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ABSTRACT
Automatic face clustering, which aims to group faces refer-
ring to the same people together, is a key component for
face tagging and image management. Standard face cluster-
ing approaches that are based on analyzing facial features
can already achieve high-precision results. However, they of-
ten suffer from low recall due to the large variation of faces
in pose, expression, illumination, occlusion, etc. To improve
the clustering recall without reducing the high precision, we
leverage the heterogeneous context information to iterative-
ly merge the clusters referring to same entities. We first
investigate the appropriate methods to utilize the context
information at the cluster level, including using of “com-
mon scene”, people co-occurrence, human attributes, and
clothing. We then propose a unified framework that em-
ploys bootstrapping to automatically learn adaptive rules
to integrate this heterogeneous contextual information, a-
long with facial features, together. Experimental results on
two personal photo collections and one real-world surveil-
lance dataset demonstrate the effectiveness of the proposed
approach in improving recall while maintaining very high
precision of face clustering.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Re-
trieval—Clustering

Keywords
Face Clustering, Context Information, Bootstrapping

1. INTRODUCTION
With the explosion of massive media data, the problem

of image organization, management and retrieval has be-
come an important issue [11] [21]. Naturally, the focus in
many image collections is people. To better understand and
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Figure 1: Example of Face Clusters by Picasa

manage the human-centered photos, face tagging that aim-
s to help users associate people names with faces becomes
an essential task. The fundamental problem towards face
tagging and management is face clustering, which aims to
group faces that refer to the same people together.

Clustering faces based on facial appearance features is the
most conventional approach. It has been extensively stud-
ied and significant progress has been achieved in the last
two decades [2] [6] [7]. These standard techniques have al-
ready been employed in several commercial systems such
as Google Picasa, Apple iPhoto, and Microsoft EasyAlbum.
These systems usually produce face clusters that have high
precision (faces in each cluster refer to the same person),
but low recall (faces of a single person fall into differen-
t clusters). In addition, a large number of small/singleton
face clusters are often returned, which bring heavy burden
on the users to label all the faces in the album. Fig. 1 illus-
trates the example of face clustering result, where faces of a
single person fall into six different (pure) clusters, instead of
one. One reason for low recall is due to the large variation of
faces in pose, expression, illumination, occlusion, etc. That
makes it challenging to group faces correctly by using the
standard techniques that focus primarily on facial features
and largely ignore the context. Another reason is that when
systems like Picasa ask for manual feedback from the user,
users most often prefer to merge pure (high-precision) clus-
ters rather than manually clean contaminated (low-recall)
ones. Consequently, such systems are often tuned to strong-
ly prefer the precision over recall. The goal of our work is to
leverage heterogeneous context information to improve the
recall of cluster results without reducing the high precision.

Prior research efforts have extensively explored using con-
textual features to improve the quality of face clustering
[16] [17] [19] [20]. In general, in contrast to our work, such
techniques often aim at exploring just one (or a few) con-
textual feature types, with the merging decision often made
at the image level only. We, however, develop a unified
framework that integrates heterogeneous context informa-
tion together to improve the performance of face clustering.
The framework learns the roles and importance of different
feature types from data. It can take into account time decay



of features and makes the merging decision at both image
and cluster levels. Examples of types of contextual cues
that have been used in the past include geo-location and
image capture time [21], people co-occurrence [14] [16] [17] ,
social norm and conventional positioning observed [10], hu-
man attributes [13], text or other linked information [4] [18],
clothing [9] [20], etc. For instance, [13] proposes to em-
ploy human attributes as an additional features. Howev-
er, the authors do not explore the different roles that each
attribute type plays in identifying different people. Social
context, such as people co-occurrence, has been investigat-
ed in [14] [16] [17]. But these approaches do not deal with
cluster-level co-occurrence information. Clothing informa-
tion has been used extensively in face clustering [9] [20].
However, these techniques do not employ the important time
decay factor in leveraging clothing information.

The overall unified framework is illustrated in Figure 2.
We start with the initial set of clusters generated by the s-
tandard approach for the given photo collection. The initial
clusters have high precision but low recall. We iteratively
merge the clusters that are likely to refer to the same entities
to get higher recall. We use contextual and facial features in
two regards: for computing similarities (how similar are two
clusters) and for defining constraints (which clusters cannot
refer to the same person). The framework then uses boot-
strapping to learn the importance of different heterogeneous
feature types directly from data. To achieve higher quali-
ty, this learning is done adaptively per cluster in a photo
collection, because the importance of different features can
change from person to person and in different photo collec-
tions. For example, clothing is a good distinguishing feature
in a photo album where people’s clothes are distinct, but a
weak feature in a photo collection where people are wearing
uniform. We employ the ideas of bootstrapping to partially
label any given dataset in automated fashion without any
human input. These labels then allow us to learn the im-
portance of various features directly from the given photo
collection. Clusters are then merged iteratively, based on
the importance of the learned features and computed simi-
larity, to produce a higher quality clustering.

