets a model consisting of abstractions only,
and the EDM group which gets a model consisting of both
abstractions and examples. The design of our experiment is
a between-subjects design where each participant is either a
part of the control group or the EDM group.

Similarly to other empirical evaluations of UML compre-
hension [20, 31, 32, 34, 35], the dependent variables of our

experiment are diagram completeness, diagram mistakes, ques-

tions response completeness, the efficiency in answering the
questions, the participants’ perceived difficulty in perform-
ing the comprehension tasks, and finally the participants’
confidence in their task solutions.

3.3 Problem Domain

We selected rewards loyalty programs as the problem do-

main of our experiment. Loyalty programs represent struc-
tured marketing activities, especially in the retail domain,
that reward and therefore encourage loyal buying behavior
at the customer end. The choice of rewards loyalty programs
was inspired by a similar domain modeled and used by one
of our industrial partners. The domain is sufficiently rich in
concepts, relationships, and constraints, and we had enough
knowledge to build model abstractions and examples.

3.4 Participants

In total, we had 28 participants in the experiment: 26
model receptors, 1 SME, and 1 model creator. For model
receptors, we decided to target graduate and undergraduate
students from electrical and computer engineering (ECE),
computer science (CS), and software engineering (SE) pro-
grams at the University of Waterloo. The year of study
for the undergraduate students varied from second year to
fourth year. Most students had previous work experience
either through full-time jobs or co-op terms, as well, as
familiarity with UML either through academic projects or
work experience. To avoid biasing the results through model
receptors’ expectations, we employed blinding techniques.
The model receptors were not familiar with the experiment
hypotheses nor with the measures we were applying. The
SME and the model creator were the first and second au-
thors of the paper. They were both familiar with entire
experimental setting, and they had advanced knowledge of
UML class and object diagrams.

3.5 Tasks and Treatments

EDM provides aid in the comprehension of model abstrac-
tions and the problem domain. Our approach supports BAs,
designers, developers, and any role who needs to understand
the domain for future use. Our aim was to design a set of
tasks that are close to scope and complexity to real tasks
performed by practitioners, and at the same time allow us
to objectively measure the difference between the compre-
hension levels of the two modeling approaches. We asked
the participants from both the control and EDM groups to
complete the same set of tasks in a single three-hour session.
Model receptors were randomly assigned to treatments.

The experiment involved two tasks. Task 1 asked the par-
ticipants to create an object diagram for a rewards loyalty
program called Club Sobeys. We provided a brief overview
about what Club Sobeys is. The instructions specified that
the participants should create at least one instance of ev-
ery class, include all associations and attribute values, and
realize all requirements included in the experiment docu-
ment. For example, one requirement was “Provide informa-
tion about the different sales channels through which the cus-
tomer will know about the offers. Take into account different
ways of promoting store and partner offers.” We provided
the participants with a checklist that included all the main
concepts they needed to include in their object diagrams:
member registration, points accumulation through in-store



products purchased without offers, points accumulation for
in-store offers, sales channels to promote all offers, partner
offers, and redemption mechanisms. The control group re-
ceived the model abstractions (class diagram) in this task.
However, the EDM group received both the model abstrac-
tions and the six partial examples for a different rewards
loyalty program called Shoppers Optimum.

Task 2 of the experiment asked the model receptors to an-
swer a set of 15 questions. All questions were related to the
modeled domain. Task 2 included both multiple choice and
short answer questions. We asked them to record the start
and end times for solving this task to be able to calculate
their efficiency. We instructed them not to switch between
the tasks once they started task 2 as the time should be
solely allocated for answering the domain questions. How-
ever, we allowed the participants to go back to task 1 after
finishing task 2 questions if they felt the need to add or
fix something in their object diagrams. From the beginning
and throughout the experiment, we encouraged the model
receptors to ask any questions they had. We recorded all
questions but we only answered questions related to tooling
or understanding of requirements.

We used MagicDraw [2] for UML modeling. We intro-
duced the tool during the first 15 minutes of the session and
provided training materials on using the tool for opening the
provided diagrams and creating object diagrams.

3.6 Operation

The operation of the experiment covered the period from
November 2012 till July 2013 and was divided into two
phases: the pilot study and the experiment. We first con-
ducted a pilot study with three participants, which allowed
us to test and improve the experimental design. We also
conducted a test session to simulate the actual experiment
to verify the clarity of the study materials and the time
needed for completing the tasks. We did not include any of
these data points in the results. In total, we conducted 10
experimental sessions, each having between two and three
model receptors, who were randomly assigned to either the
control or EDM groups.

