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ABSTRACT 
Upcoming extreme scale platforms are expected to have 
millions of nodes with hundreds to thousands of small cores 
for each node. The continuing decrease in memory capacity 
per core and the increasing disparity between core count and 
off-chip memory bandwidth can lead to significant challenges 
for I/O operations in extreme scale systems. Collective I/O is a 
critical I/O optimization technique, and the extreme scale 
challenges require rethinking this strategy for the effective 
exploitation of the correlation among I/O accesses. In this 
study, considering the constraint of the memory capacity and 
bandwidth, we introduce a Memory-Conscious Collective I/O. 
The new collective I/O strategy restricts aggregation data 
traffic within disjointed subgroups, coordinates I/O accesses in 
intra-node and inter-node layer, and determines I/O 
aggregators at run time considering memory consumption and 
variance among processes. The preliminary results have 
demonstrated that this strategy holds promise in mitigating the 
memory pressure, alleviating the contention for memory 
bandwidth, and improving the I/O performance for projected 
extreme scale HPC systems.   

Categories and Subject Descriptors 
B.4.3 [Hardware]: Interconnections(Subsystems) – Parallel 
I/O; C.1.4 [Computer Systems Organization]: Parallel 
Architectures 

General Terms 
Algorithms, Design. 

Keywords 
Extreme scale system, many-core architecture, parallel I/O, 

collective I/O, high performance computing 

1. INTRODUCTION 
High performance computing (HPC) applications, simulations, 
and visualizations extend across a wide range of science and 
engineering disciplines such as astrophysics, climate sciences, 
material sciences, biology, and high-energy physics. Many 
applications become increasingly data intensive. These 
applications contain a large number of I/O accesses, where 
large amounts of data are stored to and retrieved from storage 
systems [1][2][3][4]. For example, several representative 
INCITE applications run at Argonne Leadership Computing 
Facility (ALCF) of Argonne National Laboratory (ANL) 
generated datasets in the terabyte range and store them on-line 
[5]. Application teams are projected to process hundreds of 
terabytes or even petabytes of data in a single simulation run 
by the end of this decade. Meanwhile, the next generation 
extreme scale HPC system is near the horizon. The extreme 
scale system is projected to have millions of nodes, with 
thousands of cores in each node [6][7]. The rapid advance of 
computing capability and the phenomenal increase in datasets 
on extreme scale systems bring critical challenges than ever to 
the I/O system. The inadequate I/O system capability could 
substantially lower the performance of extreme scale systems. 

The current parallel I/O system often performs inadequately in 
dealing with a large number of small and noncontiguous 
requests, which is a common access pattern for scientific 
applications [8]. Collective I/O is a technique developed to 
address this problem by merging small and noncontiguous I/O 
requests into large ones for better performance and has been 
widely used [9]. Whereas researchers have contributed through 
years with a number of collective I/O optimizations in the 
petascale system, comparatively little efforts have been 
devoted to investigating challenges of data intensive extreme 
scale computing and designing collective I/O scalable to enter 
an exaflop era yet. Table 1 compares a potential extreme scale 
HPC system design with current HPC designs [10]. From the 
table, it is important to note that neither available memory 
capacity nor memory bandwidth will scale by the same factor 
as the total concurrency (the scale of number of cores). The 
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factor of memory per core expected to scale can be expressed 
with a simple formula - the quotient of the factor change of 
system memory and system size, divided by the factor change 
of node concurrency, i.e. !!

!"∗!". This projection indicates that 
the average memory per core even drops to megabytes in 
extreme scale systems. In addition, due to the memory 
capacity shared by projected O(1K) cores, the available 
memory per node can vary significantly among nodes. 
Similarly, the enlarging gap between node concurrency and 
node memory bandwidth leads to a continuing per-core off-
chip bandwidth reduction. Such limited memory per core, 
significant variance of available memory among nodes, and 
off-chip bandwidth contention put even more pressure on 
storage and I/O system. Even though the I/O bandwidth is 
projected to increase with 100x folds, this improvement does 
not help the memory pressure issue. In fact, the limited 
available memory per node and an improper I/O solution can 
also underutilize the I/O bandwidth. There is an emerging 
research need for advanced strategies to coordinate small and 
non-contiguous I/O requests with memory consciousness to 
meet data intensive applications’ demand on extreme scale 
systems. 

