
ar
X

iv
:1

20
1.

41
83

v2
 [

cs
.D

C
]

 2
 F

eb
 2

01
2

Iterative Approximate Byzantine Consensus

in Arbitrary Directed Graphs ∗

Nitin Vaidya1,3, Lewis Tseng2,3, and Guanfeng Liang1,3

1 Department of Electrical and Computer Engineering,
2 Department of Computer Science, and

3 Coordinated Science Laboratory

University of Illinois at Urbana-Champaign

Email: {nhv, ltseng3, gliang2}@illinois.edu

Technical Report†

February 2, 2012

∗This research is supported in part by National Science Foundation award CNS 1059540.
Any opinions, findings, and conclusions or recommendations expressed here are those of
the authors and do not necessarily reflect the views of the funding agencies or the U.S.
government.

†This report is a modified version of a previous technical report (Nitin Vaidya, Lewis
Tseng, and Guanfeng Liang. Iterative Approximate Byzantine Consensus in Arbitrary Di-
rected Graphs. CoRR, abs/1201.4183, January 19 2012. http://arxiv.org/abs/1201.4183)

http://arxiv.org/abs/1201.4183v2
http://arxiv.org/abs/1201.4183

1 Introduction

In this paper, we explore the problem of iterative approximate Byzantine consensus in ar-
bitrary directed graphs. In particular, we prove a necessary and sufficient condition for the
existence of iterative Byzantine consensus algorithms. Additionally, we use our sufficient
condition to examine whether such algorithms exist for some specific graphs.

Approximate Byzantine consensus [5] is a natural extension of original Byzantine Gener-
als (or Byzantine consensus) problem [9]. The goal in approximate consensus is to allow the
fault-free nodes to agree on values that are approximately equal to each other. There exist
iterative algorithms for the approximate consensus problem that work correctly in fully con-
nected graphs [5, 12] when the number of nodes n exceeds 3f , where f is the upper bound on
the number of failures. In [6], Fekete studies the convergence rate of approximate consensus
algorithms. Ben-Or et al. develop an algorithm based on Gradcast to solve approximate
consensus efficiently in a fully connected network [3].

There have been attempts at achieving approximate consensus iteratively in partially
connected graphs. In [8], Kieckhafer and Azadmanesh examined the necessary conditions in
order to achieve “local” convergence and performed a case study on global convergence in
some special graphs. Later, they extended their work to asynchronous systems [2]. In [1],
Azadmanesh et al. showed how to build a special network, called Partially Fully Connected
Network, in which global convergence is achieved. Srinivasan and Azadmanesh studied
the application of iterative approximate consensus in data aggregation, and developed an
analytical approach using Markov chains [13, 14].

In [16], Sundaram and Hadjicostis explored Byzantine-fault tolerant distributed function
calculation in an arbitrary network assuming a broadcast model. Under the broadcast model,
every transmission of a node is received by all its neighbors. Hence, faulty nodes can send
false data, but they have to send exactly the same piece of data to all their neighbors. They
proved that distributed function calculation is possible if network connectivity is at least
2f + 1. Their algorithm maintains more “history” (a sequence of previous states) than the
iterative algorithms considered in this paper.

In [18], Zhang and Sundaram studied the sufficient conditions for iterative consensus
algorithm under “f-local” fault model. They also provided a construction of graphs satisfying
the sufficient conditions.

LeBlanc and Koutsoukos [10] address a continuous time version of the Byzantine con-
sensus problem in complete graphs. Recently, for the broadcast model, LeBlanc et al. have
independently developed necessary and sufficient conditions for f -fault tolerant approximate
consensus in arbitrary graphs [17]; in [11] they have developed some sufficient conditions for
correctness of a class of iterative consensus algorithms.

To the best of our knowledge, characterization of tight necessary and sufficient conditions
for iterative approximate consensus in arbitrary directed graphs in the presence of Byzantine
faults under point-to-point model is still an open problem. Iterative approximate consensus
algorithms without any fault tolerance capability (i.e., f = 0) in arbitrary graphs have been
explored extensively. The proof of convergence presented in this paper is inspired by the

2

prior work on non-fault-tolerant algorithms [4].

2 Preliminaries

2.1 Network Model

The network is modeled as a simple directed graph G(V, E), where V = {1, . . . , n} is the set
of n nodes, and E is the set of directed edges between nodes in V. We use the terms “edge”
and “link” interchangeably. We assume that n ≥ 2, since the consensus problem for n = 1
is trivial. If a directed edge (i, j) ∈ E , then node i can reliably transmit to node j. For
convenience, we exclude self-loops from E , although every node is allowed to send messages
to itself. We also assume that all edges are authenticated, such that when a node j receives
a message from node i (on edge (i, j)), it can correctly determine that the message was sent
by node i. For each node i, let N−

i be the set of nodes from which i has incoming edges.
That is, N−

i = { j | (j, i) ∈ E }. Similarly, define N+
i as the set of nodes to which node i

has outgoing edges. That is, N+
i = { j | (i, j) ∈ E }. By definition, i 6∈ N−

i and i 6∈ N+
i .

However, we emphasize that each node can indeed send messages to itself. The network is
assumed to be synchronous.

2.2 Failure Model

We consider the Byzantine failure model, with up to f nodes becoming faulty. A faulty node
may misbehave arbitrarily. Possible misbehavior includes sending incorrect and mismatching
messages to different neighbors. The faulty nodes may potentially collaborate with each
other. Moreover, the faulty nodes are assumed to have a complete knowledge of the state of
the other nodes in the system and a complete knowledge of specification of the algorithm.

2.3 Iterative Approximate Byzantine Consensus

We consider iterative Byzantine consensus as follows:

• Up to f nodes in the network may be Byzantine faulty.

• Each node starts with an input, which is assumed to be a single real number.

• Each node i maintains state vi, with vi[t] denoting the state of node i at the end of
the t-th iteration of the algorithm. vi[0] denotes the initial state of node i, which is
set equal to its input. Note that, at the start of the t-th iteration (t > 0), the state of
node i is vi[t− 1].

• The goal of an approximate consensus algorithm is to allow each node to compute an
output in each iteration with the following two properties:

3

– Validity: The output of each node is within the convex hull of the inputs at the
fault-free nodes.

– Convergence: The outputs of the different fault-free nodes converge to an iden-
tical value as t→ ∞.

• Output constraint: For the family of iterative algorithms considered in this paper,
output of node i at time t is equal to its state vi[t].

The iterative algorithms will be implemented as follows:

• At the start of t-th iteration, t ≥ 1, each node i sends vi[t− 1] on all its outgoing links
(to nodes in N+

i).

• Denote by ri[t] the vector of values received by node i from nodes in N−
i at time t.

The size of vector ri[t] is |N
−
i |.