4. DATA COLLECTION

4.1 Model Abstractions and Examples

We gathered data about loyalty programs in general and
two specific programs: Club Sobeys and Shoppers Optimum.
We chose these programs due to their publicly available data
on their stores’ websites. Each program generally has a loy-
alty card, sometimes called a points card, associated with
it. This card identifies the card holder as a loyalty program
memeber. Members earn points for every paid transaction,
when they swipe their card upon checkout. Members can
then redeem their points via one of the redemption channels
provided in the store. One example of points redemption is
instant savings off a bill.

The researcher playing the role of a SME studied the ac-
tual loyalty programs, and then the other researcher play-
ing the role of the model creator elicited all the necessary
knowledge through conversations with the SME. The model
creator created a single UML class diagram that satisfied
the requirements for both loyalty programs, and validated
it with the SME. The class diagram was composed of 23
classes, 34 associations, and 8 constraints. The constraints

were written in natural language because we expected that
most model receptors would not be familiar with the object
constraint language (OCL) [38]. An extract from the class
diagram is shown in Fig. 3(a). The full class diagram is
available with the rest of experimental materials in [4].
The SME prepared six partial examples in the form of par-
tial UML object diagrams. Each partial example clarified
one or two main concepts derived from the model abstrac-
tions. We used a variety of examples: four valid and two
invalid examples. Example 6 shown in Fig. 3(b), represents
an invalid example that violates a constraint; a member can-
not earn and redeem points for the same bill. We see that
John bought an Omega3-bottle that didn’t have an offer as-
sociated with it, and hence was added directly to his bill. He
also bought VitaminC, which was offered at a reduced price:
$1 off. John knew about this offer through the InStore-
Flyer. The bill includes the reduced price for VitaminC in
its dollarAmountBeforeTax attribute value. Since there are
no BonusPoints associated with any offer picked by John,
the bill only accumulated regular BasePoints. We chose 10
points for every $1 as our BaseMechanic. This part of the
example shows how a member can accumulate points. How-
ever, the rest of the example shows points redemption as well
that would make John only pay $6.95 instead of $16.95. This
represents a constraint violation: if RedemptionMechanic is
applied, it has to be the only mechanic applied to the bill.

4.2 Participants’ Information

We identified three factors that could have an influence on
the model receptors’ performance in our experiment: their
background, UML experience level, and domain knowledge.
The background refers to the working context of the model
receptor, which we divided into two main categories: indus-
try and academic. For this experiment, our model receptors
were students only. However, many of them had industry
experience. The domain knowledge refers to the extent of
their familiarity with rewards loyalty programs.

Before the experiment, we collected both personal (e.g.,
name, email address) and professional data (e.g., depart-
ment, graduate or undergraduate student, UML experience,
rewards loyalty programs experience) about the model re-
ceptors using an online questionnaire. We measured and
controlled the model receptors’ experience levels with UML
class and object diagrams as well as the problem domain
through the following procedure. First, we sent them re-
cruitment emails that mentioned our interest in recruiting
students who have UML class and object diagrams experi-
ence to take part in a structural modeling experiment, and
asked interested recipients to complete a background ques-
tionnaire. The questionnaire included multiple choice ques-
tions asking students to rate their expertise with structural
modeling in general and with UML class and object dia-
grams, and their familiarity with the application domain.
One question asked the students to choose the source of
their experience with UML: academic, industrial, or both.

On a 5-point Likert Scale [24] ranging from 1 (no experi-
ence) to 5 (expert), we selected students who rated them-
selves on average: 2 or higher for structural modeling expe-
rience, 3 or higher for UML class diagram experience, 3 or
higher for UML object diagram experience, and 1 for their
familiarity with the application domain. Second, we sent the
selected students a UML assessment exercise. The exercise
aimed at making sure that the students rated their experi-



ence, with respect to UML class and object diagrams, cor-
rectly. The exercise included 11 multiple choice questions,
and one diagram construction question. We selected the
students who scored 75 percent or higher in the assessment
exercise to be model receptors in our experiment. Among
the 26 selected students, only two scored below 80 percent.

4.3 Timing Data

To time the model receptors accurately, the experimenter
started each session for all students at the same time so
that the total time allocated for all students is exactly three
hours. To time the second task of the experiment, the model
receptors were asked to inform the experimenter when they
wanted to start solving task 2. The experimenter recorded
the start and end times for the second task, and ensured that
there was no switching between the tasks of the experiment.

4.4 Evaluation of Task Solutions

At the end of each session, the experimenter collected a
soft copy of the students’ object diagrams, and a hard copy
of their answers for task 2. Before grading their solutions,
we created a list of classes and associations that needed to be
instantiated in an object diagram, a set of correct answers
for task 2, and the marking scheme for each task.

