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ABSTRACT
Creative telescoping algorithms compute linear differential
equations satisfied by multiple integrals with parameters.
We describe a precise and elementary algorithmic version
of the Griffiths–Dwork method for the creative telescoping
of rational functions. This leads to bounds on the order and
degree of the coefficients of the differential equation, and to
the first complexity result which is single exponential in the
number of variables. One of the important features of the al-
gorithm is that it does not need to compute certificates. The
approach is vindicated by a prototype implementation.

Categories and Subject Descriptors:

I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulations — Algebraic Algorithms

General Terms: Algorithms, Theory.

Keywords: Integration, creative telescoping, algorithms,
complexity, Picard-Fuchs equation, Griffiths–Dwork method

1. INTRODUCTION
In computer algebra, creative telescoping is an approach in-
troduced by Zeilberger to address definite summation and
integration of a large class of functions and sequences [28,
29, 27]. Its vast scope includes the computation of differen-
tial equations for multiple integrals of rational or algebraic
functions with parameters. Within this class, creative tele-
scoping is similar to well-studied older approaches whose key
notion is the Picard–Fuchs differential equation, see e.g. [23].

We study the multivariate rational case: Given a ratio-
nal function F (t, x1, . . . , xn), we aim at finding n rational
functions Ai(t, x1, . . . , xn) and a differential operator T with
polynomial coefficients, say

∑r

j=0
cj(t)∂j

t , such that

T (F )
def
=

r∑

j=0

cj(t)∂j
tF =

n∑

i=1

∂iAi, (1)
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where ∂j
t denotes ∂j

∂tj and ∂i denotes ∂
∂xi

. The operator T is
a telescoper and the tuple (A1, . . . , An) is a certificate for T .
The integer r is the order of T and maxj deg cj is its degree.

Throughout the article, the constant field k of F is as-
sumed to be of characteristic zero. Under suitable additional
hypotheses, T (I) = 0 is a differential equation satisfied by
an integral I(t) =

∫
Fdx over a domain γ, without bound-

aries, where F has no pole. A misbehavior may occur when
the certificate has poles outside those of F : it may not be
possible to integrate term by term the right-hand side of
Equation (1), see §4.1. The certificate is called regular when
it does not contain poles other than those of F . For inte-
gration, there is no need to compute the certificate provided
that it is regular.

Several methods are known that can find a telescoper and
the corresponding certificate [17, 26, 7, 15]. However, the
practical cost of using these methods in multivariate prob-
lems remains high and a better understanding of the size or
complexity of the objects of creative telescoping is clearly
needed. The present work is part of the on-going effort in
this direction [2,3,4]. The study of the rational case is moti-
vated both by its fundamental nature and by its applications
to the computation of diagonals in combinatorics, number
theory and physics [17,6,20]. The rational case with n vari-
ables also includes the algebraic case with n−1 variables [4].

Previous works. An obviously related problem is, given a ra-
tional function F (x1, . . . , xn), to decide whether there exist
rational functions A1, . . . , An such that F equals

∑n

i=1
∂iAi.

When n = 1, this question is easily solved by Hermite
reduction. This is the basis of an algorithm for creative
telescoping [3] that we outline in §2.1. Picard [25, chap. 7]
gave methods when n = 2 from which he deduced that a
telescoping equation exists in that case [24]. This too has
led to an algorithm [4]. The Griffiths–Dwork method [8, §3;
9, §8; 12] solves the problem for a general n, in the setting
of de Rham cohomology and under a regularity assumption.
The method can be viewed as a generalization of Hermite
reduction. Independently, Christol used a similar method to
prove that diagonals of rational functions, under a regularity
hypothesis, are differentially finite [5]; then he applied a de-
formation technique, for which he credits Dwork, to handle
singular cases [6]. The Griffiths–Dwork method is also used
in point counting [1,11] and the study of mirror maps [20].

In terms of complexity, in more than two variables, not
much is known. If a rational function F (t, x1, . . . , xn) has de-
gree d, a study of Lipshitz’s argument [17] shows that there

exists a telescoper of order and degree dO(n) with a regular
certificate of size dO(n2). Most algorithms [17,28,26,7,2,15]

http://arxiv.org/abs/1301.4313v2


cannot avoid the computation of the certificate, which im-
pacts their complexity. The complexity of Lipshitz’s algo-
rithm is dO(n2) operations in k; the complexity of no other
algorithm is known. Pancratz [22] developed an approach
similar to ours, under a restrictive hypothesis, much stronger
than Griffiths’ regularity assumption. He proceeds to a com-
plexity analysis of his algorithm but in terms of operations
in k(t) rather than in the base field k. Algorithms based on
non-commutative Gröbner bases and elimination [28, 26] or
based on the search of rational solutions to differential equa-
tions [7] resist complexity analysis. The method of Apagodu
and Zeilberger [2] requires a generic exponent and special-
ization seems problematic.

For the restricted class of diagonals of rational functions,
there is a heuristic based on series expansion and differential
approximation [14]; it does not need to compute a certificate.
However, even using the bounds in dO(n), its direct imple-
mentation has a complexity of dO(n2) operations in k.

Contributions. Our main result, obtained with the Griffiths–
Dwork method and a deformation technique, is the existence
of a telescoper with regular certificate of order at most dn

and degree dO(n) that can be computed in dO(n) arithmetic
operations in k. For generic homogeneous rational functions,
the telescoper computed is the minimal order telescoper with
regular certificate. Theorems 6, 10 and 12 state precise com-
plexity and size estimates. To the best of our knowledge,
the bounds on the order and degree are better than what
was known and it is the first time that a complexity single
exponential in n is reached. For a generic rational func-
tion, every pair (telescoper, regular certificate) has a size

larger than dO(n), see Remark 11, but our algorithm does
not need to compute the certificate. A prototype implemen-
tation shows that this algorithm can lead to a spectacular
improvement over previous methods, though the domain of
improvement is not satisfactory yet.

