

Memory-Conscious Collective I/O for
Extreme Scale HPC Systems

Yin Lu

Computer Science Department
Texas Tech University

Lubbock, TX 79409, USA

yin.lu@ttu.edu

Yong Chen

Computer Science Department
Texas Tech University

Lubbock, TX 79409, USA

yong.chen@ttu.edu
Yu Zhuang

Computer Science Department
Texas Tech University

Lubbock, TX 79409, USA

yu.zhuang@ttu.edu

Rajeev Thakur

Mathematics and Computer Science
Division

Argonne National Laboratory
Argonne, IL 60439, USA

thakur@mcs.anl.gov

ABSTRACT
Upcoming extreme scale platforms are expected to have
millions of nodes with hundreds to thousands of small cores
for each node. The continuing decrease in memory capacity
per core and the increasing disparity between core count and
off-chip memory bandwidth can lead to significant challenges
for I/O operations in extreme scale systems. Collective I/O is a
critical I/O optimization technique, and the extreme scale
challenges require rethinking this strategy for the effective
exploitation of the correlation among I/O accesses. In this
study, considering the constraint of the memory capacity and
bandwidth, we introduce a Memory-Conscious Collective I/O.
The new collective I/O strategy restricts aggregation data
traffic within disjointed subgroups, coordinates I/O accesses in
intra-node and inter-node layer, and determines I/O
aggregators at run time considering memory consumption and
variance among processes. The preliminary results have
demonstrated that this strategy holds promise in mitigating the
memory pressure, alleviating the contention for memory
bandwidth, and improving the I/O performance for projected
extreme scale HPC systems.

Categories and Subject Descriptors
B.4.3 [Hardware]: Interconnections(Subsystems) – Parallel
I/O; C.1.4 [Computer Systems Organization]: Parallel
Architectures

General Terms
Algorithms, Design.

Keywords
Extreme scale system, many-core architecture, parallel I/O,

collective I/O, high performance computing

1. INTRODUCTION
High performance computing (HPC) applications, simulations,
and visualizations extend across a wide range of science and
engineering disciplines such as astrophysics, climate sciences,
material sciences, biology, and high-energy physics. Many
applications become increasingly data intensive. These
applications contain a large number of I/O accesses, where
large amounts of data are stored to and retrieved from storage
systems [1][2][3][4]. For example, several representative
INCITE applications run at Argonne Leadership Computing
Facility (ALCF) of Argonne National Laboratory (ANL)
generated datasets in the terabyte range and store them on-line
[5]. Application teams are projected to process hundreds of
terabytes or even petabytes of data in a single simulation run
by the end of this decade. Meanwhile, the next generation
extreme scale HPC system is near the horizon. The extreme
scale system is projected to have millions of nodes, with
thousands of cores in each node [6][7]. The rapid advance of
computing capability and the phenomenal increase in datasets
on extreme scale systems bring critical challenges than ever to
the I/O system. The inadequate I/O system capability could
substantially lower the performance of extreme scale systems.

The current parallel I/O system often performs inadequately in
dealing with a large number of small and noncontiguous
requests, which is a common access pattern for scientific
applications [8]. Collective I/O is a technique developed to
address this problem by merging small and noncontiguous I/O
requests into large ones for better performance and has been
widely used [9]. Whereas researchers have contributed through
years with a number of collective I/O optimizations in the
petascale system, comparatively little efforts have been
devoted to investigating challenges of data intensive extreme
scale computing and designing collective I/O scalable to enter
an exaflop era yet. Table 1 compares a potential extreme scale
HPC system design with current HPC designs [10]. From the
table, it is important to note that neither available memory
capacity nor memory bandwidth will scale by the same factor
as the total concurrency (the scale of number of cores). The

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ROSS '13, June 10, 2013, Eugene, Oregon, USA
Copyright 2013 ACM 978-1-4503-2146-4/13/06 ...$15.00

factor of memory per core expected to scale can be expressed
with a simple formula - the quotient of the factor change of
system memory and system size, divided by the factor change
of node concurrency, i.e. !!