In this paper we present a new collective I/O strategy namely 
memory-conscious collective I/O to address the above 
discussed issue. While we focus on the data movement 
performance and scalability of collective I/O in extreme scale 
systems, special consideration is given to the memory and off-
chip bandwidth. Collective I/O uses I/O aggregators to gather 
I/O requests and perform reads/writes on behalf of the entire 
group. The global data shuffling traffic aggravates the memory 
pressure on aggregators and leads to off-chip memory 
bandwidth contention. Given I/O aggregator as one of the 
decisive factors in optimizing collective I/O performance, the 
newly proposed collective I/O strategy divides the I/O 
workloads into separated subgroups, restricts the I/O requests 
aggregation traffic within each subgroup and determines I/O 
aggregators dynamically by taking data distribution and 
memory consumption into consideration. Through these 
mechanisms, memory-conscious collective I/O improves the 
performance of original two-phase collective I/O, reduces 
aggregator memory consumption and variance, and conserves 

off-chip memory bandwidth. In summary, we make the 
following contributions in this paper: 

• First, we identify the performance bottleneck and the 
scalability constraint imposed by memory and off-
chip bandwidth for collective I/O at projected 
extreme scale systems;  

• Second, we propose a new collective I/O strategy 
that determines the I/O aggregator distribution 
dynamically on the fly with memory-aware data 
partition and aggregation mechanisms. The proposed 
strategy is significant given the importance of 
improving noncontiguous I/O accesses, reducing the 
memory pressure and alleviating off-chip bandwidth 
contention of any collective I/O optimization 
strategy; 

• Third, we demonstrate our approach using synthetic 
and application benchmarks to yield significant 
improvement.  

The rest of this paper is organized as follows. Section 2 briefly 
reviews essential concepts of parallel I/O and collective I/O as 
the background of this study. The design and implementation 
of memory-conscious collective I/O strategy are presented in 
Section 3, and the experimental results with analysis are given 
in Section 4. Section 5 discusses related work, latest 
advancements in this field, and compares them with this study. 
We conclude this study in Section 6. 

2. MPI-IO, COLLECTIVE I/O AND 
IMPLEMENTATION  
In this section we first briefly review the MPI-IO and its 
popular implementation ROMIO [9][14]. Then we review the 
most critical performance optimization strategy, collective I/O, 
and the widely-used two-phase protocol implementing 
collective I/O. 

MPI-IO is a part of the MPI-2/MPI-3 specification 
[11][12][13]. It defines an I/O access interface that supports 
many parallel I/O operations and optimizations. The purpose 
of MPI-IO is to achieve much higher performance than the 
Unix API can deliver. In general, the implementation of MPI-
IO is a middleware connecting parallel applications and 
underlying various parallel file systems, providing the code-

Table 1. POTENTIAL EXASCALE COMPUTER DESIGN AND ITS 
RELATIONSHIP TO CURRENT HPC DESIGNS [10] 

 2010 2018 Factor Change 
System Peak 2 Pf/s 1 Ef/s 500 

Power 6 MW 20 MW 3 

System Memory 0.3 PB 10 PB 33 

Node Performance 0.125 Tf/s 10 Tf/s 80 

Node Memory BW 25 GB/s 400 GB/s 16 

Node Concurrency 12 CPUs 1000 CPUs 83 

Interconnect BW 1.5 GB/s 50 GB/s 33 

System Size (nodes) 20 K nodes  1 M nodes 50 

Total concurrency 225 K 1 B 4444 

Storage 15 PB 300 PB 20 

I/O Bandwidth 0.2 TB/s 20 TB/s 100 

 

 

Figure 2: Collective I/O and Two-phase Implementation 



 

level portability across many different machine architectures 
and operating systems. ROMIO is a popular MPI-IO 
implementation developed at Argonne National Laboratory 
[9][14]. ROMIO implements an internal layer named ADIO 
[15](Abstract Device Interface for MPI-IO) to achieve the 
portability and higher I/O performance. It performs various 
optimizations, including collective I/O and data sieving, for 
common access patterns of parallel applications [9]. 