Acknowledgement. We are grateful to G. Christol for many
rewarding discussions, and we thank G. Villard and W. Zhou
for communicating their complexity results in linear algebra.

2. OVERVIEW OF THE METHOD
In this section we introduce the basics of the Griffiths–Dwork
method. In dimension 1, this method coincides with classical
Hermite reduction, which we first recall.

2.1 Dimension one: Hermite reduction
Let F be a rational function in x, over a field L, written
as a/fℓ, with a and f two polynomials not necessarily co-
prime, the latter being square-free, i.e. the polynomials ∂xf
and f are coprime. In particular a equals uf+v∂xf for some
polynomials u and v. Then, if ℓ > 1, the function F rewrites

F =
u+ 1

ℓ−1
∂xv

fℓ−1
+ ∂x

(
−v

(ℓ− 1)fℓ−1

)

.

Iterating this reduction step ℓ times gives F as U
f

+ ∂x
V

fℓ−1

for some polynomials U and V . Next, Euclidean division
allows to write U as r + sf , with r of degree less than the
degree of f , yielding the additive decomposition

F =
r

f
+ ∂x

(
V

fℓ−1
+

∫
s

)

.

The rational function r/f is the reduced form of F and is
denoted by [F ]. This form features important properties:

(Linearity) f being fixed, [F ] depends linearly on F ;

(Soundness) if [F ] is zero, then F is a derivative w.r.t. x;

(Confinement) [F ] lies in a finite-dimensional vector space
over L depending only on f (with dimension degx f);

(Normalization) if F is a derivative w.r.t. x, then [F ] is zero.

These properties are enough to compute a telescoper: As-
sume now that L is k(t) for a field k. If for some elements

of L, say a0, . . . , ap, the reduced form
[∑

i
ai∂

i
tF

]
vanishes,

then the operator
∑

i
ai∂

i
t is a telescoper, thanks to the

soundness property. Thanks to the linearity property, this
is equivalent to the vanishing of

∑

i
ai

[
∂i

tF
]
. Thanks to

the confinement property, it is always possible to find such
a relation. Thanks to the normalization property, every tele-
scoper arises in this way. In particular, so does the telescoper
of minimal order.

2.2 Griffiths–Dwork reduction
Let F be a rational function in n variables x1, . . . , xn, writ-
ten as a/fℓ, with f a square-free polynomial. If ℓ > 1 and
if a lies in the ideal of L[x1, . . . , xn] generated by f and its
derivatives ∂if , then we can write a as uf +

∑

i
vi∂if , for

some polynomials u, v1, . . . , vn, and F rewrites

F =
u+ 1

ℓ−1

∑n

i=1
∂ivi

fℓ−1
+

n∑

i=1

∂i

(
−vi

(ℓ− 1)fℓ−1

)

.

Provided that this ideal contains 1, any F can be reduced
to a function with simple poles by iteration of this iden-
tity. The soundness and linearity properties are naturally
satisfied, but extending further the reduction to obtain at
least the confinement property is not straightforward and re-
quires stronger assumptions [21, §4]. A difficulty with this
approach is that the degrees of the cofactors vi at each re-
duction step are poorly controlled: we lack the Euclidean
division step and we reduce poles at finite distance at the
cost of making worse the pole at infinity. This difficulty is
overcome by working in the projective space. The transla-
tion between affine and projective is discussed more precisely
in Section 7.

Now, assume that a and f are homogeneous polynomi-
als in L[x] = L[x0, . . . , xn], with f of degree d. A cen-
tral role is played by the Jacobian ideal Jac f of f , the
ideal generated by the partial derivatives ∂0f, . . . , ∂nf . Note
that since f is homogeneous, Euler’s relation, which asserts
that f equals 1

d

∑n

i=0
xi∂if implies that f ∈ Jac f .

We now decompose a as r +
∑

i
vi∂if . In contrast with

the affine case, each nonzero vi can be chosen homogeneous
of degree precisely deg a− deg ∂if . If ℓ > 1, we obtain

F =
r

fℓ
+

1
ℓ−1

∑n

i=0
∂ivi

fℓ−1

︸ ︷︷ ︸
F1

+

n∑

i=0

∂i

(
−vi

(ℓ− 1)fℓ−1

)

. (2)

If r is not zero, the order of the pole need not decrease,
contrary to the affine case, but r is reduced to a normal
form modulo Jac f ; this will help us obtain the confinement
property, see Proposition 2. The reduction process proceeds
recursively on F1, which has pole order ℓ − 1, and stops
when ℓ = 1. This procedure is summarized in Algorithm 1.

3. PROPERTIES OF THE GRIFFITHS–
DWORK REDUCTION



Input F = a/fℓ a rational function in x0, . . . , xn

Output [F ] such that there exist rational
functions A0, . . . , An such that F = [F ] +

∑

i
∂iAi

Precompute a Gröbner basis G for (∂0f, . . . , ∂nf)
procedure Reduce(a/fℓ)

if ℓ = 1 then return a/fℓ

Decompose a as r +
∑

i
vi∂if using G

F1 ←
1

ℓ−1

∑

i

∂ivi

fℓ−1

return r

fℓ + Reduce(F1)

Algorithm 1. Griffiths–Dwork reduction

Let f in L[x] be a homogeneous polynomial of degree d,
where L is a field of characteristic zero. It is clear that the
reduction procedure satisfies the soundness and the linear-
ity properties. Analogues of confinement and normalization
hold under the following regularity hypothesis:

L[x]/Jac f is finite-dimensional over L. (H)

Geometrically, this hypothesis means that the hypersurface
defined by f in Pn is smooth. In particular f is irreducible.

