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ABSTRACT

Integrity constraint management concerns both checking
whether data is valid and taking action to restore correct-
ness when invalid data is discovered. In XML the notion of
valid data can be captured by schema languages such as Doc-
ument Type Definitions (DTDs) and more generally XML
schemas. DTDs have the property that constraint checking
can be done in streaming fashion. In this paper we consider
when the corresponding action to restore validity – repair
– can be done in streaming fashion. We formalize this as
the problem of determining, given a DTD, whether or not
a streaming procedure exists that transforms an input doc-
ument so as to satisfy the DTD, using a number of edits
independent of the document. We show that this problem is
decidable. In fact, we show the decidability of a more gen-
eral problem, allowing a more general class of schemas than
DTDs, and requiring a repair procedure that works only for
documents that are already known to satisfy another class of
constraints. The decision procedure relies on a new analysis
of the structure of DTDs, reducing to a novel notion of game
played on pushdown systems associated with the schemas.

1. INTRODUCTION

A basic problem in data management is to ensure that data
is valid – that is, satisfies all integrity constraints associated
with a schema. A particularly attractive feature of XML
documents is that the notion of valid data can be captured
in an expressive yet highly intuitive language – that of Doc-
ument Type Definitions (DTDs) and more generally XML
schemas [10]. DTDs and XML schemas are heavily used in
practice, and the basic validation task can be performed in a
one-pass process using limited memory, that is, they admit
streaming validation [6, 8, 13].

For many XML-based applications, the desired behaviour
when data integrity constraints fail is not simply to raise
an error, but to fix it. The most obvious example of this is
for HTML. Mal-formed or non-conformant HTML is more© 2013 Association for Computing Machinery. ACM acknowledges that
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the rule than the exception, and browsers react to non-
conformant documents by simply changing them to confor-
mant ones. That is, repair is a well-accepted procedure for
XML-based data.

In this paper, we tackle the question of which schemas ad-
mit ‘streaming repair’, an analogue of streaming validation.
Intuitively, a streaming repair is a procedure that inserts,
deletes, or modifies document content while reading the doc-
ument in pre-order fashion, producing an output that sat-
isfies the constraint. Clearly, there is a vacuous streaming
repair that simply deletes the entire document and inserts a
new document that satisfies the constraints. The unaccept-
ability of such a repair strategy stems from the fact that the
number of changes it makes to a document is proportional
to its size. Clearly, we would like a stream repair processor
to make a ‘small’ number of changes to the input. We for-
malize this requirement via the notion of a bounded repair
strategy [12], i.e. a repair strategy that makes a maximum
number of repairs that is finite and independent of the input
document. Although less stringent notions of ‘small repair’
can be demanded (e.g. by requiring that a small percent-
age of the document be repaired, analogous to the notion
explored for words in [1]) we feel this is a natural starting
point for the exploration of streaming repair.

We follow our previous work in the non-streaming set-
ting [12] by looking at the general scenario where there is a
restriction schema which the document is assumed to satisfy
and a target schema that we wish to enforce. We study the
problem of determining whether there is a stream processor
that will (i) ensure that any document satisfying the restric-
tion is repaired to a document satisfying the target and (ii)
performs a number of edits that is uniformly bounded and
independent of the document. We consider only the tag
structure of the documents, ignoring string content. More-
over, the edits we consider are the standard tree edits [3].
Our prior work [12] gave a characterization and decision pro-
cedure for determining whether a bounded repair strategy
exists in the non-streaming setting. In this work we give
a characterization and decision procedure for determining
whether a streaming bounded repair strategy exists, in the
important case of DTD schemas, and more generally of ‘de-
terministic top-down schemas’ (the formal definition is given
in Section 2, but for now let us only remark that this is a
class that subsumes not only DTDs, but also XSDs).

The solution to the streaming bounded repair problem is



challenging both from the point of view of giving a charac-
terization, and showing that it is both effective and cor-
rect. The first part of the solution is adapted from our
prior work [12]: we associate a graph with each schema, and
then look at the corresponding notion of connected com-
ponent; such components represent ‘repeatable behaviours’,
namely, families of trees that can be created by a certain
kind of pumping operation. Our characterization will in-
volve a novel game played on stacks of components in the
two graphs, with one player, called Generator, managing the
stack for the restriction and corresponding to generation of
families of trees satisfying the restriction schema, and the
other player, called Repairer, managing the stack for the
target. Repairer needs to play in such a way that a certain
relation holds between the components on the top of the
stacks, corresponding to containment of a set of trees. The
characterization theorem says that a streaming repair with
uniformly bounded cost is possible exactly when Repairer
has a winning strategy in the game. The possible moves of
Generator will be restricted in a way that ensures finiteness
of the game, and thus decidability of a winner.

Both directions of the proof of our characterization are
highly non-trivial. In one direction, we manufacture an ef-
fective document repair transducer from a winning strategy
for Repairer. In the other, we use a repair transducer of uni-
formly bounded cost to get a winning strategy for Repairer.

With our characterization in hand, we are able to give an
EXPTIME upper bound on the complexity of determining
the existence of a streaming repair strategy of uniformly
bounded cost. We complement this with a matching lower
bound, and go on to isolate subcases where the complexity
decreases (to PSPACE).

Organization. Section 2 gives basic definitions, including
the notions of schema and repair considered in the paper.
Section 3 states the streaming repair problem formally, and
gives examples that explain the difficulties of the problem
and motivate its solution. Section 4 states our main char-
acterization theorem, which relies on defining a new kind of
game played on stacks of components of the restriction and
target automata. An overview of the main ingredients of
the proof of correctness is also given. Section 5 considers the
consequences of the characterization theorem for complexity,
while Section 6 gives conclusions and discusses future work.

2. PRELIMINARIES

We adopt the usual notations for strings, denoting, for in-
stance, a finite alphabet by Σ, the empty string by ε, and
the concatenation of two strings by u ⋅ v. We will often deal
with sequences of natural numbers, usually denoted by i⃗,
and stacks, usually denoted by x⃗.

2.1 Trees, contexts, and their serializations

In this paper we work with finite unranked ordered trees and
forests whose nodes are labelled over fixed finite alphabets.
Formally, an unranked tree/forest can be seen a function t

mapping non-empty sequences of positive natural numbers
to symbols from a finite alphabet (e.g. Σ), where the domain
of t, denoted nodes(t), satisfies the following closure under
lexicographic order: if i⃗ ⋅ j ∈ nodes(t), then i⃗ ⋅ k ∈ nodes(t)

for all 1 ≤ k ≤ j, and either i⃗ = ε or i⃗ ∈ nodes(t). Notice that
the roots of a forest are represented by singleton sequences
(in particular, the empty sequence does not belong to the
domain). Given an unranked tree/forests t, we write i⃗ ∈

nodes(t) to denote an arbitrary node of t and t(⃗i) to denote
the label of i⃗ in t. The set of all finite unranked trees labelled
over Σ is denoted by TΣ. We often describe unranked trees
by means of pictures or unranked terms such as a(b, b, b).

It is known that trees, and more generally forests, can be
represented by their serializations (XML Documents). For-
mally, given an alphabet Σ, we introduce a disjoint copy
of Σ of the form Σ̄ = {ā ∶ a ∈ Σ}. The elements in Σ
represent the opening tags of the serializations, while the el-
ements in Σ̄ represent the closing tags. The serialization t̂

of a tree t is defined recursively by t̂ = ε if t is empty, and
by t̂ = a ⋅ t̂1 ⋅ . . . ⋅ t̂n ⋅ ā if t = a(t1, . . . , tn). The serialization
of a forest is the concatenation of the serializations of its
trees. Clearly, every serialization of a tree/forest produces
a well-matched string over Σ ⊎ Σ̄ and vice-versa.

Next we define contexts, also known as ‘pointed trees’, which
are trees/forests with a distinguished hole. We use a special
symbol ●, not in the alphabet Σ, to label the hole of a context
– this acts as a placeholder for substituting trees/forests
in the context. Formally, a context over Σ is a tree or a
forest labelled over Σ ⊎ {●}, where ● occurs exactly once in
a leaf that has no right sibling (this restriction is motivated
by the tree automaton model that we will introduce later).
Examples of contexts are a(b, b,●) and a(b, b) ●. On the
other hand, a(b,●, b) is not a valid context in our setting.
We denote by CΣ the set of all contexts over the alphabet Σ.