We employed a blind marking technique to rule out any
sort of bias; when grading the task solutions the experi-
menter didn’t know the name of the participant nor which
group he or she belonged to. After marking all solutions,
the experimenter created code names for some students and
created a mapping between the code names and the students
groups. The code names were for sample students’ solutions
provided to the second and third authors in addition to the
employed marking scheme, which allowed them to perform
blind verification of the grades. The authors discussed the
differences and agreed on the final grading.

4.5 Participants’ Feedback

Each experiment session ended with a debriefing part, in
which the model receptors assessed the level of difficulty for
each task, identified specific parts of the class diagram that
were hard to understand, assessed the confidence level in
their answers for each task, provided feedback regarding the
overall time pressure of the experiment, and, optionally, pro-
vided any comments they might have that could potentially
help us improve the experiment. The model receptors who
were part of the EDM group, in addition to the previous
items, also answered questions related to whether it would
have been hard to understand the model abstractions with-
out examples, specified which examples (if any) were of help,
commented on whether having a variety of valid and invalid
examples was better than having valid examples only, com-
mented on whether having partial examples was better than
having a single complete, but big, example object diagram,
and finally provided their comments regarding the number
of examples used, the concept(s) covered by each example,
and the size of each provided example.

5. DATA ANALYSIS
5.1 Subject Analysis

We conducted the experiment with 26 participants in sev-
eral runs. We excluded one data point from the control

participants as the participant couldn’t finish the experi-
ment within the allocated time. Hence, we ended with 13
data points for the EDM treatment and 12 data points for
the control treatment. Moreover, the random assignment of
model receptors to treatments led to a balanced distribu-
tion of graduate and undergraduate students, in addition to
a balanced distribution of students’ expertise among treat-
ments.

5.2 Preliminary Data Analysis

From the participants’ solutions for task 1, we observed
that most mistakes and missing objects from the control
group object diagrams were related to the classes Redemption-
Mechanic, RedemptionChannel, BonusMechanic, and Part-
nerOffer. All participants from the control group scored
zero for the RedemptionMechanic class, and 9 out of 12 par-
ticipants scored zero for incorrect or missing instances of
the other two classes. On the other hand, all EDM partic-
ipants got the full mark for the classes PartnerOffer and
RedemptionMechanic, and 11 out of 13 participants got the
full mark for the class BonusMechanic. The inability to cor-
rectly instantiate the class RedemptionMechanic by the con-
trol group indicates the usefulness of explicit examples over
any other form of extra information. In the experimental
materials, we provided all participants with a textual de-
scription of possible ways by which members can redeem
their points: “Members can redeem their points for instant
savings off a bill or have them automatically converted to one
of Sobey’s partners.”, “Possible ways by which a member can
redeem points previously added to their account include: in-
stde the store to reduce overall grocery costs”, or through a
partner such as Aeroplan: “Aeroplan members collect miles
via credit cards or via a points conversion system with one
of their partners.”

We observed that all participants from both treatments
answered Q9 correctly [4]. Q9 was about the difference be-
tween FizedPriceOff and FizedPercentOff mechanics, which
are likely to be familiar to the participants based on previ-
ous shopping experience. This supports our earlier discus-
sion from Section 2 that people who are already familiar with
the domain might not need examples to improve their model
comprehension compared to novices to the application do-
main. There are three questions that all EDM participants
solved correctly, while less than half of the participants in
the control group were able to solve: @5, @8, Q10. We
observed the highest discrepancy between the scores of the
control group for @15, with a minimum score of 0 out of 5,
and a maximum score of 4. This question tested the par-
ticipants’ ability to perform impact analysis. If they had to
change the value of the BaseMechanic instance, then which
other instances would have to be changed accordingly. We
didn’t observe this discrepancy for the EDM group answers
for this or any other question in task 2.

6. RESULTS
6.1 Quantitative Analysis

Given the design of our experiment; a between-subjects,
unbalanced design (13 students for EDM versus 12 students
for the control group) with one independent variable, the
suitable parametric test for hypothesis testing is the inde-
pendent samples students’ t-test [20]. We ensured that our
data met the test assumptions through the following:



e [ndependence of observations: We met this assumption
through our choice of a between-subjects design.

e Normality of the populations across the dependent vari-
ables: We tested the normality of all dependent vari-
ables using the normal quantile-comparison plots [20].
The assumption was met for all cases.

e Fqual variances of the populations across the depen-
dent variables: We tested our data for equal variances
using the Levene’s test [28]. The assumption was not
met for diagram completeness. We used the Welch’s
t-test [5] for that case, which is an adaptation of the
student’s t-test intended for use when the two popula-
tions have unequal variances.