The ring of rational functions in L(x) whose denominator
is a power of f is denoted by L[x, 1

f
]. Let L[x, 1

f
]p denote the

subspace of homogeneous functions of degree p, i.e. the set
of F in L[x, 1

f
] such that F (λx) equals λpF (x). Note that

each derivation ∂i induces a map from L[x, 1
f

]p to L[x, 1
f

]p−1.
Let Df denote the subspace of L[x, 1

f
] consisting of rational

functions
∑

i
∂iAi for some Ai in L[x, 1

f
]−n. A major char-

acter of this study is the quotient space L[x, 1
f

]−n−1/Df ,
denoted by Hpr

f .
The reduced form of F in L[x, 1

f
]−n−1 is denoted by [F ].

It is by definition the output of the algorithm Reduce. It
depends on a choice of a Gröbner basis of Jac f , but its
vanishing does not, see Theorem 1 below.

The choice of the space L[x, 1
f

]−n−1 and the degree −n−1
may seem arbitrary. It is motivated by it being isomorphic
to the space of regular differential n-forms on Pn\V (f). The
evaluation of x0 to 1 is the restriction map to An \ V (f).
The space Hpr

f is the nth de Rham cohomology space of the
algebraic variety Pn \ V (f) over L.

Theorem 1 (Griffiths [12, §4]). If f satisfies Hy-
pothesis (H), then for all F in L[x, 1

f
]−n−1, the reduced

form [F ] vanishes if and only if F is in Df .

Theorem 1 gives access to the dimension of Hpr
f . Let A be

the finite dimensional vector space L[x]/Jac f . For a positive
integer ℓ, let Aℓ denote the linear subspace of A generated
by homogeneous polynomials of degree ℓd− (n+ 1). Let B
denote ⊕ℓAℓ. Finally, for ℓ > 0 let (gℓ,i)16i6nℓ

be a basis
of Aℓ, with nℓ = dimL Aℓ.

Proposition 2. Under Hypothesis (H), the family of ra-

tional functions
(
gℓ,i/f

ℓ
)

0<ℓ,i6nℓ
induces a basis of Hpr

f .

Proof. Suppose there exists a linear relation between
the gℓ,i/f

ℓ moduloDf , that is
∑

ℓ,i
uℓ,igℓ,i/f

ℓ, denoted by F ,

lies in Df for some elements uℓ,i of L, not all zero. Let ℓ0

be the maximum ℓ such that uℓ,i is not zero for at least
one i. By Theorem 1, [F ] = 0 so that

∑

ℓ,i
uℓ,igℓ,if

ℓ0−ℓ, the

numerator of F , lies in Jac f . Since f itself is in Jac f , so is

the sum
∑

i
uℓ0,igℓ0,i, contradicting the fact that the gℓ0,i

are a basis of Aℓ0 . Thus the gℓ,i/f
ℓ form a free family.

To prove that this family generates Hpr
f , we first notice

that the family of all the fractions [F ], for F in L[x, 1
f

]−n−1,

generates Hpr
f since [F ] equals F modulo Df . Now we

assume for a moment that each gℓ,i is reduced with re-
spect to a Gröbner basis G of Jac f . Then each polyno-
mial of L[x] of degree ℓd − n − 1 which is reduced with
respect to G is a linear combination of the gℓ,i. Thus for
all F = a/fℓ in L[x, 1

f
]−n−1, the reduction [F ] is in the

span of all the gℓ,i/f
ℓ. This makes the gℓ,i/f

ℓ a system of
generators of Hpr

f and by the previous paragraph a basis of
it. Thus Hpr

f has the same dimension as B and any free fam-
ily of Hpr

f of cardinal dimL B is a basis of Hpr
f . In particular,

the gℓ,i/f
ℓ form a basis even if the gℓ,i are not reduced with

respect to G.

Corollary 3. Under Hypothesis (H), Hpr
f has dimen-

sion
1

d

(
(d− 1)n+1 + (−1)n+1(d− 1)

) (
6 dn

)
.

Proof. It has the dimension of B, see [19, thm. 8.3] for
its computation. The inequality is clear.

4. CREATIVE TELESCOPING
We now introduce an algorithm, based on the Griffiths–
Dwork reduction, that computes a telescoper of a rational
function under Hypothesis (H).

In Equation (1), the telescoper T is said to have a regular
certificate if the irreducible factors of the denominators of
theAi’s, as rational functions over k(t), divide the denomina-
tor of F ; in other words, the Ai’s have no pole outside those
of F , over k(t). Algorithm 2, described in §4.2, returns the
telescoper of minimal order having regular certificate. For
the application of creative telescoping to integration, this
class of telescopers is more interesting than the general one;
that is the object of §4.1.

4.1 Telescopers with regular certificate
Back to the affine case, let F (t, x1, . . . , xn) be a rational func-
tion over C and γ be a n-cycle in Cn over which F has no
pole for a generic t in C. A common use of creative telescop-
ing is the computation of a differential equation satisfied by
the one-parameter integral I(t) =

∫

γ
Fdx. As mentioned in

the introduction, it is not always possible to deduce from the
telescoping equation (1) that T (I) vanishes. It may happen
that the polar locus of the certificate meets γ for all t ∈ C,
and so some

∫

γ
∂iAidx need not be zero. An example of this

phenomenon is given by Picard [23] for a bivariate algebraic
function and translated here into a rational example, using
the method in [4, Lemma 4]:

x− y

z2 − Pt(x)Pt(y)
= ∂x

2Pt(x)

(x−y)(z2−Pt(x)Pt(y))
+

∂y
2Pt(y)

(x−y)(z2−Pt(x)Pt(y))
+ ∂z

3(x2+y2)z

(x−y)(z2−Pt(x)Pt(y))
, (3)

where Pt(u) = u3 + t. Note the factor x− y in the denomi-
nator of the certificate. The operator 1 is a telescoper of the
left-hand side F , however there exists a 3-cycle γ on which F
has no pole and such that

∫

γ
Fdx is not zero. It is thus im-

possible to find a regular certificate for the telescoper 1.