Note that the serialization Ĉ of a context C is a word that
contains a single occurrence of the substring ● ●̄. We will
denote by Ĉprefix (resp. Ĉsuffix) the prefix (resp. suffix) of Ĉ
that ends immediately before the occurrence of ● (resp. that
starts immediately after the occurrence of ●̄).

Given a context C and a tree t, we denote by C ○ t the
tree obtained from the substitution of ● in C by t. The
composition C ○C′ of two contexts C and C′ is defined sim-
ilarly and results again in a context. We observe that the
composition of contexts with trees/contexts has analogous

operations on serializations, that is, Ĉ ○ t = Ĉprefix
⋅ t̂ ⋅ Ĉsuffix

and Ĉ ○C′ = Ĉprefix
⋅ Ĉ′ ⋅ Ĉsuffix.

2.2 Top-down tree automata
In this paper we make use of languages of unranked trees,
such as those defined by the structural components of DTDs
and XSD schemas [11, 10]. We work with ‘deterministic
top-down schemas’ [9, 5], which generalize DTDs and can
be seen as typing systems in which the type associated with
each internal node of a tree depends uniquely on the type
of the parent and the type of the left sibling (if this exists).
Equivalently, one can think of these schemas as determinis-
tic top-down binary tree automata running on the standard
first-child-next-sibling encoding of an unranked tree.

To avoid switching every time between unranked trees and
their encodings, we define the runs of our automata directly
on unranked trees and unranked forests. Given an unranked
tree/forest t, we denote by nodes+(t) the extended domain
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Figure 1: Two unranked trees t and t′.

of t, which is defined as the set that contains all nodes of t
and all sequences i⃗ ⋅j ⋅1 ∈ nodes+(t) and i⃗ ⋅(j+1) ∈ nodes+(t),
with i⃗ ⋅j ∈ nodes(t). Intuitively, nodes+(t) is the extension of
the domain of t that results from adding a new child to each
leaf and a new sibling to each node with no right sibling.

Definition 1. A determinitic top-down tree automata is
a tuple A = (Σ,Q, δ, q0 , F ), where

● Σ is a finite alphabet,

● Q is a finite set of states,

● δ ∶ Q ×Σ⇀ Q ×Q is a partial transition function,

● q0 ∈ Q is an initial state,

● F ⊆ Q is a set of final states.

A run of A on t is any Q-labelled tree/forest ρ such that
nodes(ρ) = nodes+(t) and δ(ρ(⃗i ⋅ j), t(⃗i ⋅ j)) = (ρ(⃗i ⋅ j ⋅ 1), ρ(⃗i ⋅
(j+1))) for all i⃗⋅j ∈ nodes(t). A run ρ is said to be successful

if ρ(1) = q0 and ρ(⃗i) ∈ F for all nodes i⃗ ∈ nodes(ρ)∖nodes(t).
The language recognized by A is the set L (A) of all trees
t ∈ TΣ that induce a successful run of A.

In the sequel, we will work with trimmed automata only,
namely, we assume that all states of our automata appear
in some successful run. Because useless states of automata
can be detected and removed in linear time, this assumption
will have no impact on our complexity results.

Example 1. As a running example, consider the DTDs:

D ∶ r → a d

a → a ∣ EMPTY

d → b c∗

b → a ∣ EMPTY

c → EMPTY

D′ ∶ r → e c∗

e → a a ∣ a
a → a ∣ EMPTY

c → EMPTY

Figure 1 gives examples of two unranked trees satisfying the
DTDs D and D′.

The following are the transition rules for two determinis-
tic top-down tree automata R and T that recognize the lan-
guages defined by D and D′, respectively (pr0 and qr0 are the
initial states and the final states are underlined):

R ∶ pr0
r
ÐÐ→ pa0 f

pa0
a
ÐÐ→ pa1 pd0

pa1
a
ÐÐ→ pa1 f

pd0
d
ÐÐ→ pb0 f

pb0
b
ÐÐ→ pa1 pc0

pc0
c
ÐÐ→ f pc0

T ∶ qr0
r
ÐÐ→ qe0 f

qe0
e
ÐÐ→ qa0 qc0

qa0
a
ÐÐ→ qa1 qa1

qa1
a
ÐÐ→ qa1 f

qc0
c
ÐÐ→ f qc0
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Figure 2: Run of top-down tree automaton R on t.

Figure 2 presents the successful run of the automaton R on
the tree t of Figure 1 (black nodes correspond to elements of
t, while gray nodes have no corresponding element in t).

As usual for finite automata on words, we derive from the
transition function δ of a top-down tree automaton A a tran-
sition function δ̂ on contexts. Formally, we define δ̂ as the
partial function from Q × CΣ to Q by letting δ̂(q,C) = q′ iff
the context C is accepted by the automaton A where the
initial state is replaced by q and the transition function δ is
extended in such a way that δ(q′,●) = (f, f), with f being a
new final state.

2.3 Tree edits over serializations

We briefly recall the definitions of some standard edit opera-
tions on unranked trees [3]. The first operation, called dele-
tion, consists of removing a distinguished (non-root) node x

from a tree t and promoting its subtrees as children of its
parent. The second operation, called insertion, consists of
adding a new node x in an unranked tree t, with a possi-
ble adoption of a list of subsequent children from the parent
of x. Figure 3 gives an example of these two operations.
These are the standard operations that are used to define
the edit-distance between unranked ordered trees [3, 14].
Note that the operation of relabelling a node in an unranked
tree, which is sometimes used as a standard edit operation,
is subsumed by the previous two operations.

For the setting considered in this paper, we want to edit
trees by editing their serializations – by deleting and in-
serting tags – in such a way that the resulting operations
implement tree edit operations. We can code a sequence of
string edits via another string, called alignment. Formally,
given two strings u ∈ Σ∗ and v ∈ ∆∗, an alignment of u and
v is any string e over the alphabet (Σ ⊎ {ε}) × (∆ ⊎ {ε})
whose projection over the first (resp. second) component
gives u (resp. v). The cost of an alignment e, denoted

r

a a

b xxx

c c

b

delete x

r

a a

b c c b

insert y

r

a a

yyy

b c

c b

Figure 3: Edit operations on unranked trees.



cost(e), is the number of occurrences in e that are not of
the form (a,a), with a ∈ Σ, nor of the form (ε, ε). The
edit-distance (or Levenshtein distance) between two strings
u ∈ Σ∗ and v ∈∆∗, denoted dist(u, v), is defined as the min-
imum cost of all possible alignments of u and v [16]. As
an example, the string (aa)(bε)(

c
c)(dd)(

ε
e) is an alignment be-

tween the strings abcd and acde that achieves optimal cost 2
(hence dist(abcd, acde) = 2).

As we mentioned earlier, we are interested in repairing seri-
alizations of unranked trees and, more specifically, in align-
ments that can be directly translated into editing opera-
tions on the corresponding trees with similar costs. This
is captured by the notion of tree edit alignment between
well-matched words. Let us fix some well-matched words
u ∈ (Σ ⊎ Σ̄)∗ and v ∈ (∆ ⊎ ∆̄)∗ and an alignment e between
them. We first define two matching relations ∼u and ∼v be-
tween positions of e as follows: given 1 ≤ i < j ≤ ∣e∣, we
write i ∼u j (resp. i ∼v j) iff the infix e[i, j] projected onto
the first (resp. second) components is a well-matched word.
We then say that e is a tree edit alignment if the following
implications hold:

● if e(i) = (a,a), then there is 1 ≤ j ≤ ∣e∣ such that
e(j) = (ā, ā), i ∼u j, and i ∼v j,

● if e(j) = (ā, ā), then there is 1 ≤ i ≤ ∣e∣ such that
e(i) = (a,a), i ∼u j, and i ∼v j.

Example 2. Given two unranked trees t = a(a(b), c)
and t′ = a(a(c), b) and their serializations t̂ = aabb̄ācc̄ā

and t̂′ = aacc̄ābb̄ā, the following are two possible alignments
between t̂ and t̂′:

e = (aa)(
a
a)(bc)( b̄c̄)(

ā
ā)(

c
b)(

c̄
b̄
)( āā)

e′ = (aa)(
a
a)(

ε
c)(

ε
c̄)(

ε
ā)(bb)( b̄b̄)(

ā
ā)(

c
ε)( c̄ε)(

ā
ε).