!"∗!". This projection indicates that
the average memory per core even drops to megabytes in
extreme scale systems. In addition, due to the memory
capacity shared by projected O(1K) cores, the available
memory per node can vary significantly among nodes.
Similarly, the enlarging gap between node concurrency and
node memory bandwidth leads to a continuing per-core off-
chip bandwidth reduction. Such limited memory per core,
significant variance of available memory among nodes, and
off-chip bandwidth contention put even more pressure on
storage and I/O system. Even though the I/O bandwidth is
projected to increase with 100x folds, this improvement does
not help the memory pressure issue. In fact, the limited
available memory per node and an improper I/O solution can
also underutilize the I/O bandwidth. There is an emerging
research need for advanced strategies to coordinate small and
non-contiguous I/O requests with memory consciousness to
meet data intensive applications’ demand on extreme scale
systems.

In this paper we present a new collective I/O strategy namely
memory-conscious collective I/O to address the above
discussed issue. While we focus on the data movement
performance and scalability of collective I/O in extreme scale
systems, special consideration is given to the memory and off-
chip bandwidth. Collective I/O uses I/O aggregators to gather
I/O requests and perform reads/writes on behalf of the entire
group. The global data shuffling traffic aggravates the memory
pressure on aggregators and leads to off-chip memory
bandwidth contention. Given I/O aggregator as one of the
decisive factors in optimizing collective I/O performance, the
newly proposed collective I/O strategy divides the I/O
workloads into separated subgroups, restricts the I/O requests
aggregation traffic within each subgroup and determines I/O
aggregators dynamically by taking data distribution and
memory consumption into consideration. Through these
mechanisms, memory-conscious collective I/O improves the
performance of original two-phase collective I/O, reduces
aggregator memory consumption and variance, and conserves

off-chip memory bandwidth. In summary, we make the
following contributions in this paper:

• First, we identify the performance bottleneck and the
scalability constraint imposed by memory and off-
chip bandwidth for collective I/O at projected
extreme scale systems;

• Second, we propose a new collective I/O strategy
that determines the I/O aggregator distribution
dynamically on the fly with memory-aware data
partition and aggregation mechanisms. The proposed
strategy is significant given the importance of
improving noncontiguous I/O accesses, reducing the
memory pressure and alleviating off-chip bandwidth
contention of any collective I/O optimization
strategy;

• Third, we demonstrate our approach using synthetic
and application benchmarks to yield significant
improvement.

The rest of this paper is organized as follows. Section 2 briefly
reviews essential concepts of parallel I/O and collective I/O as
the background of this study. The design and implementation
of memory-conscious collective I/O strategy are presented in
Section 3, and the experimental results with analysis are given
in Section 4. Section 5 discusses related work, latest
advancements in this field, and compares them with this study.
We conclude this study in Section 6.

2. MPI-IO, COLLECTIVE I/O AND
IMPLEMENTATION
In this section we first briefly review the MPI-IO and its
popular implementation ROMIO [9][14]. Then we review the
most critical performance optimization strategy, collective I/O,
and the widely-used two-phase protocol implementing
collective I/O.

MPI-IO is a part of the MPI-2/MPI-3 specification
[11][12][13]. It defines an I/O access interface that supports
many parallel I/O operations and optimizations. The purpose
of MPI-IO is to achieve much higher performance than the
Unix API can deliver. In general, the implementation of MPI-
IO is a middleware connecting parallel applications and
underlying various parallel file systems, providing the code-

Table 1. POTENTIAL EXASCALE COMPUTER DESIGN AND ITS
RELATIONSHIP TO CURRENT HPC DESIGNS [10]

 2010 2018 Factor Change
System Peak 2 Pf/s 1 Ef/s 500

Power 6 MW 20 MW 3

System Memory 0.3 PB 10 PB 33

Node Performance 0.125 Tf/s 10 Tf/s 80

Node Memory BW 25 GB/s 400 GB/s 16

Node Concurrency 12 CPUs 1000 CPUs 83

Interconnect BW 1.5 GB/s 50 GB/s 33

System Size (nodes) 20 K nodes 1 M nodes 50

Total concurrency 225 K 1 B 4444

Storage 15 PB 300 PB 20

I/O Bandwidth 0.2 TB/s 20 TB/s 100

Figure 2: Collective I/O and Two-phase Implementation

level portability across many different machine architectures
and operating systems. ROMIO is a popular MPI-IO
implementation developed at Argonne National Laboratory
[9][14]. ROMIO implements an internal layer named ADIO
[15](Abstract Device Interface for MPI-IO) to achieve the
portability and higher I/O performance. It performs various
optimizations, including collective I/O and data sieving, for
common access patterns of parallel applications [9].