The rest of this paper is organized as follows. We start
by formally defining the problem in Section 2. In Section 3,
we describe how to leverage the context information at the
cluster level, including common scene, people co-occurrence,
human attributes, and clothing. In Section 4, we propose the
unified framework which automatically learns rules to inte-
grate heterogeneous context information together to itera-
tively merge clusters. The proposed approach is empirically
evaluated in Section 5. Finally, we conclude in Section 6 by
highlighting key points of our work.

2. PROBLEM DEFINITION
Suppose that a human-centered photo album Ph contain-

s K images {I1, I2, . . . , IK}, see Figure 2. Assume that n
faces are detected in Ph, with each face denoted as fi for
i = 1, 2, . . . , n, or f

Ik
i (that is, fi is extracted from im-

age Ik). Suppose that by applying the standard algorith-
m which is based on facial features, we obtain N clusters
{C1, C2, . . . , CN}, where each cluster is assumed to be pure,
but multiple clusters could refer to the same entity. Our goal
is to leverage heterogeneous context information to merge
clusters such that we still get very high precision clusters
but also improve the recall.

…
…

…
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…
…

Photo Collection
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Iterative Merging
Final Clusters: High 
Precision, High Recall

Figure 2: The General Framework

There have been many studies that analyze behaviors of
different metrics for measuring quality of clustering. A re-
cent prominent study by Artiles et al. suggests that B-cubed
precision, recall and F-measure is one of the best combina-
tion of metrics to use according to many criteria [3]. Let
C(fi) be the cluster that fi is put into by a clustering algo-
rithm. Let L(fi) be to the real category/label (person) fi
refers to in the ground truth. Given two faces fi and fj , the
correctness Correct(fi, fj) is defined as:

Correct(fi, fj) =

{
1 if L(fi) = L(fj) ∧ C(fi) = C(fj)
0 otherwise

B-cubed precision of an item fi is computed as the pro-
portion of correctly related items in its cluster (including

itself): Pre(fi) =

∑
fj :C(fi)=C(fj)

Correct(fi,fj)

‖{fj |C(fi)=C(fj)}‖
. The over-

all B-cubed precision is the averaged precision of all item-
s: Pre = 1

n

∑n
i=1Pre(fi). Similarly, B-cubed recall of fi

is the proportion of correctly related items in its category:

Rec(fi) =

∑
fj :L(fi)=L(fj)

Correct(fi,fj)

‖{fj |L(fi)=L(fj)}‖
. The overall recall is

then: Rec = 1
n

n∑
i=1

Rec(fi). The F-measure is then defined

as the harmonic mean of the precision and recall.

3. CONTEXT FEATURE EXTRACTION
Most prior research effort focus on leveraging context fea-

tures directly at the face level [9] [13] [14]. That is, the
similarity is computed between two faces and not two clus-
ters. In this section, we will describe how to utilize context
features at the cluster level. Context features are not only
able to provide additional contextual similarity information
to link clusters that co-refer (refer to the same entity), but
also generate constraints that identify clusters that cannot
co-refer (cannot refer to the same entity).

3.1 Context Similarities
3.1.1 Common Scene

It is common for a photographer to take multiple photo-
s of the same “scene” in a relatively short period of time.
This phenomenon happens for example when the photogra-
pher wants to ensure that at least some of the pictures taken
will be of acceptable quality, or when people pose for photos



Figure 3: Example of Common Scene

and change their poses somewhat in the sequence of com-
mon scene photos. Common scene photos are often taken
within small intervals of time from each other and they con-
tain almost the same background and almost the same group
of people in each photo. Surprisingly, we are not aware of
much existing work that would use common scene detection
to improve face-clustering performance. However common
scene detection can provide additional evidence to link clus-
ters describing the same entity, since images in a common
scene often contain the same people.

To divide images into common scene clusters, some EXIF
information (such as image captured time, geo-location, cam-
era model, etc.), and image visual features (color, texture,
shape) and image file name can be leveraged. Suppose that
in a photo album Ph containing K images {I1, I2, ..., IK},
the algorithm finds M common scene clusters. Let CS(Ik)
denotes the common scene of image Ik. Based on the as-
sumption that two images forming the common scene might
describe the same entities, two entities even with dissimilar
facial appearances might be linked by the common scene.