We performed all tests using the R statistical package [3].
We chose a significance level of 0.05 which corresponds to to
a 95% confidence interval. The statistics related to diagram
completeness, diagram mistakes, task 2 completeness, and
task 2 efficiency are presented in Table 2.

Diagram Completeness. We use this variable to indi-
cate how complete the object diagrams created by the model
receptors are with respect to the provided class diagram and
a set of requirements. Creating an object diagram with at
least one instance for every class, all attribute values, and
all links was a requirement for all participants. We measure
completeness as a percentage of the participant’s score for
correctly instantiated objects and links over the total refer-
ence score for all required objects and links. By “correctly”
we mean an instantiation that satisfies all constraints and
domain requirements.

We calculate the total score for completeness as follows:

1 mark for each correctly instantiated object, 1 mark for
each correctly included attribute value, and 1 mark for each
correctly assigned link in the object diagram. PromotionVe-
hicle is the only object assigned 2 marks as the provided re-
quirements asked the participants to include different ways
for promoting in store and partner offers. This means at
least 2 different instances of PromotionVehicle are needed.
There is 1 extra mark to satisfy the requirement that the
object diagram must include at least one OwnerProduct in-
stance that isn’t associated with offers. Also, firstName
and lastName attributes are only marked once whether the
participant included them in the Member object or in the Ac-
count object. We excluded any redundancy from our calcu-
lations. For example, if a participant instantiated the same
object twice, we only mark one correct instance. This allows
us to have a point of comparison with other participants’ di-
agrams. The maximum score is 69, corresponding to a 100%
for diagram completeness.
Result: There was a significant effect of examples on dia-
gram completeness, with a p-value<0.0002, indicating that
the mean completeness score for the EDM group was sig-
nificantly higher than the completeness score for the control
group. This effect is illustrated in Fig. 1.

Diagram Mistakes. We use this variable to indicate
the number of mistakes per object diagram. By mistake, we
mean wrong interpretation and/or usage of classes, associ-
ations, in addition to unsatisfied constraints. For example,
one participant used a product manufacturer such as Kraft
Foods to be the ProgramOwner instead of ClubSobeys. An-
other mistake would be applying accumulation and redemp-
tion techniques for the same instance of Bill, which violates
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Figure 1: Diagram completeness and mistakes.

a constraint in the class diagram. The difference between
the two variables Diagram Completeness and the Diagram
Mistakes is that the first takes into account missing classes,
attributes, and/or links. For example, if a participant did
not include the value of an attribute, it is not considered a
mistake but decreases their score for diagram completeness.
Result: As illustrated in Fig. 1, with a p-value<0.0053, the
data indicates that there was a significant effect of examples
in reducing the number of mistakes in the participants’ dia-
grams who belonged to the EDM group compared to those
of the control group.

Task 2 Completeness. This variable measures each par-
ticipant’s score for answering task 2 questions correctly. The
questions given in task 2 require both model and domain un-
derstanding. Having them as the second task is important so
that the participants would have already spent time under-
standing the model abstractions and the domain to create
the object diagram in the first task. There is only one cor-
rect choice for each multiple choice question and one correct
answer for each short answer question except for one ques-
tion which had two possible correct answers, as seen in [4].
The score for task 2 is calculated as follows: 1 mark for
each multiple choice question and 1 mark for each concept
that needs to be included in the participant’s answer for the
short answer questions. For example, the answer for the
question “What are the type(s) of points that are collected
by the bill?”, is marked out of 2: 1 mark for BasePoints and
1 mark for BonusPoints. We gave partial credit for partially
correct answers. The maximum score of correctness is 24.
Result: We observed an expected significant effect of ex-
amples on the participants’ solutions for task 2, with a p-
value<0.0012, indicating that the average task 2 complete-
ness score for the EDM group was significantly higher than
the one for the control group as shown in Figure 2.

Efficiency. In our analysis, we use efficiency of the model
receptors in solving the questions in task 2 as a dependent
variable. We measure efficiency as the ratio between task 2
completeness score and the time spent in minutes completing
the task. The boxplot in Fig. 2 shows the efficiency scores
for the EDM group compared to the control group.
Result: With a p-value=0.00082, the data shows that there
was a significant effect on improving the efficiency scores for
the EDM group compared to the control group.

6.2 Qualitative Analysis



Table 2: Statistics related to diagram completeness and mistakes, task 2 completeness and efficiency.