Input F = a/fℓ a rational function in L[x, 1
f

]−n−1,
with f satisfying (H)

Output T (t, ∂t) an operator such that T (F ) =
∑

i
∂iAi for

some rational functions Ai

procedure Telesc(F )
G0 ← Reduce(F )
i← 0
loop

if rankL(G0, . . . , Gi) < i+ 1 then

solve
∑i−1

k=0
akGk = Gi w.r.t. a0, . . . , ai−1 in L

return ∂i
t −

∑

k
ak∂

k
t

else

Gi+1 ← Reduce(∂tGi)
i← i+ 1

Algorithm 2. Creative telescoping, regular case

Nevertheless, a differential equation for I(t) can be ob-
tained in two ways. First, one can carefully study the inte-
gral

∑

i

∫

γ
∂iAidx and compute a differential equation for

it. Usually this includes the analysis of the poles of the Ai’s,
and the search of a telescoper for some rational function
with one variable less. The second way is to find a tele-
scoper for F such that the certificate does not contain new
poles, a telescoper with regular certificate. Contrary to the
telescoper (3), the operator ∂t is a telescoper with regular
certificate:

∂tF = ∂x

(
− x

3t
F

)
+ ∂y

(
− y

3t
F

)
+ ∂z

(
− z

t
F

)
.

This proves that ∂tI = 0. More generally we have:

Proposition 4. If T ∈ C(t)〈∂t〉 is a telescoper of F with
regular certificate, then T (I) is zero.

In this case, the certificate itself is not needed to prove the
conclusion, its existence and regularity are sufficient. The
Griffiths–Dwork method always produces a telescoper with
regular certificate, see Equation (2).

4.2 Algorithm
In this section L is k(t) for some field k and f is a homo-
geneous polynomial over L of degree d satisfying Hypothe-
sis (H). For F a rational function in L[x, 1

f
]−n−1 we want

to find a nonzero operator T in L〈∂t〉 such that T (F ) lies
in Df . Algorithm 2 describes the procedure Telesc that
outputs such a telescoper. Note that L[x, 1

f
]−n−1 is stable

with respect to the derivation ∂t.

Proposition 5. Algorithm 2 terminates and outputs the
minimal telescoper of F that has regular certificate.

Proof. The sequence (Gk) is defined by G0 = [F ] and
the recurrence relation Gk+1 = [∂tGk]. We show by induc-
tion that for all k the fraction Gk equals [∂k

t F ]. This is clear
for k = 0. Assume that Gk equals [∂k

t F ]. By the sound-
ness of the reduction the operator Gk − ∂k

t F lies in Df .
And then so does ∂tGk − ∂k+1

t F since ∂t commutes with
the ∂i’s. By Theorem 1 and linearity, this implies that [∂tGk]
equals [∂k+1

t F ].
At the ith step of the loop the algorithm is looking for a

linear relation between [F ], . . . , [∂i
tF ]. By Theorem 1, there

is one if and only if there is a telescoper with regular cer-
tificate of order i. If there is such a relation, the algorithm

computes it and returns the corresponding telescoper. By
Proposition 2, the algorithm terminates. The telescoper ad-
mits a regular certificate by design, see Equation (2).

5. EFFECTIVE BOUNDS FOR CREATIVE
TELESCOPING

We now review the steps of the algorithm with the aim of
bounding the degrees and orders of all polynomials and op-
erators that are constructed. This is then used in the next
section to assess the complexity of this approach.

For the needs of Section 7, we track the degrees not only
with respect to the parameter t but also to another free vari-
able ε of the base field. In other words, we assume that L
is k(t, ε). For p a polynomial in k[t, ε], the bidegree (degt p,degε p)
of p is denoted by δ(p). If p =

∑

I
pIxI is a polynomial

in t, ε and x, then δ(p) denotes the supremum of the δ(pI)’s,
component by component.

Theorem 6. Let f ∈ L[x] be homogeneous of degree d
satisfying (H). Let a/fℓ in L[x, 1

f
]−n−1 be a rational func-

tion, with a a polynomial in t and ε. The minimal telescoper
of a/fℓ with regular certificate has degree

O
(
dnδ(a) +

(
ℓd2n + d3n

)
enδ(f)

)
,

uniformly in all the parameters. It has order at most dn.

The last part of the theorem is a direct consequence of the
confinement property of Corollary 3. We now study more
precisely the decomposition used in Algorithm 1 in order to
control the degree of the telescoper and complete the proof.

The notation a(n) = O(b(n)), for a tuple n, means that
there exists C > 0 such that for all n > 1, with at most a
finite number of exceptions, we have a(n) 6 Cb(n). The no-
tation a(n) = Õ(b(n)) means that a(n) = O(b(n) logk b(n))
for some integer k. We emphasize that when there are sev-
eral parameters in a O, the constant is uniform in all the
parameters and there is at most a finite number of excep-
tions.

5.1 Reduction modulo the Jacobian ideal
An important ingredient of the Griffiths–Dwork reduction
is the computation of a decomposition r +

∑

i
ui∂if of a

homogeneous polynomial a. This can be done by means of
a Gröbner basis of Jac f , but instead of following the steps
of a Gröbner basis algorithm, we cast the computation into
a linear algebra framework using Macaulay’s matrices, for
which Cramer’s rule and Hadamard’s bound can then be
used. While not strictly equivalent, both methods ensure
that r depends linearly on a and vanishes when a is in Jac f .

For a positive integer q, let ϕq denote the linear map

ϕq : (ui) ∈ L[x]n+1
q−d−n −→

n∑

i=0

ui∂if ∈ L[x]q−n−1.