Collective I/O is one of the most important I/O access 
optimizations for parallel applications. It differs from 
independent I/O, in which each process of a parallel 
application issues I/O requests independently of all other 
processes. Although independent I/O is a straightforward form 
of I/O and is widely used in many applications, this form of 
I/O is not recommended for parallel applications because it 
does not capture the complete data access information of a 
parallel application. This shortcoming offers MPI-IO 
middleware the opportunity to optimize I/O performance given 
the knowledge of parallel processes. 

Collective I/O allows the middleware and the parallel file 
system to have a comprehensive view of data movements from 
all processes (involved in the collective I/O) of a parallel 
application. The motivation to utilize collective operations is 
several-fold. First, collective I/O can filter overlapping I/O 
requests from multiple processes and reduce the amount of 
data accesses to the parallel file system. Second, the requests 
of multiple processes are often interleaved and may constitute 
a large contiguous portion of a file together. The performance 
of handling a large and contiguous request is generally better 
than handling many noncontiguous and small requests to a 
storage system. Third, the number of I/O calls is reduced by 
combining small and noncontiguous requests into large and 
contiguous ones, thus the overhead involved is reduced too. 
Note that the collective I/O is a general idea that takes 
advantage of collective operations among accesses from 
multiple processes of a parallel application and optimizes its 
I/O accesses. It can be applied at the disk level (disk-directed 
I/O [16]), at the server level (server-directed I/O [17]), or at 
the client level [9]. In this study, we focus on parallel I/O 
middleware level. If the entire I/O access pattern of a group 
processes is known to the MPI-IO middleware, the MPI-IO 
implementation can improve the I/O performance remarkably 
by merging the requests of different processes and servicing 
the merged requests by performing collective I/O. 

Two-phase protocol is the most popular method of 
implementing collective I/O. This strategy performs two steps 
as illustrated in the Figure 2 for the collective read case: I/O 
access phase and data communication phase. Six processes 
shown in the upper part of this figure read the file from the 
parallel file system depicted on the lower part of the figure. In 
I/O access phase, the data is gathered in contiguous chunks at 
a part of the compute nodes that act as aggregators. In the 
implementation of two-phase collective I/O, each process first 
analyzes its own I/O request respectively and let the 
aggregators know the entire aggregated I/O requests from all 
processes. In the I/O phase, aggregated I/O requests are 
divided into file domains and each file domain is assigned to 
one aggregator. After the file domains are determined, each 
aggregator will access data only from the file domain assigned 

to it. In this example, we assume there are two aggregators 
carrying out I/O requests for their own file domains. In the 
data communication phase, each aggregator sends data to the 
requesting processes, and each process receive the data from 
corresponding aggregators that carry the data for it. 

3. MEMORY-CONSCIOUS COLLECTIVE 
I/O 
This section describes the design and implementation of the 
proposed memory-conscious collective I/O strategy. We first 
introduce the software architecture and then describe the core 
components in detail. 

The main purpose of the memory-conscious collective I/O is 
to enhance the two-phase collective I/O with new mechanisms 
for alleviating the memory pressure and mitigating the external 
bandwidth bottleneck in extreme scale systems. Figure 3 
illustrates the high-level view of the proposed memory-

conscious collective I/O software architecture. Four 
new/revised components are introduced. The Aggregation 
Group Division component divides the I/O requests into 
separated groups. In each group, the I/O Workload Partition 
component further calculates the aggregate access file region 
and partitions it into contiguous file domains. The Workload 
Portion Remerging component is designed to rearrange the file 
domains considering the memory usage of physical nodes. The 
Aggregators Location component determines the placement of 
aggregators for each file domain. 