Dep. var. Diagram Completeness

Treatment EDM Control EDM

Diagram Mistakes

Task 2 Completeness Efficiency
Control EDM Control EDM Control

mean 88.1% 49.2% 3.5
min 81.2% 37.7% 0.0
max 97.1% 69.6% 7.0
median 87.0% 47.8% 3.0
stdev 4.3% 9.3% 2.0

15.1 21.2 13.6 1.2 0.7
7.0 17.0 9.0 0.7 0.2
25.0 24.0 19.0 2.3 1.1
15.5 21.0 14.0 11 0.6
4.7 2.0 3.2 0.5 0.3
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Figure 2: Task 2 completeness and efficiency.

We present our qualitative analysis in terms of the partic-
ipant’s feedback provided at the end of each experimental
session. First, we asked all participants to rate the difficulty
level of their experience in creating the object diagram and
in solving task 2 questions. On a 5-point Likert scale ranging
from 1 (very easy) to 5 (very difficult), participants from the
EDM group rated their experience on average 2.46 for diffi-
culty in creating the object diagram and 2.08 for difficulty
in answering task 2 questions. Participants from the control
group, on the other hand, rated their experience on average
3.83 for difficulty in creating the object diagram and 3.25 for
difficulty in answering task 2 questions, which indicates a
lower perceived difficulty by the model receptors to compre-
hend the model abstractions and solve the comprehension
tasks when they had examples. We verified this when we
asked the EDM participants: “Do you think it would have
been hard to understand the class diagram without exam-
ples?”. All participants answered “Yes”. The difference in
experienced difficulty by participants was apparent in the
number of questions about the domain raised by the EDM
versus the control group. On average, each session had 10
domain questions raised by the control group compared to
one domain question for the EDM group (reduction of 90%).

Second, we asked the participants to indicate the classes
and/or associations that were most difficult to comprehend.
Most of the control group answers included the following
classes: BonusMechanic, RedemptionMechanic, Partner0f-
fer, and Bill. As for the most difficult associations, these
were the associations involving these classes. Some of the
reasons the control group found these tasks and associa-
tions difficult were: “I couldn’t understand how the attributes
propagate through the classes. Where shall I start with points
calculation?”, “When do I use each of the four associations
for the Points class? It’s confusing without seeing them in
context.”, “I started with a few classes to understand them,

but whenever I found a constraint it made me change the way
I visualized how the classes are linked together and hence a
total shift in my understanding.”, and finally “the concepts
for these classes unlike Member or Account classes don’t hold
any previous meaning and hence were difficult to get their
idea. Although I understood the meaning of Bill and saw
the formulas for points calculation, I couldn’t form a pic-
ture of how the classes are combined to form a system for
accumulating points.”

The EDM group mentioned that the same classes and as-
sociations were hard to comprehend from the abstractions
only, but the examples helped a lot. We asked the EDM
participants to list the examples they found most useful and
helpful. The majority mentioned examples 2, 4, 5, and 6 [4].
These examples covered all classes and associations that the
control group participants found hard to understand. The
participants found these examples most useful for the fol-
lowing reasons: “example 2 shows separately how a reqular
product is treated compared to a one that has an offer”, “ex-
ample 2 shows how to apply bonus mechanic when you are
using the multiplier attribute. It also shows that the points-
Multiplier and fixedAmount attributes are mutually exclu-
sive”, “example 4 shows how the attributes from different
classes relate and the sequence for accumulating points. For
example, you have to finish in-store points before you apply
partner points”, “example 4 shows that the account points
balance gets updates with which value in the Bill class. For
example, it doesn’t get the base or bonus points directly”, and
“I couldn’t have figured out any classes from the redemption
process except through this example [example 5]”.

Twelve out of 13 EDM participants, when asked whether
having a variety of valid and invalid examples was more help-
ful than having valid examples only, replied that they found
the invalid example 6 helpful in understanding the constraint
about how one can not apply accumulation and redemption
for the same bill. The only participant who did not find
the invalid examples useful answered incorrectly the follow-
ing question in task 2 related to the constraint violation
illustrated by example 6: “Can a customer earn and redeem
points for the same bill?”. We also asked the EDM partic-
ipants if having small object diagrams representing partial
examples was more useful than having one complete object
diagram. They all preferred the small examples, but one
participant preferred if he would have had the complete ob-
ject diagram in addition to the small partial examples as it
would have helped him integrate all the concepts together.

Finally, we asked the participants to rate their confidence
level in the answers they provided for both experimental
tasks. On a 5-point Likert scale ranging from 1 (unsure)
to 5 (very sure), the EDM group participants rated their
confidence level on average 4.08 for their object diagram
answers and 4.15 for their task 2 answers. The control
group participants rated their confidence level on average



2.33 for their object diagram answers and 3.00 for their task
2 answers. These results indicate that model receptors who
see model abstractions together with examples experience a
deeper level of understanding which makes them more con-
fident in their answers.