Collective I/O is one of the most important I/O access
optimizations for parallel applications. It differs from
independent I/O, in which each process of a parallel
application issues I/O requests independently of all other
processes. Although independent I/O is a straightforward form
of I/O and is widely used in many applications, this form of
I/O is not recommended for parallel applications because it
does not capture the complete data access information of a
parallel application. This shortcoming offers MPI-IO
middleware the opportunity to optimize I/O performance given
the knowledge of parallel processes.

Collective I/O allows the middleware and the parallel file
system to have a comprehensive view of data movements from
all processes (involved in the collective I/O) of a parallel
application. The motivation to utilize collective operations is
several-fold. First, collective I/O can filter overlapping I/O
requests from multiple processes and reduce the amount of
data accesses to the parallel file system. Second, the requests
of multiple processes are often interleaved and may constitute
a large contiguous portion of a file together. The performance
of handling a large and contiguous request is generally better
than handling many noncontiguous and small requests to a
storage system. Third, the number of I/O calls is reduced by
combining small and noncontiguous requests into large and
contiguous ones, thus the overhead involved is reduced too.
Note that the collective I/O is a general idea that takes
advantage of collective operations among accesses from
multiple processes of a parallel application and optimizes its
I/O accesses. It can be applied at the disk level (disk-directed
I/O [16]), at the server level (server-directed I/O [17]), or at
the client level [9]. In this study, we focus on parallel I/O
middleware level. If the entire I/O access pattern of a group
processes is known to the MPI-IO middleware, the MPI-IO
implementation can improve the I/O performance remarkably
by merging the requests of different processes and servicing
the merged requests by performing collective I/O.

Two-phase protocol is the most popular method of
implementing collective I/O. This strategy performs two steps
as illustrated in the Figure 2 for the collective read case: I/O
access phase and data communication phase. Six processes
shown in the upper part of this figure read the file from the
parallel file system depicted on the lower part of the figure. In
I/O access phase, the data is gathered in contiguous chunks at
a part of the compute nodes that act as aggregators. In the
implementation of two-phase collective I/O, each process first
analyzes its own I/O request respectively and let the
aggregators know the entire aggregated I/O requests from all
processes. In the I/O phase, aggregated I/O requests are
divided into file domains and each file domain is assigned to
one aggregator. After the file domains are determined, each
aggregator will access data only from the file domain assigned

to it. In this example, we assume there are two aggregators
carrying out I/O requests for their own file domains. In the
data communication phase, each aggregator sends data to the
requesting processes, and each process receive the data from
corresponding aggregators that carry the data for it.

3. MEMORY-CONSCIOUS COLLECTIVE
I/O
This section describes the design and implementation of the
proposed memory-conscious collective I/O strategy. We first
introduce the software architecture and then describe the core
components in detail.

The main purpose of the memory-conscious collective I/O is
to enhance the two-phase collective I/O with new mechanisms
for alleviating the memory pressure and mitigating the external
bandwidth bottleneck in extreme scale systems. Figure 3
illustrates the high-level view of the proposed memory-

conscious collective I/O software architecture. Four
new/revised components are introduced. The Aggregation
Group Division component divides the I/O requests into
separated groups. In each group, the I/O Workload Partition
component further calculates the aggregate access file region
and partitions it into contiguous file domains. The Workload
Portion Remerging component is designed to rearrange the file
domains considering the memory usage of physical nodes. The
Aggregators Location component determines the placement of
aggregators for each file domain.