Let Matϕq be the matrix of ϕq in a monomial basis. It
has dimension Rq ×Cq, where Rq denotes

(
q−1

n

)
and Cq de-

notes (n+ 1)
(

q−d

n

)
, and we note for future use that Cq 6 Rq

for all positive integers n and d > 2. Up to a change of order-
ing of the bases of the domain and codomain, Matϕq has the
form ( A B

C D ), where A is a square submatrix of maximal rank.
Note that D is necessarily CA−1B. Then, the endomor-
phism ψq defined by the matrix

(
A−1 0

0 0

)
satisfies ϕqψqϕq =

ϕq ; it is called a split of ϕq. It depends on the choice of the
maximal rank minor. The map id−ϕqψq , denoted by πq,



performs the reduction in degree q−n− 1: it is idempotent;
if a of degree q − n − 1 is in Jac f then it equals ϕq(b) for
some b and thus πq(a) vanishes; and for all a in L[x]q−n−1

it gives a decomposition

a = πq(a) +
∑

i

ψq(a)i∂if.

Under Hypothesis (H), the map ϕq is surjective when q is
at least (n + 1)d − n. Let D denote this bound, known as
Macaulay’s bound [18, chap. 1; 16, corollaire, p. 169].

For q larger than D, a split of ϕq can be obtained from
a split ψD of ϕD in the following way. Let S be the set of
monomials in x of total degree q−D. Choose a linear map µ
from L[x]q−n−1 to L[x]SD−n−1 such that each a in L[x]q−n−1

equals
∑

m∈S
mµm(a). Then a split of ϕd is defined by

ψd(a) =
∑

m∈S

mψD(µm(a)).

Let q be a positive integer and let Eq be the least common
multiple of the denominators of the entries of Matψq . The
entries of Matψq and Mat πq are rational functions of the
form p/Eq, with p polynomial. Let δE denote the supremum
of all δ(p) and all δ(Eq), for q ∈ N \ {0}.

Proposition 7. The supremum δE is finite and bounded
above by endnδ(f). Moreover, if q > D then Eq equals ED.

Proof. Assume first that q > D. In this case, the en-
tries of Matψq are entries of MatψD and πq is zero. Thus
the inequalities will follow from the case where q 6 D.
Let Matψq and Matπq be written respectively as N/Eq

and P/Eq with N and P polynomial matrices. Let r be the
rank of ψq. The maximal rank minor A in the construction
of ψq has dimension r. Cramer’s rule and Hadamard’s bound
ensure that δ(N) is at most (r− 1)δ(f) and that δ(Eq) is at
most rδ(f). Since P equals Eq id−(Matϕq)N and δ(Matϕd)
equals δ(f), the degree δ(P ) is also at most rδ(f).

Next, r is bounded by Rq, the row dimension of Mat φd.
Since q 6 D, we have Rq 6 RD and we conclude using

inequality
(

p

n

)
6

(
p e

n+1

)n
, with p > n an integer.

Algorithm 3 is a slightly modified version of Algorithm 1
which uses the construction above. Its output is in general
not equal to the output of the former version, for any mono-
mial order, but of course it satisfies Theorem 1. In particular
the output of the algorithm Telesc does not depend on the
reduction method in Reduce. From now on the brackets [·]
denote the output of Algorithm 3.

5.2 Degree bounds for the reduction

Proposition 8. Let a/fℓ ∈ L[x, 1
f

]−n−1, with a a poly-
nomial in t and ε. Then

[
a

fℓ

]

=
1

Pℓ

n∑

k=1

bk

fk
,

where Pℓ =
∏ℓ

i=1
Eid and bk in L[x]kd−n−1 is a polynomial

in t and ε such that δ(bk) 6 δ(a) + ℓδE, for 1 6 k 6 n.

Proof. Using Algorithm 3, we obtain
[
a

fℓ

]

=
p

Eℓdfℓ
+

1

Eℓd

[
g

fℓ−1

]

,

where g and p are polynomials in x, t and ε, with δ(p)

Input F = a/fℓ a rational function in L[x, 1
f

]−n−1,
with f of degree d

Output [F ] such that there exist rational
functions A0, . . . , An such that F = [F ] +

∑

i
∂iAi

For all 1 6 i 6 ℓ, precompute a split ψid of ϕid (§5.1)
procedure Reduce(a/fℓ)

if ℓ = 1 then return a/fℓ

F1 ←
1

ℓ− 1

∑

i

∂iψℓd(a)i

fℓ−1

return
πℓd(a)

fℓ + Reduce(F1)

Algorithm 3. Griffiths–Dwork reduction, linear algebra variant

and δ(g) at most δ(a) + δE . Induction over ℓ yields
[
a

fℓ

]

=

ℓ∑

k=1

pk

fk
∏ℓ

j=k
Ejd

with pk polynomials such that δ(pk) 6 δ(a) + (ℓ− k + 1)δE .
For k > n, and hence kd > D, the map πkd is 0 and thus so
is pk. Thus

[
a

fℓ

]

=
1

∏ℓ

j=1
Ejd

min(ℓ,n)
∑

k=1

pk

∏k−1

j=1
Ejd

fk
.

This proposition applied to ∂i
t(a/fℓ) asserts that

[

∂i
t

a

fℓ

]

=
1

Pℓ+i

n∑

k=1

bi,k

fk
=

1

Pℓ+i

b′
i

fn
(4)

for some polynomials bi,k and b′
i such that

δ(bi,k) 6 δ(a) + iδ(f) + (i+ ℓ)δE , (5)

and δ(b′
i) 6 δ(a) + (i+ n)δ(f) + (i+ ℓ)δE . (6)

5.3 Degree bounds for the telescoper

Proposition 9. Let T =
∑r

i=0
ci∂

i
t, with coefficients ci

in k[t, ε], be the minimal telescoper with regular certificate
of a/fℓ. Then

δ(ci) 6 rδ(a) +
(
r2 + rℓ

)
endnδ(f).

Proof. The operator T is the output of Telesc(a/fℓ).
The rational functions ci/cr form the unique solution to the
following system of inhomogeneous linear equations over L,
with the Yi’s as unknown variables:

r−1∑

i=0

[

∂i
t

a

fℓ

]

Yi = −

[

∂r
t

a

fℓ

]

.