However, only the first alignment e is a tree edit alignment.
For the second one, if we choose i = 2, we observe that e′(i) =
(a,a) and j = 8 is the unique position such that e(j) = (ā, ā),
but i ≁v j.

It is not difficult to see that, given two trees t and t′, there
is a sequence of tree edit operations turning t into t′ and
having cost N iff there is a tree edit alignment between the
serializations t̂ and t̂′ having cost 2N .

Interestingly, the following example shows that the generic
notion of alignment between serializations is too powerful
to capture the costs of edit operations on trees, even up to
multiplicative constants. There exist indeed families of trees
on which the costs of alignments are uniformly bounded,
while the costs of tree edit operations get arbitrary high.

Example 3. Consider pairs of trees of the same height
and of the following forms (some labels are in bold to mark
the differences between the left-hand and right-hand side):

r

a r

b

r

a r

b r b

a

b

a

r

a r

b

r

a r

b r aaa

bbb

aaa

bbb

It is easy to see that, no matter how one chooses to trans-
form the left-hand side tree into the right-hand side one us-
ing tree edit operations, the cost grows at least linearly with
the height of the trees. On the other hand, there exist align-
ments between the serializations of these pairs of trees that
have uniformly bounded cost, e.g.

(rr)(
a
a)( āā)(

r
r)(bb)( b̄b̄) . . . (

r
r)(

a
a)( āā)(

r
r)(bb)( b̄b̄)(

r
r) ⋅

( r̄̄r̄rεεε)(bbbεεε)( b̄̄b̄bεεε)(
r̄
r̄)(

a
a)( āā)( r̄r̄) . . . (bb)( b̄b̄)(

r̄
r̄)(

a
a)( āā)( r̄r̄)(

εεε
bbb)(

εεε

b̄̄b̄b)(
εεε
r̄̄r̄r).

It is important to notice that the previous alignment is not
a tree edit alignment.

2.4 Transducers

A streaming repair process is a machine that consumes parts
of the input and produces edits. We capture this with the
notion of sub-sequential transducer. This device can be de-
scribed by a tuple of the form Z = (Σ,∆,Z,κ, z0 ,Ω), where
Σ is a finite alphabet for the input, ∆ is a finite alphabet for
the output, Z is a (possibly infinite) set of states, κ is a par-
tial transition function from Z × (Σ⊎ {ε}) to ∆∗ ×Z, z0 ∈ Z
is an initial state, and Ω is a final output function from Z

to ∆∗. A run of Z consists of a sequence of transitions of
the form

z0
u1/v1
ÐÐ→ z1

u2/v2
ÐÐ→ . . .

un/vn
ÐÐ→ zn

ε/vn+1
ÐÐ→

where ui ∈ Σ ⊎ {ε}, vi ∈ ∆∗, vn+1 = Ω(zn), and δ(zi−1, ui) =
(vi, zi) for all 1 ≤ i ≤ n. Given the above run, we say that
v = v1 ⋅ v2 ⋅ . . . ⋅ vn ⋅ vn+1 is the output of Z on input u =

u1 ⋅ u2 ⋅ . . . ⋅ un. In order to guarantee that Z produces at
most one output on each input, we forbid the possibility that
both δ(z, a), with a ∈ Σ, and δ(z, ε) are defined on the same
state z.

The above definition of run of a transducer implicitly defines
an alignment between the input and the output. Recall that
the definition of an alignment refers not only to the input
and output words, but to a particular way of synchronizing
them with ε. Thus we will first ‘disambiguate’ the edits
induced by the run of the transducer, determining whether
a given transition u/v is to be considered as a deletion, an
insertion, or a deletion followed by an insertion. Formally,
given a run ρ of Z like the one described above, we define
the canonical alignment of ρ as

align(ρ) = align(u1

v1 ) ⋅ align(
u2

v2 ) ⋅ . . . ⋅ align(
un

vn ) ⋅ align(
ε

vn+1)

where

align(uv) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(aε)(
ε
b1) . . . (

ε
bk) if u = a, v = b1 . . . bk,

and a ≠ bi for all 1 ≤ i ≤ k

( ε
b1) . . . (

a
bi) . . . (

ε
bk) if u = a, v = b1 . . . bk,

and i =minj≤k{j ∶ a = bj}

( ε
b1) . . . (

ε
bk
) if u = ε and v = b1 . . . bk.

We define the cost of a run ρ of Z as the cost of its canonical
alignment align(ρ).

In general, canonical alignments of runs of transducers can
be of any form. In the following, however, we restrict our-
selves to transducers that only work on serializations of trees
and whose canonical alignments are tree edit alignments.
We call these transducers tree edit transducers.



3. PROBLEM SETTING

This paper focuses on the streaming bounded repairability
problem for languages of unranked trees. The setting is given
by two languages R and T of unranked trees, called restric-
tion and target languages. Trees in R (resp. T ) are labelled
over a finite alphabet Σ (resp. ∆), and they are encoded by
serializations. The languages R and T are represented by
means of DTDs or deterministic top-down tree automata.

The goal is to decide whether it is possible to ‘repair’ any
tree t ∈ R into a tree t′ ∈ T , using a number of edits on seri-
alizations that is uniformly bounded by a constant (the con-
stant may depend on the restriction and target languages,
but not on the tree t). Here, we are specially interested in
repair strategies that are streaming, that is, we only con-
sider repairs of serializations of trees that are produced in
an online way, by means of tree edit transducers.

Formally, the streaming bounded repairability problem con-
sists of deciding, given two languages R and T (presented
as DTDs or top-down tree automata), whether there exists
a tree edit transducer Z such that (i) on any input t̂, with
t ∈ R, Z outputs the serialization t̂′ of some tree t′ ∈ T , and
(ii) the cost of the runs of Z are uniformly bounded by a
constant (this implies that the edit-distance between the in-
put t̂ and the corresponding output t̂′ is also bounded by a
constant). Some examples of positive and negative instances
of the streaming bounded repairability problem follow.

Example 1 (continued). Consider again the languages
R = L (R) and T = L (T ) described in our running exam-
ple. It is possible to transform every tree t ∈ R (e.g. the
left-hand side tree of Figure 1) into a tree t′ ∈ T (e.g. the
right-hand side tree of Figure 1) using just 3 edit operations:
one first deletes the d-labelled child of the root, then relabels
the b-labelled node into a, finally one inserts a new e-labelled
node as a first child of the root, adopting the two chains of a-
labelled nodes as sub-trees. This strategy can be implemented
at the level of serializations by a transducer that first copies
the opening tag r from the input, then it produces an open-
ing tag e and copies the portion a . . . a ā . . . ā of the input;
subsequently, it replaces the input string d b with a, it copies
another portion a . . . a ā . . . ā of the input, it prepends ā ē to
the next incoming string c c̄ . . . c c̄, and finally it erases the
closing tag d̄ and copies the last symbol r̄.

Example 4. The following is a variant of an example
from [2], which shows the difference between non-streaming
edit strategies and streaming ones. Consider the lan-
guage R of all trees of the form r(x, c, . . . , c, y, . . . , y), with
x, y ∈ {a, b}, and the language T of all trees of the form
r(x, c, . . . , c, x, . . . , x), with x ∈ {a, b}. A simple way to edit
a tree of R into a tree of T is to replace the label x of the first
child with the label y occurring the rightmost sibling. This
strategy has uniformly bounded cost, but it cannot be im-
plemented by a tree edit transducer of similar cost. Indeed,
every transducer of bounded cost that parses a serialization
of a tree of R has to commit to either preserving or modify-
ing the label x of the first child before seeing the right siblings
labelled by y. We have that the language R is not streaming
repairable into T with uniformly bounded cost.

GR ∶

pr0 f

pa0 pd0

pa1 pb0 pc0

GT ∶

qr0 f

qe0 qc0

qa0 qa1

Figure 4: Transitions graphs of automata R and T .

4. MAIN CHARACTERIZATION

In this section, we present an effective characterization of
streaming bounded repairability for the languages recog-
nized by top-down tree automata (thus including those lan-
guages definable by DTDs). This characterization combines
ideas both from the solution of the streaming repair prob-
lem for regular word languages [2] and from the solution of
the non-streaming repair problem for regular languages of
unranked trees [12]. For instance, in [2] streaming bounded
repairability for regular word languages was characterized in
terms of a simulation game over the directed acyclic graphs
of the strongly connected components of the automata –
similar concepts are used also in the present paper. In [12]
special conditions related to the behaviour of tree automata
along the vertical (i.e. first-child) axis were taken into ac-
count – here we do something similar in the presence of ‘ver-
tical’ contexts. To describe formally our characterization, we
need to first introduce some definitions and notations.

