Programming and Deployment of Active Objects with
Application-Level Scheduling’

ABSTRACT

We extend and implement a modeling language based on
concurrent active objects with application-level scheduling
policies. The language allows a programmer to assign pri-
orities at the application level, for example, to method def-
initions and method invocations, and assign corresponding
policies to the individual active objects for scheduling the
messages. Thus, we leverage scheduling and performance
related issues, which are becoming increasingly important
in multi-core and cloud applications, from the underlying
operating system to the application level. We describe a
tool-set to transform models of active objects extended with
application-level scheduling policies into Java. This tool-set
allows a direct use of Java class libraries; thus, we obtain a
full-fledged programming language based on active objects
which allows for high-level control of deployment related is-
sues.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Program-
ming; D.2.3 [Software Engineering]: Coding Tools and
Techniques; D.3.0 [Programming Languages]: General

General Terms

Languages, Design

Keywords

Application-level scheduling, Priority scheduling, Creol,
Java, Actor model, Concurrent active objects

1. INTRODUCTION

One of the major challenges in the design of programming
languages is to provide high-level support for multi-core and

*This work is partially supported by the EU FP7-231620
project: HATS.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’12 March 25-29, 2012, Riva del Garda, Italy.

Copyright 2011 ACM 978-1-4503-0857-1/12/03 ...$10.00.

cloud applications which are becoming increasingly impor-
tant. Both multi-core and cloud applications require an
explicit and precise treatment of non-functional properties,
e.g., resource requirements. On the cloud, services execute
in the context of virtual resources, and the amount of re-
sources actually available to a service is subject to change.
Multi-core applications require techniques to help the pro-
grammer optimally use potentially many cores. At the oper-
ating system level, resource management is greatly affected
by scheduling which is largely beyond the control of most
existing high-level programming languages. Therefore, for
optimal use of the available resources, we cannot avoid lever-
aging scheduling and performance related issues from the
underlying operating system to the application level. How-
ever, the very nature of high-level languages is to provide
suitable abstractions that hide implementation details from
the programmer. The main challenge in designing program-
ming languages for multi-core and cloud applications is to
find a balance between these two conflicting requirements.

We investigate in this paper how concurrent active ob-
jects in a high-level object-oriented language can be used for
high-level scheduling of resources . We use the notion of con-
current objects in Creol [9, 3]. A concurrent object in Creol
has control over one processor; i.e. it has a single thread of
execution that is controlled by the object itself. Creol pro-
cesses never leave the enclosing object; method invocations
result in a new process inside the target object. Thus, a
concurrent object provides a natural basis for a deployment
scheme where each object virtually possesses one processor.
Creol further provides high-level mechanisms for synchro-
nization of the method invocations in an object; however,
the scheduling of the method invocations are left unspeci-
fied. Therefore, for the deployment of concurrent objects
in Creol, we must, in the very first place, resolve the basic
scheduling issue; i.e. which method in which object to se-
lect for execution. We show how to introduce priority-based
scheduling of the messages of the individual objects at the
application-level itself.

In this paper we also propose a tool architecture to deploy
Creol applications. To prototype the tool architecture, we
choose Java as it provides low-level concurrency features,
i.e., threads, futures, etc., required for multi-core deploy-
ment of object-oriented applications. The tool architecture
prototype transforms Creol’s constructs for concurrency to
their equivalent Java constructs available in the java.util.-
concurrent package. As such, Creol provides a high-level
structured programming discipline based on active objects
on top of Java. Every active object in Creol is transformed

to an object in Java that uses a priority manager and sched-
uler to respond to the incoming messages from other objects.
Besides, through this transformation, we allow the program-
mer to seamlessly use, in the original Creol program, Java’s
standard library including all the data types. Thus, our
approach converts Creol from a modeling language to a full-
fledged “programming” language.

