Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/2330163.2330268acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
research-article

MT-CGP: mixed type cartesian genetic programming

Published: 07 July 2012 Publication History

Abstract

The majority of genetic programming implementations build expressions that only use a single data type. This is in contrast to human engineered programs that typically make use of multiple data types, as this provides the ability to express solutions in a more natural fashion. In this paper, we present a version of Cartesian Genetic Programming that handles multiple data types. We demonstrate that this allows evolution to quickly find competitive, compact, and human readable solutions on multiple classification tasks.

References

[1]
H. A. Abbass. An evolutionary artificial neural networks approach for breast cancer diagnosis. Artificial Intelligence in Medicine, 25:265--281, 2002.
[2]
F. Binard and A. Felty. Genetic programming with polymorphic types and higher-order functions. In Proceedings of the 10th annual conference on Genetic and evolutionary computation, GECCO '08, pages 1187--1194, New York, NY, USA, 2008. ACM.
[3]
M. Brameier and W. Banzhaf. A comparison of linear genetic programming and neural networks in medical data mining. Evolutionary Computation, IEEE Transactions on, 5(1):17 --26, feb 2001.
[4]
K. Chang and J. Ghosh. Principal curve classifier-a nonlinear approach to pattern classification. In Neural Networks Proceedings, 1998. IEEE World Congress on Computational Intelligence. The 1998 IEEE International Joint Conference on, volume 1, pages 695 --700 vol.1, may 1998.
[5]
C. Clack and T. Yu. Performance enhanced genetic programming. In IN PROCEEDINGS OF THE SIXTH CONFERENCE ON EVOLUTIONARY PROGRAMMING, pages 87--100. Springer, 1997.
[6]
A. Eftekhari, H. A. Moghaddam, M. Forouzanfar, and J. Alirezaie. Incremental local linear fuzzy classifier in fisher space. EURASIP J. Adv. Signal Process, 2009:15:1--15:9, January 2009.
[7]
P. Espejo, S. Ventura, and F. Herrera. A survey on the application of genetic programming to classification. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 40(2):121 --144, march 2010.
[8]
H. A. Fayed, S. Hashem, and A. F. Atiya. Self-generating prototypes for pattern classification. Pattern Recognition, pages 1498--1509, 2007.
[9]
A. Frank and A. Asuncion. UCI machine learning repository, 2010.
[10]
G. Giacinto and F. Roli. Dynamic classifier selection based on multiple classifier behaviour. Pattern Recognition, 34:1879--1881, 2001.
[11]
A. Guerin-Dugue and et al. Deliverable r3-b4-p task b4: Benchmarks. Technical report, Technical Report, 1995.
[12]
P.-F. Guo, P. Bhattacharya, and N. Kharma. Automated synthesis of feature functions for pattern detection. In Electrical and Computer Engineering (CCECE), 2010 23rd Canadian Conference on, pages 1--4, may 2010.
[13]
P. Hao, L. Tsai, and M. Lin. A new support vector classification algorithm with parametric-margin model. In Neural Networks, 2008. IJCNN 2008. (IEEE World Congress on Computational Intelligence). IEEE International Joint Conference on, pages 420--425. IEEE, 2008.
[14]
S. Harding, J. F. Miller, and W. Banzhaf. Developments in cartesian genetic programming: self-modifying cgp. Genetic Programming and Evolvable Machines, 11(3--4):397--439, 2010.
[15]
S. Harding, J. F. Miller, and W. Banzhaf. A survey of self modifying cgp. Genetic Programming Theory and Practice, 2010, 2010.
[16]
R. Janghel, A. Shukla, R. Tiwari, and R. Kala. Intelligent decision support system for breast cancer. In Y. Tan, Y. Shi, and K. Tan, editors, Advances in Swarm Intelligence, volume 6146 of Lecture Notes in Computer Science, pages 351--358. Springer Berlin / Heidelberg, 2010.
[17]
H. X. Liu, R. S. Zhang, F. Luan, X. J. Yao, M. C. Liu, Z. D. Hu, and B. T. Fan. Diagnosing breast cancer based on support vector machines. Journal of Chemical Information and Computer Sciences, 43(3):900--907, 2003.
[18]
J. F. Miller. An empirical study of the efficiency of learning boolean functions using a cartesian genetic programming approach. In Proceedings of the 1999 Genetic and Evolutionary Computation Conference (GECCO), pages 1135--1142, Orlando, Florida, 1999. Morgan Kaufmann.
[19]
J. F. Miller, editor. Cartesian Genetic Programming. Natural Computing Series. Springer, 2011.
[20]
J. F. Miller, D. Job, and V. K. Vassilev. Principles in the evolutionary design of digital circuits - part I. Genetic Programming and Evolvable Machines, 1(1):8--35, 2000.
[21]
J. F. Miller and S. L. Smith. Redundancy and computational efficiency in cartesian genetic programming. In IEEE Transactions on Evoluationary Computation, volume 10, pages 167--174, 2006.
[22]
D. J. Montana. Strongly typed genetic programming. Evolutionary Computation, 3(2):199--230, 1995.
[23]
M. Oltean and C. Grosan. Solving classification problems using infix form genetic programming. In Programming, The 5 th International Symposium on Intelligent Data Analysis, M. Berthold (et al), (Editors), LNCS 2810, pages 242--252. Springer, 2003.
[24]
L. Prechelt. PROBEN1 -- A set of benchmarks and benchmarking rules for neural network training algorithms. Technical Report 21/94, Fakultat für Informatik, Universität Karlsruhe, D-76128 Karlsruhe, Germany, Sep 1994.
[25]
A. Robinson and L. Spector. Using genetic programming with multiple data types and automatic modularization to evolve decentralized and coordinated navigation in multi-agent systems. In E. Cantú-Paz, editor, Late Breaking Papers at the Genetic and Evolutionary Computation Conference (GECCO-2002), pages 391--396, New York, NY, July 2002. AAAI.
[26]
M. Schmidt and H. Lipson. Distilling free-form natural laws from experimental data. Science, 324(5923):81, 2009.
[27]
L. Spector, J. Klein, and M. Keijzer. The push3 execution stack and the evolution of control. In H.-G. Beyer, U.-M. O'Reilly, D. V. Arnold, W. Banzhaf, C. Blum, E. W. Bonabeau, E. Cantu-Paz, D. Dasgupta, K. Deb, J. A. Foster, E. D. de Jong, H. Lipson, X. Llora, S. Mancoridis, M. Pelikan, G. R. Raidl, T. Soule, A. M. Tyrrell, J.-P. Watson, and E. Zitzler, editors, GECCO 2005: Proceedings of the 2005 conference on Genetic and evolutionary computation, volume 2, pages 1689--1696, Washington DC, USA, 25--29 June 2005. ACM Press.
[28]
Wikipedia. Matthews correlation coefficient -- wikipedia, the free encyclopedia, 2011. {Online; accessed 27-January-2012}.
[29]
T. Yu and C. Clack. Polygp: a polymorphic genetic programming system in haskell. In Proc. of the 3rd Annual Conf. Genetic Programming, pages 416--421. Morgan Kaufmann, 1998.
[30]
B.-T. Zhang and H. Muhlenbein. Balancing accuracy and parsimony in genetic programming. Evolutionary Computation, 3:17--38, 1995.