• Node i updates its state using some transition function Zi as follows, where Zi is part
of the specification of the algorithm:

vi[t] = Zi(ri[t], vi[t− 1])

Since the inputs are real numbers, and because we impose the above output constraint,
the state of each node in each iteration is also viewed as a real number.

The function Zi may be dependent on the network topology. However, as seen later, for
convergence, it suffices for each node i to know N−

i .

Observe that, given the state of the nodes at time t−1, their state at time t is independent
of the prior history. The evolution of the state of the nodes may, therefore, be modeled by
a Markov chain (although we will not use that approach in this paper).

We now introduce some notations.

• Let F denote the set of Byzantine faulty nodes, where |F| ≤ f . Thus, the set of
fault-free nodes is V − F . 1

• U [t] = maxi∈V−F vi[t]. U [t] is the largest state among the fault-free nodes (at time t).
Recall that, due to the output constraint, the state of node i at the end of iteration t
(i.e., vi[t]) is also its output in iteration t.

• µ[t] = mini∈V−F vi[t]. µ[t] is the smallest state among the fault-free nodes at time t
(we will use the phrase “at time t” interchangeably with “at the end of t-th iteration”).

With the above notation, we can restate the validity and convergence conditions as follows:

• Validity: ∀t > 0, U [t] ≤ U [0] and µ[t] ≥ µ[0]

1For sets X and Y , X − Y contains elements that are in X but not in Y . That is, X − Y = {i | i ∈
X, i 6∈ Y }.

4

• Convergence: lim t→∞ U [t]− µ[t] = 0

The output constraint and the validity condition together imply that the iterative algo-
rithms of interest do not maintain a “sense of time”. In particular, the iterative computation
by the algorithm, as captured in functions Zi, cannot explicitly take the elapsed time (or t)
into account.2 Due to this, the validity condition for algorithms of interest here becomes:

Validity: ∀t > 0, U [t] ≤ U [t − 1] and µ[t] ≥ µ[t− 1] (1)

In the discussion below, when we refer to the validity condition, we mean (1).

For illustration, below we present Algorithm 1 that satisfies the output constraint. The
algorithm has been proved to achieve validity and convergence in fully connected graphs with
n > 3f [5, 12]. We will later address correctness of this algorithm in arbitrary graphs.
Here, we assume that each node v ∈ V has at least 2f incoming links. That is |N−

i | ≥ 2f .
Later, we will show that there is no iterative Byzantine consensus if this condition does not
hold.

Algorithm 1

Steps that should be performed by each node i ∈ V in the t-th iteration are as follows. Note
that the faulty nodes may deviate from this specification. Output of node i at time t is vi[t].

1. Transmit current state vi[t− 1] on all outgoing edges.

2. Receive values on all incoming edges (these values form vector ri[t] of size |N−
i |).

3. Sort the values in ri[t] in an increasing order, and eliminate the smallest f values, and
the largest f values (breaking ties arbitrarily). Let N∗

i [t] denote the identifiers of nodes
from whom the remaining N−

i − 2f values were received, and let wj denote the value
received from node j ∈ N∗

i . Then, |N
∗
i [t]| = |N−

i | − 2f . By definition, i 6∈ N∗
i [t]. Note

that if j ∈ {i} ∪N∗
i [t] is fault-free, then wj = vj [t− 1]. Define

vi[t] = Zi(ri[t], vi[t− 1]) =
∑

j∈{i}∪N∗

i
[t]

ai wj (2)

where

ai =
1

|N−
i |+ 1− 2f

The “weight” of each term on the right side of (2) is ai, and these weights add to 1.
Also, 0 < ai ≤ 1. For future reference, let us define α as:

α = min
i∈V

ai (3)

2In a practical implementation, the algorithm may keep track of time, for instance, to decide to terminate
after a certain number of iterations.

5

3 Necessary Condition

For an iterative Byzantine approximate consensus algorithm satisfying the output constraint,
the validity condition, and the convergence condition to exist, the underlying graph G(V, E)
must satisfy a necessary condition proved in this section. We now define relations ⇒ and 6⇒
that are used frequently in our proofs.

Definition 1 For non-empty disjoint sets of nodes A and B, A⇒ B iff there exists a node
v ∈ B that has at least f + 1 incoming links from nodes in A, i.e., |N−

v ∩ A| > f .
A 6⇒ B iff A⇒ B is not true.

Theorem 1 Let sets F, L, C,R form a partition3 of V, such that

• 0 ≤ |F | ≤ f ,

• 0 < |L|, and

• 0 < |R|

Then, at least one of the two conditions below must be true.

• C ∪ R⇒ L

• L ∪ C ⇒ R

Proof: The proof is by contradiction. Let us assume that a correct iterative consensus
algorithm exists, and C∪R 6⇒ L and L∪C 6⇒ R. Thus, for any i ∈ L, |N−

i ∩(C∪R)| < f+1,
and j ∈ R, |N−

j ∩ (L ∪ C)| < f + 1, Figure 1 illustrates the sets used in this proof.

Also assume that the nodes in F (if F is non-empty) are all faulty, and the remaining
nodes, in sets L,R,C, are fault-free. Note that the fault-free nodes are not necessarily aware
of the identity of the faulty nodes.

Consider the case when (i) each node in L has input m, (ii) each node in R has input
M , such that M > m, and (iii) each node in C, if C is non-empty, has an input in the range
[m,M].

At the start of iteration 1, suppose that the faulty nodes in F (if non-empty) send
m− < m to nodes in L, send M+ > M to nodes in R, and send some arbitrary value in
[m,M] to the nodes in C (if C is non-empty). This behavior is possible since nodes in F are
faulty. Note that m− < m < M < M+. Each fault-free node k ∈ V − F , sends to nodes in
N+

k value vk[0] in iteration 1.

3Sets X1, X2, X3, ..., Xp are said to form a partition of set X provided that (i) ∪1≤i≤pXi = X and
Xi ∩Xj = Φ when i 6= j.

6

V

F

C
L R

< f+1

< f+1

.

.

.

.

< f+1

for any i in L

for any j in R

Figure 1: Illustration for the proof of Theorem 1. In this figure, C ∪R 6⇒ L and L∪C 6⇒ R.

Consider any node i ∈ L. Denote N ′(i) = N−
i ∩ (C ∪R). Since C ∪R 6⇒ L, |N ′(i)| ≤ f .

Node i will then receive m− from the nodes in F ∩N−
i , and values in [m,M] from the nodes

in N ′(i), and m from the nodes in {i} ∪ (L ∩N−
i).

Consider four cases:

• F and N ′(i) are both empty: In this case, all the values that i receives are from nodes
in {i} ∪ (L ∩ N−

i), and are identical to m. By validity condition (1), node i must set
its new state, vi[1], to be m as well.

