
Fast Routing Table Construction Using Small Messages

Christoph Lenzen∗

Dept. Computer Science & Applied Mathematics

Weizmann Institute of Science

Rehovot 76100, Israel

Boaz Patt-Shamir†

School of Electrical Engineering

Tel Aviv University

Tel Aviv 69978, Israel

Abstract

We describe a distributed randomized algorithm computing approximate distances and routes

that approximate shortest paths. Let n denote the number of nodes in the graph, and let HD denote

the hop diameter of the graph, i.e., the diameter of the graph when all edges are considered to have

unit weight. Given 0 < ε ≤ 1/2, our algorithm runs in Õ(n1/2+ε+HD) communication rounds using

messages of O(log n) bits and guarantees a stretch of O(ε−1 log ε−1) with high probability. This

is the first distributed algorithm approximating weighted shortest paths that uses small messages

and runs in õ(n) time (in graphs where HD ∈ õ(n)). The time complexity nearly matches the

lower bounds of Ω̃(
√
n + HD) in the small-messages model that hold for stateless routing (where

routing decisions do not depend on the traversed path) as well as approximation of the weigthed

diameter. Our scheme replaces the original identifiers of the nodes by labels of size O(log ε−1 log n).

We show that no algorithm that keeps the original identifiers and runs for õ(n) rounds can achieve

a polylogarithmic approximation ratio.

Variations of our techniques yield a number of fast distributed approximation algorithms solving

related problems using small messages. Specifically, we present algorithms that run in Õ(n1/2+ε +

HD) rounds for a given 0 < ε ≤ 1/2, and solve, with high probability, the following problems:

• O(ε−1)-approximation for the Generalized Steiner Forest (the running time in this case has

an additive Õ(t1+2ε) term, where t is the number of terminals);

• O(ε−2)-approximation of weighted distances, using node labels of size O(ε−1 log n) and Õ(nε)

bits of memory per node;

• O(ε−1)-approximation of the weighted diameter;

• O(ε−3)-approximate shortest paths using the labels 1, . . . , n.

∗Supported by the Swiss Society of Friends of the Weizmann Institute of Science and by the Swiss National Science

Foundation (SNSF).
†Supported in part by the Israel Science Foundation (grant 1372/09) and by Israel Ministry of Science and Technology.

ar
X

iv
:1

21
0.

57
74

v2
 [

cs
.D

C
]

 2
 N

ov
 2

01
2

1 Introduction

Constructing routing tables is a central task in network operation, the Internet being a prime example.

Besides being an end goal on its own (facilitating the transmission of information from a sender to

a receiver), efficient routing and distance approximation are critical ingredients in a myriad of other

distributed applications.

At the heart of any routing protocol lies the computation of short paths in weighted graphs,

where edge weights may reflect properties such as link cost, delay, bandwidth, reliability etc. In the

distributed setting, an additional challenge is that the graph whose shortest paths are to be computed

serves also as the platform carrying communication between the computing nodes. The result of this

double role is an intriguing interplay between two metrics: the given shortest paths metric and the

“natural” communication metric of the distributed system. The first metric is used for the definition

of shortest paths, where an edge weight represents its contribution to path lengths; the other metric

is implicit, controlling the time complexity of the distributed computation: each edge is tagged by

the time it takes a message to cross it. If these two metrics happen to be identical, then computing

weighted shortest paths to a single destination is trivial (for the all-pairs problem, see below). For

the general case, the standard normalization is that messages cross each link in unit time, regardless

of the link weight; this assumption is motivated by network synchronization. On the other hand, the

length of the message must be taken into account as well. More precisely, in the commonly-accepted

CONGEST model of network algorithms [21], it is assumed that all link latencies are one unit and

messages have fixed size, typically O(log n) bits, where n denotes the number of nodes.

The classical algorithm for computing shortest path distributively is the distributed variant of the

Bellman-Ford algorithm. This algorithm is used in many networks, ranging from local to wide area

networks. The Bellman-Ford algorithm enjoys many properties that make it an excellent distributed

algorithm (locality, simplicity, self-stabilization). However, in weighted graphs, its time complexity,

i.e., the number of parallel iterations, may be as high as Ω(n) for a single destination. This is in sharp

contrast with the O(HD) time needed to compute unweighted shortest paths to a single destination,

where HD denotes the unweighted “hop-diameter” of the network. The difference between n and HD

can be huge; suffices to say that the hop-diameter of the Internet is estimated to be smaller than

50. Intuitively, the problem originates in the fact that the Bellman-Ford algorithm explores paths in

a hop-by-hop fashion, and the aforementioned superposition of metrics may result in a path that is

weight-wise short, but consists of Ω(n) edges. If shortest paths have at most SPD ∈ N edges, then it

suffices to run the Bellman-Ford algorithm for SPD communication rounds. Indeed, the running time

of a few distributed algorithms is stated as a function of this or a similar parameter for exactly this

reason (e.g., [6, 15, 16]).

To the best of our knowledge, no distributed algorithm for computing (approximate) weighted

shortest paths in o(SPD) time in the CONGEST model was known to date. In this paper we present

a distributed algorithm that computes approximate all-pairs shortest paths and distances using small

messages, in time that nearly matches the lower bound of Ω̃(
√
n+ HD).

1

1.1 Detailed Contributions

Our main technical contribution, presented in Section 4, is an algorithm that, using messages of

size O(log n), constructs, for any 0 < ε ≤ 1/2, in Õ(n1/2+ε + HD) rounds node labels1 of size

O(log ε−1 log n) and routing tables of size Õ(n1/2+ε) facilitating routing and distance estimation with

stretch O(ε−1 log ε−1). We show that assigning new labels to the nodes is unavoidable by proving that

any (randomized) algorithm achieving polylogarithmic (expected) stretch without relabeling must run

for Ω̃(n) rounds. The running time of our algorithm is close to optimal, since known results [7, 8, 23]

imply that computing such an approximation in the CONGEST model must take Ω̃(
√
n + HD)

rounds.

Our algorithm comprises two sub-algorithms that we believe to be of interest in their own right.

One is used for short-range routing (roughly, for the closest
√
n nodes), the other for longer distances.

The short-range algorithm constructs a hierarchy in the spirit of Thorup-Zwick distance oracles [30]:

A recursive structure of uniformly sampled “landmarks” is used to iteratively reduce the number of

routing destinations (and routes) that need to be learned, and repeated use of the triangle inequality

shows that the stretch is linear in the number of recursion stages. While this idea is not new, our main

challenge is to implement the algorithm using small messages; to this end, we introduce a bootstrapping

technique that, combined with a restricted variant of Bellmann-Ford (that bounds the hop range and

the number of tracked sources), allows us to construct low-stretch routing tables for nearby nodes.

This approach runs out of steam (i.e., exceeds our target complexity) beyond the closest O(
√
n)

nodes, so at that point we switch to the “long-distance” scheme. The basic idea in this scheme is to

pick roughly
√
n random nodes we call the skeleton nodes, and to compute all-to-all routing tables

for them. This is achieved by simulating the spanner construction algorithm by Baswana and Sen [3].

Again, the crux of the matter is an efficient implementation of this approach using small messages.

To this end, we first construct a spanner of a graph defined by the skeleton nodes and shortest paths

between them. Due to the small number of skeleton nodes and the reduced number of edges (thanks

to the spanner construction), we can afford to broadcast the entire skeleton-spanner graph, thereby

making skeleton routing information common knowledge. In addition, we can mark the corresponding

paths in the original graph quickly. Here too, our main low-level tool is the restricted Bellmann-Ford

algorithm that bounds both the range and the load.

Using variants of our techniques, in Section 5 we derive efficient solutions to several related problems

(all statements hold with high probability).

• For the Generalized Steiner Forest (gsf) problem we obtain, for any 0 < ε ≤ 1/2, an O(ε−1)-

approximation within Õ((
√
n + t)1+ε + HD) rounds, where t is the number of terminals. This

should be contrasted with the best known distributed approximation algorithm for gsf [15],

which provides O(log n)-approximation in time Õ(SPD · k), where SPD is the “shortest paths

diameter,” namely the maximal number of hops in any shortest path, and k is the number of

terminal components in the gsf instance.

• For any k ∈ N, we obtain an Õ((
√
n)1+1/k + HD)-time algorithm that constructs labels of size

1We remark that our use of the term differs from the common definition in that we distinguish between the auxiliary

routing information stored by the nodes (the tables) and the (preferrably very small) labels replacing the original node

identifiers as routing address.

2

O(k log n) and local tables of size Õ(n1/(2k)), and produces distance estimations with stretch

O(k2). Compare with the recent distributed algorithm [6] that attains the same local space

consumption at running time Õ(SPD · n1/(2k)) and stretch 4k − 1.

• Given any 0 < ε ≤ 1/2, we can compute an O(ε−1)-approximation of the diameter within

Õ(n1/2+ε+HD) rounds. We show that the standard construction yielding a lower bound Ω̃(
√
n+

HD) extends to this problem, implying that also for this special case our solution is close to

optimal.

• Employing a different routing mechanism for the short-range scheme, we can assign the fixed

labels of 1, . . . , n. This comes at the expense of a larger stretch of O(ε−3) within Õ(n1/2+ε+HD)

rounds, for any 0 < ε ≤ 1/2.

1.2 Related Work

There are many centralized algorithms for constructing routing tables; in these algorithms the goal

is usually to minimize space without affecting the quality of the routes too badly. We briefly discuss

them later, since our focus is the distributed model. At this point let us just comment that a näıve

implementation of a centralized algorithm in the CONGEST model requires Ω(|E|) time in the worst

case, since the whole network topology has to be collected at a single node just for computation.

Practical distributed routing table construction algorithms are usually categorized as either “dis-

tance vector” or “link state” algorithm (see, e.g., [26]). Distance-vector algorithms are variants of

the Bellman-Ford algorithm [4, 11], whose worst-case time complexity in the CONGEST model is

Θ(n2). In link-state algorithms [19, 20], each routing node collects the complete graph topology and

then solves the single-source shortest path problem locally. This approach has Θ(|E|) time complexity.

While none of these algorithms uses relabeling, it should be noted that the Internet architecture in fact

employs relabeling (IP addresses, which are used instead of physical addresses, encode some routing

information).

From the theoretical perspective, as mentioned above, there has not been much progress in com-

puting weighted shortest paths beyond the “shortest path diameter” (we denote by SPD) even for

the single-source case: see, e.g., [6] and references therein. For the unweighted case, an O(n)-time

algorithm for exact all-pairs shortest-paths was recently discovered (independently) in [14] and [22].

These algorithms do not relabel the nodes. In addition, a randomized (3/2)-approximation of HD is

given in [22], and a deterministic (1 + ε)-approximation is provided by [14]. Combining results, [14]

and [22] report a randomized (3/2)-approximation of the unweighted diameter in time Õ(n3/4).

In [7], a lower bound of Ω̃(
√
n) on the time to construct a shortest-paths tree of weight within a

poly(n) of the optimum is shown; this immediately implies the same lower bound on routing (more

precisely, on stateless routing, where routing decisions depend only on the destination and not on the

traversed path). To the best of our knowledge, the literature does not state any further explicit lower

bounds on the running time of approximate shortest paths or distance estimation algorithms, but a

lower bound of Ω̃(
√
n) can be easily derived using the technique used in [7] (which in turn is based

on [23]). In [12] it is shown that in the CONGEST model, approximating the diameter of unweighted

graphs to within a factor of 3/2− ε requires Ω̃(
√
n) rounds. For the unweighted case, we extend this

result to arbitrary approximation ratios.

3

In the Generalized Steiner Forest problem (gsf), the input consists of a weighted graph and a set of

terminal nodes which is partitioned into subsets called terminal components. The task is to find a set of

edges of minimum weight so that the terminal components are connected. Historically, the important

special case of a minimum spanning tree (all nodes are terminals, single terminal component) has

been the target of extensive research in distributed computation. It is known that in the CONGEST

model, the time complexity of computing (or approximating) an MST is Ω̃(
√
n+ HD) [7, 8, 23]. This

bound is essentially matched by an exact deterministic solution [13, 17]. An O(log n)-approximate

MST is presented in [16], whose running time is O(SPD), where SPD is the “shortest path diameter”

mentioned previously. For the special case of Steiner trees (arbitrary terminals, single component),

[5] presents a 2-approximation algorithm whose time complexity is Õ(n) (which can easily be refined

to Õ(SPD)). For the general case, [15] presents an O(log n)-approximation algorithm whose time

complexity is Õ(κ · SPD), where κ is the number of terminal components.2

We now turn to a very brief overview of centralized algorithms. Thorup and Zwick [29] presented

an algorithm that achieves, for any k ∈ N, routes of stretch 2k − 1 using Õ(n1/k) memory. In

terms of memory consumption, it has been established that this scheme is optimal up to a constant

factor in worst-case stretch w.r.t. routing [24]. This result has been extended to the average stretch,

and tightened to be exact up to polylogarithmic factors in memory for the worst-case stretch [1].

For distance approximation, the Thorup-Zwick scheme is known to be optimal for k = 1, 2, 3, 5 and

conjectured to be optimal for all k (see [31] and references). The algorithm requires relabeling with

labels of size O(k log n). It is unclear whether stronger lower bounds apply to name-independent

routing schemes (which keep the original node identifiers); however, for k = 1, i.e., exact routing,

trivially O(n log n) bits suffice (assuming O(log n)-bit identifiers), and Abraham et al. [2] prove a

matching upper bound of Õ(
√
n) bits for k = 2.

A closely related concept is that of sparse spanners, introduced by Peleg and Schäffer [25]. A k-

spanner of a graph is obtained by deleting edges, without increasing the distances by more than factor

k. Similarly to compact routing tables, it is known that a (2k−1)-spanner must have Ω̃(n1+1/k) edges

for some values of k, this is conjectured to hold for all k ∈ N, and a matching upper bound is obtained

by the Thorup-Zwick construction [30]. If an additive term in the distance approximation is permitted,

the multiplicative factor can be brought arbitrarily close to 1 [9]. In contrast to routing and distance

approximation, there are extremely fast distributed algorithms constructing sparse spanners. Our

long-range construction rests on an elegant algorithm by Baswana and Sen [3] that achieves stretch

2k − 1 vs. O(n1+1/k) expected edges within O(k) rounds in the CONGEST model.

2 Model

In this section we define the model of computation and formalize a few concepts we use.

2We note that in [15], time-optimality is claimed, up to factor Õ(κ). This comes as a consequence of [16], which in

turn builds on [8]. However, we comment that the latter construction does not scale beyond the familiar lower bound

of Ω̃(
√
n), and a more precise statement would thus be that a minimum spanning tree (and thus also a gsf) requires

Ω̃(min{SPD,
√
n}) rounds to be approximated.

4

2.1 The Computational Model

We follow the CONGEST(B) model as described in [21]. The distributed system is represented by

a simple, connected weighted graph G = (V,E,W), where V is the set of nodes, E is the set of edges,

and W : E → N is the edge weight function.3 As a convention, we use n to denote the number of

nodes. We assume that all edge weights are bounded by some polynomial in n, and that each node

v ∈ V has a unique identifier of O(log n) bits (we use v to denote both the node and its identifier).

Execution proceeds in global synchronous rounds, where in each round, each node take the fol-

lowing three steps: (1) Receive messages sent by neighbors at the previous round, (2) perform local

computation, and (3) send messages to neighbors. Initially, nodes are aware only of their neighbors;

input values (if any) are assumed to be fed by the environment at time 0. Output values are placed

in special output-registers. In each round, each edge can carry a message of B bits for some given

parameter B of the model; we assume that B ∈ Θ(log n) throughout this paper.