For example, as shown in Figure 3, C1 and C2 are two
initial face clusters based on face appearance. Face fI1

1 ,

extracted from image I1, belongs to cluster C1, and face fI2
4

extracted from image I2 is put into C2. Since images I1 and
I2 share the common scene CS(I1) = CS(I2), it is possible

they describe the same entities. Thus faces fI1
1 and fI2

4 have
some possibility to be the same, and the two face clusters
C1 and C2 are linked to each other via the common scene.

Thus the context similarity Scs(Cm, Cn) of two face clus-
ters Cm and Cn based on common scene is defined as the
number of distinct common scenes between the pairs of im-
ages from each cluster:

µcs
mn = {CS(Ik)|CS(Ik) = CS(Il))∧(f

Ik
i ∈ Cm)∧(f

Il
j ∈ Cn)}

(1)

Scs(Cm, Cn) =‖ µcs
mn ‖ (2)

Thus µcs
mn is the set of common scenes across two face clus-

ters Cm and Cn. Scs(Cm, Cn) is the cardinality of set µcs
mn.

The larger value Scs(Cm, Cn) is, the higher the likelihood
that Cm and Cn refer to the same entity.

3.1.2 People Co-occurrence
The surrounding faces can provide vital evidence in rec-

ognizing the identity of a given face in an image. Suppose
that “Rose” and “John” are good friends and often take pho-
tos together, then the identity of one person will probably
imply the other. In [17], Wu et al. investigated people co-
occurrence feature and proposed a social context similarity
measurement by counting the common co-occurred single
clusters between two clusters. However, this measuremen-
t could be greatly improved because single cluster linkage
alone is not strong evidence. In this section, we propose a
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Figure 4: Example of People Co-occurrence

new social context similarity measurement, which use the
common cluster-group as evidence to link clusters. Experi-
ments reveal that the linkage of cluster-groups is more reli-
able than the linkage of single cluster.

Cluster co-occurrence. First, let us define the co-
occurrence relationship between two clusters. We will say
that clusters Cm and Cn co-occur in/via image Ik, if Ik
contains at least two faces such that one is from Cm and the
other one is from Cn. In general, the co-occurrence measure
Co(Cm, Cn) returns the number of distinct images in which
Cm and Cn co-occur:

Co(Cm, Cn) =‖ {Ik|∃fIk
i , f

Ik
j s.t. (f

Ik
i ∈ Cm)∧(f

Ik
j ∈ Cn)} ‖

The co-occurrence relationship between three and more
face clusters has a similar definition. Consider the faces in
Figure 4 as an example. There, C1, C2, C3, C4 are four initial
face clusters. Since there exists an image I1 that contain
three faces f1, f4 and f6 such that f1 ∈ C1, f4 ∈ C2, f6 ∈ C3,
thus Co(C1, C2, C3) = 1. Similarly, for the clusters C1, C2,
C4 it holds Co(C1, C2, C4) = 1. Based on common sense, we
know that a person cannot co-occur with himself in an image
unless the image is doctored or contains a reflection, e.g., in
a mirror. Consequently, clusters connected via a non-zero
co-occurrence relationship should refer to different entities.
This property will be used later on by the framework to
generate context constraints.

Co-occurrence graph. The co-occurrence of two face
clusters reveals the social relationship between them and be-
tween the people they correspond to. We now will describe
how to construct cluster co-occurrence graph. Observe that
if two face clusters have similar co-occurrence relationships,
then the two face clusters might refer to the same entity.
This is since people tend to appear with the same group of
people in photos, e.g., the same friends. In the example in
Figure 4, both C3 and C4 co-occur with C1 and C2. Such
co-occurrence can serve as extra evidence that C3 and C4

possibly refer to the same entity. Notice, to demonstrate
this graphically, we can represent C3 and C4 as nodes in a
graph both of which are linked together via a different node
that corresponds to C1 and C2 as a single cluster-group.

To analyze the various co-occurrences among clusters, we
construct the cluster co-occurrence graph G = (V,E). G is a
labeled undirectional graph. The set of nodes V in the graph
consists of two types of nodes: V = V c ∩ V g. Node vci ∈ V c

corresponds to each single face cluster Ci. Node vgj ∈ V g

corresponds to each face cluster-group found in an image.
The group nodes are constructed as follows. For each image



Ik that contains at least two faces, let ΦIk denote the set of
all the clusters that contain faces present in Ik. We construct
‖ ΦIk ‖ cluster-groups, where each group is a set of clusters
ΦIk \ {Cj} for each Cj ∈ ΦIk . For example, if image I1 has
faces for three clusters ΦI1 = {C1, C2, C3}, then the groups
are going to be {C1, C2}, {C1, C3}, and {C2, C3}. A node
vgj is created once per each distinct group. Edge eij ∈ E
is created between nodes vci and vgj only when vci occurs in
the context of group vgj at least once, that is when exists

at least one image Ik such that vci ∩ vgj = ΦIk . Edge eij is
labeled with the number of such images, i.e., edge weight
wij =‖ {Ik|vci ∩ vgj = ΦIk} ‖.