The ROMIO implementation picks exactly one process per 
node as I/O aggregator by default. Using a default number of 
I/O aggregators will inevitably lead to suboptimal performance 
in the many-core architecture for projected extreme scale 
systems. In the proposed memory-conscious collective I/O 
prototype, the corresponding parameters are measured for 
optimizing the performance of collective I/O. First we 
determine the optimal number of aggregators Nah and message 

 
Figure 3: Memory-Conscious Collective I/O Software Architecture 



 

size Msgind per aggregator that can fully utilize the I/O 
bandwidth in one physical compute node, which acts as a host 
to the aggregators. Next we identify the minimum memory 
consumption Memmin for one physical node. Each node uses 
Nah I/O aggregators with Msgind message size to achieve the 
best performance. Finally, we consider the aggregation I/O 
traffic contention on system level by increasing the number of 
aggregators across the system network. The throughput from 
aggregators to the parallel file system is measured and 
performance variation is considered to find the optimal group 
message size Msggroup for an aggregation group. 

3.1 Aggregation Group Division 
The global data shuffling traffic in two-phase collective I/O 
increases the memory pressure on aggregators and leads to off-
chip memory bandwidth contention. The memory-conscious 
collective I/O first divides the I/O workloads into groups. 
These groups in turn perform their own aggregation in a 
disjointed manner, thus restricting the data shuffling traffic 
within each group. The goal of the aggregation group division 
is to maximize the data movement speed during the data 
shuffle phase and reduce the amount of memory needed and 
variance for each aggregator with a balanced memory 
consumption design, which is critical for scaling the collective 
I/O to an extreme scale or beyond. 

To divide the I/O workloads among aggregation groups, 
analytics are applied to the entire file domain to detect the data 
access pattern of an application. A large number of 
applications use explicit offset operations in the I/O calls, or 
the data segments are serially distributed among processes. In 
this case, an offset calculation guided by the optimal group 
message size Msggroup will divide the I/O workloads into non-
overlapping chunks. For example as shown in Figure 4, a 
linearization of data distribution across 9 processes in three 
compute nodes,  the size of aggregation group one is extended 
to the ending offset of the data accessed by the last process in 
compute node one. In this way, we avoid that processes from 
the same physical node become I/O aggregators for different 
groups. Scientific applications with complex structured 
datatype exhibit more complicated access patterns, where the 
beginning and ending offsets are interwoven with each other.  
In these situations, the aggregation group division can be 
determined by analyzing the MPI file view across processes.  

3.2 I/O Workload Partition & Portions 
Remerging 
Within each aggregation group, the I/O Workload Partition 
component analyzes the offsets and lengths of all I/O requests. 
Data are gathered in a contiguous chunk and dynamically 

partitioned into distinct domains where each aggregator can 
achieve the optimal performance at the given workload. To 
obtain such a partitioning, a dynamical workload partition 
algorithm is applied to the file region by generating a binary 
partition tree. Each vertex in the tree represents a non-
overlapping portion of the whole file region requested by all 
processes in one aggregation group. The internal vertices in 
the tree stand for the portions that no longer exist, but were 
split at some previous time. Each divided file domain is 
represented as a leaf of the binary partition tree. Essentially the 
core of the algorithm is a recursive bisection method to divide 
the file region into two sets until the termination criterion 
Msgind is met. As a result of the algorithm presented above, 
different number of file domains will be generated in each 
group depending on the amount and distribution of data during 
one collective I/O operation. Also, the I/O message size in 
each file domain results in the I/O saturation for one 
aggregator.  