A basic observation in this model is that we may assume, without loss of generality, that we have

a broadcast facility available, as formalized in the following lemma.

Lemma 2.1 Suppose each v ∈ V holds mv ≥ 0 messages of O(log n) bits each, for a total of M
def
=∑

v∈V mv strings. Then all nodes in the graph can receive these M messages within O(M + HD)

rounds.

Proof: Construct a BFS tree rooted at, say, the node r with smallest identifier (O(HD) rounds). All

nodes send their messages to their parents and forward the messages received by their children to their

parent as well, until the root holds all messages. Since over no edge more than M messages need to

be communicated, this requires O(M + HD) rounds. Finally all messages are broadcast over the tree,

completing in another O(M + HD) rounds.

In the following, we will use this lemma implicitly whenever stating that some information is “broad-

cast” or “announced to all nodes.”

2.2 General Concepts

We use extensively “soft” asymptotic notation that ignores polylogarithmic factors. Formally, we say

that g(n) ∈ Õ(f(n)) if and only if there exists a constant c ∈ R+
0 such that f(n) ≤ g(n) logc(f(n)) for

all but finitely many values of n ∈ N. Anagolously, f(n) ∈ Ω̃(g(n)) iff g(n) ∈ Õ(f(n)), Θ̃(f(n))
def
=

Õ(f(n))∩Ω̃(f(n)), g(n) ∈ õ(f(n)) iff for each fixed c ∈ R+
0 it holds that limn→∞ g(n) logc(f(n))/f(n) =

0, and g(n) ∈ ω̃(f(n)) iff f(n) ∈ õ(g(n)).

To model probabilistic computation, we assume that each node has access to an infinite string of

independent unbiased random bits. When we say that a certain event occurs “with high probability”

(abbreviated “w.h.p.”), we mean that the probability of the event not occurring can be set to be less

than 1/nc for any desired constant c, where the probability is taken over the strings of random bits.

3We remark that our results can be easily extended to non-negative edge weights by employing appropriate symmetry

breaking mechanisms.

5

2.3 Some Graph-Theoretic Concepts

A path p connecting v, u ∈ V is a sequence of nodes 〈v = v0, . . . , vk = u〉 such that for all 0 ≤ i < k,

(vi, vi+1) is an edge in G. Let paths(v, u) denote the set of all paths connecting nodes v and u. We

use the following unweighted concepts.

• The hop-length of a path p, denoted `(p), is the number of edges in it.

• The hop distance hd : V × V → N0 is defined as hd(v, u) := min{`(p) | p ∈ paths(v, u)}.
• The hop diameter of a graph G = (V,E,W) is HD

def
= maxv,u∈V {hd(v, u)}.

We use the following weighted concepts.

• The weight of a path p, denoted W (p), is its total edge weight, i.e., W (p)
def
=
∑`(p)

i=1 W (vi−1, vi).

• The weighted distance wd : V × V → R+
0 is defined by wd(v, u)

def
= min{W (p) | p ∈ paths(v, u)}.

• The weighted diameter of G is WD
def
= max{wd(v, u) | v, u ∈ V }.

The following concepts mix weighted and unweighted ones.

• Given h ∈ N and two nodes v, u ∈ V with hop distance hd(v, u) ≤ h, we define the h-weighted

distance wdh(u, v) to be the weight of the lightest path connecting v and u with at most h

hops, i.e., wdh(v, w)
def
= min{W (p) | p ∈ paths(v, w) and `(p) ≤ h}. If hd(v, u) > h, we define

wdh(v, u)
def
= ∞. (Note that wdh does not satisfy the triangle inequality.)

• The shortest paths diameter of a graph, denoted SPD, is the maximal number of hops in shortest

paths: SPD
def
= maxu,v∈V {min {`(p) |W (p) = wd(u, v)}}.

Finally, given a node v and an integer i ≥ 0, we define ballv(i) to be the set of the i nodes

that are closest to v (according to wd, where identifiers are used to break symmetry): ballv(i)
def
=

{u : | {w : (wd(v, u), u) ≤ (wd(v, w), w)} | ≤ i}. Note that our concept of ball differs from the usual

one: we define a ball by its center and volume, namely the number of nodes it contains (and not by

its center and radius).

We have the following immediate property.

Lemma 2.2 Let v, u ∈ V . If u ∈ ballv(i) for some i ∈ N then wd(v, u) = wdj(v, u) for all j ≥ i− 1.

Proof: Clearly wd(v, u) ≤ wdj(v, u) ≤ wdi−1(v, u), and it therefore suffices to show that wdi−1(v, u) =

wd(v, u). Let p = 〈v = v0, v1, . . . , vk = u〉 be a shortest path from v to u. Since edge weights are

strictly positive, we have that all the k nodes v0, . . . , vk−1 are strictly closer than u to v. Hence, since

u ∈ ballv(i), we have that i ≥ k + 1. It follows that wd(v, u) = wdi−1(v, u) and we are done.

3 Problem Statement and Lower Bounds

3.1 The Routing Problem

In the routing table construction problem (abbreviated rtc), the local input at a node is the weight

of incident edges, and the output at each node v consists of (i) a unique label λ(v) and (ii) a function

“nextv” that takes a destination label λ and produces a neighbor of v, such that given the label λ(u)

6

of any node u, and starting from any node v, we can reach u from v by following the next pointers.

Formally, the requirement is as follows. Given a start node v and a destination label λ(u), let v0 = v

and define vi+1 = nextvi(λ(u)) for i ≥ 0. Then for some i we must have vi = u.

The performance of a solution is measured in terms of its stretch: A route is said to have stretch

ρ ≥ 1 if its total weight is no more than ρ times the weighted distance between its endpoints, and a

solution to rtc is said to have stretch ρ if all the routes it induces have stretch at most ρ.

Variants. Routing appears in many incarnations. We list a few important variants below.

Name-independent routing. Our definition of rtc allows for node relabeling. This is the case,

as mentioned above, in the Internet. The case where no such relabeling is allowed (which can be

formalized by requiring λ to be the identity function), is called name-independent routing.

It can be shown that assigning new labels to the nodes is unavoidable by proving that any (ran-

domized) algorithm achieving polylogarithmic (expected) stretch without relabeling must run for Ω̃(n)

rounds. Formally, we can prove the following.

Theorem 3.1 In the CONGEST model, any algorithm for rtc that produces name-independent

stateful routing with expected average stretch ρ requires Ω(n/(ρ2 log n)) time.

Stateful routing. The routing problem as defined above is stateless in the sense that routing a

packet is done regardless of the path it traversed so far. One may also consider stateful routing, where

while being routed, a packet may gather information that helps it navigate later (one embodiment of

this idea in the Internet routing today is MPLS, where packets are temporarily piggybacked with extra

headers). Note that the set of routes to a single destination in stateless routing must constitute a tree,

whereas in stateful routing even a single route may contain a cycle. Formally, in stateful routing the

label of the destination may change from one node to another: The nextv function outputs both the

next hop (a neighbor node), and a new label λv used in the next hop.

Name-independent routing. Our definition of rtc allows for node relabeling. This is the case,

as mentioned above, in the Internet. The case where no such relabeling is allowed (which can be

formalized by requiring λ to be the identity function), is called name-independent routing.

It can be shown that assigning new labels to the nodes is unavoidable by proving that any (ran-

domized) algorithm achieving polylogarithmic (expected) stretch without relabeling must run for Ω̃(n)

rounds. What might come as a surprise here is that the result also applies to stateful routing.

Theorem 3.2 In the CONGEST model, any algorithm for rtc that produces name-independent

routing with (expected) average stretch ρ requires Ω(n/(ρ2 log n)) time.

3.2 The Distance Approximation Problem

The distance approximation problem is akin to the routing problem. Again, each node v outputs a

label λ(v), but now, v needs to construct a function distv : λ(V) → R+ (the table) such that for all

w ∈ V it holds that distv(w) ≥ wd(v, w). The stretch of the approximation for a given node w is

distv(w)/wd(v, w), and the solution has stretch ρ ≥ 1, if distv(w) ≤ ρwd(v, w) for all v, w ∈ V .

Similarly to routing, we call a scheme name-independent if λ is the identity function. Since we

7

require distances estimates to be produced without communication, there is no “stateful” distance

approximation.

3.3 Hardness of Name-Independent Distributed Table Construction

While name-independence may be desirable, our routing and distance approximation algorithm makes

heavy use of relabeling. This is unavoidable for fast construction, because, as the following two

theorems show, any name-independent scheme of polylogarithmic stretch requires Ω̃(n) rounds for

table construction. The lower bound holds even for stateful routing and average stretch. Moreover,

since the construction below is generic, intuitively it implies that there is no reasonable restriction,

be it in terms of topology, edge weights, or node degrees, that permits fast construction of name-

independent routing tables.4

Theorem 3.3 In the CONGEST model, any name-independent routing scheme of (expected) average

stretch ρ requires Ω(n/(ρ2 log n)) rounds for table construction. This holds even if all edge weights are

1, the graph is a tree of constant depth, and the node identifiers are 1, . . . , n.

Proof: We assume w.l.o.g. that all set sizes we use in this proof are integer and that nodes may send

no more than exactly log n ∈ N bits over each edge in each round. Consider the following family of

trees of depth 2. The root is connected to n1 ∈ Θ(ρ) inner nodes, each of which has n2 children;

denote by I and L the respective sets of nodes. All edges have weight 1, i.e., the maximal simple path

weight is 4.

We assign the identifiers 1, . . . , n uniformly at random to the n1n2 leaves (w.l.o.g., we neglect

that the total number of nodes is n1n2 + n1 + 1 in the following and use n instead). Consider any

deterministic algorithm constructing routing tables within r ∈ N rounds. From each node in I, the

root receives at most r log n bits, hence there are at most 2rn1 logn possible routing tables at the root.

Now consider the n!/(n2!)n1 possible partitions of the leaf identifiers to the subtrees rooted at nodes

from I. We bound the number of such partitions for which a fixed routing table at the root may serve

a uniformly random routing request with probability at least p correctly. This requirement translates

to at least pn identifiers being exactly in the subtree where the routing table points to; we have
(
n
pn

)
possible choices for these identifiers. The remaining (1− p)n identifiers may be distributed arbitrarily

to the remaining subtrees. Depending on the distribution of the pn identifiers we already selected,

the number of possibilities for this may vary. Using standard arguments it can be shown that this

quantity is maximized if the pn identifiers are distributed evenly among the subtrees, i.e., each of them

contains pn2 of them. We conclude that no routing table can serve a uniform request with probability

at least p for more than
(
n
pn

)
((1 − p)n)!/((1 − p)n2)!n1 of the possible input partitions. Considering

the number possible routing tables and the total number of input partitions n!/(n2!)n1 , we have that

(pn)!((1− p)n2)!n1

n2!n1
=

n!/n2!n1(
n
pn

)
((1− p)n)!/((1− p)n2)!n1

≤ 2rn1 logn.

4The lower bound graph can be adapted to be a balanced binary tree, weakening the lower bound on the stretch by

factor logn.

8

We distinguish two cases, the first being p < e2/n1. We seek to upper bound p in the second case

as well, where p ≥ e2/n1. Clearly the l.h.s. of the above inequality is increasing in p ∈ [0, 1]. Together

with Stirling’s approximation x! ∈ e(1−o(1))x(lnx−1) we can bound

(pn)!((1− p)n2!)n1

n2!n1
≥ (e2n2)!((1− e2/n1)n2)n1

n2!n1

∈ e(1−o(1))(e2n2(ln(e2n2)−1)+n(1−e2/n1)(ln((1−e2/n1)n2)−1)−n(lnn2−1))

⊆ e(1−o(1))(e2n2(lnn2+1)−e2n2(lnn2−1)+n ln(1−e2/n1))

⊆ e(1−o(1))(2e2n2−e2n2)

= e(e2−o(1))n2 .

The assumption that p ≥ e2/n1 thus implies (for sufficiently large n) that r > n2/(n1 log n).

Now condition on the event that for the given routing request the table does not lead to the correct

subtree. We fix the (uniformly random) subset of leaf identifiers in the subtree S the root’s routing

table points to, and conclude that the set of remaining identifiers is a uniformly random subset of

n − n2 − 1 leaf identifiers plus the destination’s identifier. Moreover, the destination is uniformly

random from this subset and the remaining identifiers are uniformly distributed among the remaining

subtrees. We delete S from the graph (since clearly there is no reason to route to S again) and

examine the next routing decision of the root. We observe that the situation is identical to the initial

setting except that n1 is replaced by n1 − 1. Note also that S contained no valuable information: We

deleted S and the identifiers in S from the graph, and any other information known to nodes in S

must have been communicated to S by the root. Hence, repeating the above arguments, we see that

the probability to find the destination in the second attempt conditioned on the first having failed is

at most e2/(n1 − 1) or r > n2/(n1 log n). By induction on the number of routing attempts, we infer

that for i ∈ {1, . . . , n1/2}, the probability pi to succeed in the ith attempt to route from the root node

to the subtree containing the destination (conditional on the previous attempts having failed) is upper

bounded by 2e2/n1 unless r > n2/(n1 log n).

Overall, the probability that a deterministic algorithm constructing routing tables within r ≤
n2/(n1 log n) rounds fails to serve a uniformly random routing request at the root for uniformly

distributed leaf identifiers using fewer than n1/2 attempts (i.e., visits of the root on the routing path)

is lower bounded by (
1− 2e2

n1

)n1/2

∈ Ω(1).

Note that an analogous argument holds for routing requests issued at other nodes, since they

have a large probability to require routing to a different subtree. Therefore, the average stretch of

any deterministic routing algorithm running for fewer than n2/(n1 log n) rounds is at least Ω(n1).

By Yao’s principle, the expected average stretch of randomized algorithms running for fewer than

n2/(n1 log n) rounds thus must also be in Ω(n1). Recalling that n1 ∈ Θ(ρ) and n2 = n/ρ, we get

that r ∈ o(n/(ρ2 log n)) rounds are insufficient to achieve (expected) average stretch ρ, proving the

statement of the theorem.

A streamlined version of the argument shows that a similar lower bound applies to distance ap-

proximation.

9

Theorem 3.4 In the CONGEST model, any name-independent distance approximation scheme of

(expected) average stretch ρ requires Ω(n/ log n) rounds for table construction in graphs with edge

weights of 1 and ωmax ∈ O(ρ) only. This holds even if the graph is a star and the node identifiers are

1, . . . , n.

Proof: Again, we assume w.l.o.g. that all considered values are integer and that link capacity is log n

bits per round. Suppose G is a star with n leafs (we neglect w.l.o.g. the center in the node count). All

edges have weight ωmax with independent probability 1/2; the remaining edges have weight 1.

Condition on the event that some fixed node’s v incident edge has weight 1. Thus, there are two

possible path weights to other nodes: ωmax + 1 and 2. Within r rounds, the node receives at most

r log n bits, yielding 2r logn possible distance estimate configurations. In order to be ρ-approximate for

ρ < (ωmax + 1)/2 and a given other leaf, v’s table must output an estimate of at most 2ρ < ωmax + 1

in case the leaf’s edge has weight 2 and at least ωmax + 1 if the leaf’s edge has weight ωmax. Thus

any given table can be correct for a given leaf for only one of the two possible choices of the leaf’s

edge’s weight. There are 2n possible edge weight assignments. By the above observation, a fixed table

is ρ-approximate for a given destination with probability 1/2. By Chernoff’s bound, this implies that

the probability that a fixed table is correct for a fraction of 3/4 of the destinations is bounded by

2−Ω(n). By the union bound, it follows that for the given uniformly random edge weight assignment,

the probability that the computed table is correct for a fraction of 3/4 of the destinations is upper

bounded by 2−Ω(n)2r logn. This implies that r ∈ Ω(n/ log n) or the average stretch of node v’s table

must be Ω(ωmax).