Consider Figure 4 as an example. For images I1 and I2
we have ΦI1 = {C1, C2, C3}, ΦI2 = {C1, C2, C4}. Thus we
construct four V c nodes for C1,C2,C3,C4, and five V g nodes
for {C1, C2}, {C1, C3}, {C2, C3}, {C1, C4}, {C2, C4}. Edges
are created accordingly.

From the cluster co-occurrence graph, we observe that if
two V c nodes vcm and vcn connects to the same V g node vgk,
then vcm and vcn possibly refer to the same entity. For in-
stance, in Figure 4, both C3 and C4 connects with {C1, C2},
so C3 and C4 are possibly the same. The context similarity
from cluster co-occurrence Sco(Cm, Cn) for Cm and Cn can
be then defined as the flow between these two clusters,

Sco(Cm, Cn) =
∑

V g
k↔V c

m,V g
k↔V c

n

min(wmk, wkn) (3)

In general, the co-occurrence similarity between two clus-
ters can be measured as the sum of weights of paths which
link them through V g nodes. The larger the number/weight
of paths that link Cm and Cn, the higher the likelihood that
Cm and Cn refer to the same entity.

3.1.3 Human Attributes
Human attributes, such as gender, age, ethnicity, facial

traits, etc., are important evidence to identify a person.
By considering attributes, many uncertainties and errors for
face clustering can be avoided, such as confusing “men” with
“women”, “adults” with “children”, etc. To get attribute val-
ues for a given face, we use the attribute system [13]. It
returns values for the 73 types of attributes, such as “black
hair”, “big nose”, or “wearing eyeglasses”. Thus, with each
face fi we associate a 73-D attribute vector denoted as Afi .

In [13], Kumar et al. suggests that attributes can be used
to help face verification by choosing some measurement (e.g.,
cosine similarity) to compute attribute similarities. Howev-
er, the importance of each type of attribute usually differs
when identifying different entities. For example, in a photo
album containing just one baby, age is an important factor
for identifying this baby; while if several babies exist in an al-
bum, then age is not a strongly discriminative feature. Thus,
it is essential to determine the importance of attributes for
identifying a given entity in the photo collections.

To achieve this, we learn the importance of attributes from
the face cluster itself, by leveraging bootstrapping. Here,
bootstrapping refers to the process of being able to auto-
matically label part of the data, without any human input,
and then use these labels to train a classifier. The learned
classifier is then used to label the remaining data. One of

Notice, in general, there could be different models for assigning
weights to paths in addition to the flow model considered in the
paper. For example, paths that go through larger group nodes
could be assigned higher weight since larger groups of people tend
to be better context than smaller ones.
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Figure 5: Example of Human Attributes

the main challenges in applying bootstrapping is to be able
to provide these partial labels. The general idea of our so-
lution is that faces that belong to one face cluster are very
likely to refer to the same entity due to the purity of the
initial clusters, hence they can form the positive samples.
In turn, faces from two clusters that co-occur in the same
image most likely refer to the different people (since a per-
son cannot co-occur with himself in a photo), which can be
used to construct the negative samples.

Based on the above discussion, the training dataset can
be constructed for each cluster. Figure 5 illustrates the at-
tribute training dataset for identifying C1 from the exam-
ple in Figure 4. Three faces f1, f2, f3 fall into C1, so the
attributes of these three faces Af1 ,Af2 ,Af3 are labeled as
C1. Since the other three clusters C2, C3, C4 have the co-
occurrence relationship with C1, they are considered to de-
scribe different entities. Thus the attributes of faces from the
other three clusters can be treated as the negative samples.
In this way, the attribute training dataset can be construct-
ed automatically for each cluster.

After the attribute training dataset is constructed, a clas-
sifier, such as SVM, can be learned for each cluster Cm.
Given a 73-D attribute feature Afi for any face fi, the task
of the classifier is to output whether this face fi belongs
to Cm. In addition to outputting a binary yes/no decision,
modern classifiers can also output the probability that fi
belongs to Cm, denoted as PA(fi ∈ Cm). Thus, by applying
classifier learned for Cm to each face in an unknown face
cluster Cn, we can compute the average probability that Cn

belongs to Cm, denoted as SA(Cn  Cm):

SA(Cn  Cm) =
1

‖ Cn ‖
∑

fi∈Cn

PA(fi ∈ Cm) (4)

Attribute similarity between Cm and Cn is defined as,

Sattr(Cm, Cn) =
SA(Cn  Cm) + SA(Cm  Cn)

2
(5)

That is, the attribute based similarity Sattr(Cm, Cn) be-
tween two clusters is the average of the average probability
of one cluster to belong to the other.