The ROMIO implementation picks exactly one process per
node as I/O aggregator by default. Using a default number of
I/O aggregators will inevitably lead to suboptimal performance
in the many-core architecture for projected extreme scale
systems. In the proposed memory-conscious collective I/O
prototype, the corresponding parameters are measured for
optimizing the performance of collective I/O. First we
determine the optimal number of aggregators Nah and message

Figure 3: Memory-Conscious Collective I/O Software Architecture

size Msgind per aggregator that can fully utilize the I/O
bandwidth in one physical compute node, which acts as a host
to the aggregators. Next we identify the minimum memory
consumption Memmin for one physical node. Each node uses
Nah I/O aggregators with Msgind message size to achieve the
best performance. Finally, we consider the aggregation I/O
traffic contention on system level by increasing the number of
aggregators across the system network. The throughput from
aggregators to the parallel file system is measured and
performance variation is considered to find the optimal group
message size Msggroup for an aggregation group.

3.1 Aggregation Group Division
The global data shuffling traffic in two-phase collective I/O
increases the memory pressure on aggregators and leads to off-
chip memory bandwidth contention. The memory-conscious
collective I/O first divides the I/O workloads into groups.
These groups in turn perform their own aggregation in a
disjointed manner, thus restricting the data shuffling traffic
within each group. The goal of the aggregation group division
is to maximize the data movement speed during the data
shuffle phase and reduce the amount of memory needed and
variance for each aggregator with a balanced memory
consumption design, which is critical for scaling the collective
I/O to an extreme scale or beyond.

To divide the I/O workloads among aggregation groups,
analytics are applied to the entire file domain to detect the data
access pattern of an application. A large number of
applications use explicit offset operations in the I/O calls, or
the data segments are serially distributed among processes. In
this case, an offset calculation guided by the optimal group
message size Msggroup will divide the I/O workloads into non-
overlapping chunks. For example as shown in Figure 4, a
linearization of data distribution across 9 processes in three
compute nodes, the size of aggregation group one is extended
to the ending offset of the data accessed by the last process in
compute node one. In this way, we avoid that processes from
the same physical node become I/O aggregators for different
groups. Scientific applications with complex structured
datatype exhibit more complicated access patterns, where the
beginning and ending offsets are interwoven with each other.
In these situations, the aggregation group division can be
determined by analyzing the MPI file view across processes.

3.2 I/O Workload Partition & Portions
Remerging
Within each aggregation group, the I/O Workload Partition
component analyzes the offsets and lengths of all I/O requests.
Data are gathered in a contiguous chunk and dynamically

partitioned into distinct domains where each aggregator can
achieve the optimal performance at the given workload. To
obtain such a partitioning, a dynamical workload partition
algorithm is applied to the file region by generating a binary
partition tree. Each vertex in the tree represents a non-
overlapping portion of the whole file region requested by all
processes in one aggregation group. The internal vertices in
the tree stand for the portions that no longer exist, but were
split at some previous time. Each divided file domain is
represented as a leaf of the binary partition tree. Essentially the
core of the algorithm is a recursive bisection method to divide
the file region into two sets until the termination criterion
Msgind is met. As a result of the algorithm presented above,
different number of file domains will be generated in each
group depending on the amount and distribution of data during
one collective I/O operation. Also, the I/O message size in
each file domain results in the I/O saturation for one
aggregator.

Although the I/O data size Msgind can lead one aggregator to
achieve the best performance with the optimal file domain
size, the aggregator may perform less well than expected
because of other resource constraints, especially the amount of
memory available for the aggregation buffer. When the
processes associated with one file domain are short of memory
resources, this file domain will be merged with the domain
nearby to expand the search area until find the aggregator host
that satisfies the memory requirement.

When a file domain is remerged with the neighbor, the
correlated vertex leaves the partition tree. The file domain the
departed vertex occupied is taken over by the remaining
vertices. This concept can be easily defined using the partition
tree. Suppose a leaf vertex “A” leaves the tree and the file
domain it owns need to be remerged with other file portions.
There are two cases when a leaf is leaving: if the sibling of this
leaf is also a leaf (call it “B”), then B will take over A directly.
We simply merge leaves A and B, making their former parent
vertex a leaf and assign vertex B to that leaf. Thus the regions
correlated to A and B merge into a single region that is owned
by vertex B. Figure 5a shows an example of such a takeover. If
A’s sibling B is not a leaf because the sibling file portion has
been further split, then it is necessary to perform a depth first

Figure 4: Aggregation group division example

Figure 5a: File Domain Remerge with the Neighbor Case 1

Figure 5b: File Domain Remerge with the Neighbor Case 2

search (DFS) in the sub-tree rooted at B until a leaf vertex is
found. In particular, in order to remerge with the neighbor
region nearby and if A is the left sibling of B, the DFS must
visit left siblings before right ones. Otherwise if A is the right
sibling of B, the traversal will first visit right siblings. This
leaf, call it “C”, acts as A’s sibling and takes over the region
owned by A. Figure 5b shows an example of such a takeover.
Note that the remerge procedures are limited within each
aggregation group.