By symmetry, the same applies to all nodes incident to an edge of weight 1. By Chernoff’s bound,

w.h.p. at least one quarter of the nodes satisfies this property, i.e., the probability mass of the events

where fewer than n/4 edges have weight 1 is negligible. By linearity of expectation, it follows that

any deterministic algorithm running for o(n/ log n) rounds exhibits average stretch Ω(ωmax), and by

Yao’s principle this extends to the expected stretch of randomized algorithms.

Consequently, in the remainder of the paper we shall consider name-dependent schemes only.

3.4 Hardness of Diameter Estimation

In [12], it is shown that approximating the hop-diameter of a network within a factor smaller than 1.5

cannot be done in the CONGEST model in õ(
√
n) time. Here, we prove a hardness result for the

weighted diameter, formally stated as follows.

Theorem 3.5 For any ωmax ≥
√
n, there is a function α(n) ∈ Ω(ωmax/

√
n) such that the following

holds. In the family of weighted graphs of hop-diameter HD ∈ O(log n) and edge weights 1 and

ωmax only, an (expected) α(n)-approximation of the weighted diameter requires Ω̃(
√
n) communication

rounds in the CONGEST model.

Proof sketch: We construct a graph Gn with Θ(n) nodes. Let m =
√
n ∈ N. The graph consists of

the following three conceptual parts. Figure 1 illustrates a part of the construction.

• Nodes vi,j for 1 ≤ i, j ≤ m. These nodes are connected as m paths of length m − 1. All path

edges are of weight 1.

10

BobAlice

ଵ,ଵݒ ଶ,ଵݒଵ,ݒ ଷ,ଵݒଷ,ݒଶ,ݒ
,ଵݒ ,ݒ

treeݑଵ ݑ

Figure 1: An illustration of the graph used in the proof of Theorem 3.5. Thick edges denote edges of

weight ωmax, other edges are of weight 1. The shaded triangle represents a binary tree

• A star rooted at an Alice node, where the children are v1,1, . . . , vm,1, and similarly, a star rooted

at a Bob node, whose leaves are vm,1, . . . , vm,m. We specify the weights of these edges later.

• For each 1 ≤ j ≤ m there is a node uj connected to all nodes vi,j , 1 ≤ i ≤ m in “column” j,

with edges of weight ωmax. In addition, there is a binary tree whose leaves are the nodes uj . All

tree edges have weight 1. Finally, Alice and Bob are connected to u1 and um, respectively, by

edges of weight 1.

It is easy to see that the hop-diameter of Gn is O(log n): the hop-distance from any node to one of

the nodes uj is O(log n), and the distance between any two such nodes is also O(log n). However,

the majority of the short paths guaranteeing the small diameter passes through very few nodes close

to the root of the binary tree. Consequently, it takes a long time to exchange a large number of bits

between Alice and Bob, implying that it is hard to decide set disjointness for sets held by Alice and

Bob in the CONGEST model. Specifically, the following fact is a direct corollary from [7].

Fact 3.1 ([7]) Let M def
= {1, . . . ,m}. Suppose that node Alice holds a set A ⊆M and that node Bob

holds a set B ⊆ M. Then finding whether A ∩ B = ∅ takes Ω̃(m) rounds in the CONGEST model,

even for randomized algorithms.

We now show that if the diameter of Gn can be approximated within factor ωmax/
√
n in time T in

the CONGEST model, then the set disjointness problem problem can be solved in time T + 1. To

this end, we set the edge weights of the stars rooted at Alice and Bob as follows: for all i ∈ {1, . . . ,m},
the edge from Alice to vi,1 has weight ωmax if i ∈ A and weight 1 else; likewise, the edge from Bob to

vi,m has weight ωmax if i ∈ B and weight 1 else.

Note that given A at Alice and B at Bob, we can inform the nodes vi,1 and vi,m of these weights in

one round. Now run any algorithm that outputs a value between WD and α(n)WD
def
= ωmaxWD/(

√
n+

C log n) (for a suitable constant C) within T rounds, and output “A and B are disjoint” if the outcome

is at most ωmax and output “A and B are not disjoint” othwerwise.

11

It remains to show that the outcome of this computation is correct for any inputs A and B and the

statement of the theorem will follow from Fact 3.1 (recall that the number of nodes of Gn is Θ(n)).

Suppose first that A∪B = ∅. Then for each node vi,j , there is a path of at most
√
n edges of weight 1

connecting it to Alice or Bob, and Alice and Bob are connected to all nodes in the binary tree and each

other via O(log n) hops in the binary tree (whose edges have weight 1 as well). Hence the weighted

diameter of Gn is
√
n + O(log n) in this case and the output is correct (where we assume that C is

sufficiently large to account for the O(log n) term). Now suppose that i ∈ A ∩ B. In this case each

path from node vi,1 to Bob contains an edge of weight ωmax, since the edges from Alice to vi,1 and Bob

to vi,m as well as those connecting vi,j to uj have weight ωmax. Hence, the weighted distance from vi,1
to Bob is strictly larger than ωmax and the output is correct as well. This shows that set disjointness

is decided correctly and therefore the proof is complete.

3.5 Hardness of Name-Dependent Distributed Table Construction

A lower bound on name-dependent distance approximation follows directly from Theorem 3.5.

Corollary 3.6 For any ωmax ≥
√
n, there is a function α(n) ∈ Ω(ωmax/

√
n) such that the following

holds. In the family of weighted graphs of hop-diameter HD ∈ O(log n) and edge weights 1 and ωmax

only, constructing labels of size õ(
√
n) and tables for distance approximation of (expected) stretch α(n)

requires Ω̃(
√
n) communication rounds in the CONGEST model.

Proof: We use the same construction as in the previous proof, however, now we need to solve the

disjointness problem using the tables and lables. Using the same setup, we run the assumed table and

label construction algorithm. Afterwards, we transmit, e.g., the label of Alice to all nodes vi,1. This

takes õ(
√
n) rounds due to the size restriction of the labels. Then we query the estimated distance to

Alice at the nodes vi,1 and collect the results at Alice. Analogously to the proof of Theorem 3.5, the

maximum of these values is large if and only if the input satisfies that A ∩B = ∅. Since transmitting

the label costs only õ(
√
n) additional rounds, the same asymptotic lower bound as in Theorem 3.5

follows.

A variation of the theme shows that stateless routing requires Ω̃(
√
n) time.

Corollary 3.7 For any ωmax ≥
√
n, there is a function α(n) ∈ Ω(

√
ωmax/n) such that the following

holds. In the family of weighted graphs of hop-diameter HD ∈ O(log n) and edge weights 1 and ωmax

only, constructing stateless routing tables of (expected) stretch α(n) with labels of size õ(
√
n) requires

Ω̃(
√
n) communication rounds in the CONGEST model.

Proof sketch: We consider the same graph as in the proof of Theorem 3.5 and input sets A and B

at Alice and Bob, respectively, but we use a different assignment of edge weights.

• All edges incident to a node in the binary tree have weight ωmax.

• For each i ∈ {1, . . . ,m}, the edge from Alice to vi,1 has weight ωmax if i ∈ A and weight 1 else.

Likewise, the edge from Bob to vi,m has weight ωmax if i ∈ B and otherwise weight 1.

• The remaining edges (on the m paths from vi,1 to vi,m) have weight 1.

Observe that the distance from Alice to Bob is
√
n + 1 if A ∩ B 6= ∅ and strictly larger than ωmax if

A ∩ B = ∅. Once static routing tables for routing on paths of stretch at most ωmax/(
√
n+ 1) are set

12

up, e.g. Bob can decide whether A and B are disjoint as follows. Bob sends its label to Alice via the

binary tree (which takes time õ(
√
n) if the label has size õ(

√
n)). Alice responds with “i” if the first

routing hop from Alice to Bob is node vi,1 and i ∈ A (i.e., the weight of the edge is 1), and “A∩B = ∅”
else (this takes O(log n) rounds). Bob then outputs “A ∩ B 6= ∅” if Alice responded with “i” and

i ∈ B (i.e., the weight of the routing path is
√
n+ 1 since the edge from Bob to vi,m has weight 1) and

“A ∩B = ∅” otherwise.

If the output is “A∩B 6= ∅”, it is correct because i ∈ A∩B. On the other hand, if it is “A∩B = ∅”,

the route from Alice to Bob must contain an edge of weight ωmax, implying by the stretch guarantee

that there is no path of weight
√
n + 1 from Alice to Bob. This in turn entails that A ∩ B = ∅ due

to the assignment of weights and we conclude that the output is correct also in this case. Hence the

statement of the corollary follows from Fact 3.1.

We remark that Theorem 3.4, Theorem 3.5, Corollary 3.6, and Corollary 3.7 have in common that

if edge weight 0 is permitted, no stretch bound faster than the stated lower bounds even if the only

other feasible edge weight is 1.

Finally, we note that the hop-diameter is also an obvious lower bound on the time required to

approximate the weighted diameter, construct stateless routing tables, etc. since if the running time

is smaller than HD, distant parts of the graph (in the sense of hop-distance) cannot influence the local

output.

4 Routing Algorithm

Overview. To construct routing tables, one needs to learn about paths. Näıve distributed algorithms

explore paths sequentially, adding one edge at a time, leading to potentially linear complexity, since

shortest weighted paths may be very long in terms of the number of edges. Our basic idea is to break

hop-wise long paths into small pieces by means of random sampling. Specifically, motivated by the

Ω̃(
√
n) lower bound of Theorem 3.5, we select a random subset of Θ̃

√
n nodes we call the routing

skeleton. It follows that, w.h.p., (1) any simple path of hop-length Ω̃(
√
n) contains a skeleton node,

and (2) any node has a skeleton node among its closest Õ(
√
n) nodes. The route that our scheme

will select from a given source to a given destination depends on their distance: If the destination is

one of the Õ(
√
n) nodes closest to the destination, routing will be done using a “short range scheme”

(see below); otherwise, the short range scheme is used to route from the source to the nearest skeleton

node, from which, using another scheme we call “long distance routing,” we route to the skeleton node

closest to the destination node, and finally, another application of the short range scheme brings us

to the destination. Intuitively, we can split the problem into the following tasks:

1. Short range scheme: how to route efficiently from each node to its Θ̃(
√
n) closest nodes including

at least one skeleton node, and, conversely, from a skeleton node to all its “subordinates” (note

the asymmetry in this case).

2. Skeleton routing scheme: how to route between skeleton nodes efficiently.

The short range scheme is described in Section 4.2. We note that since a straightforward application

of multiple-source shortest paths may result in linear time, we develop a hierarchical structure to

13

Algorithm 1: BSP(h,∆, S): Bounded shortest paths, computed at node v ∈ V .

input : h //range parameter: hop bound on path lengths, globally known

∆ //overlap parameter: number of closest sources each node needs to detect, globally known

source : V → SID ∪ {⊥} //each v knows source(v); source(v) = ⊥ means v is not a source

computes: For all t ∈ {1, . . . , h}: t-weighted distance and the next hop from v to each of the closest ∆

source node sets using paths of at most t edges (or all such sets, if there are at most ∆ within

t hops).

1 if source(v) 6= ⊥ then Lv(0) := {(0, source(v), v)} else Lv(0) := ∅ //initialization

2 for t := 1 to h do

3 send Lv(t− 1) to all neighbors; Lv(t) := ∅
4 foreach neighbor u do

5 receive Lu(t− 1)

6 foreach (du, su,nextu) ∈ Lu(t− 1) do //Bellman-Ford relaxation

7 if ∃(dv, sv,nextv) ∈ Lv(t) s.t. sv = su then

8 if (du+W (u, v), u) < (dv,nextv) then //comparisons are lexicographical

9 Lv(t) := Lv(t) \ {(dv, sv,nextu)} ∪ {(du+W (u, v), su, u)}

10 else Lv(t) := Lv(t) ∪ {(du+W (u, v), su, u)}

11 truncate Lv(t) to smallest ∆ entries //order is lexicographical

12 return (Lv(1), . . . , Lv(t))

solve the short-range routing. This hierarchy bears resemblance to the Thorup-Zwick distance oracle

algorithm [30]. Our long distance routing is described in Section 4.3. The main challenge there is to

build the skeleton graph; since it might be too dense, we sparsify it “on the fly” while constructing it.

This construction is implemented by adapting the spanner algorithm of Baswana and Sen [3] to our

setting.

We start by describing the variant of the Bellman-Ford algorithm we use as a basic building block

in Section 4.1.

4.1 Bounded Shortest Paths

We now describe a basic subroutine we use. Algorithm BSP, whose pseudo code is given in Algorithm 1,

is essentially a standard multiple-source distributed Bellman-Ford algorithm, with two restrictions:

first, the algorithm is run for only h rounds (cf. Line 2); and second, nodes never report more than ∆

sources (cf. Line 11).

We consider a slightly extended variant of the algorithm: In the original algorithm, each node is

a “source” and the goal is to compute the distances of all nodes to it. Here we assume that (i) not

all nodes are sources, and (ii) sets of nodes may act as a single source, as if there were 0-weight edges

connecting them. Both extensions are modeled by the source function, that maps a node to ⊥ if it is

not a source, or multiple nodes to the same source ID if they are in the same source set. We use S to

denote the set of sources, i.e., S = {source(v) | v ∈ V } \ {⊥}, and for each s ∈ S, the source nodes of

s is SN(s) := {v | source(v) = s}. Note that the source function uniquely determines the source sets

and vice versa. We assume that a source ID can be encoded using O(log n) bits.

14

We analyze the algorithm leveraging the correctness of the basic Bellman-Ford algorithm. To this

end, let us define Algorithm 1* by omitting Line 11 from Algorithm 1 and fixing h = n−1. Observing

that Algorithm 1* is exactly the distributed Bellman-Ford algorithm, we may conclude the following

standard property.

Lemma 4.1 Fix an execution of Algorithm 1*. Denote by L∗v(t) for some 0 ≤ t ≤ n − 1 and v ∈ V
the contents of the Lv variable at node v after t iterations of Algorithm 1*. Then for each (d, s,next)

entry in L∗v(t) we have that s is a source and wdt(v, s) := minu∈SN(s){wdt(v, u)} = d, namely d is the

length of the shortest path that consists of at most t edges from v to any node u in the source set of s.

Moreover, next is the next node on that shortest path from v to u.

Lemma 4.1 says that running only h iterations is sufficient if we are interested in paths of h or less

edges only. We now consider the effect of repeatedly truncating the distance vector.

Lemma 4.2 Consider executions of Algorithm 1 and of Algorithm 1* on the same graph and with

the same source function. Let Lv(t) and L∗v(t) denote the contents of the Lv variable at node v after

t iterations under Algorithm 1 and under Algorithm 1*, respectively. Then Lv(t) contains exactly the

smallest ∆ entries of L∗v(t) with respect to lexicographical ordering (or the entire list, if |L∗v(t)| ≤ ∆).