During feedback elicitation, the participants from both
groups commented on the use of UML or any graphical mod-
eling notation in general. They mentioned that part of the
experiment difficulty was not knowing where to start read-
ing the model abstractions. The class diagram was of sig-
nificant size with lots of concepts, classes, associations, and
constraints to digest. The EDM group mentioned that par-
tial examples were very useful in that situation since partial
examples helped them focus on a small subset of the class
diagram at a time. One participant commented that the
order by which the examples were presented was very im-
portant and helped in smoothing the comprehension process
where first they got introduced to the concept of offer which
is the basic class for accumulation, then a regular product in
addition to an offer to emphasize the difference in points cal-
culation between a regular product and a product having an
offer, then a constraint about in-store points accumulation,
then partner offers, followed by redemption as he started
reading the class diagram from left to right, and finally the
relation between accumulation and redemption. We asked
the EDM participants if they preferred more examples, but
they all agreed that the provided examples were enough to
understand the class diagram and perform the comprehen-
sion tasks. This suggests that one positive example per con-
cept is enough unless there is more than one idea associated
with that concept. For example, we had 3 positive exam-
ples for accumulation, but only one for redemption. Also,
one wouldn’t need an invalid example for every constraint,
but only when the constraints are related to more than one
concept at a time or the ones which express corner cases.

6.3 Discussion

In addition to the quantitative and qualitative analysis, we
performed a detailed task analysis, which provided a num-
ber of insights on our experimental design, and the type of
tasks that our approach supports best. Most participants
from the EDM group agreed that the number and choice
of examples were excellent. They had no comments or is-
sues related to a concept that was not conveyed in the ex-
amples, nor that the number of examples was too small or
too big. The only participant who preferred valid examples
only did solve the question related to the invalid example
(constraint) incorrectly. All participants agreed that par-
tial examples were better than a single complete object di-
agram since this helped them focus on a small subset of the
model at a time. The examples benefited the model recep-
tors the most when there were several associations related to
a single class, propagation of attributes through classes, un-
familiar domain concepts, and understanding the system’s
constraints.

Through our detailed task analysis, we wanted to see
whether the effect of examples on task 2 completeness was
independent from the fact that all model receptors did an
instantiation for task 1 first. Nine out of 13 participants
for the EDM group chose the fixed Amount attribute for the
BonusMechanic class when instantiating their object dia-
gram. They were still able to solve Q10 and Q12 that asked
about the optional pointsMultiplier attribute correctly, de-

spite not having used that attribute in instantiation. Also,
although some participants had mistakes or missing classes
for Bill or FizedPerecentOff mechanics, they were still able
to solve the related questions in task 2 correctly. This shows
that when using examples, the participants were able to
solve task 2 correctly despite having mistakes in the instan-
tiation task, which suggests that performing instantiation
first might not be necessary for the participants ability to
answer task 2 questions correctly.

Finally, the experiment tested EDM only from cause and
effect viewpoints only without considering the cost. Al-
though the presence of examples led to a better performance
in terms of diagram completeness, diagram mistakes, task 2
completeness, and task 2 efficiency, we didn’t take into con-
sideration the cost of creating and maintaining the examples
in terms of time, effort, or availability of tool support. We
need to investigate this matter in an industrial context.

7. THREATS TO VALIDITY

This section discusses the threats to internal, external,
construct, and conclusion validity according to [20, 40].

7.1 Internal Validity

Threats to internal validity refer to uncontrolled factors in
the environment that may influence the effects of the treat-
ments on the variables.

Participants. We ensured that the participants were fa-
miliar with the class diagram constructs used in the experi-
ment using a UML assessment exercise in order to reduce the
threat that model receptors may not have been competent
enough in the modeling notation. Each participant applied
one treatment only to avoid the human learning effect. We
used randomization to assign participants to treatments in
order to mitigate the effect that the participants’ experience
may not have been fairly distributed among treatments. We
prevented communication between the participants during
the session in order to avoid one participant’s answers af-
fecting the other. We did not inform the participants of our
experimental hypotheses nor what measures we were looking
for to avoid their expectations from biasing the results. To
compensate for the effect of the participants’ knowledge of
the application domain on the dependent variables, we se-
lected the participants who evaluated themselves as having
no experience with rewards loyalty programs.