• F is empty and N ′(i) is non-empty: In this case, since |N ′(i)| ≤ f , from i’s perspective,
it is possible that all the nodes in N ′(i) are faulty, and the rest of the nodes are fault-
free. In this situation, the values sent to node i by the fault-free nodes (which are all
in {i} ∪ (L ∩N−

i)) are all m, and therefore, vi[1] must be set to m as per the validity
condition (1).

• F is non-empty and N ′(i) is empty: In this case, since |F | ≤ f , it is possible that all
the nodes in F are faulty, and the rest of the nodes are fault-free. In this situation,
the values sent to node i by the fault-free nodes (which are all in {i} ∪ (L ∩N−

i)) are
all m, and therefore, vi[1] must be set to m as per the validity condition (1).

• Both F and N ′(i) are non-empty: From node i’s perspective, consider two possible
scenarios: (a) nodes in F are faulty, and the other nodes are fault-free, and (b) nodes
in N ′(i) are faulty, and the other nodes are fault-free.

In scenario (a), from node i’s perspective, the non-faulty nodes have values in [m,M]
whereas the faulty nodes have value m−. According to the validity condition (1),

7

vi[1] ≥ m. On the other hand, in scenario (b), the non-faulty nodes have values m−

and m, where m− < m; so vi[1] ≤ m, according to the validity condition (1). Since
node i does not know whether the correct scenario is (a) or (b), it must update its
state to satisfy the validity condition in both cases. Thus, it follows that vi[1] = m.

Observe that in each case above vi[1] = m for each node i ∈ L. Similarly, we can show that
vj [1] =M for each node j ∈ R.

Now consider the nodes in set C, if C is non-empty. All the values received by the nodes
in C are in [m,M], therefore, their new state must also remain in [m,M], as per the validity
condition.

The above discussion implies that, at the end of the first iteration, the following conditions
hold true: (i) state of each node in L is m, (ii) state of each node in R is M , and (iii) state
of each node in C is in [m,M]. These conditions are identical to the initial conditions
listed previously. Then, by induction, it follows that for any t ≥ 0, vi[t] = m, ∀i ∈ L, and
vj [t] = M, ∀j ∈ R. Since L and R contain fault-free nodes, the convergence requirement is
not satisfied. This is a contradiction to the assumption that a correct iterative algorithm
exists. ✷

Corollary 1 Let {F, L,R} be a partition of V, such that 0 ≤ |F | ≤ f , and L and R are
non-empty. Then, either L⇒ R or R ⇒ L.

Proof: The proof follows by setting C = Φ in Theorem 1. ✷

While the two corollaries below are also proved in prior literature [7], we derive them
again using the necessary condition above.

Corollary 2 The number of nodes n must exceed 3f for the existence of a correct iterative
consensus algorithm tolerating f failures.

Proof: The proof is by contradiction. Suppose that 2 ≤ n ≤ 3f , and consider the following
two cases:

• 2 ≤ n ≤ 2f : Suppose that L,R, F is a partition of V such that |L| = ⌈n/2⌉ ≤ f ,
|R| = ⌊n/2⌋ ≤ f and F = Φ. Note that L and R are non-empty, and |L|+ |R| = n.

• 2f < n ≤ 3f : Suppose that L,R, F is a partition of V, such that |L| = |R| = f and
|F | = n− 2f . Note that 0 < |F | ≤ f .

In both cases above, Corollary 1 is applicable. Thus, either L ⇒ R or R ⇒ L. For L ⇒ R
to be true, L must contain at least f + 1 nodes. Similarly, for R ⇒ L to be true, R must
contain at least f + 1 nodes. Therefore, at least one of the sets L and R must contain more
than f nodes. This contradicts our choice of L and R above (in both cases, size of L and R
is ≤ f). Therefore, n must be larger than 3f . ✷

8

Corollary 3 When f > 0, for each node i ∈ V, |N−
i | ≥ 2f +1, i.e., each node i has at least

2f + 1 incoming links.

Proof: The proof is by contradiction. Suppose that for some node i, |N−
i | ≤ 2f . Define

set L = {i}. Partition N−
i into two sets F and H such that |H| = ⌊|N−

i |/2⌋ ≤ f and
|F | = ⌈|N−

i |/2⌉ ≤ f . Define R = V − F − L = V − F − {i}. Thus, N−
i ∩ R = H ,

and |N−
i ∩ R| ≤ f . Therefore, since L = {i} and |N−

i ∩ R| ≤ f , R 6⇒ L. Also, since
|L| = 1 < f + 1, L 6⇒ R.

This violates Corollary 1. ✷

4 Useful Lemmas

Definition 2 For disjoint sets A,B, in(A ⇒ B) denotes the set of all the nodes in B that
each have at least f + 1 incoming links from nodes in A. More formally,

in(A⇒ B) = { v |v ∈ B and f + 1 ≤ |N−
v ∩ A| }

With a slight abuse of notation, when A 6⇒ B, define in(A ⇒ B) = Φ.

Definition 3 For non-empty disjoint sets A and B, set A is said to propagate to set B in
l steps, where l > 0, if there exist sequences of sets A0, A1, A2, · · · , Al and B0, B1, B2, · · · , Bl

(propagating sequences) such that

• A0 = A, B0 = B, Bl = Φ, and, for τ < l, Bτ 6= Φ.

• for 0 ≤ τ ≤ l − 1,

* Aτ ⇒ Bτ ,

* Aτ+1 = Aτ ∪ in(Aτ ⇒ Bτ), and

* Bτ+1 = Bτ − in(Aτ ⇒ Bτ)

Observe that Aτ and Bτ form a partition of A ∪ B, and for τ < l, in(Aτ ⇒ Bτ) 6= Φ. Also,
when set A propagates to set B, length l above is necessarily finite. In particular, l is upper
bounded by n− f − 1, since set A must be of size at least f + 1 for it to propagate to B.

Lemma 1 Assume that G(V, E) satisfies Theorem 1. Consider a partition A,B, F of V such
that A and B are non-empty, and |F | ≤ f . If B 6⇒ A, then set A propagates to set B.

9

Proof: Since A,B are non-empty, and B 6⇒ A, by Corollary 1, we have A⇒ B.

The proof is by induction. Define A0 = A and B0 = B. Thus A0 ⇒ B0 and B0 6⇒ A0.
Note that A0 and B0 are non-empty.

Induction basis: For some τ ≥ 0,

• for 0 ≤ k < τ , Ak ⇒ Bk, and Bk 6= Φ,

• either Bτ = Φ or Aτ ⇒ Bτ ,

• for 0 ≤ k < τ , Ak+1 = Ak ∪ in(Ak ⇒ Bk), and Bk+1 = Bk − in(Ak ⇒ Bk)

Since A0 ⇒ B0, the induction basis holds true for τ = 0.