Proof: By induction on t. The base case is t = 0, and the lemma clearly holds upon initialization

(Line 1). For the induction step, assume that the lemma holds for t− 1 ∈ {0, . . . , h− 1} at all nodes,

and consider iteration t at some node v. By the induction hypothesis, we have that the message

received by v from each neighbor u at time t under Algorithm 1 is exactly the top ∆ entries sent by

node u at time t under Algorithm 1*, because these entries are computed at the end of iteration t− 1.

The lemma therefore follows from the fact that for any k ≥ 0, the smallest k entries of a union of sets

are contained in the union of the smallest k entries from each set.

Note that the information provided by Lv(h) is insufficient for routing: since the ∆ closest source

node sets may differ between neighbors, it may be the case that for some source identifier s and two

neighbors v and u we have that u is the next node from v to s in Lv(h), but there is no entry for

source s in Lu(h)! This occurs, for example, if in iteration h, u learns about a source set closer than

SN(s), pushing s out of Lu(h). However, since the algorithm returns (Lv(1), . . . , Lv(h)) instead of

simply Lv(h), we can still reconstruct the detected paths.

Lemma 4.3 For any node v and any entry (d, s,next) ∈ Lv(h), a routing path of at most h hops from

v to a node in s of weight d can be constructed using the L tables at the nodes and a hop counter.

Proof: The routing decision for hop t at the current node vt−1 (where v0 := v) is made by looking

up the entry (dt−1, s,next) ∈ Lv(h− (t− 1)). We show by induction on the length ` ≤ h of a shortest

path from v to its closest node u ∈ SN(s) that such an entry always exists. Note that by Lemmas 4.1

and 4.2, such an entry satisfies that dt−1 = wdh−(t−1)(vt−1, u) and thus the constructed path has

weight wdh(v, u) = d. Trivially, the claim is true for ` = 0 by initialization of the lists Lu(0), u ∈ V .

Now suppose the claim holds for ` ∈ N0 and consider node v with entry (wd(v, u), s,next) ∈ Lv(h).

Suppose w is the neighbor of v which is next on the shortest `-hop path from v to u. Hence it is the

endpoint of a of a shortest (`− 1)-hop path from w to u, and there is no shorter path from w to any

node in SN(s) of at most `− 1 hops (otherwise there would be a shorter path of at most ` hops from

15

v to a node in SN(s)). Therefore, by Lemma 4.1, (wdh−1(w, u), s,nextw) ∈ L∗u(h− 1) for some nextw.

Assuming for contradiction that (wdh−1(w, u), s,nextw) /∈ Lu(h−1) implied, by Lemma 4.2, that there

are ∆ entries (d, s′,next) ∈ Lu(h− 1) that are lexicographically smaller than (wdh−1(w, u), s,nextw).

Node w would send these smaller entries in iteration h of Algorithm 1, yielding the contradiction that

(wd(v, u), s,nextw) /∈ Lv(h). It follows that indeed (wdh−1(w, u), s,nextw) ∈ Lu(h− 1) and the proof

concludes.

We summarize the properties of Algorithm 1 with the following theorem.

Theorem 4.4 Algorithm 1 computes the h-weighted distance and next hop of a shortest path of at

most h edges from each node to its closest ∆ source sets. Each node on the corresponding shortest

path can determine the next hop on the path out of the number of preceding hops and the output of the

algorithm. The time complexity of Algorithm 1 in the CONGEST model is O(∆h) rounds.

Proof: Correctness follows from Lemmas 4.1 and 4.2. Lemma 4.3 proves that the paths can be

reconstructed as stated. The time complexity follows from the fact that the algorithm runs for h

iterations, and each iteration can be implemented in O(∆) rounds in the CONGEST model since

the messages contain O(∆) IDs and distances.

Stateless routing. The routing mechanism suggested by Lemma 4.3 has the disadvantage that it is

stateful, as the routing decision depends on the number of previous routing hops. It is easy to make it

stateless: at each node, a packet is directed toward the hop that reported the best distance estimate,

i.e., the next hop to take at node v for destination s is arg minnext {d : (d, s,next) ∈
⋃
t Lv(t)}.

Corollary 4.5 For any node v and any entry (d, s,next) ∈ Lv(h), a routing path of at from v to a

node in s of weight d can be constructed using the local knowledge of the nodes only.

Proof: Lemma 4.3 shows that if a node w follows the nextw pointer of any entry (dw, s,nextw) ∈ Lw(t)

for any t ∈ {1, . . . , h}, node nextw has an entry (d′ −W (w,nextw), s,nextnextw) ∈ Lw(t− 1). We thus

can simply choose to follow at each node v the next pointer of entry (d, s,next) ∈
⋃
t∈{1,...,h} Lv(t)

with minimal d and are guaranteed to eventually arrive at some node in s using a path of weight at

most d.

Note that in general we cannot guarantee that the constructed path has at most h hops when applying

this mechanism; this holds true, however, if we are routing to one of the h nodes closest to the source

of the routing request (by Lemma 2.2). This observation will be crucial for making our general routing

scheme stateless.

4.2 The Short-Range Scheme

With Algorithm BSP at hand, we can now describe our short-range routing scheme. Our goal is

to allow each node to find a route to each of its closest Θ̃(
√
n) neighbors. A näıve application of

Algorithm BSP, where all nodes are sources, would set the overlap parameter to Θ̃(
√
n) (this is the

number of nodes we want to know about), and the range parameter to Θ̃(
√
n) too (in order to find

the closest Θ̃(
√
n) nodes it suffices to go to this hop-distance, cf. Lemma 2.2). However, Theorem 4.4

tells us that in this case, the time complexity would be O(∆h) ⊂ Õ(n), a far cry from the Ω̃(
√
n)

lower bound from Corollaries 3.6 and 3.7. Our solution is a hierarchical bootstrapping process that

16

converges in double-exponential speed. We show that the stretch is proportional to the number of

stages in the hierarchy.

The Construction

The construction is done iteratively in L stages. In the interest of clarity we describe the construction

intuitively first and then formalize it. The idea is that on the one hand we want to spend at most a

certain amount of time, but on the other hand with each stage try to reduce the number of landmarks

as quickly as possible. This approach is the spirit of Thorup-Zwick distance oracles and routing

schemes [29, 30], and it is also used in a distributed fashion in [6]. The difficulty lies in constructing

such a hierarchy quickly.5

𝑣 𝑢

𝑤

Figure 2: The distance from v to w

is at least one third of the length of

the route from v to w via u.

The sets of landmarks, denoted S1, . . . , SL, are sampled uni-

formly and independently at random without any coordination

overhead, with S0
def
= V , and Si ⊆ Si−1 for 1 ≤ i ≤ L. In the

ith stage, each node finds a route to the closest node in Si as well

as to all nodes in Si−1 that are closer to it. This property allows us

to bound the routing stretch. The basic argument is a simple ap-

plication of the triangle inequality (see Figure 2): Consider a route

from node v to node w. If there is a node u ∈ S1 that is closer

to v than w, then the route of shortest paths via u has stretch at

most 3. It is therefore sufficient for v to determine (the next hop

of) least-weight routes to nodes in S0
def
= V that are closer to it

than the closest node in S1 only. Using double induction, we can

bound the stretch of the multi-stage application of this technique

we employ.

To this end, in each stage we invoke Algorithm 1 with source set Si−1. We now explain how to

choose the parameters hi and ∆i for this invocation. Let pi be the probability of a node to be selected

into Si. Then w.h.p., each node v has a member of Si among the O(log n/pi) nodes closest to v.

Hence, this is a good choice for the distance parameter hi. The expected number of nodes from Si−1

among the hi nodes closest to a given node is pi−1hi. Applying Chernoff’s bound shows that this

number is bounded by O(pi−1hi) = O(pi−1 log n/pi) w.h.p. This is an upper bound on the number of

sources that need to be detected by each node and therefore is our choice of the overlap parameter

∆i.

The resulting running time of the call to Algorithm BSP is O(hi∆i) ⊂ Õ(pi−1/p
2
i). Since this

is the dominating term in the running time in each stage, it is now easy to determine the sampling

probabilities: neglecting polylogarithmic factors, we get the simple recursion pi =
√
pi−1/T , where T

is the desired running time and p0
def
= 1. For example, if we want to ensure a running time bound of

T ∈ Õ(
√
n), we obtain:

5In [6], distance sketches are constructed distributedly using exhaustive search with respect to distances, i.e., Bellmann-

Ford is run for sufficiently many iterations until all routes become stable. This approach has time complexity Ω(SPD)

and therefore cannot guarantee a running time of õ(n) on all graphs of diameter HD ∈ õ(n).

17

• sampling probabilities of n−1/4, n−3/8, n−7/16, . . ., i.e., pi = n−(2i−1)/2i+1
;

• expected set sizes of Θ(n3/4),Θ(n5/8),Θ(n9/16), . . ., i.e., |Si| ∈ Θ(n1/2+1/2i) w.h.p.;

• range parameters of Θ(n1/4 log n),Θ(n3/8 log n),Θ(n7/16 log n), i.e., hi ∈ Θ(n1/2−1/2i+1
log n);

• overlap parameters of Θ(n1/4 log n),Θ(n1/8 log n),Θ(n1/16 log n), i.e., ∆i ∈ Θ(n1/2i+1
log n).

(Note that L = log log n stages suffice to ensure that SL ∈ Θ(
√
n) w.h.p.) Running Algorithm BSP

with parameters as above, we get that w.h.p., after Õ(
√
n) time, each node knows of the closest ∆i

nodes from Si−1 and how to route to them for all 1 ≤ i ≤ L. But this is not sufficient: we also need

to be able to route back from the nodes in Si.

Given a node v, define Yi(v) to be the node closest to v in Si (symmetry broken by identifiers),

and let Cv(i)
def
= {u ∈ V |Yi(u) = v}, i.e., for each stage i, the sets Cv(i) are a Voronoi decomposition

of V with centers Yi(V). Note that routing from Yi(v) to Cv(i) is not as simple as thee other direction:

While the depth of the tree rooted at Yi(v) is bounded by hi, there is no non-trivial upper bound

on the number of nodes in the tree. This can be solved by a number of standard techniques for tree

routing (e.g., [27]). To minimize space consumption, we use the technique of [29], which constructs

routing tables of size Õ(1) and node labels of O(log n) bits in O(hi) time. In a nutshell, the idea is first

to count the sizes of subtrees (which can be done in O(hi) rounds) and then construct “mini routing

tables” for the “heavy” part of the tree, where a node is considered heavy if its subtree contains at

least n/d
√

log ne nodes. Then this process is applied recursively in the subtrees rooted at children of

heavy nodes. From the description in [29], one can verify that each recursive step of the construction

can be performed in time Õ(hi) in a tree of depth hi in the CONGEST(log n) model. There are at

most log√logn n recursive steps, summing up to a total of Õ(hi) rounds to construct labels and routing

tables.

Formally, given natural numbers n and L ≤ log log n, we define the following for 1 ≤ i ≤ L.

• p0
def
= 1, and pi

def
= (
√
n)−(2L/(2L−1))(2i−1)/2i .

• For each node v, Yv(i) is the node from Si closest to v (ties broken by hop distance and ID).

• For each u ∈ Si, define Cu(i)
def
= {v | Yv(i) = u}, and Cu(0)

def
= {u}.

• For each node v, define Hv(i)
def
= {u ∈ Si−1 |wd(v, u) ≤ wd(v, Yv(i))}.

Our construction maintains (w.h.p.) the following properties at stage i ∈ {1, . . . , L}.

(1) Si is a uniformly random subset of Si−1, where Pr[v ∈ Si] = pi and Pr[v ∈ Si | v ∈ Si−1] =

pi/pi−1 = (
√
n)−2L/(2i(2L−1)).

(2) For any node v, it it is possible to route from v to Yv(i) on a least-weight path.

(3) For any node v, it is possible to compute Yv(i) and wd(v, Yv(i)) from the label of v.

(4) For any node u ∈ Si, it is possible to route from u to any node w ∈ Cu(i) on a least-weight

path.

(5) For any node v, Hv(i) is locally known at v, and it is possible to route from v to any node

u ∈ Hv(i) on a least-weight path (whose weight is known at v).

Suppose that we have such a hierarchy of L stages. Then, given the label of any node w ∈⋃
1≤i≤L

⋃
u∈Hv(i)Cu(i− 1), node v can route a message to w as follows: First, find some i ∈ {1, . . . , L}

such that w ∈ Cu(i − 1) for some u ∈ Hv(i) (cf. Property (3) and Property (5) of the construction).

18

The route from v to w is then defined by the concatenation of two shortest paths: the one from v to

u, and the one from u to w (cf. Property (4) and Property (5)). Moreover, the long-range scheme will

make sure that we can always route to any destination via the closest skeleton nodes in SL, which is

feasible due to Property (2) and Property (4). By always choosing from the available routes such that

the weight of the computed route is minimal (which can be done by Property (3) and Property (5) for

the short-range construction, and will also be possible for the long-range scheme), routing becomes

stateless.

Stretch Analysis

We now bound the weight of the routes constructed by the stated scheme with respect to the weight

of the shortest paths. We note that the argument for the general case is similar in spirit to the simple

case of i = 1 illustrated in Figure 2. We start with the following key lemma.

Lemma 4.6 Suppose that for v, w ∈ V and 1 ≤ j ≤ L we have that w /∈
⋃j
i=1

⋃
u∈Hv(i)Cu(i − 1).

Then (a) wd(v, Yv(j)) ≤ (2j − 1)wd(v, w), and (b) wd(w, Yw(j)) ≤ 2jwd(v, w).

Proof: We prove the lemma by induction on i, for a fixed j. More specifically, we show for each

1 ≤ i ≤ j that (a) wd(v, vi) ≤ (2i − 1)wd(v, w) and (b) wd(w,wi) ≤ 2iwd(v, w). For the basis of the

induction, consider i = 0 in Statement (b). In this case, since S0 = V , we have that, Yw(0) = w and

Statement (b) holds because wd(v, w) ≥ 0 = wd(w,w).

For the inductive step, assume that Statement (b) holds for 0 ≤ i < j and consider i + 1. Since

trivially w ∈ CYw(i)(i − 1), the premise of the lemma implies that Yw(i) 6∈ Hv(i + 1). However,

Yv(i+ 1) ∈ Hv(i+ 1), and hence we obtain

wd(v, Yv(i+ 1)) ≤ wd(v, Yw(i))

≤ wd(v, w) + wd(w, Yw(i)) triangle inequality

≤ (2i+ 1)wd(v, w) by induction hypothesis

This proves part (a) of the claim. Using the above inequality we also obtain

wd(w, Yw(i+ 1)) ≤ wd(w, Yv(i+ 1)) wd(w, Yw(i+ 1)) ≤ wd(w, u) for u ∈ Si+1

≤ wd(w, v) + wd(v, Yv(i+ 1)) triangle inequality

≤ (2i+ 2)wd(v, w) by the proof of part (a),

which proves part (b) of the claim, completing the inductive step.

Lemma 4.6 allows us to prove the following positive result.

Corollary 4.7 Let v, w ∈ V , and let 1 ≤ i0 ≤ L be minimal such that Yw(i0 − 1) ∈ Hv(i0). Then

wd(v, Yw(i0 − 1)) + wd(Yw(i0 − 1), w) ≤ (4i0 − 3)wd(v, w) ∈ O(L · wd(v, w)).