4.1 Components of automata

It is easy to see that any top-down tree automaton A =
(Σ,Q, δ, q0 , F ) can be equivalently represented by its tran-
sition graph GA = (Q, (E1

a)a∈Σ, (E2

a)a∈Σ), where the nodes

are the control states of A and the edge relations E1

a and E2

a

are defined as follows:

(q, q′) ∈ E1

a iff ∃ q′′ ∈ Q. δ(q, a) = (q′, q′′),

(q, q′) ∈ E2

a iff ∃ q′′ ∈ Q. δ(q, a) = (q′′, q′).

Intuitively, the edges in E1

a, called vertical edges, represent
transitions of A from a given node of a tree to its first child,
while the edges in E2

a, called horizontal edges, represent tran-
sitions of A from a given node to its next sibling.

Figure 4 depicts the transition graphs of the automataR and
T of Example 1 (dotted arrows represent horizontal edges,
solid arrows represent vertical edges).

Using the graph representation of an automaton A, we can
derive the notion of strongly connected component (or simply
a component) of A: this is a maximal set X of nodes of GA
such that for all q, q′ ∈ X, there is a directed path from
q to q′ visiting only nodes in X and traversing edges in
⋃a∈ΣE1

a ∪E
2

a. We observe that for every q, q′ ∈ X, there is
a context C such that δ̂(q,C) = q′.

We denote by SCC(A) the set of all components of A and we
distinguish between two types of components X ∈ SCC(A):



● X is horizontal if all its edges are horizontal, namely,
if (q, q′) ∉ E1

a for all q, q′ ∈X and a ∈ Σ,

● X is non-horizontal if it contains at least one vertical
edge, namely, if (q, q′) ∈ E1

a for some q, q′ ∈ X and
a ∈ Σ.

The left-hand side graph of Figure 4 contains six horizon-
tal components and only one non-horizontal component (i.e.
the one consisting of the single state pa1); similarly, the right-
hand side graph of Figure 4 contains five horizontal compo-
nents and one non-horizontal component.

Non-trivial components, namely, components that contain
at least one edge, represent ‘repeatable behaviours’ of the
automaton. These components have to be taken into ac-
count in the characterization of streaming bounded re-
pairability because they could generate arbitrary large frag-
ments of trees (namely, contexts) that cannot be edited with
uniformly bounded cost. To make this statement more pre-
cise, we associate with each component X of an automaton
A = (Σ,Q, δ, q0 , F ) the language of contexts realizable in X:

L (A ∣X) = {C ∶ ∃ q, q
′
∈X. δ̂(q,C) = q′}.

Recall that contexts are trees or forests with a single place-
holder (●-labelled node) occurring at a leaf with no right
sibling. It is easy to see that a component X of A is hor-
izontal iff the placeholders of all contexts in the language
L (A ∣X) occur at the top level (i.e. as rightmost roots).
Such contexts are called horizontal and intuitively represent
hedges of trees.

As an example, the automaton R of our running Example 1
contains one non-trivial horizontal component {pc0}, which
realizes contexts of the form c c . . . c●. The other non-trivial
component of R is {pa1}, which is non-horizontal and realizes
contexts of the form a(a(. . . a(●) . . .)).

4.2 Prefix-rewriting systems

To understand our characterization result, it is useful to
think of a deterministic top-down tree automaton as a de-
vice that processes serializations of trees in a single-threaded
left-to-right fashion, rather than in parallel. This could be
formalized in terms of special forms of Visibly Pushdown
Automata [8] that run on serializations of trees and simu-
late exactly the computations of deterministic top-down tree
automata. Here, we prefer to avoid such a formalization and
only introduce the minimum amount of terminology that is
necessary for understanding our results.

Given a deterministic top-down tree automaton A =

(Σ,Q, δ, q0 , F ), a state q of it, and a prefix u of the seri-
alization of a tree, we say that q is the current state at the
end of u iff δ̂(q0,C) = q and Ĉprefix

= u for some context
C. We remark that this current state only depends on u,
and not the context C; indeed, due to top-down determin-
ism, Ĉprefix

1
= Ĉ

prefix
2

implies δ̂(q0,C1) = δ̂(q0,C2), for any two
contexts C1,C2.

We now turn back to our streaming bounded repairability
problem. Informally, being able to perform a bounded repair
from a restriction automaton R to a target automaton T ,
one needs to respond to prefixes u of serializations of trees

in L (R) by prefixes v of serializations of trees in L (T ) in
such a way that, at any point, if we take the component of
the current state of R at the end of u, the language of con-
texts realized in this component is covered by the language
of contexts realized in the component of the current state of
T at the end of v. In this way, if the prefix u is repeatedly
extended in a cyclic way – without exiting the component of
the current state – the repair processor can respond by just
copying the input symbols, incurring no cost. Of course, it
is not feasible to look at all possible prefixes u of serializa-
tions of trees in R. Thus our characterization of stream-
ing bounded repairability is based on a sort of simulation
game in which abstractions of runs of R are produced by
one player, and are countered by abstractions of runs of T ,
produced by the other player.

The abstractions are stacks of components, representing the
states at the frontier of the portion of the tree that is rep-
resented by the prefix of the serialization. For example,
extending a prefix u of a serialization with a new opening
tag a induces a transition of R from the current state p

to two states p1 and p2 (one associated with the new a-
labelled child, the other associated with a forthcoming right
sibling). This transition is abstracted at the level of compo-
nents by a corresponding push-and-swap move that replaces
the component of p at the top of the restriction stack with
the components of p1 and p2.

A key observation is that it is not necessary to mimic all
transitions of the restriction automaton, but only those that
exit the current component and reach new components with
both successor states. This will keep the length of the plays
in the simulation game bounded, allowing us to determine
the winner effectively.

Formalizing this, we capture the dynamics of stacks of com-
ponents via prefix-rewriting systems associated with the re-
striction and target automata R and T . These systems act
on stacks of components of R and T and they are natu-
rally obtained from the ‘lifting’ of the transition rules to the
strongly connected components. Stacks of components are
presented as strings under the usual convention that the top
element of a stack is listed first. Given a stack z⃗, we denote
by top(z⃗) its top element and by tail(z⃗) the sub-stack below
this element. We will use x⃗, x⃗′, x⃗′′ (resp. y⃗, y⃗′, y⃗′′) to denote
stacks of components of R (resp. T ).

We start with the definition of the prefix-rewriting sys-
tem associated with the restriction automaton R =

(Σ, P, δ, p0 , F ). This is the relation R
↦
⊆ SCC(R)∗ ×

SCC(R)∗ between stacks of components of R defined by:

X ⋅ x⃗ R
↦

X1 X2 ⋅ x⃗ iff X1 ≠X ∧ X2 ≠X ∧

∃p ∈X,p1 ∈X1, p2 ∈ X2, a ∈ Σ
δ(p, a) = (p1, p2)

X ⋅ x⃗ R
↦

x⃗ always

where X,X1,X2 denote single components of R. Note that

x⃗ R
↦

x⃗′ implies either ∣x⃗∣ = ∣x⃗′∣ + 1 or ∣x⃗∣ + 1 = ∣x⃗′∣. Moreover,
according to the above definition, the component X at the
top of the stack cannot be rewritten into a copy of it (this
is due to the condition X1 ≠X ∧ X2 ≠X).



The prefix-rewriting system associated with the target au-
tomaton T = (∆,Q, γ, q0 ,G) is defined in a similar way, with
only two differences. First, we allow components of T to be
rewritten into themselves (for instance, we allow rules of the

form Y T
↦

Y Y whenever γ(q, a) = (q1, q2) for some states
q, q1, q2 ∈ Y ). This difference is required essentially because
several components of R could be covered by the same com-
ponent of T . Second, we allow rewriting rules that simulate
the execution of several transitions of T at once: this is
done by taking the reflexive and transitive closure of a basic

rewriting relation T
↦

, which is defined just below. This cor-
responds to the fact that in the target we can make multiple
repairs (e.g. insert multiple symbols) in response to a single
input symbol of the restriction.