Cited By

View all
  • (2024)Multimodal Adaptive Graph EvolutionProceedings of the Genetic and Evolutionary Computation Conference Companion10.1145/3638530.3654347(499-502)Online publication date: 14-Jul-2024
  • (2024)Multimodal Adaptive Graph Evolution for Program SynthesisParallel Problem Solving from Nature – PPSN XVIII10.1007/978-3-031-70055-2_19(306-321)Online publication date: 7-Sep-2024
  • (2024)Improving Image Filter Efficiency: A Multi-objective Genetic Algorithm Approach to Optimize Computing EfficiencyApplications of Evolutionary Computation10.1007/978-3-031-56852-7_2(19-34)Online publication date: 3-Mar-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
GECCO '12: Proceedings of the 14th annual conference on Genetic and evolutionary computation
July 2012
1396 pages
ISBN:9781450311779
DOI:10.1145/2330163
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 07 July 2012

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. cartesian genetic programming
  2. classifiers

Qualifiers

  • Research-article

Conference

GECCO '12
Sponsor:
GECCO '12: Genetic and Evolutionary Computation Conference
July 7 - 11, 2012
Pennsylvania, Philadelphia, USA

Acceptance Rates

Overall Acceptance Rate 1,669 of 4,410 submissions, 38%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)15
  • Downloads (Last 6 weeks)4
Reflects downloads up to 27 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Multimodal Adaptive Graph EvolutionProceedings of the Genetic and Evolutionary Computation Conference Companion10.1145/3638530.3654347(499-502)Online publication date: 14-Jul-2024
  • (2024)Multimodal Adaptive Graph Evolution for Program SynthesisParallel Problem Solving from Nature – PPSN XVIII10.1007/978-3-031-70055-2_19(306-321)Online publication date: 7-Sep-2024
  • (2024)Improving Image Filter Efficiency: A Multi-objective Genetic Algorithm Approach to Optimize Computing EfficiencyApplications of Evolutionary Computation10.1007/978-3-031-56852-7_2(19-34)Online publication date: 3-Mar-2024
  • (2023)Evolutionary design of explainable algorithms for biomedical image segmentationNature Communications10.1038/s41467-023-42664-x14:1Online publication date: 6-Nov-2023
  • (2022)Refining Mutation Variants in Cartesian Genetic ProgrammingBioinspired Optimization Methods and Their Applications10.1007/978-3-031-21094-5_14(185-200)Online publication date: 10-Nov-2022
  • (2022)Learning to OptimizeRecent Advances in Computational Optimization10.1007/978-3-031-06839-3_1(1-19)Online publication date: 17-Sep-2022
  • (2022)Comparative Evaluation of Genetic Operators in Cartesian Genetic ProgrammingIntelligent Systems Design and Applications10.1007/978-3-030-96308-8_71(765-774)Online publication date: 27-Mar-2022
  • (2020)Enhancing Cartesian genetic programming through preferential selection of larger solutionsEvolutionary Intelligence10.1007/s12065-020-00421-9Online publication date: 17-May-2020
  • (2019)Recent Developments in Cartesian Genetic Programming and its VariantsACM Computing Surveys10.1145/327551851:6(1-29)Online publication date: 28-Jan-2019
  • (2019)Spherical Bounding Classifier using CGP Generated TransformsIOP Conference Series: Materials Science and Engineering10.1088/1757-899X/495/1/012016495(012016)Online publication date: 7-Jun-2019
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media