3.3 Aggregators Location
The number of file domains produced by the I/O Workload
Partition algorithm can determine the number of aggregators
during one collective I/O operation. The Workload Portions
Remerging component reorganizes the file domains
considering the memory consumption for the aggregation.
These two components prompt the system to locate the
aggregators for compute processes.

The strategy to locate the aggregators within one file domain is
to first obtain all processes of which I/O requests are located in
this file domain; then it compares the processes related hosts
(utilizing the IP address of each process) while each candidate
host should have less than Nah aggregators. The host with
maximum system memory Memavl available is identified. If
Memavl is larger than the memory Memmin, the corresponding
process will be selected as the aggregator in this file domain.
Otherwise, it indicates setting any compute nodes related to
this file domain as the aggregator host may underperform
because there is not enough aggregation memory to guarantee
the best I/O performance. In this case, the file domain will be
integrated with the domain nearby. Processes related hosts are
repeatedly inspected as in the above process until the one that
satisfies the memory requirement is identified.

4. EXPERIMENTAL RESULTS AND
ANALYSIS
In this section, we present the experimental results of the
proposed memory-conscious collective I/O. We also compare
it with the existing two-phase collective I/O approach.

The experiments were conducted on a 640-node Linux-based
cluster test bed with DataDirect Network storage systems.
Each node contains two Intel Xeon 2.8 GHz 6-core processors
with 24 GB main memory. All nodes are connected with
double-data-rate Infiniband networking that provides full
cross-section bandwidth among the parallel nodes. A 600TB
Lustre file system and MPICH2-1.0.5p3 library manage the
storage system and runtime environment. Files were striped
over all I/O servers with the round robin default striping
strategy (with 1 MB unit size in the experiments).

The performance of memory-conscious collective I/O
introduced in section III was evaluated and compared with the
normal two-phase collective I/O strategy. In this paper, we
empirically determined the number of aggregators Nah ,
message size Msgind per aggregator and the group message size
Msggroup. We leave the examination of these optimal values to
a future study as it is correlated with the I/O pattern of a
particular application. The normal two-phase I/O uses the
default number of I/O aggregators for data access, which is
exactly one process per node. The assignment of aggregators

in normal collective I/O is independent of the distribution of
the data over the process.

While we study the performance of the proposed strategy, our
focus is on the scalability analysis as we varied the buffer size
for collective I/O and the number of processes. In each
collective call, the memory buffer used by each aggregator
was fixed for normal collective I/O. For the memory-
conscious collective I/O, the memory buffer sizes for
processes were set up as random variables following a normal
distribution. The arithmetic mean of this normal distribution
was equal to the aggregator buffer size of the normal collective
I/O in each run. The standard deviation was set as 50 in our
experiments.

We choose two well-known MPI-IO benchmarks for
evaluation: coll_perf from ROMIO software package [14]
developed at Argonne National Laboratory and IOR [18] from
the ASCI Purple benchmark suite developed at Lawrence
Livermore National Laboratory.

4.1 Experimental Results of coll_perf
Benchmark

coll_perf is one of test programs from ROMIO software
package. This benchmark writes and reads a 3D block-
distributed array to a file corresponding to the global array in
row-major order using collective I/O. We ran the benchmark
with 20483 as the array size to measure the I/O bandwidth. 120
MPI processes were used to write and read a 32 GB file that
resides on Lustre file system. We modified the original
implementation and evicted cached data with memory flushing
after write phase.

 Figure 6: Performance comparison with coll_perf benchmark with various
memory sizes at 120 cores

Figure 6 shows the write and read bandwidth for both normal
two-phase collective I/O and the proposed memory-conscious
collective I/O. As expected we can observe that both collective
I/O strategies showed a drop in performance as the available
memory buffer size reduced. However, the memory conscious
collective I/O always performed better than two- phase
collective I/O especially memory per aggregator at smaller
sizes. By utilizing the new strategy, the average performance
for write and read tests were 34.2% and 22.9% respectively.