We associate with the target automaton T = (∆,Q, γ, q0 ,G)
the relation T

↦
⊆ SCC(T )∗ × SCC(T )∗ defined by:

Y ⋅ y⃗ T
↦

Y1 Y2 ⋅ y⃗ iff ∃ q ∈ Y, q1 ∈ Y1, q2 ∈ Y2, a ∈∆
γ(q, a) = (q1, q2)

Y ⋅ y⃗ T
↦

y⃗ iff y⃗ ≠ ε.

We denote by T
↦
∗ the reflexive and transitive closure of the

relation T
↦

.

Example 1 (continued). Consider the automata R and
T of our running example (see also Figure 4 for a quick
reference of the transitions). The following are two valid

derivations of the prefix-rewriting systems R
↦

and T
↦
∗ :

{pr0} R
↦

{pa0}{f} R
↦

{pa1}{pd0}{f} R
↦
{pd0}{f}

{qr0} T
↦
∗ {qa0}{qc0}{f} T

↦
∗ {qa1}{qa1}{qc0}{f} T

↦
∗ {f}.

4.3 The simulation game

Now, we have all the ingredients to characterize streaming
bounded repairability for two languages L (R) and L (T )
in terms of a suitable simulation game between the prefix-

rewriting systems R
↦

and T
↦
∗ associated with R and T .

To explain the general idea we first consider the simpler
case where all components of the restriction automaton R
are horizontal. In this case, the simulation game takes place
between two players, called Generator and Repairer, who
control two stacks x⃗ ∈ SCC(R)∗ and y⃗ ∈ SCC(T )∗ using

the prefix-rewriting relations R
↦

and T
↦
∗ , respectively.

The game starts with the initial singleton stacks X0 and Y0,
where X0 is the component of the initial state of R and Y0 is
the component of the initial state of T . Repairer moves first
by applying to his stack Y0 a sequence of prefix-rewriting

rules satisfying T
↦
∗ (this corresponds to the fact that the

repair processor is allowed to insert some initial prefix of
the output, prior to any input being received). Genera-
tor responds by applying to his stack X0 a single prefix-

rewriting rule satisfying R
↦

. Then the game continues in
a similar way from the new pair of stacks. Some invari-
ants have to be enforced. Every time Repairer moves, he
has to guarantee that the language L (T ∣ top(y⃗)) of con-
texts realizable in the top component of his stack y⃗ contains

the language L (R ∣ top(x⃗)) of contexts realizable in the top
component of the stack x⃗ of Generator. We will see later in
Section 4.4 how this covering property between languages of
components eases the repair process. Eventually, one of the
two players will not be able to move, in which case the other
player wins.

In order to correctly characterize streaming bounded re-
pairability in the presence of non-horizontal components of
R, we need to consider a variant of the simulation game
where a special separator symbol ⊲ is prepended to the non-
horizontal components of the stacks. For the sake of presen-
tation, it is convenient to describe the variant of the sim-
ulation game by introducing a third player, called Referee,
who handles the occurrences of the separator symbol ⊲ in
the two stacks. The game goes as before by alternating be-
tween moves of Repairer and moves of Generator. However,
if after a move of Repairer the element at the top of the
stack of Generator happens to be a non-horizontal compo-
nent, then Referee comes into play: he inserts the separator
symbol ⊲ just below the top components of the stacks of
Generator and Repairer and he passes the turn to Genera-
tor. From there after, neither Generator nor Repairer are
allowed to modify the parts of their stacks that are hidden
under a separator. If after a move of Generator the top ele-
ment of his stack becomes ⊲, then Referee comes again into
play: he removes ⊲ from the top of the stack of Generator,
he pops from the stack of Repairer the top-most separator
and all elements above it, and he finally passes the turn
to Repairer. We remark that in the above formulation of
the game, Referee cannot choose his moves, as these are al-
ways determined by the current configuration of the game.
This makes the game equivalent to a classical turn-based
two-player reachability game, whose winner is known to be
determined.

A formal definition of the arena of the game follows. For the
sake of readability, we use a different notation (i.e. J x⃗ , y⃗ K
and ⟪ x⃗ , y⃗⟫) for the positions of the arena that belong to
Generator and Repairer; for the positions owned by Referee
the notation is that of the player who moves next.

Definition 2. Let R and T be two top-down tree au-
tomata and let x⃗, x⃗′, x⃗′′ (resp. y⃗, y⃗′, y⃗′′) denote generic se-
quences over SCC(R)⊎{⊲} (resp. SCC(T )⊎{⊲}). The arena
GR,T for the simulation game is defined as follows:

● the positions owned by Generator are the pairs
J x⃗ , y⃗ K, where top(x⃗) and top(y⃗) are components
such that L (R ∣ top(x⃗)) ⊆ L (T ∣ top(y⃗)), and where
top(tail(x⃗)) = ⊲ whenever top(x⃗) is non-horizontal;

● the positions owned by Repairer are the pairs ⟪ x⃗ , y⃗⟫,
where top(x⃗) ≠ ⊲;

● the positions owned by Referee are the pairs
J x⃗ , y⃗ K, where top(x⃗) and top(y⃗) are non-horizontal
components, L (R ∣ top(x⃗)) ⊆ L (T ∣ top(y⃗)), and
top(tail(x⃗)) ≠ ⊲, as well as the pairs ⟪ x⃗ , y⃗⟫, where
top(x⃗) = ⊲;

● the initial position is the pair ⟪ x⃗0 , y⃗0⟫, which is owned
by Repairer, where x⃗0 (resp. y⃗0) is the singleton stack
that consists of the component of the initial state of R
(resp. T );



● the possible moves for Generator are of the form

J x⃗ ⋅ x⃗′′ , y⃗ K Gen
↦
⟪ x⃗′ ⋅ x⃗′′ , y⃗⟫, where x⃗ R

↦
x⃗′ is a single

prefix-rewriting rule associated with R (in particular,
⊲ occurs neither in x⃗ nor in x⃗′);

● the possible moves for Repairer are of the form

⟪ x⃗ , y⃗ ⋅ y⃗′′⟫ Rep
↦

J x⃗ , y⃗′ ⋅ y⃗′′ K, where y⃗ T
↦
∗ y⃗′ is a sequence

of prefix-rewriting rules associated with T (in particu-
lar, ⊲ occurs neither in y⃗ nor in y⃗′);

● the possible moves for Referee are of the form

JX ⋅ x⃗′′ , Y ⋅ y⃗′′ K Ref
↦

JX ⋅ ⊲ ⋅ x⃗′′ , Y ⋅ ⊲ ⋅ y⃗′′ K, where
X is non-horizontal, and those of the form

⟪⊲ ⋅ x⃗ , y⃗ ⋅ ⊲ ⋅ y⃗′′⟫ Ref
↦
⟪ x⃗ , y⃗′′⟫, where ⊲ does not

occur in y⃗.

We observe that all plays that could possibly arise from the
simulation game over the arena GR,T are finite: this is be-
cause each position of GR,T is visited at most once during
a play and the set of all reachable positions is finite, due to
the restriction on the moves of Generator. Indeed the stacks
that could be derived from the prefix-rewriting system R

↦

have length at most ∣SCC(R)∣. This allows us to define the
winner of a play as the last player who moved (this must be
either Generator or Repairer).

Example 1 (continued). We continue our running ex-
ample by describing a prefix of possible play over the arena
GR,T (to save space and improve readability, we write the
pairs for the positions of the arena vertically):

⟪{pr

0
}{qr

0
}⟫ Rep↦

s{pr

0
}{qr

0
}

{

Gen↦ ⟪{pa

0
}{f}{qr

0
} ⟫ Rep↦

s{pa

0
}{f}{qa

0
}{qc

0
}{f}

{

Gen↦

⟪{pa

1
}{pd

0
}{f}{qa

0
}{qc

0
}{f} ⟫ Rep↦

s{pa

1
}{pd

0
}{f}{qa

1
}{qa

1
}{qc

0
}{f}

{

Ref↦
s{pa

1
}⊲{pd

0
}{f}{qa

1
}⊲{qa

1
}{qc

0
}{f}

{

Gen↦ ⟪⊲{pd

0
}{f}{qa

1
}⊲{qa

1
}{qc

0
}{f}⟫ Ref↦ ⟪{pd

0
}{f}{qa

1
}{qc

0
}{f}⟫ ...

It is easy to see that Repairer has a strategy to win the sim-
ulation game over GR,T .