Proof: Note that

wd(v, Yw(i0 − 1)) + wd(Yw(i0 − 1), w) ≤ wd(v, w) + 2wd(w, Yw(i0 − 1)) triangle inequality

≤ wd(v, w) + 4(i0 − 1)wd(v, w) Lemma 4.6

= (4i0 − 3)wd(v, w)

and the corollary is proved.

19

On the other hand, if there is no i0 as in the corollary, we can conclude from Lemma 4.6 that routing

via the skeleton nodes closest to source and destination, respectively, incurs bounded stretch.

Implementation and Time Complexity

We now explain how to construct the hierarchy efficiently in more detail, and analyze the time com-

plexity of the construction. Algorithm 2 gives the pseudocode of the above scheme. The algorithm

is parametrized by the total number of nodes n and the number L of hierarchy stages. Appropriate

constants c and c′ are supposed to be predefined in accordance with the required lower bound on the

probability of success.6

Algorithm 2: Distributed construction of data structure for close-distance routing at v ∈ V .

input : n ∈ N //number of nodes

L ∈ {1, . . . , log log n} //number of stages in the hierarchy

computes: lv ∈ {0, . . . , L} //level of v; v ∈ Si ⇔ lv ≥ i
∀i ∈ {1, . . . , L} : Yv(i) ∈ Si //closest node in Si

∀i ∈ {1, . . . , L} : Hv(i) = {w ∈ Si−1 |wd(v, w) ≤ wd(v, Yi(v)}
∀i ∈ {1, . . . , L} ∀u ∈ Hv(i) : nextv(u), dv(u) //next routing hop (v if v = u) and distance to u

1 for i ∈ {0, . . . , L} do pi := (
√
n)−(2

L/(2L−1))(2i−1)/2i

2 lv := i with probability pi −
∑L

j=i+1 pj for i ∈ {0, . . . , L}
3 for i ∈ {1, . . . , L} do

4 hi := c · log n/pi //c and c′ are predefined constants controlling the probability of failure

5 ∆i := c′ · hipi−1
6 if lv ≥ i then source(v) := (v, lv) else source(v) := ⊥
7 (Lv(1), . . . , Lv(hi)) := BSP(hi,∆i, source) //only Lv(hi) needed

8 Hv(i) := ∅
9 repeat

10 let (d, (u, lu), w) be the next entry in Lv(hi) in ascending lexicographic order

11 Hv(i) := Hv(i) ∪ {u}
12 nextv(u) := w; dv(u) := d //exact shortest paths, no distinction of stages needed

13 until lu ≥ i;
14 Yv(i) := u //u is the node from Si+1 closest to v

15 construct labels of stage i

Choosing the sets Si is performed locally without communication. Each node v has level lv chosen

independently so that Pr[lv ≥ i] = pi (Line 2). Setting Si
def
= {v ∈ V | lv ≥ i} as indicated in the

algorithm thus satisfies Property (1). In addition, the following properties are easily derived using the

Chernoff bound, and we state them without proof.

Lemma 4.8 For appropriate choices of the constants c, c′ in Algorithm 2, for all 1 ≤ i ≤ L it holds

w.h.p. that:

• |Si| ∈ Θ(pin) (|S0| = n).

6One can verify the properties of the construction and restart a failed iteration within O(HD) time if desired, implying

that the stretch guarantee becomes deterministic and the running time probabilistically bounded instead.

20

• For all v ∈ V , |Si ∩ ballv(hi)| ∈ Θ(log n).

• For all v ∈ V , Hv(i) ⊂ ballv(hi).

• For all v ∈ V , |Hv(i)| ∈ Θ(hipi−1) = Θ(pi−1 log n/pi).

• For all v ∈ V , ∆i ≥ |Hv(i)|.

By these properties and Theorem 4.4, Property (5) is satisfied w.h.p., because we invoke Algorithm

BSP with sources Si, depth parameter hi, and overlap parameter ∆i: after this invocation, each node v

can identify the set Hv(i) and route to any u ∈ Hv(i) on a path of known weight; since Hv(i) ⊂ ballv(hi)

w.h.p., these routing paths are shortest paths. Moreover, the invocation of BSP(h,∆, Si) allows each

node v also to learn what is Yv(i) and route to it on a shortest path of known weight, establishing

Property (2). In order to satisfy Property (3), we simply add Yv(i) and wd(v, Yv(i)) = dv(Yv(i)) to the

label of v for all i. As discussed earlier, routing tables of size logO(1) n and labels of size (1+o(1)) log n

to route within CYv(i) can be constructed within Õ(hi) rounds using the scheme from [29], and we add

the respective tree label to v’s label to ensure Property (4).

We can therefore summarize the complexity of the construction as follows.

Lemma 4.9 Given 1 ≤ L ≤ log logn, constructing the L-stages short-range routing tables and labels

can be done in O(L(
√
n)2L/(2L−1) log2 n) ⊂ Õ((

√
n)2L/(2L−1)) rounds, and the total label size of a node

is O(L log n).

Proof: The implementation of stage i ∈ {1, . . . , L} involves invoking BSP with parameters hi and

∆i, which, by Theorem 4.4, takes

O(hi∆i) = O
(
pi−1 log2 n

p2
i

)
= O

((√
n
)2L/(2L−1)

log2 n
)

rounds. In addition, we need to relabel the nodes, which, as explained above, can be done in time

Õ(hi) ⊆ Õ(hi∆i), since the depth of the shortest paths tree is bounded by hi ≤ hi∆i. Since there are

L ≤ log log n stages, the total number of rounds thus satisfies the stated bounds. With respect to the

label size, note that each stage i adds to the label of node v the identifier of and distance to Yv(i) and

a tree label of size (1 + o(1)) log n, for a total of O(log n) bits per stage.

4.3 Long-Distance Routing

We now explain how to route between the nodes in the top level of the hierarchy created by the

short-range scheme. Our central concept is the skeleton graph, defined as follows.

Definition 4.10 (Skeleton Graph) Let G = (V,E,W) be a weighted graph. Given S ⊆ V and

h ∈ N, the h-hop skeleton-S graph is the weighted graph GS,h = (S,ES,h,WS,h) defined by

• ES,h
def
= {{v, w} | v, w ∈ S, v 6= w, and hd(v, w) ≤ h}

• For {v, w} ∈ ES,h, define WS,h(v, w) to be the h-weighted distance between v and w in G, i.e.,

WS,h(v, w)
def
= wdh(v, w).

The main idea in the long-distance scheme is to construct a skeleton graph with S = SL (the top

level of the short-range hierarchy as constructed in Section 4.2). The choice of h needs to balance two

goals: on the one hand, the skeleton graph needs to accurately reflect the distances of skeleton nodes

21

in G, and on the other hand, we must be able to quickly set up a tables that allow routing of small

stretch between the skeleton nodes.

A simple but crucial observation on skeleton graphs is that if the skeleton S is a random set of

nodes, and if h ∈ Ω(n log n/|S|), then w.h.p., the distances in GS,h are equal to the corresponding

distances in G. This means that it suffices to consider paths of O(n log n/|S|) hops in G in order to

find the exact distances in G. The following lemma formalizes this idea. (We state it for a skeleton

containing a random subset; this generality will become useful in Section 5.3.)

Lemma 4.11 Let SR be a set of random nodes defined by Pr[v ∈ SR] = π independently for all nodes

for some given π. Let S ⊇ SR. If π ≥ c log n/h for a sufficiently large constant c > 0, then w.h.p.,

wdS,h(v, w) = wd(v, w) for all v, w ∈ S.

Proof: Fix v, w ∈ S. Clearly, wdS,h(v, w) ≥ wd(v, w) because each path in GS,h corresponds to

a path of the same weight in G. We need to show that wdS,h(v, w) ≤ wd(v, w) as well. Let p =〈
u0 = v, u1, . . . , u`(p) = w

〉
be a shortest path connecting v and w in G, i.e., W (p) = wd(v, w). We

show, by induction on `(p), that wd(p) ≤ wdS,h(v, w) w.h.p.

For the basis of the induction note that if `(p) ≤ h, then by definition wdS,h(v, w) ≤ W (p) =

wd(v, w) and we are done. For the inductive step, assume that the claim holds for all values of

`(p) ≤ i for some i ≥ h and consider a path of length `(p) = i + 1. Now, E[|S ∩ {u1, . . . , ui}|] ≥
E[|SR ∩ {u1, . . . , ui}|] = iπ ≥ hπ ∈ Ω(log n), and hence, applying Chernoff’s bound, we may conclude

that w.h.p. the intersection is non-empty. Let u ∈ {u1, . . . , ui} ∩ S. Since p is a shortest path in G,

so are (v, . . . , u) and (u, . . . , w). Both these paths are of length at most i, implying by the induction

hypothesis that wdS,h(v, u) ≤ wd(v, u) and wdS,h(u,w) ≤ wd(u,w) w.h.p., respectively. Therefore

wdS,h(v, w) ≤ wdS,h(v, u) + wdS,h(u,w) ≤ wd(v, u) + wd(u,w) = W (p) = wd(v, w), completing the

induction. Note that the total number of events we consider throughout the induction is bounded by

a polynomial in n, and since the probability of the bad events is polynomially small, the union bound

allows us to deduce that the claim holds w.h.p.

Based on this observation, an obvious strategy to solve long-distance routing is to construct GS,h
and compute its all-pairs shortest paths. But implementing this approach is not straightforward.

First, the edges of the skeleton graph are virtual: each edge represents the shortest path of up to h

hops in G; and second, the number of skeleton graph edges may be as large as Ω(|S|2). We solve both

problems together: While computing the edges of the skeleton graph, we sparsify the graph, bringing

the number of edges down to near-linear in the skeleton size. Once we are done, we can afford to let

each skeleton node learn the full topology of the sparsified skeleton graph, from which approximate

all-pairs routes and distances can be computed locally.

Technically, we use the classical concept of sparse spanners, defined as follows.

Definition 4.12 (Weighted k-Spanners) Let H = (V,E,W) be a weighted graph and let k ≥ 1.

A weighted k-spanner of H is a weighted graph H ′ = (V,E′,W ′) where E′ ⊆ V , W ′(e) = W (e) for

all e ∈ E′, and wdH′(u, v) ≤ k · wdH(u, v) for all u, v ∈ V (where wdH and wdH′ denote weighted

distances in H and H ′, respectively).

22

We shall compute a spanner of the skeleton graph, while running on the underlying physical graph,

without ever constructing the skeleton graph explicitly. We do this by simulating the spanner con-

struction algorithm of Baswana and Sen [3] on the implicit skeleton graph. Let us recall the algorithm

of [3]; we use a slightly simpler variant that may select some additional edges, albeit without affecting

the probabilistic upper bound on the number of spanner edges (cf. Lemma 4.14). The input is a graph

H = (VH , EH ,WH) and a parameter k ∈ N.

1. Initially, each node is a singleton cluster : R1 := {{v} | v ∈ VH}.
2. Repeat k − 1 times (the ith iteration is called “phase i”):

(a) Each cluster from Ri is marked independently with probability |VH |−1/k. Ri+1 is defined

to be the set of clusters marked in phase i.

(b) If v is a node in an unmarked cluster:

i. Define Qv to be the set of edges that consists of the lightest edge from v to each of the

clusters v ∈ Ri is adjacent to.

ii. If v has no adjacent marked cluster, then v adds to the spanner all edges in Qv.

iii. Otherwise, let u be the closest neighbor of v in a marked cluster. In this case v adds

to the spanner the edge {v, u}, and also all edges {v, w} ∈ Qv with (WH(v, w), w) <

(WH(v, u), u) (i.e., the identifiers w, u break symmetry in case WH(v, w) = WH(v, u)).

Furthermore v joins the cluster of u (i.e., if u is in cluster X, then X := X ∪ {v}).
3. Each node v adds, for each cluster X ∈ Rk it is adjacent to, the lightest edge connecting it to

X.

For this algorithm, Baswana and Sen prove the following result.

Theorem 4.13 ([3]) Given a weighted graph H = (VH , EH ,WH) and an integer k ≥ 1, the algorithm

above computes a (2k − 1)-spanner of the graph. It has O(k|VH |1+1/k log n) edges w.h.p.7

Constructing the Skeleton Graph

In our case, each edge considered in Steps (2b) and (3) of the spanner algorithm corresponds to a

shortest path. Essentially, we implement these steps in our setting by letting each skeleton node find

its closest O(|S|1/k log n) clusters (w.h.p.) by running Algorithm BSP. We now explain how. First,

all nodes v in a cluster X use the same source identifier source(v) = X (as if they were connected

by a 0-weight edge to a virtual node X). This ensures that the overlap parameter needs to account

for the number of detected clusters only, i.e., the number of nodes per cluster is immaterial. Note

that this implies that the plain version of Algorithm BSP thus will not permit to determine to which

node a skeleton edge connects; hence we append to each communicated triple (d, s,next) the identifier

of the actual endpoint u ∈ SN(s) of the respective path and store it when adding a corresponding

triple to Lv (without otherwise affecting the algorithm). We refer to the modified algorithm as BSP′.

Second, regarding the range parameter, Lemma 4.11 shows that it is sufficient to consider paths

of O(n log n/|S|) hops only. Finally, the following lemma implies that we may modify the spanner

construction algorithm in a way that allows us to use a small overlap parameter.

7In [3], it is proved that the expected number of edges is O(k|VH |1+1/k). The modified bound directly follows from

Lemma 4.14.

23

Lemma 4.14 W.h.p., the execution of the centralized spanner construction algorithm yields identical

results if in Steps (2b) and (3), each node considers the lightest edges to the c|VH |1/k log n closest

clusters only (for a sufficiently large constant c > 0).

Proof: Fix a node v and a phase 1 ≤ i < k. If v has at most c|VH |1/k log n adjacent clusters, the lemma

is trivially true. So suppose that v has more than c|VH |1/k log n adjacent clusters. By the specification

of Step (2b), we are interested only in the clusters closer than the closest marked cluster. Now, the

probability that none of the closest c|VH |1/k log n clusters is marked is (1 − |VH |−1/k)c|VH |
1/k logn ∈

n−Ω(c). In other words, choosing a sufficiently large constant c, we are guaranteed that w.h.p., at least

one of the closest c|VH |1/k log n clusters is marked. Regarding Step (3), observe that a cluster gets

marked in all of the first k − 1 iterations with independent probability |VH |−(k−1)/k. By Chernoff’s

bound, the probability that more than c|VH |1/k log n clusters remain in the last iteration is thus

bounded by 2−Ω(c logn) = n−Ω(c). Therefore, w.h.p. no node is adjacent to more than c|VH |1/k log n

clusters in Step (3), and we are done.

As a consequence of Lemma 4.14, we may invoke Algorithm BSP with ∆ ∈ Θ(|S|1/k log n), and the time

complexity of the invocation is O(|V | · |S|−1+1/k log2 n). Detailed pseudo-code of our implementation

is given in Algorithm 3. Each skeleton node v ∈ S records the ID of its cluster in phase i as Fi(v);

nodes in V \ S or those who do not join a cluster in some round i have Fi(v) = ⊥. Algorithm 4 is

used as subroutine to implement Steps (2b) or (3) (Lines 9 or 20 of Algorithm 3, respectively).

To prove the algorithm correct, we show that its executions can be mapped to executions of the

centralized algorithm, and then apply Theorem 4.13. Below, we sketch the main points of such a

mapping. The implementation of Algorithm 3 is quite straightforward. Note that the broadcast steps

in Line 1, 8, and 19 ensure that all nodes know the clusters and which are the active clusters in

each phase. The random choices (Line 7) are made by cluster leaders, namely the nodes v for which

Fi(v) = v. Lines 10–18 are local computations each node does to get a global picture of the clusters

for the next phase. The correctness of the implementation of the edge selection of Steps 2b and 3

of the centralized algorithm by Algorithm 4 was discussed above. We summarize with the following

lemma.