Tasks. Fatigue during completion of task 2 questions
is a possible threat to validity. The number of wrong an-
swers for both groups is almost the same for questions at
the beginning and questions at the end. Therefore, there
is no evidence of any decrease in performance. The choice
of tasks may have been biased to the advantage of EDM.
We alleviate this threat by selecting tasks that target what
developers/BAs do in real life when they don’t understand
the system in the absence of a SME. For example, questions
like “what are the classes which represent different means
of accumulating points?” are considered with the concept
location task. If a novice to the application domain needs
to understand how a member in a loyalty program can earn
points, they will have to determine the different classes asso-
ciated with points accumulation. Another targeted activity
was impact analysis. By impact analysis we mean deter-
mining the impact of a change on a system. This activity
requires full understanding of the system. Question 15 [4]
targeted this activity. We gave all participants the same



amount of time to finish both tasks of the experiment for
fair comparison. This led to the exclusion of one data point
from the control group when the participant exceeded the
allocated time for the experiment.

Session Differences. There were several runs for the ex-
periment to accommodate the availability of the participants
and the differences between them may have influenced the
results. To mitigate this threat, we had participants from
both EDM and control treatments in each session. The pilot
study also helped us obtain a stable and reliable setup.

7.2 External Validity

External validity threats are concerned with whether the
results can be generalized outside the experimental setting.

Participants. To mitigate the threat of the represen-
tativeness of the participants, we could only address their
experience level with UML. However, we were not able to
include participants from industry.

Problem Domain. The representativeness of our do-
main is another threat. We chose to perform the experiment
with a domain that was inspired from a similar domain used
by one of our industrial partners. The process by which the
domain was modeled was also inspired from the industry,
where the modeler usually has elicitation sessions with the
SME to understand the domain.

Tasks. The choice of tasks may not precisely reflect what
practitioners do with the models, but they certainly reflect
the degree to which participants comprehend the models
with and without examples.

Experimenter Effect. The experimenter is also one of
the authors of this paper. This could have influenced the ex-
periment. One instance of this threat is grading the task so-
lutions correctly. To mitigate this threat, we created a mark-
ing scheme before grading the participants’ solutions and
performed double marking. Moreover, the experimenters
graded the solutions blindly.

7.3 Construct Validity

Construct validity is the degree to which the dependent
and independent variables represent the cause and effect
concepts that should be measured in the experiment.

Participants. In the pilot study, we relied only on the
participants’ own rating of their expertise in UML class and
object modeling. However, in order to ensure that we ac-
curately measured the skill level of the participants, we re-
quired them to solve a UML assessment exercise.

Tasks. We avoided mono-operation bias by having more
than one subject perform each treatment, and more than one
measure of comprehension. Moreover, we limited the num-
ber of multiple choice questions in task 2 to five questions,
while the rest were short answer questions. This helped im-
itating a real-life context whereby the stakeholders are not
guided by a set of predefined interpretations.

Experimental Materials. We avoided the threat that
the EDM participants would use the partial examples as
templates for their object diagrams instead of using them
to improve their model understanding through the follow-
ing: (1) the combination of partial examples could not be
integrated into a full object diagram as we used different in-
stantiations for the same class (i.e. different alternatives for
the same class) in different examples, (2) we used invalid ex-
amples, which could not be used as templates as they would
lead to incorrect system behaviour, and finally (3) the par-

ticipants would still need to understand the examples to
solve task 2 questions. Our results show that the EDM par-
ticipants’ answers to task 2 were of significant improvement
over the answers provided by the control participants.

7.4 Conclusion Validity

Conclusion validity is the extent to which correct conclu-
sions are drawn about the relationship between the treat-
ments and the outcomes. The treatments assume novices to
the application domain who are familiar with the modeling
notation, so we provided homogeneous participants’ groups
with respect to their background and expertise. The statis-
tical tests used to draw our conclusions have assumptions
that needed to be satisfied before they could be applied, so
we verified that the assumptions of the tests before we used
them in our analysis. Accurate measurements of treatment
outcomes are necessary to reflect the effects, so we used a
marking scheme, blind and double marking techniques.

8. RELATED WORK

We started the experiment by conducting a survey of re-
search work dealing with experimental validation of software
engineering, model comprehension approaches, and UML
modeling studies related to class and object diagrams. There
is a rich body of research on empirical evaluation of model
comprehension techniques especially with respect to UML
class diagrams. The experiment presented in [41] tests the
effect of different layouts strategies on UML model compre-
hension. The results indicate improved accuracy in solving
comprehension tasks when having clustered layouts. Simi-
larly, the experiment presented in [26] focuses on how the
level of detail in UML models impacts model comprehen-
sion. The results show an improved effect of the level of
detail on the comprehension of UML models.