As we explained earlier, it is more difficult for Repairer to
win the simulation game when the stack he controls con-
tains some separator symbols – in this case he cannot ap-
ply the prefix-rewriting rules arbitrarily deep into his stack.
The purpose of the following example is to demonstrate
that, without this limitation, Repairer can win the simu-
lation game even if the restriction language is not streaming
bounded repairable into the target language.

Example 5. Let R′ and T ′ be the deterministic top-down
tree automata with the following transitions (p0 and q0 are
the initial states, all other states are final):

R
′
∶ p0

r
ÐÐ→ p1 f

p1
a
ÐÐ→ p1 f

p1
b
ÐÐ→ f p2

p2
b
ÐÐ→ f p2

T
′
∶ q0

r
ÐÐ→ q1 f

q1
a
ÐÐ→ q2 q3

q2
a
ÐÐ→ q2 f

q3
b
ÐÐ→ f q3

The following are examples of trees in L (R′) and in L (T ′):

r

a

a

b . . . b

r

a

a

b . . . b

Clearly, L (R′) is not bounded repairable into L (T ′) (not
even with an offline repair strategy). Accordingly, Repairer
loses the simulation game over GR′,T ′ in the presence of
separator symbols: Generator has a winning strategy that
consists of first reaching the restriction stack {p1}⊲ {f},
forcing Repairer to respond with a target stack of the
form {q2}⊲ . . . {q3}{f}, and later rewriting his stack to
{p2}⊲ {f}, thus leading to a losing position for Repairer (the
component {p2} of R′ is not covered by any component of
T
′ that is reachable from {q2}).

On the other hand, Repairer can easily win the simulation
game if the separators are omitted: from any position of the
arena of the form ⟪{p2}{f} , {q2} . . . {q3}{f}⟫, Repairer
could simply pop the top component from his stack and cover
in this way the top component of the restriction stack.

We are now ready to state our main characterization result:

Theorem 1. Given a pair of deterministic top-down tree
automata R and T , there exists a streaming repair strategy
from L (R) to L (T ) with uniformly bounded cost iff Re-
pairer has a strategy to win the simulation game over GR,T .

The effectiveness of the above characterization is discussed
in Section 5, together with tight complexity bounds for the
streaming bounded repairability problem. In the following
we give an intuitive account of the proof of Theorem 1. Fi-
nally, it is important to point out that from this proof one
can effectively construct a tree edit transducer that repairs
L (R) into L (T ) with uniformly bounded cost whenever
Repairer wins the simulation game over GR,T .

4.4 Outline of the proof of the main theorem

We explain first the idea underlying the proof of the only-if-
direction of Theorem 1. In this direction, we assume the
existence of a tree edit transducer Z that implements a
streaming repair strategy of L (R) into L (T ), with uni-
formly bounded cost, and we derive from that the existence
of a strategy for Repairer to win the simulation game over
GR,T . Once again, it is convenient to think of the restriction
and target automata as devices that process serializations of
trees. We thus reuse the notion of current state at the end
of a prefix of a serialization (cf. Section 4.2).

A key ingredient for constructing a winning strategy for Re-
pairer lies in the fact that, without loss of generality, one
can assume that the transducer Z satisfies the following in-
variant: for every prefix u of an input serialization, if X is
the component of the current state of R at the end of u and
Y is the component of the current state of T at the end of
the corresponding output v, then the language of contexts



realized in X is covered by the language of contexts realized
in Y , namely,

L (R ∣X) ⊆ L (T ∣Y ).

Indeed, if this were not the case, then the prefix u could be
expanded by an iteration of a context that stays within the
same component X and, unless the corresponding output
induces a change of component in the target automaton,
each context would have to be repaired into Y , thus resulting
in unbounded repair cost.

Thanks to the above invariant, one can abstract the
runs of the transducer Z into valid plays over the arena
GR,T , which turn out to be winning for Repairer (for
this it is crucial that the positions J x⃗ , y⃗ K that are
reached after each move of Repairer satisfy the containment
L (R ∣ top(x⃗)) ⊆ L (T ∣ top(y⃗))).

We outline now the main ideas underlying the proof of the
if-direction. Given a strategy for Repairer to win the simula-
tion game over GR,T , we have to construct a tree edit trans-
ducer Z that transforms serializations of trees in R =L (R)
into serializations of trees in T = L (T ), using a uniformly
bounded number of editing operations. For the sake of sim-
plicity, we will overlook the details related to the presence
of non-horizontal components in R and the role of Referee
in the simulation game.

It is convenient to construct the transducer Z incrementally,
that is, as a cascade composition of fairly simple transducers
Z1, Z2, and Z3. Intuitively, the first transducer Z1 decom-
poses the input tree t into a uniformly bounded number of
contexts, each one realizable within a single component of
R (this may require deleting a small number of nodes in t).
Furthermore, the output of Z1 is formed in such a way that
one can easily extract a sequence of prefix-rewriting steps

of the form X ⋅ x⃗ R
↦

X1 X2 ⋅ x⃗ or X ⋅ x⃗ R
↦

x⃗. The second
transducer Z2 receives the output of Z1 and computes the
responses of Repairer to the moves of Generator induced by
the rewriting steps provided by Z1 (for this purpose, we ex-
ploit the existence of a winning strategy for Repairer). Fur-
thermore, Z2 annotates the contexts of the decomposition
of t with partial runs of the target automaton T . Finally,
the third transducer Z3 receives the output of Z2 and glues
the pieces of runs of T in order to form a complete run on
a tree t′ ∈ L (T ) (this requires inserting additional contexts
of uniformly bounded size, which can be extracted from the
moves of Repairer provided by Z2). In the following, we
describe the two intermediate languages U and V that are
implicitly defined by these transducers, and we argue that
there exist streaming repair strategies of uniformly bounded
cost from R to U , from U to V , and from V to T , which are
implemented respectively by the transducers Z1, Z2, and Z3.

To define the first intermediate language U , we need to in-
troduce the concept of R-decomposition tree. The idea is
to describe a decomposition of a tree t ∈ R into a uniformly
bounded number of contexts, each one realized within a com-
ponent of R, and, at the same time, to provide a correspond-
ing sequence of prefix-rewriting steps on the stack controlled
by Generator in the simulation game. Because contexts re-
alized within components may become large and because

[ {pr
0
} ∣ pr

0
∣ ● ]

[ {pr
0
} ∣ pr

0
∣ pa

0
f ]

[ {pa
0
}{f} ∣ pa

0
∣ ● ]

[ {pa
0
}{f} ∣ pa

0
∣ pa

1
pd
0
]

[ {pa
1
}{pd

0
}{f} ∣ pa

1
∣ a(a(●)) ]

[ {pa
1
}{pd

0
}{f} ∣ pa

1
∣ ε ]

[{pd
0
}{f} ∣ pd

0
∣ ● ]

[ {pd
0
}{f} ∣ pd

0
∣ pb

0
f ]

[ {pb
0
}{f}{f} ∣ pb

0
∣ ● ]

[ {pb
0
}{f}{f} ∣ pb

0
∣ pa

1
pc
0
]

[ {pa
1
}{pc

0
}{f}{f} ∣ pa

1
∣ a(a(●)) ]

[ {pa
1
}{pc

0
}{f}{f} ∣ pa

1
∣ ε ]

[ {pc
0
}{f}{f} ∣ pc

0
∣ c c c ● ]

[ {pc
0
}{f}{f} ∣ pc

0
∣ ε ]

[ {f}{f} ∣ f ∣ ● ]

[ {f}{f} ∣ f ∣ ε ]

[ {f} ∣ f ∣ ● ]

[ {f} ∣ f ∣ ε ]

Figure 5: An R-decomposition tree.

we need to treat them as atomic objects, it is convenient
to think of decomposition trees as finite trees labelled over
an infinite ranked alphabet, which we denote by [Σ]. The
elements of this alphabet are nullary symbols of the form
[x⃗ ∣ p ∣ ε], unary symbols of the form [x⃗ ∣ p ∣ C], and binary
symbols of the form [x⃗ ∣ p ∣ p1 p2], where x⃗ denotes a stack
of components of R, p, p1, p2 denote states of R, and C de-
notes a context. We enforce the following constraints on any
R-decomposition tree:

● the root is labelled with a symbol [X0 ∣ p0 ∣ C], where
p0 is the initial state of R and X0 is its component,

● every unary node with label [x⃗ ∣ p ∣ C] satisfies p ∈

top(x⃗) and δ̂(p,C) ∈ top(x⃗) and has for child a leaf or
a binary node whose label [x⃗′ ∣ p′ ∣ γ] satisfies x⃗′ = x⃗

and δ̂(p,C) = p′,

● every binary node with label [x⃗ ∣ p ∣ p1 p2] satisfies
p ∈ top(x⃗), p1, p2 ∉ top(x⃗), and δ(p, a) = (p1, p2) for
some a ∈ Σ, and has for children two unary nodes with
labels [x⃗1 ∣ p′1 ∣ C1] and [x⃗2 ∣ p′2 ∣ C2] satisfying x⃗1 =

X1X2 ⋅ tail(x⃗), x⃗2 =X2 ⋅ tail(x⃗), with p1 ∈X1, p2 ∈X2.