We write each bi,k in (4) as
∑

m∈S
bi,k,mm, where S is the

set of all monomials in the variables x of degree at most nd−
n− 1. The previous system rewrites as

∀m ∈ S,∀k ∈ {1, . . . , n} ,

r−1∑

i=0

Yi
bi,k,m

Pℓ+i

= −
br,k,m

Pℓ+r

There is a set I of r indices {(k0,m0), . . . } such that the
square system formed by the corresponding equations ad-
mits a unique solution. We apply Cramer’s rule to this
system. Let B be the square matrix (bi,kj ,mj

)i,j , for 0 6

i, j < r. Let Bi be the matrix obtained by replacing the



row number i of B by the vector (br,kj ,mj
)j . We get, af-

ter simplification of the factors Pℓ+∗ by multilinearity of the
determinant,

ci

cr

=

Pℓ+i

Pℓ
detBi

Pℓ+r

Pℓ
detB

. (7)

So, for all i, the polynomial ci divides
Pℓ+i

Pℓ
detBi and thus

δ(ci) 6 iδE +

r∑

j=0,j 6=i

δ(bj).

With the previous bound (5) on δ(bi) we get

δ(ci) 6 rδ(a) +
r(r + 1)

2
(δ(f) + δE) + rℓδE,

which gives the result with Proposition 7.

6. COMPLEXITY
We assume that L is the field k(t) and we evaluate the al-
gebraic complexity of the steps of Reduce and Telesc in
terms of number of arithmetic operations in k. All the algo-
rithms are deterministic. For univariate polynomial compu-
tations, we use the quasi-optimal algorithms in [10]. For sim-
plicity, we assume that d > 2 so that several simplifications
occur in the inequalities since Cq 6 Rq and d > e ≈ 2.72.

Theorem 10. Under Hypothesis (H) and assuming that
d > 2, Algorithm Telesc run with input a/fℓ takes

Õ
((

d5n + d4nℓ+ d3nℓ2
(

ℓ
n

)2n
)

e3nδ
)

arithmetic operations in k, where δ is the larger of δ(a)
and δ(f), uniformly in all the parameters. Asymptotically

with ℓ and n fixed, this is Õ
(
d5nδ

)
.

Note that while this may seem a huge complexity, it is not so
bad when compared to the size of the output, which seems to
be, empirically, comparable to d3nδ, with n fixed and ℓ = 1.
Note also that for n = 1, the complexity improves over that
of the algorithm based on Hermite’s reduction studied in [3],
thanks to our avoiding too many rank computations.

Remark 11. Let a/f be a generic fraction with a tele-
scoper T and a regular certificate A. We claim that the

size of A is asymptotically bounded below by d(1−o(1))n2

δ,
making it crucial to avoid the computation of certificates.
Indeed, the fraction T (a/f) writes b/fr+1, where r is the or-

der of T . The number of monomials of b in x is
(

(r+1)d−1
n

)
≈

(rd)n/n!. If a is generic then r is at least dimHpr
f , by the

Cyclic Vector Theorem; and if f is generic, it satisfies (H)
and dimHpr

f is about dn, by Corollary 3. Since T (a/f)
equals

∑

i
∂i(Ai), the size of the Ai has at least the same

order of magnitude than that of T (a/f); hence the claim.

6.1 Primitives of linear algebra
The complexity of Algorithm 2 lies in operations on matrices
with polynomial coefficients. Let A ∈ k[t]n×m have rank r
and coefficients of degree at most d. One can compute r,
a basis of kerA and a maximal rank minor in Õ(nmrω−2d)
operations in k [30]. A maximal rank minor can be inverted
in complexity Õ(r3d) [13]. In particular, a matrix B such
that ABA = A can be computed in Õ(nmrω−2d + r3d) op-
erations in k, or Õ(n2md), using r 6 n,m and ω 6 3.

A matrix A with rational entries is represented with the
l.c.m. g of the entries and the polynomial matrix gA.

6.2 Precomputation
Algorithm 2 needs the splits ψid for i from 1 to the larger
of n+ 1 and ℓ. Following §5.1, it is enough to compute ψid

for i between 1 and n+1, each for a cost of Õ(RidC
2
idδ(f)) op-

erations in k, and then ψid can be obtained with no further
arithmetic operation for i > n+1. Thus the precomputation
needs Õ

(
e3nd3nδ(f)

)
operations in k.

6.3 Reduction
Let ρ(ℓ, δ(a)) be the complexity of the variant of the al-
gorithm Reduce based on linear algebra with input a ra-
tional function a/fℓ. The procedure first computes ψℓd(a).
Since ψℓd is precomputed, it is only the product of a ma-
trix of dimensions Cℓd by Rℓd with the vector of coeffi-
cients of a in a monomial basis. The elements of the ma-
trix have degree at most δE and the elements of the vector
have degree at most δ(a). Thus the product has complex-
ity Õ(RℓdCℓd(δ(a) + δE)). Secondly, the procedure com-
putes r as πℓd(a) knowing ψℓd(a); this has the same com-
plexity. Thirdly, it computes F1, computation whose com-
plexity is dominated by that of the first step. And lastly
it computes Reduce(F1), which has complexity bounded
by ρ(ℓ− 1, δ(a) + δE). Unrolling the recurrence leads to

ρ(ℓ, δ(a)) = Õ

(

ℓ
(

edℓ

n+ 1

)2n

(δ(a) + ℓδE)

)

.