3.1.4 Clothing Information
Clothing information could be a strong feature for de-

termining the identity of a person. However, clothing is a
time-sensitive feature since people can change their clothes.
Clothing has been considered in the previous work for face
clustering, e.g. in [20], but not as a time-sensitive feature
described next.

In this section, we introduce time decay factor to control
the effect of clothing in identifying people. We propose that
the similarity between fi and fj should be a function of time:



Sc(fi, fj) = sim(chfi , chfj )× e−4t/2s2 (6)

In the above formula, sim(chfi , chfj ) refers to the cloth-
ing similarity computed only on visual features. Notation
4t refers to the capture time difference between 2 faces.
By construction, the above time-decay function incorporates
the relationship between 4t and the effectiveness of cloth-
ing features. The smaller 4t is, the more effective clothing
feature is. With the time difference value4t growing, the ef-
fectiveness of clothing feature is decreasing. When the time
difference 4t is much larger than the time slot threshold s,
the clothing feature becomes ineffective.

To compute the clothing similarity, the first step is to
detect the location of clothing for the given face, which can
be implemented by leveraging the techniques from [9] or
simply using a bounding box below detected faces. After
that, some low level image features (color, texture) can be
extracted to represent the clothing information, and then
similarities can be computed.

To obtain the cluster similarity from clothing information,
we can compute the clothing similarity between each pair of
faces and then choose the maximum value:

Scloth(Cm, Cn) = max
fi∈Cm,fj∈Cn

Sc(fi, fj) (7)

Thus the clothing similarity between Cm and Cn is com-
puted by selecting the maximum clothing similarity between
each pair of faces respectively falling in the 2 face clusters.

3.2 Context Constraints
In the previous section we have explained how context fea-

tures can be used as extra positive evidence for computing
similarity between clusters. Context features, such as people
co-occurrence and human attributes, can also provide con-
straints or negative evidence, which can be used to identify
clusters that should refer to different entities.

From cluster co-occurrence relationship, we can derive
that two face clusters with Co(Cm, Cn) > 0 should refer
to definitely different entities, because a person cannot co-
occur with himself (in normal cases). Thus we can define
that if Co(Cm, Cn) > 0, the context dissimilarity from co-
occurrence feature is 1, denoted as Dco(Cm, Cn) = 1.

From human attributes, we can derive that two cluster-
s with vastly different attributes values, such as age, gen-
der, ethnicity information should refer to different entities.
Thus we can define that if two clusters Cm and Cn have
distinct age, gender, ethnicity attribute values, then context
dissimilarity from human attributes feature is 1, referred as
Dattr(Cm, Cn) = 1. Then we can define the context dissim-
ilarity measurement between two clusters as follows:

D(Cm, Cn) =

{
1 if Dco(Cm, Cn) = 1 or Dattr(Cm, Cn) = 1
0 otherwise

Thus D(Cm, Cn) = 1 means Cm and Cn are most likely
different, D(Cm, Cn) = 0 means that the dissimilarity mea-
sure between Cm and Cn cannot tell if they are different or
not. The context constraints will be leveraged to implement
the bootstrapping ideas explained in the following section.

4. THE UNIFIED FRAMEWORK
In the previous section we have discussed how to leverage

the context information from two aspects: computing con-
text similarities (Scs, Sco, Sattr, Scloth) and context con-
straints (Dco, Dattr). In this section, we will develop an ap-
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proach for integrating these heterogeneous context features
together to facilitate face clustering.

One possible solution for aggregating these context fea-
tures is to compute the overall similarity as weighted linear
sum of the context similarities. The overall similarity can
then be used to merge clusters that do not violate the con-
text constraints. However, this basic solution has several
limitations: it is too coarse-grained and it could be diffi-
cult to set the weights that would work best for all possible
photo collections. Alternatively, the other option is to auto-
matically learn some rules to combine these context features
together to make a merging decision. If the rules are sat-
isfied, the two face clusters can be merged. For example,
a rule could be if Scs(Cm, Cn) > 3 and Sco(Cm, Cn) > 4,
then merge Cm and Cn. The experiments reveal that if the
rules are defined appropriately, significantly better merging
results can be achieved compared to the basic solution.

Nevertheless, it is hard to define and fix rules that would
work well for all possible photo albums. Instead, rules that
are automatically tuned to each photo collection would nat-
urally perform better. This is since the importance of each
type of context feature usually varies due to the diversity of
image datasets. For example, clothing might be important
evidence in a photo album where people’s clothing is dis-
tinct, but it will lose the effect in a photo collection where
people wearing uniform. Thus, inspired by [5] [12] [15], we
propose a unified framework that can automatically learn
and adapt the rules to get high quality of face clustering.