4.2 Experimental Results of IOR Benchmark

Interleaved Or Random (IOR) benchmark measures the
performance of parallel I/O through different I/O interfaces,
including MPI-IO, POSIX as well as higher-level libraries. In
this study, we performed interleaved read and write operations
to a file as we varied the buffer size for collective I/O, the
message size transferred per process and the number of
processes. The tests were carried out with 120 and 1080
processes respectively.

Figure 7 compares the write and read bandwidth with both the
normal two-phase collective I/O and the new memory-
conscious collective I/O at 120 cores as we varied memory
buffer used on each aggregator. The tests were conducted with
32 MB I/O data message per MPI process. As shown in Figure
7, the new strategy can affect the IOR benchmark testing
performance considerably. The best write performance
improvement was achieved with the memory size at 16 MB.
The memory-conscious collective I/O was observed with an
improvement of 1.2 times compared to that of normal two-
phase collective I/O. For the memory size at 8 MB, the
performance improvement for read was 89.1%. The

performance improvements of write tests are more sensitive
for the new strategy, as it varied from 40.3% improvement to
121.7% improvement. The performance improvements of read
tests are less sensitive. The performance speedup varied from
64.6% to 97.4%. The average performance improvements for
read and write tests were 82.4% and 81.2% respectively.

We have also measured and compared the performance with
varying the number of processes. Figure 8 compares the
performance of the normal two-phase collective I/O and the
memory-conscious collective I/O at 1080 cores while we
decreased the aggregation buffer size over different runs. The
experimental results showed that the write bandwidth of
normal collective I/O dropped from 1631.91MB/s to
396.36MB/s as the aggregation memory size decreased from
128MB to 2MB. Meantime, the read bandwidth dropped from
2047.05 MB/s to 861.62 MB/s. We observed that the proposed
memory-conscious collective I/O improved both read and
write bandwidth over the existing strategy constantly with
1080 cores. The average improvement of the memory-
conscious collective I/O with different memory sizes was 24.3%
and 57.8% for interleaved writes and reads respectively. It
demonstrates that the memory-conscious collective I/O is very
beneficial to collective I/O by dynamically determining a
better I/O aggregator placement within an environment that
has limited memory resources.

5. RELATED WORK
Many research efforts have been devoted to optimize parallel
I/O performance in the past, such as collective I/O [9], data
sieving [9], server-direct I/O [17], disk-directed I/O [20], and
ADIOS library [21]. Recently, Zhang et. al. proposed to find
and match the I/O request pattern with the striping pattern to
have an efficient resonant I/O [22]. Iskra et. al. introduced an

Figure 7: Performance comparison with IOR benchmark with
various memory sizes at 120 cores

 Figure 8: Performance comparison with IOR benchmark with
various memory sizes at 1080 cores

I/O forwarding component in the ZeptoOS for petascale
architectures such as IBM Blue Gene systems [23]. Ali et. al.
proposed a new I/O forwarding software layer sitting between
the MPI-IO and parallel file systems to ship the I/O calls to
dedicated I/O nodes and improves the scalability of parallel
I/O systems [24]. A layout-aware collective I/O strategy was
recently introduced in [25] to provide a better integration of
parallel I/O middleware and parallel file system and improve
the overall performance. These strategies collect and merge
small and noncontiguous requests into a large and contiguous
one for aggregators to carry out more efficiently, or ship I/O
calls to dedicated processes. This study further improves the
collective I/O strategy and proposes a memory conscious
method that dynamically makes the decision for I/O workload
segmentation and aggregators determination. It improves the
performance of the existing collective I/O approach and
reduces the memory consumption and bandwidth contention.