Section 2 first provides an overview of the Creol language
with application-level scheduling. In Section 3, we elaborate
on the design of the tool-set and the prototype. The use
of the tool-set is exemplified by a case study in Section 4.
Section 5 summarizes the related work. Finally, we conclude
in Section 6.

2. APPLICATION-LEVEL SCHEDULING

Creol [9] is a full-fledged object-oriented language with
formal semantics for modeling and analysis of systems of
concurrent objects. Some Creol features include interface
and class inheritance and being strongly typed such that
safety of dynamic class upgrades can be statically ensured
[15]. In this section, we explain the concurrency model of
Creol using a toy example: an exclusive resource, i.e., a re-
source that can be exclusively allocated to one object at a
time, behaving as a mutual exclusion token. Further, we ex-
tend Creol with priority-based application-level scheduling.

The state of an object in Creol is initialized using the init
method. Each object then starts its active behavior by exe-
cuting its run method if defined. When receiving a method
call, a new process is created to execute the method. Creol
promotes cooperative non-preemptive scheduling for each ac-
tive object. It means that a method runs to completion un-
less it explicitly releases the processor. As a result, there
is no race condition between different processes accessing
object variables. Release points can be conditional, e.g.,
await ~taken. If the guard at a release point evaluates to
true, the process keeps the control, otherwise, it releases the
processor and becomes disabled as long as the guard is not
true. Whenever the processor is free, an enabled process is
nondeterministically selected for execution, i.e., scheduling
is left unspecified in standard Creol in favor of more abstract
modeling.

To explain extending Creol with priority specification and
scheduling, we take a client/server perspective. Each caller
object is viewed as a client for the callee object who behaves
as a server. We define priorities at the level of language
constructs like method invocation or definition rather than
low-level concepts like processes.

On the server side, an interface may introduce a priority
range that is available to all clients. For instance, in Line 2
of Resource in Listing 1, we can define a priority range:

priority range 0..9

On the client side, method calls may be given priorities
within the range specified in the server interface. For exam-
ple, calling the request method of the mutex object:

mutex ! request() priority(7);

Scheduling only on the basis of client-side priority require-
ments is too restrictive. For example, if there are many
request messages with high priorities and a low priority
release, the server might block as it would fail to sched-
ule the release. In this particular example, we can solve
this problem by allowing the servers to prioritize their meth-
ods. This involves a declaration of a priority range generally

1 interface Resource begin
2

3 op request()

4 op release()

5 end

6

7 class ExclusiveResource implements Resource begin
8 var taken := false;

9

10 op request () ==

11 await ~taken;

12 taken := true;

13 op release () ==

14 taken := false

15 end

depending on the structure of the class. In our example, as-
suming a range 0..2 added in Line 9, this requires changing
the method signatures in the ExclusiveResource class:

op request() priority(2) == ...
op release() priority(0) == ...

This gives release a higher priority over request, be-
cause by default, the smaller values indicate higher priori-
ties. Furthermore, the server may also introduce priorities
on certain characteristics of a method invocation such as the
kind of “release statement” being executed. For example, a
process waiting at Line 11 could be given a higher priority
over new requests by assigning a smaller value:

await ~taken priority(1l);

The priority can be specified in general as an expression;
we used here only constant values. Evaluation of this ex-
pression at runtime should be within the given range. If no
priority is specified for a method invocation or definition, a
default priority value will be assigned.

We discussed different levels of application-level priorities.
Note that now each method invocation in the queue of the
object involves a tuple of priorities. We define a general
function ¢ as an “abstract priority manager”:

0: PP xPyaxPyx...xP,—P

The function § maps the different levels of priority in the
object ({Pi1,...,Pn}) to a single priority value in P that is
internally used by the object to order all the messages that
are queued for execution. Each method in the object may
have a § assigned to it. In an extended version of 4, it can
also involve the internal state of the object, e.g., the fields
of the object. In this case, we have dynamic priorities.