Although the I/O data size Msgind can lead one aggregator to 
achieve the best performance with the optimal file domain 
size, the aggregator may perform less well than expected 
because of other resource constraints, especially the amount of 
memory available for the aggregation buffer. When the 
processes associated with one file domain are short of memory 
resources, this file domain will be merged with the domain 
nearby to expand the search area until find the aggregator host 
that satisfies the memory requirement. 

When a file domain is remerged with the neighbor, the 
correlated vertex leaves the partition tree. The file domain the 
departed vertex occupied is taken over by the remaining 
vertices. This concept can be easily defined using the partition 
tree. Suppose a leaf vertex “A” leaves the tree and the file 
domain it owns need to be remerged with other file portions. 
There are two cases when a leaf is leaving: if the sibling of this 
leaf is also a leaf (call it “B”), then B will take over A directly. 
We simply merge leaves A and B, making their former parent 
vertex a leaf and assign vertex B to that leaf. Thus the regions 
correlated to A and B merge into a single region that is owned 
by vertex B. Figure 5a shows an example of such a takeover. If 
A’s sibling B is not a leaf because the sibling file portion has 
been further split, then it is necessary to perform a depth first 

 

Figure 4: Aggregation group division example 

 
Figure 5a: File Domain Remerge with the Neighbor Case 1 

 
Figure 5b: File Domain Remerge with the Neighbor Case 2 



 

search (DFS) in the sub-tree rooted at B until a leaf vertex is 
found. In particular, in order to remerge with the neighbor 
region nearby and if A is the left sibling of B, the DFS must 
visit left siblings before right ones. Otherwise if A is the right 
sibling of B, the traversal will first visit right siblings. This 
leaf, call it “C”, acts as A’s sibling and takes over the region 
owned by A. Figure 5b shows an example of such a takeover. 
Note that the remerge procedures are limited within each 
aggregation group.  

3.3 Aggregators Location 
The number of file domains produced by the I/O Workload 
Partition algorithm can determine the number of aggregators 
during one collective I/O operation. The Workload Portions 
Remerging component reorganizes the file domains 
considering the memory consumption for the aggregation. 
These two components prompt the system to locate the 
aggregators for compute processes. 

The strategy to locate the aggregators within one file domain is 
to first obtain all processes of which I/O requests are located in 
this file domain; then it compares the processes related hosts 
(utilizing the IP address of each process) while each candidate 
host should have less than Nah aggregators. The host with 
maximum system memory Memavl available is identified. If 
Memavl is larger than the memory Memmin, the corresponding 
process will be selected as the aggregator in this file domain. 
Otherwise, it indicates setting any compute nodes related to 
this file domain as the aggregator host may underperform 
because there is not enough aggregation memory to guarantee 
the best I/O performance. In this case, the file domain will be 
integrated with the domain nearby. Processes related hosts are 
repeatedly inspected as in the above process until the one that 
satisfies the memory requirement is identified. 

4. EXPERIMENTAL RESULTS AND 
ANALYSIS 
In this section, we present the experimental results of the 
proposed memory-conscious collective I/O. We also compare 
it with the existing two-phase collective I/O approach. 

The experiments were conducted on a 640-node Linux-based 
cluster test bed with DataDirect Network storage systems. 
Each node contains two Intel Xeon 2.8 GHz 6-core processors 
with 24 GB main memory. All nodes are connected with 
double-data-rate Infiniband networking that provides full 
cross-section bandwidth among the parallel nodes. A 600TB 
Lustre file system and MPICH2-1.0.5p3 library manage the 
storage system and runtime environment. Files were striped 
over all I/O servers with the round robin default striping 
strategy (with 1 MB unit size in the experiments). 

The performance of memory-conscious collective I/O 
introduced in section III was evaluated and compared with the 
normal two-phase collective I/O strategy. In this paper, we 
empirically determined the number of aggregators Nah , 
message size Msgind per aggregator and the group message size 
Msggroup.  We leave the examination of these optimal values to 
a future study as it is correlated with the I/O pattern of a 
particular application. The normal two-phase I/O uses the 
default number of I/O aggregators for data access, which is 
exactly one process per node. The assignment of aggregators 

in normal collective I/O is independent of the distribution of 
the data over the process.  