Parallel file systems, such as Lustre [26], GPFS [27], PanFS
[28] and PVFS/PVFS2 [29], enable concurrent I/O accesses
from multiple clients to files. Numerous optimizations also
exist to improve the file system performance, such as data
staging services [30], coordinated access interface [31],
performance bridging [32], a log-structured interposition layer
and latent asynchrony I/O [33]. While parallel file systems
perform well for large and well-formed data streams, they
often perform inadequately when dealing with many small and
noncontiguous data requests. The collective I/O and memory-
conscious collective I/O proposed in this study address these
issues well. The memory-conscious approach dynamically
determines I/O aggregators at run time considering data
distribution and memory consumption among processes and is
more beneficial than the existing collective I/O approach. This
research can have an impact for extreme scale high
performance parallel I/O system.

6. CONCLUSION
Extreme scale high performance computing systems are near
the horizon. The projected substantially increased total
concurrency in extreme scale systems and the decreased
memory capacity per core, increased available memory
variance per node, and decreased bandwidth per core as
analyzed in this study can be critical challenges for collective
I/O to work effectively at an extreme scale. In this study, we
identify the performance bottleneck and the scalability
constraint imposed by memory and off-chip bandwidth to
collective I/O. Motivated by these observations, we propose a
new memory-conscious collective I/O strategy that determines
the I/O aggregator distribution dynamically on the fly with
memory-aware data partition and aggregation mechanisms.
The proposed strategy was evaluated on MPICH2 and Lustre
file systems with simulating the limited memory capacity,
increased memory variance, and limited off-chip bandwidth.
The evaluation results confirmed the proposed memory-
conscious collective I/O strategy outperformed existing
strategies given the memory pressure and bandwidth
constraints. This study could be significant given the
importance of improving noncontiguous I/O accesses,
reducing the memory pressure, and alleviating off-chip
bandwidth contention of collective I/O on projected extreme
scale systems.

7. ACKNOWLEDGMENTS
The authors acknowledge the High Performance Computing
Center (HPCC) at Texas Tech University at Lubbock for
providing HPC resources that have contributed to the research
results reported in this paper.

8. REFERENCES
[1] J.Dongarra, P. H. Beckman, et. al. The International

Exascale Software Project roadmap. IJHPCA 25(1): 3-60
(2011)

[2] Isaila, J. G. Blas, J. Carretero, R. Latham, R. B. Ross.
Design and Evaluation of Multiple-Level Data Staging for
Blue Gene Systems. IEEE Trans. Parallel Distrib. Syst.
22(6): 946-959, 2011.

[3] D. Donofrio, L. Oliker, J. Shalf, M. F. Wehner, C.
Rowen, J. Krueger, S. Kamil and M. Mohiyuddin.
Energy-Efficient Computing for Extreme-Scale Science.
IEEE Computer 42(11): 62-71 (2009)

[4] R. E. Bryant. Data-intensive supercomputing: The case
for DISC. In Tech Report CMU-CS-07-128, Carnegie
Mellon University School of Computer Science, 2007.

[5] DOE Innovative and Novel Computational Impact on
Theory and Experiment program,
http://hpc.science.doe.gov/

[6] J. Shalf, S. S. Dosanjh and J. Morrison. Exascale
Computing Technology Challenges. VECPAR 2010: 1-25

[7] S. Borkar. Thousand core chips: a technology perspective.
In Proceedings of the 44th annual Design Automation
Conference (DAC '07). ACM, New York, NY, USA, 746-
749. 2007.

[8] P. M. Dickens and R. Thakur. Improving Collective I/O
Performance Using Threads. In Proceedings of the 13th
International Symposium on Parallel Processing and the
10th Symposium on Parallel and Distributed Processing:
IEEE Computer Society, 1999.

[9] R. Thakur, W. Gropp, and E. Lusk. Data Sieving and
Collective I/O in ROMIO. In Proc. of the 7th Symposium
on the Frontiers of Massively Parallel Computation, 1999.

[10] J. S. Vetter, V. Tipparaju, W. Yu and P. C. Roth. HPC
Interconnection Networks: The Key to Exascale
Computing. High Performance Computing Workshop
2008: 95- 106

[11] W. D. Gropp, E. Lusk, and R. Thakur. Using MPI-2. MIT
Press, 1999.

[12] J. May. Parallel I/O for High Performance Computing.
Morgan Kaufmann Publishing, 2001.

[13] Message Passing Interface Forum. MPI-2: Extensions to
the Message-Passing Interface. http://www.mpiforum.
org/docs/docs.html, 1996.