For example, in ExclusiveResource, we have two dif-
ferent levels of priorities, namely the client-side and server-
side priorities, which range over P = {0,...,9} and P> =
{0, 1, 2}, respectively. So, we define ¢ : P, X P» — P as:

3(p1,p2) = p1 +p2 X |1

To see how it works, consider a release and a request
message, both sent with the client side priority of 5. Consid-
ering the above method priorities, we have 0(5, request) =
0(5,2) = 25 and (5, release) = §(5,0) = 5. It is obvious
that the range of the final priority value is P = {0,...,29}.

Note that the abstract priority manager in general does
not completely fix the “choice” of which method invocation
to execute. In our tool-set, we include an extensible library

Active Object

Execution
Manager

Method Process Store /
Invocation Scheduler

Figure 1: Crisp Architecture: Structural Overview

of predefined scheduling policies such as strong or weak fair-
ness that further refine the application-specific multi-level
priority scheduling. The policies provided by the library are
available to the user to annotate the classes. We may declare
a scheduling policy for the ExclusiveResource class by
adding at Line 9 in Listing 1:

scheduling policy StronglyFairScheduler;

A scheduling policy may use runtime information to re-
compute the dynamic priorities and ensure properties such
as fairness of the selected messages; for instance, it may take
advantage of the “aging” technique to avoid starvation.

3. TOOL ARCHITECTURE

We have implemented a tool to translate Creol programs
into Java programs for execution, called Crisp (Creolized
Interacting Scheduling Policies). Crisp provides a one-to-one
mapping from Creol classes and methods to their equivalent
Java constructs. In order to implement active objects in
Creol, we use the java.util.concurrent package (see Figure
1). Each active object consists of an instance of a process
store and an execution manager to store and execute the
method invocations.

Incoming messages to the active object are modeled as
instances of MethodInvocation, a subclass of java.util.-
concurrent . FutureTask that wraps around the original method
call. Therefore the caller can later get the result of the
call. Additionally, MethodInvocation encapsulates infor-
mation such as priorities assigned to the message.

The ProcessStore itself uses an implementation of the
BlockingQueue interface in java.util.concurrent package.
Implementations of BlockingQueue are thread-safe, i.e.,
all methods in this interface operate atomically using inter-
nal locks encapsulating the implementation details from the
user.

The ExecutionManager component is responsible for
selecting and executing a pending method invocation. It
makes sure that only one method runs at a time, and takes
care of processor release points.

In the following, we explain how the active object behaves
in different scenarios, from a “client/server” perspective.

3.1 A New Method Invocation

A method call needs to be sent from the client to the
server in an asynchronous way. To implement this in Java,
the client first constructs an instance of MethodInvoca-
tion that wraps around the original method call for the
server. Then, there are two implementation options how to
add it to the server’s process store:

ADD:

Method
Client I [[vocation J [Process StoreJ

add(mi)

Figure 2: Adding the new MethodInvocations are performed
on the Client side.

TAKE:
- : Process Scheduling Priority Execution
Active Object] Store Manager Manager Manager

select .
resolve(mi
priority
mi
)

execute(mi

ref
EXECUTE
-

Figure 3: An active object selects a method invocation based
on its local scheduling policy. After a method finishes exe-
cution, the whole scenario is repeated.

1. The client calls a method on the server to store the
instance.

2. The client directly adds the method invocation into
the process store of the server.

In option 1, the server may be busy doing something else.
Therefore, in this case the client must wait until the server is
free, which is against the asynchronous nature of communi-
cation. In Option 2, the Java implementation of each active
object exposes its process store as an immutable public prop-
erty. Thus, the actual code for adding the new method invo-
cation instance is run in the execution thread of the client.
We adopt the second approach as depicted in Figure 2. At
any time, there can be concurrent clients that are storing
instances of MethodInvocation into the server’s process
store, but since the process store implementation encapsu-
lates the mechanisms for concurrency and data safety, the
clients have no concern on data synchronization and con-
currency issues such as mutual exclusion. The method or
policy used to store the method invocation in the process
store of the server is totally up to the server’s process store
implementation details.