Induction: If Bτ = Φ, then the proof is complete, since all the conditions specified in
Definition 3 are satisfied by the sequences of sets A0, A1, · · · , Aτ and B0, B1, · · · , Bτ .

C

B
τ+1 = R L = A0

A τ+1 B0

V - F

.

.

.

for any i in L

< f+1

for any j in R

< f+1

Figure 2: Illustration for the proof Lemma 1. In this figure, B0 6⇒ A0 and Aτ+1 6⇒ Bτ+1

.

Now consider the case when Bτ 6= Φ. By assumption, Ak ⇒ Bk, for 0 ≤ k ≤ τ . Define
Aτ+1 = Aτ ∪ in(Aτ ⇒ Bτ) and Bτ+1 = Bτ − in(Aτ ⇒ Bτ). Our goal is to prove that either
Bτ+1 = Φ or Aτ+1 ⇒ Bτ+1. If Bτ+1 = Φ, then the induction is complete. Therefore, now let
us assume that Bτ+1 6= Φ and prove that Aτ+1 ⇒ Bτ+1. We will prove this by contradiction.

Suppose that Aτ+1 6⇒ Bτ+1. Define subsets L,C,R as follows: L = A0, C = Aτ+1 − A0

and R = Bτ+1. Figure 2 illustrates the sets used in this proof. Due to the manner in which
Ak’s and Bk’s are defined, we also have C = B0 − Bτ+1. Observe that L,C,R, F form a
partition of V, where L,R are non-empty, and the following relationships hold:

10

• C ∪ R = B0, and

• L ∪ C = Aτ+1

Rewriting B0 6⇒ A0 and Aτ+1 6⇒ Bτ+1, using the above relationships, we have, respectively,

C ∪R 6⇒ L,

and
L ∪ C 6⇒ R

This violates the necessary condition in Theorem 1. This is a contradiction, completing the
induction.

Thus, we have proved that, either (i) Bτ+1 = Φ, or (ii) Aτ+1 ⇒ Bτ+1. Eventually, for
large enough t, Bt will become Φ, resulting in the propagating sequences A0, A1, · · · , At and
B0, B1, · · · , Bt, satisfying the conditions in Definition 3. Therefore, A propagates to B.

✷

Lemma 2 Assume that G(V, E) satisfies Theorem 1. For any partition A,B, F of V, where
A,B are both non-empty, and |F | ≤ f , at least one of the following conditions must be true:

• A propagates to B, or

• B propagates to A

Proof: Consider two cases:

• A 6⇒ B: Then by Lemma 1, B propagates to A, completing the proof.

• A⇒ B: In this case, consider two sub-cases:

– A propagates to B: The proof in this case is complete.

– A does not propagate to B: Thus, propagating sequences defined in Definition 3
do not exist in this case. More precisely, there must exist k > 0, and sets
A0, A1, · · · , Ak and B0, B1, · · · , Bk, such that:

∗ A0 = A and B0 = B, and

∗ for 0 ≤ i ≤ k − 1,

o Ai ⇒ Bi,

o Ai+1 = Ai ∪ in(Ai ⇒ Bi), and

o Bi+1 = Bi − in(Ai ⇒ Bi).

∗ Bk 6= Φ and Ak 6⇒ Bk.

11

The last condition above violates the requirements for A to propagate to B.

Now Ak 6= Φ, Bk 6= Φ, and Ak, Bk, F form a partition of V. Since Ak 6⇒ Bk, by
Lemma 1, Bk propagates to Ak.

Since Bk ⊆ B0 = B, A ⊆ Ak, and Bk propagates to Ak, it should be easy
to see that B propagates to A. The proof is presented in the Appendix B for
completeness.

✷

5 Sufficiency

We prove that the necessary condition in Theorem 1 is sufficient. In particular, we will prove
that Algorithm 1 satisfies validity and convergence conditions when the necessary condition
is satisfied.

In the discussion below, assume that graph G(V, E) satisfies Theorem 1, and that F is the
set of faulty nodes in the network. Thus, the nodes in V −F are fault-free. Since Theorem 1
holds for G(V, E), all the subsequently developed corollaries and lemmas in Sections 3 and
4 also hold for G(V, E).

Theorem 2 Suppose that G(V, E) satisfies Theorem 1. Then Algorithm 1 satisfies the va-
lidity condition (1).

Proof: Consider the t-th iteration, and any fault-free node i ∈ V −F . Consider two cases:

• f = 0: In (2), note that vi[t] is computed using states from the previous iteration at
node i and other nodes. By definition of µ[t−1] and U [t−1], vj [t−1] ∈ [µ[t−1], U [t−1]]
for all fault-free nodes j ∈ V −F . Thus, in this case, all the values used in computing
vi[t] are in the range [µ[t− 1], U [t− 1]]. Since vi[t] is computed as a weighted average
of these values, vi[t] is also within [µ[t− 1], U [t− 1]].

• f > 0: By Corollary 3, |N−
i | ≥ 2f +1, and therefore, |ri[t]| ≥ 2f +1. When computing

set N∗
i [t], the largest f and smallest f values from ri[t] are eliminated. Since at

most f nodes are faulty, it follows that, either (i) the values received from the faulty
nodes are all eliminated, or (ii) the values from the faulty nodes that still remain are
between values received from two fault-free nodes. Thus, the remaining values in ri[t]
(vj[t − 1], ∀j ∈ N∗

i [t]) are all in the range [µ[t − 1], U [t − 1]]. Also, vi[t − 1] is in
[µ[t− 1], U [t− 1]], as per the definition of µ[t− 1] and U [t− 1]. Thus vi[t] is computed
as a weighted average of values in [µ[t− 1], U [t − 1]], and, therefore, it will also be in
[µ[t− 1], U [t− 1]].

Since ∀i ∈ V − F , vi[t] ∈ [µ[t− 1], U [t− 1]], the validity condition (1) is satisfied. ✷

12

Lemma 3 Consider node i ∈ V − F . Let ψ ≤ µ[t− 1]. Then, for j ∈ {i} ∪N∗
i [t],

vi[t]− ψ ≥ ai (wj − ψ)

Specifically, for fault-free j ∈ {i} ∪N∗
i [t],

vi[t]− ψ ≥ ai (vj [t− 1]− ψ)

Proof: In (2), for each j ∈ N∗
i [t], consider two cases:

• Either j = i or j ∈ N∗
i [t] ∩ (V − F): Thus, j is fault-free. In this case, wj = vj [t− 1].

Therefore, µ[t− 1] ≤ wj ≤ U [t− 1].

• j is faulty: In this case, f must be non-zero (otherwise, all nodes are fault-free). From
Corollary 3, |N−

i | ≥ 2f +1. Then it follows that, in step 2 of Algorithm 1, the smallest
f values in ri[t] contain the state of at least one fault-free node, say k. This implies
that vk[t− 1] ≤ wj. This, in turn, implies that µ[t− 1] ≤ wj.