Lemma 4.15 Suppose the set S input to Algorithm 3 contains a uniformly random subset SR of V

and set h(SR)
def
= c · n log n/|SR| for a sufficiently large constant c. Then w.h.p. the following holds.

(i) Algorithm 3 computes a weighted (2k − 1)-spanner of the skeleton graph GS,h(SR) that is known

at all nodes and has O(|S|1+1/k log n) edges.

(ii) The weighted distances between nodes in S are identical in GS,h(SR) and G.

(iii) The algorithm terminates in Õ(n/|SR|1−1/k + |S|1+1/k + HD) rounds.

Proof: To prove Statement (i), we note that Algorithm 3 simulates the centralized algorithm, except

for considering only the closest O(|S|1/k log n) clusters in Lines 9 and 20. By Lemma 4.14 and by

Theorem 4.4, this results in a (simulated) correct execution of the centralized algorithm w.h.p. Hence

Statement (i) follows from Theorem 4.13.

Regarding Statement (ii), observe that if h(SR) ≥ n − 1, the statement holds by definition since

shortest paths cannot contain cycles and thus GS,h(SR) = GS,n−1. Otherwise, we have that |SR| ≥
c · log n, implying by Chernoff’s bound that w.h.p., the probability to select a node into S is π ∈

24

Algorithm 3: Construction of long range routing skeleton at v ∈ V .

input : S: set of skeleton nodes

k: integer in [1, log n] //determines approximation ratio and number of spanner edges

output: Eh,k: spanner edges of skeleton graph //h is defined in Line 4

Wh,k : Eh,k → R+ //weights of spanner edges

1 R1 := {{w} | w ∈ S} //initial clusters are singletons of S

2 Broadcast R1 to all nodes

3 foreach w ∈ V do if w ∈ R1 then F1(w) := w else F1(w) := ⊥ //initializing leaders

4 h := c · n log n/|S| //the constant c controls the probability of failure

5 ∆ := c · |S|1/k log n

6 for i := 1 to k − 1 do

7 Ri+1 := uniformly random subset of Ri of size |S|1−i/k = |Ri|/|S|1/k //select marked clusters

8 Broadcast Ri+1 to all nodes

9 (E(i),W (i)) := edges(Fi, Ri+1, h,∆) //select spanner edges, phase i

10 foreach w ∈ V do

11 if Fi(w) ∈ Ri+1 then

12 Fi+1(w) := Fi(w)

13 else

14 Let Ew be the edges incident to w in E(i)

15 if Ew 6= ∅ then

16 Let {w, u} be the heaviest edge in Ew

17 if marked(u) then Fi+1(w) := Fi(u)

18 else Fi+1(w) := ⊥

19 Broadcast Fi+1 to all nodes

20 (E(k),W (k)) := edges(Fk, ∅, h,∆) //final phase

21 foreach e ∈
⋃k

i=1E(i) do Wh,k(e) := W (k)(e)

22 Broadcast Eh,k :=
⋃k

i=1E(i) and Wh,k to all nodes

Θ(|SR|/n) = Θ((c log n)/h(SR)). As by assumption c is sufficiently large, Statement (ii) now follows

from Lemma 4.11.

For Statement (iii), consider first an invocation of Algorithm 4. By Theorem 4.4, the invoca-

tion of Algorithm 1 in Line 3 takes O(∆h) ⊂ Õ(|S|1/kh(SR)) = Õ(n|S|1/k/|SR|) rounds. The

broadcast of Line 10 is done globally. Each skeleton node may communicate up to O(|S|1/k log n)

pieces of information for a total of Õ(|S|1+1/k) items. Doing this over a global BFS tree takes

Õ(HD + |S|1+1/k) rounds. As k ≤ log n, the total cost of all invocations of Algorithm 4 is thus

bounded by Õ(n|S|1/k/|SR|+ |S|1+1/k + HD) rounds. Consider now Algorithm 3. The only non-local

steps other than the invocations of Algorithm 4 are the broadcasts, of which the most time consuming

is the one in Line 22, which takes O(k|S|1+1/k log n+ HD) ⊂ Õ(|S|1+1/k + HD) rounds.

Routing on the Skeleton Graph

Algorithm 3 constructs a (2k − 1)-spanner of the skeleton graph and made it known to all nodes.

This enables each node to determine low-stretch routing paths between any two skeleton nodes in

25

Algorithm 4: edges: Edge detection and announcement for long range routing skeleton at v ∈ V .

input : F : V → V ∪ {⊥} //locally known, v’s leader if v is in a cluster, otherwise ⊥
R ⊆ V //globally known, indicates (identifiers of leaders of) marked clusters

h //globally known, depth parameter of the search

∆ //globally known, number of closest source clusters to detect

output: E+: edges added to the spanner

W+ : E+ → R+ edge weights

1 foreach w ∈ V do

2 source(w) :=

(F (v), 0) if F (v) /∈ R ∪ {⊥}
(F (v), 1) if F (v) ∈ R
⊥ else

//distinguish marked from unmarked clusters

3 Lv := BSP′(h,∆, source) //variant of Algorithm BSP that keeps track of path endpoints

4 E+ := ∅
5 if Fv /∈ R ∪ {⊥} then

6 //for each entry (wd, (f, b), u, w) ∈ Lv, u is the next hop on a path of weight wd to w in cluster f

7 Lv := Lv \ {(0, (F (v), 0), v, v)} //remove loops (clusters are in distance 0 of themselves)

8 //recall that Lv is ordered; first entry with b = 1 corresponds to closest marked cluster

9 foreach (wd, (f, b), u, w) ∈ Lv do

10 broadcast (wd, {v, w}) //all nodes perform operation!

11 E+ := E+ ∪ {v, w}
12 W+({v, w}) := wd

13 if f ∈ R then

14 break //f is closest marked cluster

15 return (E+,W+)

GS,h(SR) by local computation. To use this information, we must be able, for each spanner edge

{s, t} ∈ ES,h(SR), to route on a corresponding path in G, i.e., a path of weight WS,h(SR)(s, t). Since

we rely on Algorithm BSP during the construction of the spanner, Theorem 4.4 shows that we can

use the computation to enable for each such edge to route from s to t or from t to s: if, say, s added

the edge to the spanner, then following the pointers computed during the execution of Algorithm BSP

yields a path of weight WS,h(SR)(s, t) from s to t. However, in this case t might not add {s, t} to the

spanner as well, and hence there is no guarantee that we have sufficient information to route in both

directions.8 To resolve this issue, we add a post-processing step where we “reverse” the unidirectional

routing paths, i.e., inform the nodes on the paths about their predecessors. Note that this cannot be

done in a purely local manner, as exchanging the Bellmann-Ford routing pointers between neighbors

will not tell a node s ∈ S which pointer to follow to reach a specific node t ∈ S for which {s, t}
is part of the spanner. However, Corollary 4.4 states that the (unidirectional) routing paths at our

disposal have at most h(SR) hops. Taking into account that the spanner has few edges, it follows that

establishing bidirectional routing pointers can be performed sufficiently fast.

Lemma 4.16 Let {s, t} be an edge of the spanner GS,h(SR) that is selected by Algorithm 3. W.h.p.,

8Note that unidirectionality is not an artifact of the specific implementation we picked. E.g., in a star graph, the

center has degree n− 1, as it does in the spanner. Hence we cannot expect the Bellmann-Ford pointers to give sufficient

information for bidirectional routing without further processing.

26

after completing the algorithm, each node on the least-weight s–t path of at most h(SR) hops in G

determine the next hop on this path and the weight of the remaining subpath when routing from s to t

within Õ(n/|SR|+ |S|1+1/k) rounds

Proof: For each edge {s, t} added to the spanner by a node s, we route a message on the shortest

path of at most h(SR) hops from s to t in G. This message initially contains the weight of the path,

and each node on the path subtracts the weight of the incoming path from this value. By Theorem 4.4

this is feasible. When a node receives the message, it records the immediate sender as the next hop

on the path to s and the weight for future reference. By Lemma 4.15, there are at most Õ(|S|1+1/k)

edges in the constructed spanner of GS,h(SR) w.h.p., implying that the maximal number of messages

routed over each edge of G is bounded by Õ(|S|1+1/k) w.h.p. as well. Moreover, no routing path has

more than h(SR) = c ·n log n/|SR| hops. Since the messages traverse shortest h-hop paths, all of them

reach their destinations within the stated number of rounds [18].

We now summarize the properties of the long-distance scheme.

Theorem 4.17 Suppose the set S input to Algorithm 3 is a superset of a uniformly random subset

SR ⊆ V and k ∈ {1, . . . , log n}. Then, w.h.p., within Õ(n|S|1/k/|SR| + |S|1+1/k + HD) rounds, there

are routing tables for routing between nodes in S with stretch (2k − 1).

Proof: Directly follows from Lemmas 4.15 and 4.16.

4.4 Putting the Pieces Together

Equipped with the results for the short-range and for the long-distance routing, we can state the

overall algorithm as a simple composition of the two, linked by identifying the skeleton set from the

long-distance algorithm with the top level of the hierarchy SL of the short-range algorithm. We run

the long-range algorithm with parameter k to construct and make globally known the routing skeleton

and apply the short-range routing scheme with parameter L to deal with nearby nodes.

Recall that the label of a node w is λ(w) = 〈(Yw(i),wd(w, Yw(i)), treew(i)〉Li=0, where treew(i)

denotes the label of v in the tree on CYw(i), and Yw(0) is simply w. Given the label λ(w) to a node v,

v decides on the next routing hop as follows.

• If Yv(i) = Yw(i) for some i, choose the next routing hop within CYv(i) to w according to the

respective tree label. In this case, d is the distance from v to w in the tree (which can be

computed from the distances of v and w to the root Yv(i) and whether the next routing hop is

the parent of v or a child).

• Otherwise, node v determines for each i ∈ {1, . . . , L} whether Yw(i − 1) ∈ Hv(i). If so, it

computes di
def
= wd(v, Yw(i− 1)) + wd(Yw(i− 1), w). Otherwise set di

def
= ∞.

• Next, denote by Sv ⊆ SL the set of skeleton nodes v for which it stores a routing pointer

and the corresponding path weight, and let for s ∈ Sv ds be this weight. We define wdk to

be the distance function on the spanner of the skeleton graph. Node v computes dL+1
def
=

mins∈Sv{ds + wdk(s, Yw(L)) + wd(Yw(L), w)}.
• Finally, v computes d

def
= mini∈{1,...,L+1}{di}, and determines the next routing hop in accordance

with the corresponding path (ties broken by preferring smaller i), where we use the routing

27

mechanism from Corollary 4.5.

Since v stores the tree routing tables for all trees on CYv(i), the sets Hi and the distances to the

nodes in Hi, and the complete spanner of the skeleton graph, together with the label λ(w) it has the

necessary information to perform all the above computations. Moreover, a next routing hop is always

determined, since Yv(L) ∈ Sv (by Property (2) of the short-range scheme) and therefore the set of

considered paths in the second step is non-empty. Finally, the routing decision is stateless, since it

depends on the local routing tables of v and λ(w) only.

In order to show that indeed a route to w of bounded stretch is determined by the above routing

decisions, we will show two properties. First, the value d computed is the weight of a path of bounded

stretch whose next routing hop u is exactly the one computed by v, and second, the next node u on

the path will compute a distance of at most d−wd(v, u) to w. Since edge weights are strictly positive,

the latter immediately implies that the routes are acyclic and will eventually reach their destination.

Lemma 4.18 Fix any choice of the parameters L and k of the short range and long distance schemes,

respectively. For any node v and label λ(w), consider the distance value d and next routing hop next

computed by v according to the above scheme. Then w.h.p., d ≤ (8kL − 1)wd(v, w) and next will

compute a value d′ ≤ d−W (v,next).

Proof: We show that d ≤ (8kL− 1)wd(v, w) first. If w ∈
⋃
u∈Hv(i)Cu(i− 1) for some i ∈ {1, . . . , L},

observe that d ≤ wd(v, Yw(i)) + wd(Yw(i), v), and thus by Corollary 4.7 d ≤ (4L − 3)wd(v, w). Oth-

erwise, we have that d = dL+1 since no other routes are known to v. By definition and Property (2)

of the short-range scheme, dL+1 ≤ wd(v, Yv(L)) + wdk(Yv(L), Yw(L)) + wd(Yw(L), w). We bound

wd(v, YL(v)) + wdk(Yv(L), Yw(L)) + wd(YL(w), w)

≤ wd(v, YL(v)) + (2k − 1)wd(YL(v), YL(w)) + wd(YL(w), w) by Theorem 4.17

≤ 2kwd(YL(v), v) + (2k − 1)wd(v, w)) + 2kwd(w, YL(w)) triangle inequality

≤ (2k(4L− 1) + (2k − 1))wd(v, w) Lemma 4.6

= (8kL− 1)wd(v, w),

proving that indeed d ≤ (8kL− 1)wd(v, w).

Now let next be the routing hop corresponding to d computed by v. Due to Property (4) and

Property (5) of the short-range scheme, there are the following three cases:

• next is on the shortest path from v to Yw(i− 1) ∈ Hv(i) for some i ∈ {1, . . . , L} (this covers also

the case that Yv(i − 1) = Yw(i − 1), and in the tree on CYw(i−1) the connecting path traverses

the root Yw(i− 1));

• next is on a path of weight ds to the node s ∈ Sv minimizing the expression ds+wdk(s, Yw(L))+

wd(Yw(L), w);

• next is on the shortest path from Yw(i) to w for some i ∈ {1, . . . , L} (i.e., Yv(i) = Yw(i), and in

the tree on CYw(i) the connecting path does not traverse the root Yw(i)).

Regarding the first case, observe that since we are talking about shortest paths in G (not shortest

h-hop paths), any source closer to next than Yw(i− 1) will also be closer to v than Yw(i− 1). Hence

Yw(i − 1) ∈ Hnext(i). Since wd(next, Yw(i − 1)) = wd(v, Yw(i − 1)) −W (v,next), consequently next

will compute a distance of at most d−W (v,next) to w.

In the second case, next is either the next hop on a routing path as constructed in Corollary 4.5 or

28

as constructed by the “path reversal” from Lemma 4.16. Either way, the statements show that next

will know the next routing hop to s as well as the weight of the path. Since it knows the entire skeleton

graph, it will thus compute a distance of at most ds −W (v,next) + wdk(s, Yw(L)) + wd(Yw(L), w) to

w as claimed.

For the third and final case, the statement trivially holds, since routing in CYw(i) according to the

tree routing table is on shortest paths and will clearly lead to another node in CYw(i).

It is fairly straightforward to set k and L to obtain a trade-off between the stretch of the routing

scheme and the construction time. Specifically, we can now state our main result as follows.

Theorem 4.19 Let 1/2 ≤ α ≤ 1 be given. Define k
def
= d1/(2α− 1)e if α ≥ 1/2 + 1/ log n, and

k
def
= log n otherwise. Tables for stateless routing and distance approximation with stretch ρ(α) =

8k dlog(k + 1)e − 1 and label size O(log(k + 1) log n) can be constructed in the CONGEST model

in Õ(nα + HD) rounds. In particular, ρ(1/2) ∈ O(log n log log n) and ρ(α) ∈ O(1) for any constant

choice of α > 1/2.