3.2 Scheduling the Next Method Invocation

On the server side of the story, an active object repeat-
edly fetches an instance of method invocation from its pro-
cess store for execution (cf. Fig 3). The process store uses
its instance of SchedulingManager to choose one of the
method invocations. Crisp has some predefined scheduling
policies that can be used as scheduling managers; neverthe-
less, new scheduling policies can be easily developed and
customized based on the requirements by the user.

SchedulingManager is an interface the implementations
of which introduce a function to select a method invocation
based on different possible criteria (such as time or data)

that is either predefined or customized by the user. The
scheduler manager is a component used by process store
when asked to remove and provide an instance of method
invocation to be executed. Thus, the implementation of the
scheduling manager is responsible how to choose one method
invocation out of the ones currently stored in the process
store of the active object. Different flavors of the scheduling
manager may include time-based, data-centric, or a mixture.

Every method invocation may carry different levels of pri-
ority information, e.g., a server side priority assigned to the
method or a client side priority. The PriorityManager
provides a function to determine and resolve a final priority
value in case there are different levels of priorities specified
for a method invocation. Postponing the act of resolving
priorities to this point rather than when inserting new pro-
cesses to the store enables us to handle dynamic priorities.

3.3 Executing a Method Invocation

To handle processor release points, Creol processes should
preserve their state through the time of awaiting. This is
solved by assigning an instance of a Java thread to each
method invocation. An ExecutionManager instance, there-
fore, employs a “thread pool” for execution of its method
invocations. To create threads, it makes use of the factory
pattern: ThreadFactory is an interface used by the exe-
cution manager to initiate a new thread when new resources
are required. We cache and reuse the threads so that we can
control and tune the performance of resource allocation.

When a method invocation has to release the processor,
its thread must be suspended and, additionally, its continu-
ation must be added to the process store. To have the con-
tinuation, the thread used for the method invocation should
be preserved to hold the current state; otherwise the thread
may be taken away and the continuation is lost. The original
wait in Java does not provide a way to achieve this require-
ment. Therefore, we introduce InterruptibleProcess
as an extension of java.lang.Thread to preserve the relation.

As shown in Figure 4, the thread factory creates threads
of type InterruptibleProcess. The execution manager
thread blocks as soon as it starts the interruptible process
which executes the associated method invocation. If the
method releases the processor before completion, it will be
added back to the process store as explained in Section 3.1.
When a suspended method invocation is resumed, the exe-
cution manager skips the creation of a new thread and reuses
the one that was assigned to the method invocation before.

3.4 Extension Points

Besides the methods add and take for adding and remov-
ing method invocations, ProcessStore provides methods
such as preAdd and postAdd along with preTake and
postTake respectively to enable further customization of
the behavior before/after adding or taking a method invo-
cation to/from the store. These extension points enable the
customization of priority or scheduling management of the
method invocations.

Crisp provides two generic interfaces for priority specifica-
tion and scheduling management: PriorityManager and
SchedulingManager respectively. These two interface can
be freely developed by the programmer to replace the gen-
erated code for priorities and scheduling of the messages. It
will be the task of the programmer to configure the gener-
ated code to use the custom developed classes.

EXECUTE:
Execution Thread Method Interruptible
Manager Factory Invocation Process

<init>

ip

setMethodInvocation(mi)

Figure 4: A method invocation is executed in an interrupt-
ible process. The execution manager thread is blocked while
the interruptible process is running.

4. CASE STUDY

In this section, we demonstrate the use of application-level
scheduling and Crisp with a more complicated example: we
program the “Sieve of Eratosthenes” to generate the prime
numbers. To implement this algorithm, the Sieve is initial-
ized by creating an instance of the Prime object represent-
ing the first prime number, i.e., two. The active behavior
of Sieve consists of generating all natural numbers up to
the given limit (100000 in our example) and passing them
to the object two. A Prime object that cannot divide its
input number passes it on to the next Prime object; if there
is no next object, then the input number is the next prime
and therefore a new object is created.