4.1 Construction of Training Dataset
To automatically learn the rules, training dataset is of-

ten required. However, since we are trying to automati-
cally learn and tune the rules per each photo collection, it
is unlikely that training data will be available, as it will
not accompany each given collection. Nevertheless, such
rules could be learned by leveraging bootstrapping and semi-
supervised learning techniques. To apply those techniques,
we need to automatically partially label the dataset. The
constructed training dataset should contain positive sam-
ples (same face cluster pairs) and negative samples (differ-
ent face cluster pairs). The key challenge is to be able to
automatically, without any human input, label the positive
and negative samples for part of the data.
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In the above section, we discuss that the context informa-

tion can provide constraints to distinguish clusters referring
to different entities. For example, two face clusters with
co-occurrence relationship, or distinct attribute values (age,
gender, ethnicity), are most likely different. Based on this
observation, the negative samples can be constructed.

Then the next issue becomes how to obtain the positive
pairs. Due to the purity of initial face clusters, faces that
are part of one face cluster refer to the same entity. If we
split an initial face cluster into smaller clusters, then these
split smaller clusters should refer to the same entity. Thus
the split smaller clusters will form the positive sample pairs.

4.1.1 Strategy for Splitting Clusters
Many splitting strategies can be adopted for splitting ex-

isting pure clusters into subclusters. For example, one equi-
part strategy is to split each initial face cluster into two
(or other fixed number of) roughly equally-sized subclus-
ters. An alternative equi-size strategy is to predefine the
subcluster size (e.g., sz = 10 faces) and then split each clus-
ter into subclusters of that size. The equi-size strategy has
demonstrated a consistent advantage over other tested op-
tions since some of the context features similarities depend
on cluster sizes. For example, the context similarity between
two large clusters is usually stronger than the similarity be-
tween two small clusters. Thus, by considering split clusters
of roughly the same size, the effect of cluster size is reduced.

Consider N initial pure face clusters C1, C2, . . . , CN , and
the predefined subcluster size is sz. Then each cluster Cm

with ‖ Cm ‖> sz, can be randomly divided into
⌈
‖Cm‖

sz

⌉
sub-

clusters, denoted as {SCm
1 , SC

m
2 , . . .}. Figure 6 illustrates

an example of splitting clusters.

4.1.2 Automatic Labeling
After splitting clusters into subclusters, the next task is to

automatically label the positive and negative training sam-
ples. Due to the purity of the initial face clusters, if two
subclusters come from the same initial cluster, they form the
positive sample, labeled as the “same” pair. If two subclus-
ters come from two different clusters that have co-occurrence
relation or distinct attribute values, then the two subclusters
form the negative sample, labeled as “diff” pair. Thus, giv-
en two subclusters SCm

i and SCn
j , the label La(SCm

i , SC
n
j )

can be generated as follows:

La(SCm
i , SC

n
j ) =

 same if m = n,
diff if D(Cm, Cn) = 1,
unknown otherwise.

Figure 6 illustrates how to construct the training dataset.
As shown in Figure 6, subcluster pairs coming from the same
initial cluster are labeled as “same” pairs, e.g., (SC1

1 , SC
1
2 ),

(SC2
1 , SC

2
2 ), etc. Since C1 and C2 have the co-occurrence

relationship, each subcluster pair respectively deriving from
C1 and C2 will compose the “diff” pairs, e.g., (SC1

1 , SC
2
1 ),

(SC1
1 , SC

2
2 ), etc.

Pure
clusters

splitting training prediction

splitting training prediction

splitting training prediction

……
Final

Decision

Extracted
Faces

Merge

Pairs?
YES

No

Results

Iterative Merging
Photo
Album

Figure 8: Iterative Merging Framework

4.1.3 Feature Construction
After splitting clusters into subclusters, the algorithm will

try to determine which subclusters refer to the same entity.
To do that, it first needs to associate a feature vector with
each subcluster pair. After that, it will use a classifier to
predict whether or not the pair co-refers.

Specifically, for each pair of subclusters SCm
i and SCn

j

the algorithm associates four features that correspond to
the cluster level context similarities Scs, Sco, Sattr, Scloth, as
described in Section 3. In addition, the face appearance sim-
ilarities between two subclusters are also important, which
are measured in three ways: (1) the maximum similarity
between face pairs, denoted as Simmax; (2) the minimum
similarity between face pairs Simmin; (3) the average simi-
larity of face pairs, referred as Simavg. Therefore, the algo-
rithm associates 4 types of context features and 3 types of
face-based features with each subcluster pairs. Other types
of features can also be integrated to this unified framework.