Thus, for all j ∈ {i} ∪N∗
i [t], we have µ[t− 1] ≤ wj. Therefore,

wj − ψ ≥ 0 for all j ∈ {i} ∪N∗
i [t] (4)

Since weights in Equation 2 add to 1, we can re-write that equation as,

vi[t]− ψ =
∑

j∈{i}∪N∗

i
[t]

ai (wj − ψ) (5)

≥ ai (wj − ψ), ∀j ∈ {i} ∪N∗
i [t] from (4)

For non-faulty j ∈ {i} ∪N∗
i [t], wj = vj [t− 1], therefore,

vi[t]− ψ ≥ ai (vj [t− 1]− ψ) (6)

✷

Lemma 4 Consider node i ∈ V − F . Let Ψ ≥ U [t− 1]. Then, for j ∈ {i} ∪N∗
i [t],

Ψ− vi[t] ≥ ai (Ψ− wj)

Specifically, for fault-free j ∈ {i} ∪N∗
i [t],

Ψ− vi[t] ≥ ai (Ψ− vj[t− 1])

The proof of Lemma 4 is similar to that of Lemma 3. The proof is presented in Appendix
C.

13

The lemma below uses parameter α defined in (3).

Lemma 5 At time s (i.e., at the end of the s-th iteration), suppose that the fault-free nodes
in V − F can be partitioned into non-empty sets R,L such that (i) R propagates to L in l

steps, and (ii) the states of nodes in R are confined to an interval of length ≤ U [s]−µ[s]
2

. Then,

U [s+ l]− µ[s+ l] ≤

(

1−
αl

2

)

(U [s]− µ[s]) (7)

Proof: Since R propagates to L, as per Definition 3, there exist sequences of sets R0, R1, · · · , Rl

and L0, L1, · · · , Ll, where

• R0 = R, L0 = L, Ll = Φ, for 0 ≤ τ < l, Lτ 6= Φ, and

• for 0 ≤ τ ≤ l − 1,

* Rτ ⇒ Lτ ,

* Rτ+1 = Rτ ∪ in(Rτ ⇒ Lτ), and

* Lτ+1 = Lτ − in(Rτ ⇒ Lτ)

Let us define the following bounds on the states of the nodes in R at the end of the s-th
iteration:

M = maxj∈R vj [s] (8)

m = minj∈R vj [s] (9)

By the assumption in the statement of Lemma 5,

M −m ≤
U [s]− µ[s]

2
(10)

Also, M ≤ U [s] and m ≥ µ[s]. Therefore, U [s]−M ≥ 0 and m− µ[s] ≥ 0.

The remaining proof of Lemma 5 relies on derivation of the three intermediate claims
below.

Claim 1 For 0 ≤ τ ≤ l, for each node i ∈ Rτ ,

vi[s+ τ]− µ[s] ≥ ατ (m− µ[s]) (11)

14

Proof of Claim 1: The proof is by induction.

Induction basis: For some τ , 0 ≤ τ < l, for each node i ∈ Rτ , (11) holds. By definition
of m, the induction basis holds true for τ = 0.

Induction: Assume that the induction basis holds true for some τ , 0 ≤ τ < l. Consider Rτ+1.
Observe that Rτ and Rτ+1 − Rτ form a partition of Rτ+1; let us consider each of these sets
separately.

• Set Rτ : By assumption, for each i ∈ Rτ , (11) holds true. By validity of Algorithm 1,
µ[s] ≤ µ[s+ τ]. Therefore, setting ψ = µ[s] in Lemma 3, we get,

vi[s+ τ + 1]− µ[s] ≥ ai (vi[s+ τ]− µ[s])

≥ ai α
τ(m− µ[s]) due to (11)

≥ ατ+1(m− µ[s]) due to (3)

• Set Rτ+1 − Rτ : Consider a node i ∈ Rτ+1 − Rτ . By definition of Rτ+1, we have that
i ∈ in(Rτ ⇒ Lτ). Thus,

|N−
i ∩Rτ | ≥ f + 1

In Algorithm 1, 2f values (f smallest and f largest) received by node i are eliminated
before vi[s + τ + 1] is computed at the end of (s + τ + 1)-th iteration. Consider two
possibilities:

– Value received from one of the nodes in N−
i ∩Rτ is not eliminated. Suppose that

this value is received from fault-free node p ∈ N−
i ∩ Rτ . Then, by an argument

similar to the previous case, we can set ψ = µ[s] in Lemma 3, to obtain,

vi[s+ τ + 1]− µ[s] ≥ ai (vp[s+ τ]− µ[s])

≥ ai α
τ (m− µ[s]) due to (11)

≥ ατ+1(m− µ[s]) due to (3)

– Values received from all (there are at least f+1) nodes in N−
i ∩Rτ are eliminated.

Note that in this case f must be non-zero (for f = 0, no value is eliminated, as
already considered in the previous case). By Corollary 3, we know that each node
must have at least 2f + 1 incoming edges. Since at least f + 1 values from nodes
in N−

i ∩Rτ are eliminated, and there are at least 2f +1 values to choose from, it
follows that the values that are not eliminated4 are within the interval to which
the values from N−

i ∩Rτ belong. Thus, there exists a node k (possibly faulty) from
whom node i receives some value wk – which is not eliminated – and a fault-free
node p ∈ N−

i ∩Rτ such that

vp[s+ τ] ≤ wk (12)

4At least one value received from the nodes in N−
i is not eliminated, since there are 2f + 1 incoming

edges, and only 2f values are eliminated.

15

Then by setting ψ = µ[s] in Lemma 3 we have

vi[s + τ + 1]− µ[s] ≥ ai (wk − µ[s])

≥ ai (vp[s+ τ]− µ[s]) due to (12)

≥ ai α
τ (m− µ[s]) due to (11)

≥ ατ+1(m− µ[s]) due to (3)

Thus, we have shown that for all nodes in Rτ+1,

vi[s+ τ + 1]− µ[s] ≥ ατ+1(m− µ[s])

This completes the proof of Claim 1.

Claim 2 For each node i ∈ V − F ,

vi[s+ l]− µ[s] ≥ αl(m− µ[s]) (13)

Proof of Claim 2:

Notice that by definition, Rl = V − F . Then the proof follows by setting τ = l in the
above Claim 1.

By a procedure similar to the derivation of Claim 2 above, we can also prove the claim
below. The proof of Claim 3 is presented in the Appendix for completeness.