While we study the performance of the proposed strategy, our 
focus is on the scalability analysis as we varied the buffer size 
for collective I/O and the number of processes. In each 
collective call, the memory buffer used by each aggregator 
was fixed for normal collective I/O. For the memory-
conscious collective I/O, the memory buffer sizes for 
processes were set up as random variables following a normal 
distribution. The arithmetic mean of this normal distribution 
was equal to the aggregator buffer size of the normal collective 
I/O in each run. The standard deviation was set as 50 in our 
experiments. 

We choose two well-known MPI-IO benchmarks for 
evaluation: coll_perf from ROMIO software package [14] 
developed at Argonne National Laboratory and IOR [18] from 
the ASCI Purple benchmark suite developed at Lawrence 
Livermore National Laboratory. 

4.1 Experimental Results of coll_perf 
Benchmark 

coll_perf is one of test programs from ROMIO software 
package. This benchmark writes and reads a 3D block-
distributed array to a file corresponding to the global array in 
row-major order using collective I/O. We ran the benchmark 
with 20483 as the array size to measure the I/O bandwidth. 120 
MPI processes were used to write and read a 32 GB file that 
resides on Lustre file system. We modified the original 
implementation and evicted cached data with memory flushing 
after write phase.  

 

 Figure 6: Performance comparison with coll_perf benchmark with various 
memory sizes at 120 cores 



 

Figure 6 shows the write and read bandwidth for both normal 
two-phase collective I/O and the proposed memory-conscious 
collective I/O. As expected we can observe that both collective 
I/O strategies showed a drop in performance as the available 
memory buffer size reduced.  However, the memory conscious 
collective I/O always performed better than two- phase 
collective I/O especially memory per aggregator at smaller 
sizes. By utilizing the new strategy, the average performance 
for write and read tests were 34.2% and 22.9% respectively. 

4.2 Experimental Results of IOR Benchmark 

Interleaved Or Random (IOR) benchmark measures the 
performance of parallel I/O through different I/O interfaces, 
including MPI-IO, POSIX as well as higher-level libraries. In 
this study, we performed interleaved read and write operations 
to a file as we varied the buffer size for collective I/O, the 
message size transferred per process and the number of 
processes. The tests were carried out with 120 and 1080 
processes respectively. 

Figure 7 compares the write and read bandwidth with both the 
normal two-phase collective I/O and the new memory-
conscious collective I/O at 120 cores as we varied memory 
buffer used on each aggregator. The tests were conducted with 
32 MB I/O data message per MPI process. As shown in Figure 
7, the new strategy can affect the IOR benchmark testing 
performance considerably. The best write performance 
improvement was achieved with the memory size at 16 MB. 
The memory-conscious collective I/O was observed with an 
improvement of 1.2 times compared to that of normal two-
phase collective I/O. For the memory size at 8 MB, the 
performance improvement for read was 89.1%. The 

performance improvements of write tests are more sensitive 
for the new strategy, as it varied from 40.3% improvement to 
121.7% improvement. The performance improvements of read 
tests are less sensitive. The performance speedup varied from 
64.6% to 97.4%. The average performance improvements for 
read and write tests were 82.4% and 81.2% respectively. 

We have also measured and compared the performance with 
varying the number of processes. Figure 8 compares the 
performance of the normal two-phase collective I/O and the 
memory-conscious collective I/O at 1080 cores while we 
decreased the aggregation buffer size over different runs. The 
experimental results showed that the write bandwidth of 
normal collective I/O dropped from 1631.91MB/s to 
396.36MB/s as the aggregation memory size decreased from 
128MB to 2MB. Meantime, the read bandwidth dropped from 
2047.05 MB/s to 861.62 MB/s. We observed that the proposed 
memory-conscious collective I/O improved both read and 
write bandwidth over the existing strategy constantly with 
1080 cores. The average improvement of the memory-
conscious collective I/O with different memory sizes was 24.3% 
and 57.8% for interleaved writes and reads respectively. It 
demonstrates that the memory-conscious collective I/O is very 
beneficial to collective I/O by dynamically determining a 
better I/O aggregator placement within an environment that 
has limited memory resources.  