4.2 Classifier Training and Predicting
After the automatic construction of the partially labeled

training dataset, the next goal is to learn the merging rules
from this training data. Then the learned rules can be ap-
plied to predict “same/different” labels for the pairs of sub-
clusters that have been labeled “unknown” before. In this
scenario, we choose to use cost-sensitive variant of the Deci-
sion Tree Classifier (DTC) as the classifier to learn the rules,
though other classifiers might also be applied. The reason
for using cost-sensitive and not regular DTC is that a sin-
gle incorrect merge decision can very negatively affect the
precision of clusters. That would defeat the purpose of our
goal of improving the recall while maintaining the same high
precision of the initial clustering. The cost-sensitive version
of DTC allows to set the cost of false-positive errors to be
much higher than that of false-negative errors. Therefore,
we train a very conservative classifier which will try to avoid
the false-positive errors thus ensuring high precision of the
resulting clusters. To avoid over-fitting problem, we prune
the over-fitted branches from the DTC. Figure 7 illustrated
an example of the learned DTC.

As shown in Figure 6, the learned DTC can be applied to
relabel previously “unknown” pairs by assigning “same” or
“diff” labels. For example, in Figure 6, pair (SC1

1 , SC
3
1 ) is

predicted to be “same”, and pair (SC1
1 , SC

3
3 ) to be “diff”.

To make the overall merging decision for the face clusters,
we need to combine the decisions of the corresponding sub-
clusters. For example, in Figure 6, analyzing the predictions
for face cluster pair (C1, C3), we discover that 3 subcluster
pairs are labeled “same”, and 3 pairs are labeled “diff”. Sim-
ilarly, for cluster pair (C2, C3), 1 subcluster pair is labeled
“same”, and 5 subcluster pairs are labeled “diff”. Hence the
issue is how to make the final merging decision.
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Figure 9: Effectiveness of Extracted Context Features

4.3 Final Merging Decision
Due to the randomness of the splitting strategy, the pre-

diction results might differ with differently split clusters.
To reduce the uncertainty introduced by the random split-
ting strategy, we propose to repeat the “splitting-training-
predicting” process multiple times. If two face clusters are
predicted to be “same” every time, then the face cluster pair
should have higher probability to refer to the same entity.

4.3.1 Multiple Splitting-Training-Predicting
Based on the above discussion, the algorithm repeats the

“splitting-training-predicting” process multiple times. Each
time, the algorithm splits the initial face clusters into sub-
clusters randomly, constructs the training dataset, trains
the classifiers, predicts the “unknown” pairs, and then map
the subcluster pairs predictions into the merge decisions.
Let T same(Cm, Cn) be the number of times that face cluster
pair Cm and Cn are predicted to be “same”. Similarly, let
T diff(Cm, Cn) be the number of times they are predicted to
be different. Naturally, the larger T same is, the higher the
probability is that this cluster pair refer to the same entity.

4.3.2 Final Decision
After perform the “splitting-training-predicting” process t

times (e.g., t = 5), we can compute T same and T diff values
for each pair of clusters, based on which the final merging
decision can be made. For example, merge a pair when it-
s T same+1

T diff+1
ratio exceed a certain threshold. To avoid early

propagation of the incorrect merges, a higher threshold can
be selected in the first several iterations, which can be de-
creased gradually in the subsequent iterations.

4.4 Iterative Merging Strategy
Figure 8 demonstrates the overall iterative merging frame-

work. As shown in Figure 8, after the faces are extract-
ed from the photo album, facial visual features are used to
group the faces into initial clusters, which are very pure
(high precision, low recall). Then our goal is to merge the
pure cluster pairs in order to improve the recall without
reducing the high precision. Leveraging multiple context
information, and applying bootstrapping ideas, we perform
the “splitting-training-predicting” process several times, and
then make the combined merging decision. Based on the fi-
nal decision, some face cluster pairs will be merged and up-
dated, and then the next iteration will be repeated until no
merging pairs are obtained. Then the final clustering results
are achieved.

5. EXPERIMENTS AND RESULTS
In this section, we evaluate our algorithm on three human-

centered data collections: Gallagher, Wedding, and Surveil-
lance. The characteristics of these datasets are listed in
Table 1. Gallagher [9] is a public family album containing
photos of three children, other family members and their
friends. The wedding dataset has been downloaded from
Web Picasa. It captures people in a wedding ceremony, in-

Dataset #Images #Faces #People Image Pixels
Gallagher 591 1064 37 2576× 1716
Wedding 643 1433 31 400× 267
Surveillance 1030 70 45 704× 480

Table 1: Experimental Dataset

cluding the bride, the groom, their relatives and friends. The
surveillance dataset contains images that capture the daily
life of faculty and students in the 2nd floor of a computer sci-
ence building. To evaluate the performance of the proposed
approach, we use B-cubed precision and recall defined in
Eqs. (1) and (2) as the evaluation metrics.