Claim 3 For each node i ∈ V − F ,

U [s]− vi[s+ l] ≥ αl(U [s]−M) (14)

Now let us resume the proof of the Lemma 5. Note that Rl = V − F . Thus,

U [s+ l] = max
i∈V−F

vi[s+ l]

≤ U [s]− αl(U [s]−M) by (14) (15)

and

µ[s+ l] = min
i∈V−F

vi[s + l]

≥ µ[s] + αl(m− µ[s]) by (13) (16)

16

Subtracting (16) from (15),

U [s+ l]− µ[s+ l] ≤ U [s]− αl(U [s]−M)− µ[s]− αl(m− µ[s])

= (1− αl)(U [s]− µ[s]) + αl(M −m) (17)

≤ (1− αl)(U [s]− µ[s]) + αl U [s]− µ[s]

2
by (10) (18)

≤ (1−
αl

2
)(U [s]− µ[s]) (19)

This concludes the proof of Lemma 5. ✷

Theorem 3 Suppose that G(V, E) satisfies Theorem 1. Then Algorithm 1 satisfies the con-
vergence condition.

Proof: Our goal is to prove that, given any ǫ > 0, there exists τ such that

U [t]− µ[t] ≤ ǫ ∀t ≥ τ (20)

Consider s-th iteration, for some s ≥ 0. If U [s]−µ[s] = 0, then the algorithm has already
converged, and the proof is complete, with τ = s.

Now consider the case when U [s] − µ[s] > 0. Partition V − F into two subsets, A

and B, such that, for each node i ∈ A, vi[s] ∈
[

µ[s], U [s]+µ[s]
2

)

, and for each node j ∈ B,

vj [s] ∈
[

U [s]+µ[s]
2

, U [s]
]

. By definition of µ[s] and U [s], there exist fault-free nodes i and j

such that vi[s] = µ[s] and vj[s] = U [s]. Thus, sets A and B are both non-empty. By Lemma
2, one of the following two conditions must be true:

• Set A propagates to set B. Then, define L = B and R = A. The states of all the
nodes in R = A are confined within an interval of length < U [s]+µ[s]

2
− µ[s] ≤ U [s]−µ[s]

2
.

• Set B propagates to set A. Then, define L = A and R = B. In this case, states of all the
nodes in R = B are confined within an interval of length ≤ U [s]− U [s]+µ[s]

2
≤ U [s]−µ[s]

2
.

In both cases above, we have found non-empty sets L and R such that (i) L,R is a partition
of V−F , (ii) R propagates to L, and (iii) the states in R are confined to an interval of length

≤ U [s]−µ[s]
2

. Suppose that R propagates to L in l(s) steps, where l(s) ≥ 1. By Lemma 5,

U [s + l(s)]− µ[s+ l(s)] ≤

(

1−
αl(s)

2

)

(U [s]− µ[s]) (21)

Since n− f − 1 ≥ l(s) ≥ 1 and 0 < α ≤ 1, 0 ≤
(

1− αl(s)

2

)

< 1.

Let us define the following sequence of iteration indices5:

5Without loss of generality, we assume that U [τi] − µ[τi] > 0. Otherwise, the statement is trivially true
due to the validity shown in Theorem 2.

17

• τ0 = 0,

• for i > 0, τi = τi−1 + l(τi−1), where l(s) for any given s was defined above.

By repeated application of the argument leading to (21), we can prove that, for i ≥ 0,

U [τi]− µ[τi] ≤

(

Πi
j=1

(

1−
ατi−τi−1

2

))

(U [0]− µ[0]) (22)

For a given ǫ, by choosing a large enough i, we can obtain

(

Πi
j=1

(

1−
ατi−τi−1

2

))

(U [0]− µ[0]) ≤ ǫ

and, therefore,

U [τi]− µ[τi] ≤ ǫ (23)

For t ≥ τi, by validity of Algorithm 1, it follows that

U [t]− µ[t] ≤ U [τi]− µ[τi] ≤ ǫ

This concludes the proof. ✷

6 Applications

In this section, we use the results in the previous sections to examine whether iterative
approximate Byzantine consensus algorithm exists in some specific networks.

6.1 Core Network

Graph G(V, E) is said to be undirected iff (i, j) ∈ E implies that (j, i) ∈ E . We now define a
class of undirected graphs, named core network.

Definition 4 Core Network: A graph G(V, E) consisting of n > 3f nodes is said to be a
core network if the following properties are satisfied: (i) it includes a clique formed by nodes
in K ⊆ V, such that |K| = 2f + 1, as a subgraph and, (ii) each node i 6∈ K has links to all
the nodes in K. That is, (i) ∀ i, j ∈ K, (i, j) ∈ E and (j, i) ∈ E , and (ii) ∀ v ∈ V −K, and
∀ u ∈ K, (v, u) ∈ E and (u, v) ∈ E .

It is easy to show that a core network satisfies the necessary condition in Theorem 1.
Therefore, Algorithm 1 achieves approximate consensus in such network. We conjecture that
a core network with n = 3f +1 has the smallest number of edges possible in any undirected
network of 3f + 1 nodes for which an iterative approximate consensus algorithm exists.

18

Figure 3: (a) 3-dimensional cube. (b) 3-dimensional cube redrawn to illustrate the partitions
{0,1,2,3} and {4,5,6,7}.

6.2 Hypercube

If the conensus algorithms are not required to satisfy the consatraints imposed on iterative
algorithms in this paper, then it is known that conensus can be achieved in undirected graphs
with connectivity > 2f [12]. However, connectivity of 2f + 1 by itself is not sufficient for
iterative algorithms of interest in this paper. For example, a d-dimensional binary hypercube
is an undirected graph consisting of 2d nodes and has connectivity d. However, a cut of this
graph that removes edges along any one dimension fails to satisfy the necessary condition
in Theorem 1, since each node has exactly one edge that belongs to the cut. Thus, each
node in one part of the partition is neighbor to fewer than f + 1 nodes in the other part,
for any f ≥ 1. Figure 3 illustrates such a partition for a 3-dimensional binary cube. Each
undirected link (i, j) in the figure represents two directed edges, namely, (i, j) and (j, i).

6.3 Chord Network

A chord network is a directed graph defined as follows. This network is similar but not
identical to the network in [15].

Definition 5 Chord network: A graph G(V, E) consisting of n > 3f nodes is said to be a
chord network if (i) V = {0, 1, · · · , n− 1}, (ii) ∀i ∈ V, (i, j) ∈ E iff j = i+ k mod n, where
1 ≤ k ≤ 2f+1. That is, for each node i ∈ V, (i, (i+1) mod n), (i, (i+2) mod n), ..., (i, (i+
2f + 1) mod n) ∈ E.

The case when f = 1 and n = 4 results in a fully connected graph, which trivially satisfies
Theorem 1. The following results can be shown for two other specific chord networks:

• When f = 2 and n = 7, the chord network does not satisfy Theorem 1.