Example 1 (continued). In Figure 5 we show a decom-
position tree for the restriction automaton R of our running
example. Intuitively, this decomposition tree can be obtained
from tree t that is depicted in Figure 1 by simulating a run of
R on it and by extracting maximal contexts realized within
single components of R; the binary nodes of this decompo-
sition tree correspond to the transitions of R that induce a
change of component along both successor states.

We define the serialization t̂ of an R-decomposition tree t in
the usual way by introducing an opening tag ⟨x⃗ ∣ p ∣ γ⟩ and a
closing tag ⟨/x⃗ ∣ p ∣ γ⟩ for each of the infinitely many symbols



[x⃗ ∣ p ∣ γ] ∈ [Σ]. The only detail here is that, for a technical
reason that will be clear soon, we need to define the opening
and closing tags of the unary symbols [x⃗ ∣ p ∣ C] respectively
as ⟨x⃗ ∣ p ∣ Ĉprefix⟩ and ⟨/x⃗ ∣ p ∣ Ĉsuffix⟩ (recall that Ĉprefix is the
prefix of the serialization of C ending immediately before ●,
while Ĉsuffix is the suffix starting immediately after ●̄).

We observe that from the serialization t̂ of an R-
decomposition tree one can derive a sequence of deriva-

tion steps that satisfy the prefix-rewriting relation R
↦

:
for this it is sufficient to replace each occurrence of an
opening tag ⟨X ⋅ x⃗ ∣ p ∣ p1 p2⟩ with the push-and-swap move

X ⋅ x⃗ R
↦

X1X2 ⋅ x⃗, where X,X1,X2 are the components of
the states p, p1, p2, respectively, replace each occurrence of a

closing tag ⟨/X ⋅ x⃗ ∣ p ∣ Ĉsuffix⟩ with the pop move X ⋅ x⃗ R
↦

x⃗,
and discard all other tags.

We define the first intermediate language U as the set of
all R-decomposition trees. The fact that this language is
not, strictly speaking, recognizable by a (finite) determinis-
tic top-down tree automaton is not an issue, since here we
are mainly interested in proving that serializations of trees
of R can be transformed into serializations of trees of U us-
ing special forms of transducers of uniformly bounded cost.
We should however explain how transducers can turn se-
quences of tags over Σ into sequences of tags over [Σ] and
what is the induced cost. For this we adopt a variant of
the notion of tree edit transducer which can consume in a

single transition a long portion u of the input and provide
as output a single tag of the form ⟨x⃗ ∣ p ∣ γu⟩ or ⟨/x⃗ ∣ p ∣ γu⟩.
To enforce functionality of the transducer, it is sufficient to
assume that the substrings u that can be consumed by such
a transition range over a prefix-code, namely, a language in
which no pair of words are one prefix of the other. Moreover,
by viewing the content γu of the output tag as a string, we
can define the cost of such a transition as 1 + dist(u,γu).

We briefly explain how the restriction language R can be
repaired into U with uniformly bounded cost. The idea
is to simulate the run of the restriction automaton R
on the disclosed portion of the input tree t and, at the
same time, decompose t into a contexts realizable within
single components of R. This requires the use of spe-
cial transitions for replacing large portions of the input
of the form Ĉprefix

⋅ a, with two opening tags of the form
⟨x⃗ ∣ p ∣ Ĉprefix⟩ ⟨x⃗ ∣ p′ ∣ p1 p2⟩, and, similarly, for replacing por-

tions of the input of the form ā⋅Ĉsuffix with two closing tags of
the form ⟨/x⃗ ∣ p′ ∣ p1 p2⟩ ⟨/x⃗ ∣ p ∣ Ĉprefix⟩), where δ̂(p,C) = p′,
p, p′ ∈ top(x⃗), δ(p, a) = (p1, p2), and p1, p2 ∉ top(x⃗). In
this way, the content of the input serialization is reproduced
almost unchanged inside the output tags – only few input
symbols are deleted, which correspond to the transitions of
R that induce a change of component along both succes-
sors. Note that, thanks to top-down determinism, a change
of component can be detected as soon as the correspond-
ing open symbol is processed. This explains how R is re-
paired into U by a streaming transducer Z1 of uniformly
bounded cost.

We turn to the second intermediate language V . Exactly as
we did for U , we define V as a set of decomposition trees for
the target automaton T . These trees are labelled over the

infinite ranked alphabet [∆] that contains nullary symbols
[y⃗ ∣ q ∣ ε], unary symbols [y⃗ ∣ q ∣ C], and binary symbols
[y⃗ ∣ q ∣ q1q2], with y⃗ ∈ SCC(T )+, q ∈ top(y⃗), C context
such that γ̂(q,C) ∈ top(y⃗), and γ(q, a) = (q1, q2) for some
a ∈ ∆. The only interesting difference with respect to the
previous definition of decomposition tree is that a node of a
T -decomposition tree can be labelled with a binary symbol
[y⃗ ∣ q ∣ q1q2] even if q1 or q2 belong to the same component of
q (this reflects the different definitions of the prefix-rewriting

systems R
↦

and T
↦

, cf. Section 4.2).

In order to transform R-decomposition trees into T -
decomposition trees, we allow new editing operations of
bounded cost, that is: relabellings and insertions of binary
nodes, insertions of unary nodes, and, finally, relabellings of
unary nodes from [x⃗ ∣ p ∣ C] ∈ [Σ] to [y⃗ ∣ q ∣ C] ∈ [∆]. We ob-
serve that when relabelling a unary node, we can only change
the stack of components and the state, but not the context,
which must then belong to both languages L (R ∣ top(x⃗))
and L (T ∣ top(y⃗)). Streaming strategies that transform R-
decomposition trees into T -decomposition trees are defined
in the usual way as transducers working on serializations.

Given a strategy for Repairer to win the game GR,T , one
can construct a transducer Z2 of bounded cost that trans-
forms the serialization of any tree in U into the serialization
of a tree in V . This is achieved by constructing a corre-
sponding play inside GR,T : the moves of Generator are de-
rived from the series of input tags of the form ⟨x⃗ ∣ p ∣ p1 p2⟩
and ⟨/x⃗ ∣ p ∣ Ĉsuffix⟩, while the moves of Repairer are obtained

from his winning strategy. For each move ⟪ x⃗ , y⃗⟫ Rep
↦

J x⃗ , y⃗′ K
that is generated during this process, a certain number of
opening and closing tags will be produced in the output;
these tags represent the basic steps of the prefix-rewriting

relation T
↦
∗ . Similarly, for each move ⟪ x⃗ , y⃗⟫ Rep

↦
J x⃗ , y⃗′ K,

the label [x⃗ ∣ p ∣ C] of a descendant node may be changed to
a label of the form [y⃗′ ∣ q ∣ C]. We observe that in doing so
one needs to guarantee that the states q and γ̂(q,C) belong
to the same component top(y⃗′); this is possible thanks to
the fact that the game position J x⃗ , y⃗′ K owned by Generator
satisfies the containment L (R ∣ top(x⃗)) ⊆ L (T ∣ top(y⃗′))
and because the following property holds:

Lemma 1. If L (R ∣X) ⊆ L (T ∣Y ), then for every p ∈

X, there exist q ∈ Y such that for all contexts C, δ̂(p,C) ∈X
implies γ̂(q,C) ∈ Y .