Proof: A stretch bound of 8kL − 1 and the fact that the destination will indeed be reached when

following the computed pointers follows from Lemma 4.18. By Lemma 4.9, the running time of

the short-range construction is bounded by Õ((
√
n)2L/(2L−1)) rounds w.h.p. The time required for

the skeleton construction is, by Theorem 4.17, Õ(n/|SL|1−1/k + |SL|1+1/k + HD) = Õ((
√
n)1+1/k +

HD) w.h.p. To match the desired running time bound of Õ(nα + HD) rounds, it thus suffices that

max{1/k, 1/(2L − 1)} ≥ 2α − 1 − 1/ log n (an additive 1/ log n in the exponent maps to a constant

factor). By choice of k, this inequality holds for L
def
= dlog(k + 1)e. The stretch is thus bounded by

ρ(α) + 1 ≤ 8kL =

{
8d1/(2α− 1)edlogd1/(2α− 1)e+ 1e for α > 1/2

8 log ndlog logn+ 1e for α = 1/2.

The bound on the label size follows from Lemma 4.9, our choice of L, and the fact that the

long-distance scheme adds only O(log n) bits to the label.

The space complexity of our scheme, i.e., the number of bits of the computed routing tables, is

also straightforward to bound.

Corollary 4.20 The size of the routing table at node v computed by the algorithm referenced in

Theorem 4.19 is Õ(nα).

Proof: Observe that the dominant terms in memory consumption are (i) storing the sets Hv(i) and

the next pointers to them for the short-range routing scheme, (ii) storing the routing information for

the paths from the roots u ∈ Si of the trees induced by the sets Cu(i), and (iii) storing GSL,h(SL)

and the next pointers for the long-range scheme. Trivially, the encoding of GSL,h(SL) cannot require

more than Õ(nα) memory, as it is broadcasted globally over the BFS tree. The routing information

from Cu(i) to the nodes in its tree is logO(1) n bits [29]. The term from (i) originates from calls to

Algorithm BSP. The routing information that needs to be stored consists of the history of the list

maintained by Algorithm BSP. Hence, if such a call has depth and overlap parameters h and ∆, the

memory required is O(h∆ log n). Hence the memory bound for (i) directly follows from the running

time bound from Lemma 4.9.

29

5 Extensions and Applications

5.1 Distance Sketches

The problem of distributed distance sketches requires each node to have a label and store a small

amount of information (called the sketch), so that each node v can estimate the distance to each

other node u when given the label of u.9 Technically speaking, we already solved this problem, since

our machinery enables to estimate distances with small stretch. However, since α ≥ 1/2, the basic

construction will always consume Ω̃(
√
n) memory.

If we discard the routing information, we can reduce the space requirements of the sketches at the

expense of also increasing the stretch. To this end, we need to reduce the maximal size of the sets Hv(i)

as well as the space consumed for storing information on the skeleton graph. Our idea is as follows.

First, we change the sampling probabilities of the sets Si so that |Si| ∈ Θ(n1−i/L), where i ranges from

0 to L. With this choice, the expected number of nodes from Si that are closer to a given node than

the closest node from Si+1 is Θ(n1/L), implying that E[|Hv(i)|] ∈ Θ(n1/L) for all i. Second, we do not

choose SL as skeleton set, but rather Si0 for i0 ≈ L/2, so that the skeleton can be constructed quickly.

To continue applying the short-range scheme beyond stage i0 without increasing the asymptotic time

complexity of the construction, we construct temporary distance sketches and labels for the skeleton

(using the long-range scheme with skeleton set Si0), which allows nodes to estimate their distance to

skeleton nodes locally. Ensuring that the Si are subsets of the skeleton for i ≥ i0, each node thus can

simulate the short-range algorithm’s detection of the sets Hi and the respective distance computation

locally, based on its estimated distance to skeleton nodes; the price we pay is increasing the stretch

by factor O(L) due to imprecise distances.

Theorem 5.1 Given any integer k ∈ [1, . . . , log n], distance sketches with stretch ρ(k) = 2k(8k−3) ∈
O(k2), label size O(k log n), and sketch size Õ(n1/(2k)) can be constructed w.h.p. in the CONGEST

model in Õ(n1/2+1/(2k) + HD) rounds.

Proof: We use the following algorithm, parametrized by k.

1. Run the short-range with k stages and expected set sizes E[|Si|] = ni/(2k) for i ∈ {0, . . . , k}.
2. Run the long-range scheme on the skeleton Sk.

3. For k+1 ≤ i ≤ 2k−1, sample set Si ⊆ Si−1, where each node is picked uniformly with probability

n−1/(2k) in each step. Each node in Sk broadcasts its membership information.

4. For each pair v ∈ V and s ∈ Sk, set wd′(v, s)
def
= wd(v, Yv(L)) + wd(Yv(L), s). For k + 1 ≤ i ≤

2k− 1, compute at each node v the closest node Yv(i) ∈ Si w.r.t. wd′, and the set Hv(i) := {s ∈
Si−1 |wd′(v, s) ≤ wd′(v, Yv(i))}. Set Hv(2k)

def
= S2k−1.

5. Store at each node v, for each i ∈ {1, . . . , 2k}: (i) the set Hv(i); (ii) for each u ∈ Hv(i), the value

wd(v, u) if i ≤ k, or wd′(v, u) if i > k. Label node v by λ(v) = (Yv(i), d(i))i∈{0,...,2k−1}, where

d(i)
def
= wd(v, Yv(i)) if i < k, and d(i)

def
= wd′(v, Yv(i)) otherwise.

Given label λ(w) (which is clearly of size O(k log n)), node v estimates the distance to w by finding

9The formulation in [6] permits to use both sketches to approximate the distance. However, from the distributed point

of view it is more appropriate to assume that only a minimal amount of information is exchanged.

30

the smallest i ∈ {1, . . . , 2k} so that Yw(i − 1) ∈ Hv(i) and adding the respective distance estimates

from v to Yw(i− 1) (locally known) and from Yw(i− 1) to w (from the label). Such an i always exists

because Hv(2k) = S2k−1. This completes the description of the algorithm.

By Corollary 4.7, the stretch of the routes represented by the labels and sketches would be 8k−3 ∈
O(k) w.h.p. if all distances were exact. The approximation ratio is obtained by multiplying this value

by the maximal stretch of any distance estimates employed in the construction. Up to stage k, all

values are exact w.h.p. Thereafter, we use estimates of distances between skeleton nodes and all other

nodes. By the triangle inequality, we have for all v ∈ V and s ∈ S that

wd(v, s) ≤ wd(v, Yv(i0)) + wd(Yv(i0), s) ≤ wd(v, Yv(i0)) + wdk(Yv(i0), s) = w̃d(v, s).

On the other hand,

wd(v, Yv(i0)) + wdk(Yv(i0), s) ≤ wd(v, s) + wdk(Yv(i0), s) by definition of Yv(i0)

≤ 2k · wd(Yv(i0), s) by Theorem 4.17.

Hence the stretch of the distance estimates is bounded by ρ(k) = 2k(8k − 3) ∈ O(k2).

By Chernoff’s bound, for all i we have that |Si| ∈ Θ(n(2k−i)/(2k)) w.h.p. Hence, the non-local

part of the construction can be performed with overlap parameter ∆i ∈ Θ(n1/(2k) log n) and distance

parameter hi ∈ Θ̃(ni/(2k)) for all i ∈ {1, . . . , k}. We conclude the claimed running time and memory

bounds of Õ(n1/2+1/(2k)) (time Õ(hi∆i) for each step of the short-range scheme, time Õ(n/|Sk|1−1/k+

|Sk|1+1/k + HD) for the long-range scheme, and time O(|Sk|+ HD) for the additional broadcast step)

and Õ(n1/(2k)), respectively, completing the proof.

We note that a distributed implementation of Thorup-Zwick distance oracles with stretch 2k − 1

and running time Θ̃(SPD ·n1/k) was recently given by Das Sarma et al. [6]. Intuitively, the reason for

the discrepancy is that in [6], there is no use of the skeleton graph. In general, our running time and

the one from [6] are incomparable (one may run both algorithms in parallel and use the output of the

one that terminates first).

5.2 Approximate Weighted Diameter

Obtaining an approximation of the weighted diameter is simpler than constructing distance sketches.

Dropping the short-range scheme from the construction, we can prove the following result.

Theorem 5.2 For any k ∈ N, the weighted diameter WD can be approximated w.h.p. to within a

factor of 2k + 1 in the CONGEST model in Õ(n1/2+1/(2k) + HD) rounds.

Proof: We use the following streamlined version of our algorithm.

1. Select a uniformly random skeleton S where Pr[v ∈ S] = 1/
√
n independently for all v ∈ V .

2. Apply Algorithm 3 to construct a (2k − 1)-spanner of GS,h(SR). Let WDk be the weighted

diameter of the spanner of GS,h(SR) (which can be computed locally).

3. Apply Algorithm BSP, where all nodes in S function as the same source: source(v) = 1 for all

v ∈ S and source(v) = ⊥ for all v /∈ S. Use ∆ = 1 and h ∈ Θ(
√
n log n).

4. Find the maximal distance dmax computed by any node and output 2dmax + WDk.

31

Regarding the time complexity, note that Step 2 requires Õ(n1/2+1/(2k)+HD) rounds by Theorem 4.17,

Step 3 requires Õ(
√
n) time by Theorem 4.4, and Step 4 takes O(HD) rounds.

Regarding the approximation ratio, consider any v, w ∈ V , and let sv, sw ∈ S the nodes in S closest

to v and w, respectively. Then

wd(v, w) ≤ wd(v, sv) + wd(sv, sw) + wd(sw, w) ≤ dmax + WDk + dmax ,

and hence WD ≤WDk + 2dmax. On the other hand, we have

WD ≥ max

{
dmax,max

s,t∈S
{WS,h(SR)(s, t)}

}
≥

2dmax + (2k − 1) maxs,t∈S{WS,h(SR)(s, t)}
2k + 1

≥ 2dmax + WDk

2k + 1
,

where the last inequality holds w.h.p. by Theorem 4.17.

5.3 Distributed Approximation for Generalized Steiner Forest

In this section we explain how to utilize our routing scheme to obtain a fast distributed algorithm for

the Generalized Steiner Forest problem (gsf), defined as follows.

Generalized Steiner Forest (gsf’)

Input: A weighted graph G = (V,E,W), a set of terminals T ⊆ V , and for each terminal

t ∈ T a component number C(t).

Output: A subset of the edges F ⊆ E such that for all pairs s, t ∈ T with C(s) = C(t),

we have that s is connected to t in the graph (V, F).

Goal: Minimize
∑

e∈F W (e).

We note that sometimes, the connectivity requirement C is expressed as a set of node pairs. While

the size of the input representation may differ, the two variants are equivalent for our purposes; using

our spanner construction, we can obtain the component-based description within Õ(T + HD) rounds

from the pair-based formulation.

In the distributed setting, we assume that each node knows whether it is a terminal, and if so,

what is its component number. Clearly, we can establish global knowledge on T and the component

numbers within time O(T + HD) by broadcasting the respective pairs of values over a BFS tree.

We now present a solution to gsf. We start with a generic reduction to a centralized algorithm

which abstracts away the underlying graph G, and uses a graph whose nodes are just the terminals

and edge weights are inter-terminal distance estimates.

To analyze Algorithm 5, we consider two simple transformations of the input instance and state

their effect on the cost of the solution. First, consider the effect of using just distances between

terminals (and not the whole graph). The following lemma bounds the effect of this simplification.

Given an instance I for gsf, we use OPT(I) to denote any fixed optimal solution for I.

32

Algorithm 5: Distributed algorithm for gsf. ALG is any centralized approximation algorithm

for gsf’.
input : terminal components //locally known: v knows whether v ∈ T and if so, its component number

output: F : edges in the Steiner forest

1 Obtain distance estimates for all distances wd(s, t) with s, t ∈ T .

2 Simulate ALG on the graph G′ = (T,E′,W ′) and the same terminal components, where

E′ := {{s, t} | s, t ∈ T ∧ s 6= t}, and for all s, t ∈ T , W ′(s, t) := min{w̃ds(t), w̃dt(s)} and w̃ds(t) denotes

the estimate of wd(s, t) computed at s (given the label of t). Denote by F ′ the computed solution.

3 Identify and output all edges on paths in G that correspond to edges in F ′.

Lemma 5.3 Let I = (G = (V,E,W), T, C) be an instance of gsf. Define an instance I ′ = (G′, T, C),

where G′ = (T,E′,W ′) with E′ = {{s, t} | s, t ∈ T} and W ′(s, t) = wdG(s, t). Then W ′(OPT(I ′)) ≤
2W (OPT(I)).

Proof: The proof is a generalization of the standard argument for Steiner trees [28]. Let F =

OPT(I). Let C1 = (V1, F1), . . . , Cm = (Vm, Em) be the connected components of F . By optimality

of F , the components are trees. Fix a component Cj , and consider an Euler tour of its tree. Let

σ =
〈
v0, . . . , v2|Vj | = v0

〉
be the sequence of nodes visited by the tour. Since each edge in Fj is visited

exactly twice in σ, we have that the total weight of edges in the tour is 2W (Fj). Define the node

sequence σ′ =
〈
u0, . . . , u|Vj |−1

〉
obtained from σ by omitting the second occurrences of nodes from

σ. Consider now the set of edges F ′j := {{ui−1, ui} | 0 < i < |Vj |} in G′. Since the edges in G′ are

shortest paths in G, clearly the weight of F ′j is not more than the total weight of edges in σ, namely

W ′(F ′j) ≤ 2W (Fj). Finally, note that F ′ =
⋃t
j=1 F

′
j is a feasible solution for I ′, and therefore

W ′(OPT(I ′)) ≤ W ′(F ′) =
t∑

j=1

W ′(F ′j) ≤
t∑

j=1

2W (Fj) = 2W (OPT(I)) .

Next, consider replacing edge weights by ρ-approximate weights.

Lemma 5.4 Let I = (G = (V,E,W), T, C) and I ′ = (G = (V,E,W ′), T, C) be instances of gsf

differing only in the edge weights as follows: for all e ∈ E, W (e) ≤ W ′(e) ≤ ρW (e) for some ρ ≥ 1.

Then W (OPT(I ′)) ≤ ρW (OPT(I)).

Proof: W (OPT(I ′)) ≤W ′(OPT(I ′)) ≤W ′(OPT(I)) ≤ ρW (OPT(I)).

The preceding two lemmas show that using ρ-approximate distances and a centralized a-approxima-

tion algorithm for gsf, we will obtain a distributed (2ρa)-approximation algorithm for gsf.

It remains to show how to efficiently implement Algorithm 5 in the CONGEST model. The key

is Step 1: Steps 2 and 3 will be performed locally at each node.

Corollary 5.5 For any integer k ∈ [1, log n], Algorithm 5 can be executed in the CONGEST model

in Õ((
√
n+ |T |)1+1/k + HD) rounds with stretch factor ρ(k) = 2k − 1.