Let V = {0, 1, ..., 6}. Then the counter example is as follows:

Let node 5, 6 be faulty. Then consider L = {0, 2} and R = {1, 3, 4}. This partition
fails Theorem 1. Obviously, L 6⇒ R, since |L| < f + 1 = 3. However, R 6⇒ L, since

19

N−
0 ∩ R = {3, 4} and N−

2 ∩ R = {1, 4}, which have size less than 3. Notice that
this example also illustrate that connectivity of 2f + 1 by itself is not sufficient in an
directed and symmetric network.

• The Chord network with f = 1 and n = 5 satisfies Theorem 1.

7 Asynchronous Networks

The above results can be generalized to derive necessary and sufficient condition for (totally)
asynchronous network under which the algorithm defined in [5] would work correctly. In
essence, the primary change is that the requirement of≥ f+1 incoming links in the definition
of ⇒ needs to be replaced by ≥ 2f + 1 links. This implies that |N−

i | ≥ 3f + 1 for each
node i when f > 0 and n, number of nodes, must exceed 5f . The above results can also be
generalized to the (partially) asynchronous model defined in Section 7 of [4] that allows for
message delay of up to B iterations.

Full details of the above generalizations will be presented in a future technical report.

8 Conclusion

This paper proves a necessary and sufficient condition for the existence of iterative approx-
imate consensus algorithm in arbitrary directed graphs. As a special case, our results can
also be applied to undirected graphs. We also use the necessary and sufficient condition to
determine whether such iterative algorithms exist for certain specific graphs.

In our ongoing research, we are exploring extensions of the above results by relaxing some
of the assumptions made in this work.

References

[1] A.H. Azadmanesh and H. Bajwa. Global convergence in partially fully connected net-
works (pfcn) with limited relays. In Industrial Electronics Society, 2001. IECON ’01.
The 27th Annual Conference of the IEEE, volume 3, pages 2022 –2025 vol.3, 2001.

[2] M. H. Azadmanesh and R.M. Kieckhafer. Asynchronous approxi-
mate agreement in partially connected networks. International Jour-
nal of Parallel and Distributed Systems and Networks, 5(1):26–34, 2002.
http://ahvaz.unomaha.edu/azad/pubs/ijpdsn.asyncpart.pdf

[3] Michael Ben-Or, Danny Dolev, and Ezra N. Hoch. Simple gradecast based algorithms.
CoRR, abs/1007.1049, 2010.

20

http://ahvaz.unomaha.edu/azad/pubs/ijpdsn.asyncpart.pdf

[4] Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and Distributed Computation:
Numerical Methods. Optimization and Neural Computation Series. Athena Scientific,
1997.

[5] Danny Dolev, Nancy A. Lynch, Shlomit S. Pinter, Eugene W. Stark, and William E.
Weihl. Reaching approximate agreement in the presence of faults. J. ACM, 33:499–516,
May 1986.

[6] A. D. Fekete. Asymptotically optimal algorithms for approximate agreement. In Pro-
ceedings of the fifth annual ACM symposium on Principles of distributed computing,
PODC ’86, pages 73–87, New York, NY, USA, 1986. ACM.

[7] Michael J. Fischer, Nancy A. Lynch, and Michael Merritt. Easy impossibility proofs for
distributed consensus problems. In Proceedings of the fourth annual ACM symposium
on Principles of distributed computing, PODC ’85, pages 59–70, New York, NY, USA,
1985. ACM.

[8] R. M. Kieckhafer and M. H. Azadmanesh. Low cost approximate agreement in partially
connected networks. Journal of Computing and Information, 3(1):53–85, 1993.

[9] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem.
ACM Trans. on Programming Languages and Systems, 1982.

[10] Heath LeBlanc and Xenofon Koutsoukos. “Consensus in Networked Multi-Agent Sys-
tems with Adversaries,” 14th international conference on Hybrid systems: computation
and control (HSCC), 2011.

[11] (via personal communication with H. LeBlanc, January 19, 2012) Heath J. LeBlanc
and Xenofon Koutsoukos. “Low Complexity Resilient Consensus in Networked Multi-
Agent Systems with Adversaries,” to appear at 15th international conference on Hybrid
systems: computation and control (HSCC), 2012.

[12] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[13] Satish M. Srinivasan and Azad H. Azadmanesh. Data aggregation in partially connected
networks. Comput. Commun., 32:594–601, March 2009.

[14] Satish M. Srinivasana and Azad H. Azadmanesh. Exploiting markov chains to reach
approximate agreement in partially connected networks. In Symposium on Performance
Evaluation of Computer and Telecommunication Systems, 2007.

[15] I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, M.F. Kaashoek, F. Dabek, and
H. Balakrishnan. Chord: a scalable peer-to-peer lookup protocol for internet applica-
tions. Networking, IEEE/ACM Transactions on, 11(1):17 – 32, Feb. 2003.

[16] S. Sundaram and C.N. Hadjicostis. Distributed function calculation via linear iterative
strategies in the presence of malicious agents. Automatic Control, IEEE Transactions
on, 56(7):1495 –1508, July 2011.

21

[17] (via personal communication with S. Sundaram, January 18, 2012) Heath LeBlanc, Hao-
tian Zhang, Shreyas Sundaram, and Xenofon Koutsoukos. “Consensus of Multi-Agent
Networks in the Presence of Adversaries Using Only Local Information,” submitted to
HiCoNs 2012.

[18] Haotian Zhang and Shreyas Sundaram. Robustness of Information Diffusion Al-
gorithms to Locally Bounded Adversaries. In CoRR, volume abs/1110.3843, 2011.
http://arxiv.org/abs/1110.3843

A Proof of Claim 3

In this section, we will prove the claim 3 in Section 5:

For each node i ∈ V − F ,

U [s]− vi[s+ l] ≥ αl(U [s]−M)

Proof: Similar to the proof of claim 2, we will first prove the following claim:

Claim 4 For 0 ≤ τ ≤ l, for each node i ∈ Rτ ,

U [s]− vi[s+ τ] ≥ ατ (U [s]−M) (24)

Proof of Claim 4: The proof is by induction.

Induction basis: For some τ , 0 ≤ τ < l, for each node i ∈ Rτ , (24) holds. By definition
of M , the induction basis holds true for τ = 0.

Induction: Assume that the induction basis holds true for some τ , 0 ≤ τ < l. Consider Rτ+1.
Observe that Rτ and Rτ+1 − Rτ form a partition of Rτ+1; let us consider each of these sets
separately.