6.4 Main loop
The computation of G0 has complexity ρ(ℓ, δ(a)). Next, Gi

has shape given by (4), and is differentiated before being
reduced, so that the cost of the computation of Gi+1 is at
most ρ(n+ 1, δ(a) + (i+ 2n)δ(f) + (i+ ℓ)δE). Summing up,
the computation of G0, . . . , Gr has a complexity

ρ(ℓ, δ(a)) + Õ
(
(ed)2nr (δ(a) + rδ(f) + (r + ℓ)δE)

)
. (8)

During the ith step, the procedure computes the rank
of i + 1 vectors with O(endn) coefficients of degree δ(b′

i)
and computes a linear dependence relation if there is one.
This is done in complexity Õ

(
iω−1endnδ(b′

i)
)
. This step is

quite expensive and doing it for all i up to r would ruin
the complexity. It is sufficient to perform this computation
only when i is a power of 2 so that the maximal i which
is used is smaller than 2r. When the rank of the family is
not full, we deduce from it the exact order r and perform
the computation in that order. Indeed, the rank over L
of G0, . . . , Gi is the least of r and i. This way, finding the
rank and solving has cost Õ(rω−1endn(δ(b′

r) + δ(b′
2r))). In

view of (6) and since r 6 dn and ω 6 3, the complexity of
that step is bounded by (8). Adding the cost of the precom-
putation and using the bounds of the previous section leads
to Theorem 10.

7. AFFINE SINGULAR CASE
Let L denote the field k(t). Let Faff be a rational func-
tion in L(x1, . . . , xn), written as a/faff . We do not assume
that Faff is homogeneous, nor that faff satisfies a regularity
property. Let daff be the total degree of faff w.r.t. x.

In this section we show a deformation technique that regu-
larizes singular cases. In particular, it allows to transfer the
previous results to the general case and obtain the following
bounds. The algorithm is again based on linear algebra.



degree of f 3 4 5 6

order of telesc. 2 6 12 20

degree of telesc. δ = 1 32 (68) 0.4s 153 (891) 46s 480 (5598) 2h 1175 (23180) 150h
— , δ = 2 66 (136) 0.6s 336 (1782) 140s 1092 (11196) 7h ? (46360) ∅

— , δ = 3 100 (204) 0.9s 519 (2673) 270s 1704 (16794) 13h ? (69540) ∅

Table 1. Empirical order and degree of the minimal telescoper with regular certificate of a random rational function a/f2

in Q(t, x0, x1, x2), with f and a homogeneous in x satisfying deg
x

a + 3 = 2 deg
x

f and δ(a) and δ(f) equal to δ;
together with a proved upper bound (with a version of Theorem 9 without simplification) and mean computation time
(CPU time).

Theorem 12. The function Faff admits a telescoper, with
regular certificate, of order at most dn and degree

O
(
dn

prδ(a) + d3n
pr enδ(faff)

)
,

where dpr is max(daff ,deg
x
a + n + 1). This telescoper can

be computed in complexity Õ
(
e3nd8n

pr δ
)
, with δ the larger

of δ(a) and δ(faff).

It is easy to see that the bit complexity is also polynomial
in dn

pr. The dependence in n of the complexity, with deg
x
a

and daff fixed, can be improved to eO(n) rather than nO(n)

with a more careful analysis.

7.1 Homogenization and deformation
The regularization proceeds in two steps. First, let Fpr be
the homogenization of Faff in degree −n− 1, that is

Fpr = x−n−1
0 Faff

(
x1

x0
, . . . , xn

x0

)
,

which we write b/fpr for some homogeneous polynomials b
and fpr. Let dpr denote the degree of fpr; it is given by
Theorem 12. The degrees of b and fpr satisfy the hypothesis
of Theorem 6, by construction, but in general fpr does not
satisfy Hypothesis (H). (Although it does generically, as
long as dpr equals daff .) We consider a new indeterminate ε,
the polynomial freg defined by

freg = fpr + ε

n∑

i=0

xdpr
i ,

and the rational function Freg defined by b/freg. We could
also have perturbed the square-free part of fpr rather than fpr,
leading to an improvement of the complexity in Theorem 12
at the cost of more technical details.

Lemma 13. The polynomial freg satisfies Hypothesis (H)
over L(ε), that is L(ε)[x]/Jac freg has finite dimension.

Proof. This is true for ε =∞, so it is generically true.

Now, Theorem 6 gives bounds on the order and degree of a
telescoper of Freg, which is in L(ε)[x, 1

freg
]−n−1. The proof

of Theorem 12 is concluded by the following.

Proposition 14. If T in L[ε]〈∂t〉 is a telescoper of Freg

with regular certificate, then so is T |ε=0 for Faff .

Proof. By assumption, T (Freg) equals
∑n

i=0
∂igi/f

p
reg

for some integer p and polynomials gi in L(ε)[x]. Each gi/f
p
reg

can be expanded in Laurent series in ε as
∑

j>N
hijε

j for

some possibly negative integer N and rational functions hij

in L[x, 1
fpr

]−n. Similarly, we can write the operator T (Freg)

as T |ε=0(Fpr) + ε
∑

j>0
bjε

j for some rational functions bj

in L[x, 1
fpr

]. Since the derivations ∂i commute with ε, it

is clear that T |ε=0(Fpr) equals
∑n

i=0
∂ihi0. Next, in this

equality, x0 can be evaluated to 1 to give

T |ε=0(Faff) = (∂0h00)|x0=1 +

n∑

i=1

∂i(hi0|x0=1).

Euler’s relation for h00 gives (with the index 00 dropped)

(∂0h)|x0=1 = −

n∑

i=1

∂i(xih|x0=1),

proving that (∂0h)|x0=1 is in Dfaff . Thus, so is T |ε=0(Faff)
and the proof is complete.

Nevertheless, a telescoper obtained in this way does not need
to be minimal, even starting from a minimal one for the per-
turbed function Freg. This is unfortunate because in pres-
ence of singularities the dimension of Hpr

f can collapse when
compared to the generic order given by Corollary 3.

7.2 Algorithm and complexity
The algorithm is based on Proposition 14. We use an evaluation-
interpolation scheme to control the complexity. Let the op-
erator T in k(t, ε)〈∂t〉 be the minimal telescoper of Freg, writ-

ten as ∂r
t +

∑r−1

k=0

ck

cr
∂k

t . It is the output of Telesc applied

to Freg. We aim at computing (εαT )|ε=0, where α is such
that this evaluation is finite and not zero.