[14] ROMIO website. http://www-unix.mcs.anl.gov/romio/.
[15] R. Thakur, W. Gropp, and E. Lusk. An Abstract-Device

Interface for Implementing Portable Parallel-I/O
Interfaces. In Proc. of the 6th Symposium on the Frontiers
of Massively Parallel Computation, 1996.

[16] D. Kotz. Disk-directed I/O for MIMD Multiprocessors.
ACM Transactions on Computer Systems, 15(1):41-74,
1997.

[17] K. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M.
Winslett. Server-Directed Collective I/O in Panda. In
Proc. of Supercomputing Conference, 1995.Ding, W. and
Marchionini, G. 1997. A Study on Video Browsing
Strategies. Technical Report. University of Maryland at
College Park.

[18] IOR benchmark. URL https://computing.llnl.gov/
[19] MPI-IO Test (fs_test) benchmark. URL

http://institutes.lanl.gov/data/software/#mpi-io
[20] D. Kotz. Disk-directed I/O for MIMD Multiprocessors.

ACM Transactions on Computer Systems, 15(1):41-74,
1997

[21] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki and
C. Jin. Flexible I/O and Integration for Scientific Codes
Through the Adaptable I/O System (ADIOS). In Proc. of
the 6th International Workshop on Challenges of Large
Applications in Distributed Environments, 2008.

[22] X. Zhang, S. Jiang, and K. Davis. Making Resonance a
Common Case: A High-performance Implementation of
Collective I/O on Parallel File Systems. In Proc. of the
23rd IEEE International Symposium on Parallel and
Distributed Processing, 2009.

[23] K. Iskra, J. W. Romein, K. Yoshii, and P. Beckman.
ZOID: I/O Forwarding Infrastructure for Petascale
Architectures. In Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pp. 153 - 162, 2008.

[24] N. Ali, P. H. Carns, K. Iskra, D. Kimpe, S. Lang, R.
Latham, R. B. Ross, L. Ward, P. Sadayappan. Scalable
I/O Forwarding Framework for High-performance
Computing Systems. Proceedings of the 2009 IEEE
International Conference on Cluster Computing, 2009.

[25] Y. Chen, X.-H. Sun, R. Thakur, P. C. Roth and W. Gropp.
LACIO: A New Layout-Aware Collective I/O Strategy
for Parallel I/O Systems. In the Proc. of IEEE
International Parallel and Distributed Processing
Symposium (IPDPS'11), 2011.

[26] Cluster File Systems Inc., Lustre: A scalable, high
performance file system, Whitepaper,
http://www.lustre.org/docs/whitepaper.pdf

[27] F. Schmuck and R. Haskin. GPFS: A Shared-Disk File
System for Large Computing Clusters. In Proceedings of
the First USENIX Conference on File and Storage
Technologies, pp. 231-244, USENIX, January 2002

[28] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B.Mueller,
J.Small, J. Zelenka and B. Zhou. Scalable Performance of
the Panasas Parallel File System. In Proc. of the 6th
USENIX Conference on File and Storage Technologies,
2008.

[29] P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur.
PVFS:A parallel file system for linux clusters. In
Proceedings of the 4th Annual Linux Showcase and
Conference

[30] H. Abbasi, G. Eisenhauer, M. Wolf, K. Schwan and
S.Klasky. Just In Time: Adding Value to the I/O Pipelines
Of High Performance Applications with JITStaging. In
Proc. of Intl. Symp. on High Performance Distributed
Computing (HPDC), 27-36, 2011.

[31] S. Lang, R. Latham, R. B. Ross and D. Kimpe. Interfaces
for Coordinated Access in the File System. CLUSTER,
pp. 1-9, 2009.

[32] P. Gu, J. Wang and R. Ross. Bridging the Gap between
Parallel File Systems and Local File Systems: A Case
Study with PVFS. The 37th International Conference on
Parallel processing 2008 (ICPP’08), Pages 554-561,
September 2008.

[33] P. Widener, M.Wolf, H. Abbasi, S. McManus, M. Payne,
M. J. Barrick, J. Pulikottil, P. G. Bridges and K. Schwan.
“Exploiting Latent I/O Asynchrony in Petascale Science
Applications.” IJHPCA 25(2): 161-179, 2011.