We finally turn to the last stage of the processing line,
namely, the transducer that repairs V into T . Here the
idea is that every T -decomposition tree can be turned into
a concrete tree satisfying the target specification T by glue-
ing together the contexts that appear in the unary nodes.
To achieve this it might be necessary to produce additional
contexts of small size that connect states from different com-
ponents. For instance, if [y⃗ ∣ q ∣ q1 q2] is the label of a binary
node and [y⃗1 ∣ q′1 ∣ C1] and [y⃗2 ∣ q′2 ∣ C2] are the labels of its
children, then suitable contexts C′1 and C′2 will be inserted
in such a way that γ̂(q1,C′1) = q′1 and γ̂(q2,C′2) = q′2. As
the size and number of these contexts is bounded, we have
that V is streaming bounded repairable into T via a suitable
transducer Z3.



By chaining all the transducers together, one obtains a tree
edit transducer Z = Z1 ○Z2 ○Z3 that repairs R into T with
a uniformly bounded number of editing operations.

5. COMPLEXITY RESULTS

In the previous section we gave a game-theoretic characteri-
zation of streaming bounded repairability. The effectiveness
of such a characterization, and hence the decidability of the
streaming bounded repairability problem, follows from the
fact that the considered simulation game can be seen as
a specific reachability game [7], whose plays are uniformly
bounded in length. More precisely, given a restriction R
and a target T , the plays that could possibly arise over the
arena GR,T have length at most exponential in the number
of components of R. This gives a straightforward alternat-
ing exponential-time procedure that exhaustively searches
all plays to determine the winner of the simulation game,
and possibly synthesize a winning strategy.

Below, we improve the complexity result that we just derived
to a tight EXPTIME bound.

Theorem 2. The problem of streaming bounded re-
pairability for languages recognized by top-down tree au-
tomata is in EXPTIME.

The proof of the EXPTIME upper bound is based on con-
structing a variant of the simulation game that still charac-
terizes streaming bounded repairability, but whose configu-
rations can be succinctly represented in polynomial space.
More precisely, given two automata R and T , we recall that
the stacks controlled by Generator in the simulation game
over GR,T never exceed in length the number of components
of R. Unfortunately, an analogous bound to the lengths of
the stacks controlled by Repairer does not hold – this is es-
sentially due to the existence of prefix-rewriting rules of the

form Y ⋅ y⃗ T
↦

Y1 Y2 ⋅ y⃗, with Y1 = Y , which can be iterated to
produce arbitrarily long stacks. To overcome this problem
and be able to perform an exhaustive search on the arena
in alternating polynomial space, one considers an equiva-
lent version of the simulation game, which is obtained by
introducing a dummy copy Ỹ of each component Y of T , by

replacing every prefix-rewriting rule Y ⋅ y⃗ T
↦

Y Y2 ⋅ y⃗ with

the rule Ỹ ⋅ y⃗ T
↦

Y2 Ỹ ⋅ y⃗, and by replacing every occurrence
of Y with Y Ỹ in the right-hand side of a rule. The mod-
ified game is shown to be equivalent to the original game
over GR,T , but the reachable configurations can now be rep-
resented within polynomial size with respect to R and T .
This gives an alternating polynomial-space procedure that
determines the winner of the simulation game, thus proving
the EXPTIME upper bound for the problem of streaming
bounded repairability.

In the next theorem, we show that the problem of stream-
ing bounded repairability for top-down tree automata is
EXPTIME-hard. In fact, we show that EXPTIME-hardness
holds for languages specified by deterministic DTDs (also
known as one-unambiguous DTDs) [4]. Formally, a DTD
is said to be deterministic if the regular expression in the
right-hand side of every rule can be translated efficiently

(in PTIME) into an equivalent deterministic finite state au-
tomaton. Given that any deterministic DTD can be effi-
ciently translated into an equivalent deterministic top-down
tree automaton [10], the EXPTIME-hardness result can be
transferred to languages recognized by deterministic top-
down tree automata.

Theorem 3. The problem of streaming bounded re-
pairability for languages defined by deterministic DTDs is
EXPTIME-hard.

The proof of the above result is based on a reduction from
the problem of deciding the winner of a tiling game over a
corridor of polynomial width and exponential height. The
tiling game is run by two players, Adam and Eve. At each
turn, one of the two players extends the current tiling by
inserting a new row on top of the previous one. In doing
so, the two players have to satisfy some constraints for the
pairs of adjacent tiles. The last player who cannot move
loses. We know from [15] that deciding the winner of a
tiling game is APSPACE-hard (hence EXPTIME-hard). Re-
ducing this problem to the streaming bounded repairability
problem amounts at constructing, in polynomial time, two
deterministic DTDs R and T such that the language defined
by R is streaming bounded repairable into the language de-
fined by T iff Eve wins the tiling game. The main idea of
the reduction is that the restriction DTD R will generate
encodings of rows of tiles representing the possible moves
of Adam, while the target DTD T will require interleav-
ing these encodings by other ones, which represent Eve re-
sponses to Adam. The first technical ingredient lies in the
encodings of the rows produced by Adam: we need to allow
some redundancy, that is, repeat each tile in a row several
times, in order to forbid any repair processor from modify-
ing the rows with boundedly many edits. Another difficulty
lies in enforcing the tiling constraints: since we cannot guar-
antee that the rows generated in the restriction satisfy the
vertical constraints, we allow Adam to ‘cheat’ by produc-
ing rows that do not match with the previous ones. This
freedom is countered by the possibility of Eve of producing
an ad-hoc repair that exposes a violation of the constraints,
making it checkable by a DTD of small size.

We now exhibit a sub-class of restriction automata on which
the streaming bounded repairability problem becomes eas-
ier to solve, namely, PSPACE-complete. This sub-class is
obtained by restricting the accessibility graph of the com-
ponents of R to have the shape of a tree. More precisely,
given two components X and X ′ of R, we write X Ð→∗R X ′

whenever there exist some states q ∈ X and q′ ∈ X ′ that
are connected in the transition graph GR by a directed path
of (horizontal or vertical) edges. The graph that consists
of the components of R and the edges X Ð→∗R X ′ is a di-
rected acyclic graph, and it is denoted by DAG(R). We say
that R is tree-shaped if DAG(R) is diamond-free, namely,
if X1 Ð→

∗
R X ′ and X2 Ð→

∗
R X ′ imply either X1 Ð→

∗
R X2

or X2 Ð→
∗
R X1. Similarly, we say that a restriction DTD

is tree-shaped if its language is recognized by a tree-shaped
top-down tree automaton.

Below, we show that the problem of streaming bounded
repairability is PSPACE-complete for restriction languages



recognized by tree-shaped automata, and it is hard already
for languages specified by tree-shaped deterministic DTDs.

Theorem 4. The problem of streaming bounded re-
pairability for restriction languages recognized by tree-shaped
top-down tree automata is in PSPACE.

A sketch of a proof of the PSPACE upper bound is as follows.
From the fact that the restriction automaton is tree-shaped,
one derives a polynomial bound on the length of the possible
plays over GR,T . To compute the winner of the simulation
game over GR,T we run an alternating polynomial-time pro-
cedure that exhaustively searches all plays.

The PSPACE-hardness result below follows from ideas sim-
ilar to the proof of Theorem 3, that is, by reducing the
satisfiability problem for quantified boolean formulas to the
problem of streaming bounded repairability of a tree-shaped
restriction DTD into a target DTD.

Theorem 5. The problem of streaming bounded re-
pairability for restriction languages defined by tree-shaped
deterministic DTDs is PSPACE-hard.

We conclude the section by pointing out a result from [12]
that concerns a specific case of the streaming bounded re-
pairability problem. From Propositions 6 and 7 of [12] it
follows that the complexity of the streaming bounded re-
pairability problem drops to PTIME when the restriction
language contains all trees over a given alphabet Σ.

6. DISCUSSION

We gave a characterization of which DTDs and XML
schemas are streaming bounded repairable, and analysed
the complexity of the resulting decision problem. Our tech-
niques do depend heavily on the top-down determinism of
the schemas – for the case of schemas given by arbitrary
tree automata, decidability is still open. We also do not
know the exact complexity of determining the optimal re-
pair transducer, where optimality is expressed in terms of
maximal number of repairs.

Our work highlights the issue of the proper notion of edit
processor for trees that have a canonical serialization as a
string, as is the case with XML. Example 3 shows that the
ability to edit tree serializations is more powerful than emit-
ting tree edits. The example can be used to show that there
are XML schemas that can be repaired in streaming fash-
ion with a bounded number of edits on the serialization, but
where there is no bounded repair processor of any sort (even
non-streaming) that repairs using only tree edits. We do
not know if this last phenomena can occur for more limited
schemas, such as DTDs.
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