• Set Rτ : By assumption, for each i ∈ Rτ , (24) holds true. By validity of Algorithm 1,
U [s] ≥ U [s+ τ]. Therefore, setting Ψ = U [s] in Lemma 4, we get,

U [s]− vi[s+ τ + 1] ≥ ai (U [s]− vi[s+ τ])

≥ ai α
τ (U [s]−M) due to (24)

≥ ατ+1(U [s]−M) due to (3)

• Set Rτ+1 − Rτ : Consider a node i ∈ Rτ+1 − Rτ . By definition of Rτ+1, we have that
i ∈ in(Rτ ⇒ Lτ). Thus,

|N−
i ∩Rτ | ≥ f + 1

In Algorithm 1, 2f values (f smallest and f largest) received by node i are eliminated
before vi[s + τ + 1] is computed at the end of (s + τ + 1)-th iteration. Consider two
possibilities:

22

http://arxiv.org/abs/1110.3843

– Value received from one of the nodes in N−
i ∩Rτ is not eliminated. Suppose that

this value is received from fault-free node p ∈ N−
i ∩ Rτ . Then, by an argument

similar to the previous case, we can set Ψ = U [s] in Lemma 4, to obtain,

U [s]− vi[s+ τ + 1] ≥ ai (U [s]− vp[s+ τ])

≥ ai α
τ (U [s]−M) due to (24)

≥ ατ+1(U [s]−M) due to (3)

– Values received from all (there are at least f+1) nodes in N−
i ∩Rτ are eliminated.

Note that in this case f must be non-zero (for f = 0, no value is eliminated, as
already considered in the previous case). By Corollary 3, we know that each node
must have at least 2f + 1 incoming edges. Since at least f + 1 values from nodes
in N−

i ∩Rτ are eliminated, and there are at least 2f +1 values to choose from, it
follows that the values that are not eliminated are within the interval to which
the values from N−

i ∩Rτ belong. Thus, there exists a node k (possibly faulty) from
whom node i receives some value wk – which is not eliminated – and a fault-free
node p ∈ N−

i ∩Rτ such that

vp[s+ τ] ≥ wk (25)

Then by setting Ψ = U [s] in Lemma 4 we have

U [s]− vi[s+ τ + 1] ≥ ai (U [s]− wk)

≥ ai (U [s]− vp[s+ τ]) due to (25)

≥ ai α
τ (U [s]−M) due to (24)

≥ ατ+1(U [s]−M) due to (3)

Thus, we have shown that for all nodes in Rτ+1,

U [s]− vi[s+ τ] ≥ ατ+1(U [s]−M)

This completes the proof of Claim 4.

Now, we are able to prove Claim 3.

Proof of Claim 3:

Notice that by definition, Rl = V − F . Then the proof follows by setting τ = l in the
above Claim 4.

✷

23

B Completing the proof of Lemma 2

The last line in the proof of Lemma 2 claims that:

“Since Bk ⊆ B0 = B, A ⊆ Ak, and Bk propagates to Ak, it should be easy to see that B
propagates to A.”

We now prove the correctness of this claim.

Proof: Recall that Ai and Bi form a partition of V − F .

Let us define P = P0 = Bk and Q = Q0 = Ak. Thus, P propagates to Q. Suppose that
P0, P1, ...Pm and Q0, Q1, · · · , Qm are the propagating sequences in this case, with Pi and Qi

forming a partition of P ∪Q = Ak ∪Bk = V − F .

Let us define R = R0 = B and S = S0 = A. Note that R, S form a partition of
A ∪ B = V − F . Now, P0 = Bk ⊆ B = R0 and S0 = A ⊆ Ak = Q0. Also, R0 − P0 and S0

form a partition of Q0. Figure 4 illustrates some of the sets used in this proof.

Figure 4: Illustration for the proof of the last line in Lemma 2. In this figure, R0 =
P0 ∪ (R0 − P0) and Q0 = S0 ∪ (R0 − P0).

• Define P1 = P0 ∪ (in(P0 ⇒ Q0)), and R1 = V − F − P1 = Q0 − (in(P0 ⇒ Q0)) Also,
R1 = R0 ∪ (in(R0 ⇒ S0)), and S1 = V − F −R1 = S0 − (in(R0 ⇒ S0)).

Since R0 − P0 and S0 are a partition of Q0, the nodes in in(P0 ⇒ Q0) belong to one
of these two sets. Note that R0 − P0 ⊆ R0. Also, S0 ∩ in(P0 ⇒ Q0) ⊆ in(R0 ⇒ S0).
Therefore, it follows that P1 = P0 ∪ (in(P0 ⇒ Q0)) ⊆ R0 ∪ (in(R0 ⇒ S0)) = R1.

Thus, we have shown that, P1 ⊆ R1. Then it follows that S1 ⊆ Q1.

24

• For 0 ≤ i < m, let us define Ri+1 = Ri ∪ in(Ri ⇒ Si) and Si+1 = Si − in(Ri ⇒ Si).
Then following an argument similar to the above case, we can inductively show that,
Pi ⊆ Ri and Si ⊆ Qi. Due to the assumption on the length of the propagating sequence
above, Pm = P ∪ Q = V − F . Thus, there must exist r ≤ m, such that Rr = V − F
and, for i < r, Ri 6= V − F .

The sequences R0, R1, · · · , Rr and S0, S1, · · · , Sr form propagating sequences, proving
that R = B propagates to S = A.

✷

C Proof of Lemma 4

Proof: In (2), for each j ∈ N∗
i [t], consider two cases:

• Either j = i or j ∈ N∗
i [t] ∩ (V − F): Thus, j is fault-free. In this case, wj = vj [t− 1].

Therefore, µ[t− 1] ≤ wj ≤ U [t− 1].

• j is faulty: In this case, f must be non-zero (otherwise, all nodes are fault-free). From
Corollary 3, |N−

i | ≥ 2f + 1. Then it follows that, in step 2 of Algorithm 1, the largest
f values in ri[t] contain the state of at least one fault-free node, say k. This implies
that vk[t− 1] ≥ wj. This, in turn, implies that U [t− 1] ≥ wj.

Thus, for all j ∈ {i} ∪N∗
i [t], we have U [t− 1] ≥ wj. Therefore,

Ψ− wj ≥ 0 for all j ∈ {i} ∪N∗
i [t] (26)

Since weights in Equation 2 add to 1, we can re-write that equation as,

Ψ− vi[t] =
∑

j∈{i}∪N∗

i
[t]

ai (Ψ− wj) (27)

≥ ai (Ψ− wj), ∀j ∈ {i} ∪N∗
i [t] from (26)

For non-faulty j ∈ {i} ∪N∗
i [t], wj = vj [t− 1], therefore,

Ψ− vi[t] ≥ ai (Ψ− vj [t− 1]) (28)

✷

25

	1 Introduction
	2 Preliminaries
	2.1 Network Model
	2.2 Failure Model
	2.3 Iterative Approximate Byzantine Consensus

	3 Necessary Condition
	4 Useful Lemmas
	5 Sufficiency
	6 Applications
	6.1 Core Network
	6.2 Hypercube
	6.3 Chord Network

	7 Asynchronous Networks
	8 Conclusion
	A Proof of Claim 3
	B Completing the proof of Lemma 2
	C Proof of Lemma 4