5. RELATED WORK 
Many research efforts have been devoted to optimize parallel 
I/O performance in the past, such as collective I/O [9], data 
sieving [9], server-direct I/O [17], disk-directed I/O [20], and 
ADIOS library [21]. Recently, Zhang et. al. proposed to find 
and match the I/O request pattern with the striping pattern to 
have an efficient resonant I/O [22]. Iskra et. al. introduced an 

 

 
Figure 7: Performance comparison with IOR benchmark with 
various memory sizes at 120 cores 

 

 Figure 8: Performance comparison with IOR benchmark with 
various memory sizes at 1080 cores 



 

I/O forwarding component in the ZeptoOS for petascale 
architectures such as IBM Blue Gene systems [23]. Ali et. al. 
proposed a new I/O forwarding software layer sitting between 
the MPI-IO and parallel file systems to ship the I/O calls to 
dedicated I/O nodes and improves the scalability of parallel 
I/O systems [24]. A layout-aware collective I/O strategy was 
recently introduced in [25] to provide a better integration of 
parallel I/O middleware and parallel file system and improve 
the overall performance. These strategies collect and merge 
small and noncontiguous requests into a large and contiguous 
one for aggregators to carry out more efficiently, or ship I/O 
calls to dedicated processes. This study further improves the 
collective I/O strategy and proposes a memory conscious 
method that dynamically makes the decision for I/O workload 
segmentation and aggregators determination. It improves the 
performance of the existing collective I/O approach and 
reduces the memory consumption and bandwidth contention. 

Parallel file systems, such as Lustre [26], GPFS [27], PanFS 
[28] and PVFS/PVFS2 [29], enable concurrent I/O accesses 
from multiple clients to files. Numerous optimizations also 
exist to improve the file system performance, such as data 
staging services [30], coordinated access interface [31], 
performance bridging [32], a log-structured interposition layer 
and latent asynchrony I/O [33]. While parallel file systems 
perform well for large and well-formed data streams, they 
often perform inadequately when dealing with many small and 
noncontiguous data requests. The collective I/O and memory-
conscious collective I/O proposed in this study address these 
issues well. The memory-conscious approach dynamically 
determines I/O aggregators at run time considering data 
distribution and memory consumption among processes and is 
more beneficial than the existing collective I/O approach. This 
research can have an impact for extreme scale high 
performance parallel I/O system.  

6. CONCLUSION 
Extreme scale high performance computing systems are near 
the horizon. The projected substantially increased total 
concurrency in extreme scale systems and the decreased 
memory capacity per core, increased available memory 
variance per node, and decreased bandwidth per core as 
analyzed in this study can be critical challenges for collective 
I/O to work effectively at an extreme scale. In this study, we 
identify the performance bottleneck and the scalability 
constraint imposed by memory and off-chip bandwidth to 
collective I/O. Motivated by these observations, we propose a 
new memory-conscious collective I/O strategy that determines 
the I/O aggregator distribution dynamically on the fly with 
memory-aware data partition and aggregation mechanisms. 
The proposed strategy was evaluated on MPICH2 and Lustre 
file systems with simulating the limited memory capacity, 
increased memory variance, and limited off-chip bandwidth. 
The evaluation results confirmed the proposed memory-
conscious collective I/O strategy outperformed existing 
strategies given the memory pressure and bandwidth 
constraints. This study could be significant given the 
importance of improving noncontiguous I/O accesses, 
reducing the memory pressure, and alleviating off-chip 
bandwidth contention of collective I/O on projected extreme 
scale systems. 
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