Proposition 14, slightly adapted, shows that T |ε=u is a
telescoper with regular certificate of Freg|ε=u whenever cr(t, u)
is not zero, even if freg|ε=u does not satisfy (H). When it
does, the specialization gives the minimal one:

Lemma 15. If freg|ε=u satisfies hypothesis (H) and if u
does not cancel cr, then T |ε=u is the minimal telescoper with
regular certificate of Freg|ε=u.

Proof. We use the notation of Section 5, replacing f
by freg and L by L(ε). The operator T is the output of
Algorithm 2 applied to Freg. Since freg|ε=u satisfies (H),
for all d the matrix Matϕd, with coefficients in L[ε], has
the same rank as its specialization with ε = u [18, §58].
Thus, to compute the splits ψd we can choose maximal rank
minors of Matϕd that are also maximal rank minors of the
specialization. When doing so, the reduction [·] commutes
with the evaluation ·|ε=u. In particular, the polynomials Eq

do not vanish for ε = u.
In the proof of Prop. 9, Eq. (7) shows that cr, the leading

coefficient of T , divides Pℓ+r detB. The polynomial Pℓ+r

is a product of several Ed’s, in particular Pℓ+r|ε=u is not
zero. Since cr|ε=u 6= 0, the determinant of B|ε=u is not zero
either. Looking at the definition of B in the proof of Prop. 9,
this implies that the [∂i

tFreg]|ε=u, for i between 0 and r − 1
are free over L(ε). In particular, a telescoper with regular



certificate of Freg|ε=u has order at least r. Since T |ε=u is a
telescoper of order is r, it is the minimal one.

We now present the algorithm. Let N be en(d3n + d2n +
dn). By Proposition 9, the polynomials ck have degree
at most N in ε, and at most Nδ in t. Choose a set U
of 4N + 1 elements of k. Determine the set U ′ of ele-
ments u of U such that freg|ε=u satisfies (H). This step has
complexity Õ ((ed)nωδ|U |): The polynomial freg|ε=u satis-
fies (H) if and only if (MatϕD)|ε=u is full rank. In par-
ticular, if freg|ε=u does not satisfy (H), then ED|ε=u van-
ishes. The polynomial ED has degree at most endn in ε,
by Proposition 7, so U \ U ′ has at most endn elements.
For each u in U ′, compute Telesc(freg|ε=u) with leading
coefficient normalized to 1, denoted by Tu. This step has
complexity Õ(d5ne3nδ|U ′|), by Theorem 10. Determine the
subset U ′′ of U ′ where the order of Tu is maximal. By
Lemma 15, the complement U ′ \ U ′′ is formed by u such
that cr(t, u) = 0. It has at most N elements since cr has
degree at most N in ε. For all u in U ′′ the operators Tu

and T |ε=u coincide. Thus U ′′ has at most 2N + 1 elements.

The r rational functions ck(t,0)
cr(t,0)

can be computed using

Lemma 16 in total complexity Õ(N2rδ). If cr(t, 0) is zero,

we look for the positive integer α such that the functions εα ck(t,ε)
cr(t,ε)

are finite for ε = 0 but not zero for at least one k. The in-
teger α is at most N and thus can be found with a binary
search, using at most log2 N + 1 times Lemma 16.

Lemma 16. Let R in k(x, y) be written P/Q, with P and Q
polynomials of degree less than dx in x and dy in y. Given
evaluations R(x, v), for 2dy + 1 elements v of k, the func-
tion R(x, 0) (or ∞ if Q(x, 0) vanishes) can be computed us-
ing Õ(dxdy) arithmetic operations in k.

Proof. Let V the set of evaluation points. Choose a
set U of 2dx + 1 points of k. Compute R(u, v) for u ∈
U and v ∈ V in Õ(dxdy) operations. Note that there
is no need to check that the elements of U are not poles
of the R(x, v): univariate rational reconstruction can han-
dle that. Use univariate rational reconstruction to com-
pute R(u, y), for u in U , in complexity Õ(dy|U |) operations.
Reconstruct R(x, 0) in complexity Õ(dx) from the evalua-
tions R(u, 0).

8. EXPERIMENTS
A basic implementation of the algorithm Telesc has been
written in Maple 16. As it uses only Maple primitives to
compute with polynomial matrices, it is certainly too basic
to reflect the complexity given in Theorem 10.

Table 1 presents empirical results for some generic rational
functions, with n = 2. The bound on the order are generi-
cally exact as expected; however the bound on the degree is
not very sharp. For n = 1 and δ(a) fixed, a careful study [3]
proves that the degree of the minimal telescoper is O(d2δ),
which is tighter than the O(d3δ) given by Theorem 6. Anal-
ogy, as well as numerical evidence and theoretical clues, lead
us to think that for general n, the asymptotic behavior can
be improved from O(d3nδ) to O(d2nδ).

The relative cost of each step of Algorithm 2 in the com-
putation of telescopers of Table 1, on the example of the
telescoper of degree 12 and degree 1092 of a generic func-
tion a/f2 as described in Table 1, that is computed in about 7
hours breaks down as follows: The computation of splits of

Macaulay matrices takes about 1% of the time, the reduction
steps about 40%, and the final solving about 60% of the time.
More efficient matrix multiplication and system resolution
over univariate polynomials could improve speed dramati-
cally. We have not been able to compute more than the first
column of Table 1 with methods and programs in [15,4].

On the other hand, the regularity hypothesis (H) is re-
strictive in applications: Even though generic polynomials
satisfy this hypothesis, examples with physical or combinato-
rial meaning usually do not. The method shown in Section 7
is only of theoretical interest. By contrast, the algorithm for
the regular case is very efficient in practice.
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