Proof: We apply the long-range routing scheme with skeleton set S := T ∪RS , where RS is sampled

uniformly and independently at random with probability n−1/2 from V . Lemma 4.15 implies that we

33

can perform Step 1 of Algorithm 5 within Õ(n|S|1/k/|SR|+ |S|1+1/k+HD) = Õ((
√
n+ |T |)1+1/k+HD)

rounds with stretch ρ(k) = 2k − 1. Moreover, at the end of this step, all nodes know the spanner of

the skeleton graph and can therefore locally compute W ′. As remarked earlier, all nodes can learn the

terminal components within Õ(
√
n+HD) ⊂ Õ((

√
n+|T |)1+1/k+HD) rounds. With this information in

place, all nodes can locally simulate ALG on G′ and thus perform Step 2 of the algorithm. According

to Lemma 4.16, the nodes on paths in G corresponding to edges in G′ can learn of their membership

within Õ(n|S|1/k/|SR| + |S|1+1/k + HD) rounds as well. Afterwards, Step 3 of the algorithm can be

completed locally as well. Summing up the running time bounds for the individual steps, we conclude

that the overall time complexity is Õ((
√
n+ |T |)1+1/k + HD) as claimed.

Altogether, we arrive at the following result.

Theorem 5.6 Given any integer k ∈ [1, log n] and any centralized a-approximation algorithm to gsf,

gsf can be solved in the CONGEST model with approximation ratio 2a(2k−1) in Õ((
√
n+|T |)1+1/k+

HD) rounds, where T denotes the set of terminal nodes.

Proof: Corollary 5.5 proves that Algorithm 5 can be implemented in Õ((
√
n+|T |)1+1/k+HD) rounds,

with distance estimates of stretch ρ(k) = 2k− 1. The approximation guarantee therefore follows from

Lemmas 5.3 and 5.4.

We note that one can implement Step 1 also by computing distance sketches as in Theorem 4.19

without including the entire terminal set into the skeleton (i.e., G′ does not become global knowledge),

and simulate ALG sequentially, taking O(HD) per step. This will reduce the overall running time in

case |T | �
√
n and HD times the step complexity of ALG (in terms of the number of globally

synchronized steps) is small compared to |T |1+1/k. However, this approach has two drawbacks. First,

ALG cannot be arbitrary, but must admit to be simulated via a BFS tree using small messages.

Second, the approximation ratio deteriorates according to the number of stages of the short-range

scheme, as the number of stages contributes as a multiplicative factor ρ.

Discussion. It is known that the special case of MST, where all nodes are terminals in a single

component has worst-case running time of Ω̃(
√
n) even if the hop-diameter is O(log n) [23]. However,

it is unclear whether this lower bound holds if the number of terminals is small, and in turn, whether

a larger number of terminal components makes the problem harder. For instance, for a single pair of

terminals the problem reduces to selecting a single approximate shortest path; we are not aware of

any non-trivial lower bound on this problem. Khan et al. [15] provide a O(log n)-approximation to

GSF within Õ(SPD · γ) rounds, where γ denotes the number of terminal components. The algorithm

from [15] matches this bound up to factor logO(1) n if SPD · γ ∈ Õ(
√
n); our approach does so in case

t ∈ Õ(
√
n), where t is the number of terminal nodes. Note that the two running time bounds in general

are incomparable: for approximation ratio O(log n), we achieve time complexity Õ(
√
n+t+HD); there

are instances for which SPD · γ �
√
n + t as well as those where

√
n + t � SPD · γ. However, our

approach is superior in that we can, for any integer k ∈ [1, log n], ensure an approximation ratio of

O(k) at the expense of a slightly larger running time of Õ((
√
n+ t)1+1/k + HD) rounds. The authors

of [15] employ probabilistic tree embeddings, a technique for which an approximation ratio of Ω(log n)

is inherent [10].

34

5.4 Tight Labels

The presented routing scheme relabels the nodes according to the Voronoi partition on each level. This

yields suboptimal size of labels and makes it impossible for nodes to learn all labels λ(V) quickly. We

now present a modification of our routing scheme with labels λ(V) = {1, . . . , n}, trading in a larger

stretch.

Instead of labeling the nodes on each level of the hierarchy independently, we do this by an inductive

construction.

1. Define the partial order ≺ on V given by v ≺ u if (and only if) one of the following is true:

• v, u ∈ SL and the identifier of v is smaller than the identifier of u.

• lv = lu < L, Yv(lv + 1) = Yu(lv + 1), and v precedes u in a fixed DFS enumeration of the

tree TYv(lv+1)(lv + 1) on CYv(lv+1)(lv + 1) induced by the shortest hlv -hop paths from each

w ∈ CYv(lv+1)(lv + 1) to Yv(lv + 1) detected by the invocation of Algorithm BSP in stage lv.

2. Set countv(0) := 1 for all v ∈ V = S0. For each level i ∈ {1, . . . , L}, aggregate the sums of the

values counts(i− 1) of nodes s ∈ Si−1 in subtrees of TYs(i)(i) at the roots of these subtrees. We

define for all s ∈ Si the value

counts(i) :=
∑

s′∈Si−1

s=Ys′ (i)

counts′(i− 1),

which can be computed from the received values. For each level i, this operation can be performed

within O(hi) rounds.

3. Each skeleton node s ∈ SL announces counts(L) to all other nodes. This requires O(|SL|+ HD)

rounds using a BFS tree.

4. Each skeleton node s ∈ SL sets

λ(s) := 1 +
∑
s′∈SL
s′≺s

counts′(L).

5. Starting from level L and proceeding inductively on decreasing i, for each i ∈ {1, . . . , L}, each

node s ∈ Si, and each node s′ ∈ Cs(i) ∩ Si−1, we inform s′ of the value

λ(s′) := λ(s) + 1 +
∑

s′′∈Cs(i)∩Si−1

s′′≺s′

counts′′(i− 1).

Note that this step can be performed in O(hi) rounds once λs is known due to the information

collected in Step 2.

From the above arguments and the results from Section 4.2 we can immediately conclude that the

time complexity of computing these labels is negligible.

Corollary 5.7 Executing the above construction does not increase the asymptotic time complexity of

setting up the routing tables.

By construction, λ(V) = {1, . . . , n}. Note that at the end of the above construction, each node

v knows λ(v) and, for each level i and each of its children in TYv(i)(i), it knows the range of labels

35

associated with this child. For each v ∈ V , set v0 := v and define inductively for i ∈ {1, . . . , L} that

vi = Yvi−1(i). Given any label λ(w), we can thus route from any node v to w as follows.

1. Set i := 0.

2. If i < L and wi /∈ Hvi(i + 1), then route to vi+1, set i := i + 1, and repeat this step. If i < L

and wi ∈ Hvi(i + 1), route to wi and proceed to the next step. If i = L, route to wL using the

long-range scheme and proceed to the next step.

3. If i > 0, then route to wi−1, set i := i − 1, and repeat this step. Otherwise wi = w and we are

done.

The constructed sequence of routing indirections is thus (v0, . . . , vi0 , wi0 , . . . , w), where either i0 is the

minimal level such that wi0 ∈ Hvi0
(i0 + 1) or i0 = L. As a result of these indirections, we cannot give

a bound on the stretch that is linear in the number of levels anymore. However, we still can argue

that wd(vi, wi) ≤ 4wd(vi−1, wi−1) assuming that wi−1 6∈ Hvi−1(i).

Lemma 5.8 Suppose that for the labeling scheme stated above we have for some integer 1 ≤ i0 ≤ L

that wi−1 6∈ Hvi(i) for all integers 0 ≤ i < i0. Then

wd(vi0 , wi0) +

i0∑
i=1

(wd(vi−1, vi) + wd(wi, wi−1)) < 2 · 4i0wd(v, w).

Proof: We show by induction that wd(vi, wi) ≤ 4iwd(v, w) for all 0 ≤ i ≤ i0, which is obviously

true for i = 0. Analogously to Lemma 4.6 we have that wd(vi, vi+1) ≤ wd(vi, wi) and wd(wi, wi+1) ≤
2wd(vi, wi). By the triangle inequality,

wd(vi+1, wi+1) ≤ wd(vi+1, vi) + wd(vi, wi) + wd(wi, wi+1) ≤ 4wd(vi, wi) = 4i+1wd(v, w).

This completes the induction and in addition reveals that

i0∑
i=1

(wd(vi−1, vi) + wd(wi, wi−1)) ≤ 3

i0−1∑
i=0

wd(vi, wi) ≤ 3

i0−1∑
i=0

4iwd(v, w) < 4 · 4i0−1wd(v, w).

Therefore

wd(vi0 , wi0) +

i0∑
i=1

(wd(vi−1, vi) + wd(wi, wi−1)) < 2 · 4i0wd(v, w),

concluding the proof.

As by Corollary 5.7 the construction time of the routing scheme is not affected by the above labeling

and routing mechanism and Lemma 5.8 provides a stretch bound of 2 ·22L for the modified short-range

routes, we obtain the following statement.

Theorem 5.9 Given α ∈ [1/2, 1], let k = d1/(2α − 1)e if α > 1/2 + 1/ log n and k = b1/ log nc
otherwise. Tables for stateless routing and distance approximation with stretch ρ(α) = 4k ·4dlog(k+1)e+

2k− 1 ∈ O(k3) with node labels 1, . . . , n can be constructed in the CONGEST model in Õ(nα + HD)

rounds.

36

Acknowledgements

We would like to thank David Peleg for valuable discussions.

References

[1] I. Abraham, C. Gavoille, and D. Malkhi. On Space-Stretch Trade-Offs: Lower Bounds. In Proc.

18th Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 207–216, 2006.

[2] I. Abraham, C. Gavoille, D. Malkhi, N. Nisan, and M. Thorup. Compact name-independent

routing with minimum stretch. ACM Transactions on Algorithms, 4(3):37:1–37:12, 2008.

[3] S. Baswana and S. Sen. A Simple and Linear Time Randomized Algorithm for Computing Sparse

Spanners in Weighted Graphs. Random Structures and Algorithms, 30(4):532–563, 2007.

[4] R. E. Bellman. On a routing problem. Quart. Appl. Math., 16:87–90, 1958.

[5] P. Chalermsook and J. Fakcharoenphol. Simple distributed algorithms for approximating min-

imum steiner trees. In Computing and Combinatorics, volume 3595 of LNCS, pages 380–389,

2005.

[6] A. Das Sarma, M. Dinitz, and G. Pandurangan. Efficient Computation of Distance Sketches in

Distributed Networks. In Proc. 24th Symposium on Parallelism in Algorithms and Architectures,

2012.

[7] A. Das Sarma, S. Holzer, L. Kor, A. Korman, D. Nanongkai, G. Pandurangan, D. Peleg, and

R. Wattenhofer. Distributed Verification and Hardness of Distributed Approximation. In Proc.

43th ACM Symposium on Theory of Computing, pages 363–372, 2011.

[8] M. Elkin. An Unconditional Lower Bound on the Time-Approximation Tradeoff for the Minimum

Spanning Tree Problem. SIAM Journal on Computing, 36(2):463–501, 2006.

[9] M. Elkin and D. Peleg. (1 + ε, β)-Spanner Constructions for General Graphs. SIAM Journal on

Computing, 33(3):608–631, 2004.

[10] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary metrics by

tree metrics. In Proc. 35th Ann. Symp. on Theory of computing, STOC ’03, pages 448–455, 2003.

[11] L. R. Ford. Network flow theory. Technical Report P-923, The Rand Corp., 1956.

[12] S. Frischknecht, S. Holzer, and R. Wattenhofer. Networks Cannot Compute their Diameter in

Sublinear Time. In Proc. 23rd Symposium on Discrete Algorithms, pages 1150–1162, 2012.

[13] J. A. Garay, S. Kutten, and D. Peleg. A Sub-Linear Time Distributed Algorithm for Minimum-

Weight Spanning Trees. In Proc. 34th Conference on Foundations of Computer Science (FOCS),

pages 659–668, 1993.

37

[14] S. Holzer and R. Wattenhofer. Optimal Distributed All Pairs Shortest Paths and Applications.

In Proc. 31st Symposium on Principles of Distributed Computing (PODC), July 2012.

[15] M. Khan, F. Kuhn, D. Malkhi, G. Pandurangan, and K. Talwar. Efficient Distributed Approxi-

mation Algorithms via Probabilistic Tree Embeddings. Distributed Computing, 25:189–205, 2012.

[16] M. Khan and G. Pandurangan. A Fast Distributed Algorithm for Minimum Spanning Trees.

Distributed Computing, 20:391–402, 2008.

[17] S. Kutten and D. Peleg. Fast Distributed Construction of Small k-Dominating Sets and Applica-

tions. Journal of Algorithms, 28(1):40–66, 1998.

[18] Y. Mansour and B. Patt-Shamir. Greedy packet scheduling on shortest paths. Journal of Algo-

rithms, 14:449–465, 1993.

[19] J. McQuillan, I. Richer, and E. Rosen. The new routing algorithm for the arpanet. IEEE Trans.

on Communications, COM-28(5):711–719, May 1980.

[20] J. Moy. OSPF version 2. RFC 2328, Network Working Group, 1998.

[21] D. Peleg. Distributed Computing: A Locality-Sensitive Approach. Society for Industrial and

Applied Mathematics, Philadelphia, PA, USA, 2000.

[22] D. Peleg, L. Roditty, and E. Tal. Distributed Algorithms for Network Diameter and Girth.

In Proc. 39th Colloquium on Automata, Languages, and Programming (ICALP 2012). Springer

Berlin / Heidelberg, 2012.

[23] D. Peleg and V. Rubinovich. Near-tight Lower Bound on the Time Complexity of Distributed

MST Construction. SIAM Journal on Computing, 30:1427–1442, 2000.

[24] D. Peleg and E. Upfal. A trade-off between space and efficiency for routing tables. Journal of the

ACM, 36(3):510–530, 1989.

[25] Peleg, David and Schäffer, Alejandro A. Graph Spanners. Journal of Graph Theory, 13(1):99–116,

1989.

[26] L. L. Peterson and B. S. Davie. Computer Networks: A Systems Approach. Morgan Kaufmann,

5th edition, 2011.

[27] N. Santoro and R. Khatib. Labelling and Implicit Routing in Networks. The Computer Journal,

28:5–8, 1985.

[28] H. Takahashi and A. Matsuyama. An approximate solution for the Steiner problem in graphs.

Math. Jap., 24:573–577, 1980.

[29] M. Thorup and U. Zwick. Compact routing schemes. In Proc. 13th Ann. ACM Symp. on Parallel

Algorithms and Architectures, SPAA ’01, pages 1–10, New York, NY, USA, 2001. ACM.

[30] M. Thorup and U. Zwick. Approximate Distance Oracles. Journal of the ACM, 52(1):1–24, 2005.

38

[31] U. Zwick. Exact and Approximate Distances in Graphs - A Survey. In Proc. 9th European

Symposium on Algorithms (ESA), pages 33–48, 2001.

39

	1 Introduction
	1.1 Detailed Contributions
	1.2 Related Work

	2 Model
	2.1 The Computational Model
	2.2 General Concepts
	2.3 Some Graph-Theoretic Concepts

	3 Problem Statement and Lower Bounds
	3.1 The Routing Problem
	3.2 The Distance Approximation Problem
	3.3 Hardness of Name-Independent Distributed Table Construction
	3.4 Hardness of Diameter Estimation
	3.5 Hardness of Name-Dependent Distributed Table Construction

	4 Routing Algorithm
	4.1 Bounded Shortest Paths
	4.2 The Short-Range Scheme
	4.3 Long-Distance Routing
	4.4 Putting the Pieces Together

	5 Extensions and Applications
	5.1 Distance Sketches
	5.2 Approximate Weighted Diameter
	5.3 Distributed Approximation for Generalized Steiner Forest
	5.4 Tight Labels