Although there exist many studies on model comprehen-
sion, there are only two studies, according to our knowl-
edge, that assess the effect of having object diagrams to-
gether with class diagrams on model comprehension. The
first study [35], used four comprehension tasks to deter-
mine the impact of object diagrams on model comprehen-
sion. Each task was composed of multiple choice questions
for a class diagram different than the class diagrams used in
the other tasks. The study used only multiple choice ques-
tions, which increases the threat of correct results due to
participants guessing the answers. The participants were
allowed to communicate during the study and hence one
participant’s answers might have affected the other. Also,
each class diagram was composed of only 4 classes which is
significantly simpler than any model representing real-world
systems. The results show an improved effect on compre-
hension only for two tasks out of the four at 85% confidence
interval. The second study [34] is a replication of the first
one, but with minor modifications. The researchers changed
the questions to be open ended and added a dependent vari-
able; the amount of time it took each participant to solve
each task. However, this dependent variable doesn’t take
into account that a participant can take longer time to an-
swer the questions, and hence achieve a higher score. The
authors still allowed participants to communicate, and the
four class diagrams were still the same. The results show
an improved effect of object diagrams on comprehension at
95% confidence interval.

In this work, we mitigated the above threats to validity by



selecting participants who were novices to the domain to pre-
vent guessing; presenting the model receptors a significantly
more complex class diagram; preventing any communication
among the participants; including an instantiation task be-
fore questions; including both multiple choice questions and
open-ended questions; measuring multiple and diverse de-
pendent variables, both quantitatively and qualitatively, to
present a fuller picture of the effects.

9. CONCLUSIONS

We presented a controlled experiment that aimed at eval-
uating the effects of using explicit examples on model and
domain comprehension in the context of our proposed struc-
tural modeling approach, EDM. We used the domain of re-
wards loyalty programs. We represented the abstractions
part of the model as a UML class diagram, and our exam-
ples as six partial UML object diagrams. Our participants
were 26 graduate and undergraduate students from the Uni-
versity of Waterloo.

The main result of our experiment is that the EDM ap-
proach leads to improvement in all measured variables: dia-
gram completeness (+39%), diagram mistakes (-80%), task
2 completeness (+30%) and efficiency (+71%). If on average
a participant in the EDM group has 3 mistakes in his dia-
gram, while a participant in the control group has 15, then
the EDM participant has 80% fewer mistakes. For task 2
completeness, we converted the average scores for both EDM
and control as a percentage of the total score (25 marks),
and then calculated the difference as a percent. This result
is statistically significant, which allows us to reject the first
four null hypotheses and accept the corresponding four al-
ternative hypotheses. We conclude that this improvement
in model and consequently domain comprehension is due to
augmenting the model abstractions with explicit examples.

We also performed a qualitative analysis for the last three
null hypotheses. The EDM participants experienced a re-
duction in the perceived difficulty for creating the object di-
agram (-27%), and a reduction in the perceived difficulty for
solving task 2 questions (-23%). They also experienced an
increase in confidence in their created diagrams (+35%), and
an increase in confidence in their task 2 solutions (4+23%),
while asking fewer domain questions (-90%), as compared to
the participants in the control group. Although we can not
reject the fifth and sixth null hypotheses based on qualita-
tive results, these results provide insight on the impact of
having examples on the model receptors’ experience in un-
derstanding the model abstractions and the domain when
they are provided with examples.

Our analysis suggests that examples are needed the most
when the concepts of the model abstractions are not famil-
iar to the model receptor. One positive example per concept
is generally enough unless there is more than one idea for-
mulating that concept such as with points accumulation or
when several associations are associated with a class, but are
applied under different conditions. Negative examples are
only needed for corner case constraints that are not readily
understandable. Partial examples help the model receptors
focus on a small subset of a bigger model at a time which im-
proves domain comprehension. However, for future work we
might need to consider having partial examples as views on
more complete examples as this might help with integrating
the different concepts for a better abstracted mental model.
The future work should also evaluate the effects of using a

variety of valid and invalid examples as compared to hav-
ing valid examples only, and verify the usefulness and the
cost/benefit ratio of applying EDM in an industrial context.
Our results also provide support for the importance of mod-
eling language design. We propose that structural modeling
languages should not only have explicit notations for exam-
ples or instances as an integral part of the model, but also
support partial examples. In other line of work, we designed
a lightweight structural modeling language called Clafer [1,
9, 7, 8] and showed how it could be used for EDM [6].

Finally, we designed our experiment with replication in
mind. We published supplemental meterials [4] consisting of
the UML class diagram, the set of six partial UML example
object diagrams, the experimental materials for both the
control and EDM treatments, the de-briefing questionnaire,
and the grading scheme for both experimental tasks. This
allows the readers to better evaluate our experimental design
and the presented results. It also allows other researchers to
replicate the experiment, or benefit from the design as the
base for their own.
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