5.1 Experimental Results
First, we run some experiments to demonstrate the im-

portance of using different context feature types. Then we
compare our clustering results with those obtained by Pi-
casa and affinity propagation [8] algorithms, to illustrate
the overall effectiveness of our unified framework.

5.1.1 Context Feature Comparison
As shown in Figure9, a series of experiments are performed

on the Gallagher dataset to test the effectiveness of the pro-
posed 4 types of context similarities. Each plot in Figure 9
corresponds to one type of context similarity. Each plot
compares the baseline algorithm that uses only face similar-
ity (denoted as FS) with our framework which is allowed to
use just one given context feature type instead of all 4 types.

Figure 9(a) illustrates that the clustering performance can
be improved by combining common scene (CS) feature with
facial similarities (FS). The improvement is not very signif-
icant because only 50 cluster pairs are linked by common
sense feature in Gallagher dataset. Figure 9(b) shows the
comparison between our approach (CO(our)) and Wu’s ap-
proach (CO(Wu)) [17] in leveraging people co-occurrence
feature. The performance of our approach is much better
than Wu’s approach because we use the cluster groups as
evidence to link two clusters, which is more reliable than
the linkage of single cluster. Figure 9(c) demonstrates that
our approach (attr(our)) outperforms the cosine similarity
measurements (attr(cos)) in using human attributes feature.
The advantage of our approach is because we automatically
learn the relative importance of various attribute types in i-
dentifying different people. Figure 9(d) shows the advantage
of our approach (cloth(our)) compared with the approach
without considering time factor (cloth(no time)) in utilizing
clothing information. This demonstrates the advantage of
adding time decay factor to clothing information.

5.1.2 Clustering Results Comparison
To evaluate the performance of the proposed unified frame-

work, we compare our clustering results with affinity propa-
gation (AP) [8] and Picasa’s face clustering toolkit, as shown
in Figure 10. Four types of context information and facial vi-
sual similarities are integrated into our framework. B-cubed
precision and recall are computed as the evaluation metric-
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Figure 10: Comparison of Clustering Performance with Affinity Propagation and Picasa on Three Datasets.
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s. In our clustering framework, several parameters need to
be selected, the split cluster size (sz), and number of times
to perform “splitting-training-predicting” process t. In this
experiment we set sz = 10 and t = 5.

When performing affinity propagation, we combine the 4
types of context features with equal weight, and then aggre-
gate context features and facial feature with equal weight
to construct the overall similarity. By adjusting the prefer-
ence parameter p in AP, we are able to control the precision
vs. recall tradeoff for AP. Picasa allows users to specify the
cluster threshold (from 50 to 95) to control the precision vs.
recall tradeoff. With the increasing of threshold, the recall
reduces and the precision increases.

As demonstrated in Figure 10, our unified framework out-
performs Affinity Propagation (AP) and Picasa in all the
three datasets. The gained advantage is due to leveraging
the bootstrapping idea to automatically learn and tune the
merging rules per each dataset, and due to using the conser-
vative merging strategy that guarantees the high precision.
In addition, our framework is more reliable for data with
lower quality images because the context features are less
sensitive to image resolution. This is not the case for Picas-
a, as its performance drops dramatically with the decreasing
of image quality. The experiments illustrate that our uni-
fied framework reaches high quality and at the same time is
more reliable than the other two techniques.

5.1.3 Effectiveness and Efficiency
Figure 11 shows the comparison of clustering results when

choosing different values for parameter t (the number of
times to perform“splitting-training-predicting”process). The
larger t can provide more reliable clustering results because
it can reduce the uncertainties introduced by random split-
ting. However, The larger t will reduce the efficiency of the
algorithm. The experiments illustrate that when t = 5, our
performance is approaching the“sanity check”results (merg-
ing rules learned from ground truth). And when t = 1, our
results are still better than affinity propagation and Picasa.
Thus our approach is able to achieve a good result without
sacrificing efficiency.

6. CONCLUSION
In this paper we have proposed a unified framework for in-

tegrating heterogeneous context information (including com-
mon scene, people co-occurrence, human attributes and cloth-
ing) to improve the quality/recall of face clustering. The
context information has been used for both: computing con-
text similarities to link clusters that co-refer as well as for
generating context constraints to differentiate clusters that
do not co-refer. The proposed unified framework leverages
bootstrapping to automatically learn the adaptive rules to
integrate heterogeneous context information together to iter-
atively merge clusters, in order to improve the recall of clus-
tering results. Our experiments on the real-world datasets
demonstrated the effectiveness of the extracted context fea-
tures and of the overall unified framework.
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