We parallelize this algorithm by creating active objects
that run in parallel. The numbers are passed asynchronously
as a parameter to the divide message. Correctness of the
parallel algorithm essentially depends on the numbers being
processed in increasing order. For example, if object two
processes 9 before 3, it will erroneously treat 9 as a prime,
because 3 is not there yet to eliminate 9. To avoid erroneous
behavior, we use the actual parameter n in divide method
to define its priority level, too (see line 15). As a result,
every invocation of this method generates a process with
a priority equal to its parameter. The default scheduling
policy for objects always selects a process for execution that
has the smallest priority value. This guarantees that the
numbers sent to a Prime object are processed exactly in
increasing order.

We used two different setups to execute the prime sieve
program and compare the results. In one setting, we ran
the parallel prime sieve compiled by Crisp; in the other, we
executed a sequential program developed based on the same
algorithm that uses a single thread of execution in JVM. We
performed the experiments on a hardware with 2 CPU’s of
each 2GHz with a main memory of size 2GB. We ran both
programs for maz € {10000, 20000, 30000, 50000, 100000} .

The first interesting observation was that Crisp prime sieve
utilizes all the CPU’s on the underlying hardware as much
as possible during execution. This can be seen in Figure 6
which shows the CPU usage. Both CPUs are fairly in use
while running this program. Figure 5 depicts the results
of the monitoring of the parallel prime sieve in Crisp using
Visual VM tool. It depicts the number of threads generated
for the program. This shows that Crisp can handle a massive

1 interface IPrime begin

2 op divide(n:Int)

3 end

4

5 class Sieve begin

6 var n: Int, two: IPrime

7 op init == two := new Prime(2); n := 3
8 op run ==

9 ltwo.divide(n);

10 if n < 100000 then n :=n + 1; !run() end
11 end

13 class Prime(p: Int) implements IPrime begin
14 var next: IPrime
15 op divide(n: Int) priority (n) ==

16 if (n % p) # 0 then

17 if next # null then
18 Inext.divide(n)

19 else

20 next := new Prime(n)
21 end end

22 end

number of concurrent tasks.

One interesting feature of Crisp is that the execution of
any program under Crisp can constantly utilize the mini-
mum memory that can be allocated for each thread in JVM
(thread stack). In JVM, the size of thread stack can be con-
figured using -XsSsS option for every run. To demonstrate
this feature of Crisp, we collected the minimum stack size
needed for every program run in Table 1. All Crisp runs
use the minimum thread stack size of 64k that is possible
for the JVM. On the contrary, the stack size required for
the sequential version of the sieve program increases by the
number of primes detected. This is also expected because of
the long chain of method calls in the sequential sieve.

Having the constant thread stack size feature, Crisp pro-
vides another interesting feature. It can handle huge num-
ber of thread generation if required. Table 2 summarizes the
thread generation data for parallel prime sieve in Crisp. It
shows scalability of Crisp as p rises for parallel prime sieve.

As the results show the use of Java threads is costly; first,
Crisp does not need much of the memory allocated to each
thread and, second, the context switch cost is higher for
larger memory allocation. In line with this, JVM uses a
one-to-one mapping from an application-level Java thread
to a native OS-level thread. In the current setting, the con-
text switch of the threads are in the OS level. When the
context switch is taken to the application level, we leverage
the performance issue from the OS level to the application
level. We further discuss this in Section 6.

5. RELATED WORK

The concurrency model of Creol objects, used in this pa-
per, is derived from the Actor model enriched by synchro-
nization mechanisms and coupled with strong typing. The

max 10000 20000 30000 50000 100000
Sequential 64k 72k 96k 160k 190k
Crisp 64k 64k 64k 64k 64k

Table 1: Thread stack allocated for different executions

Threads x

4,000

2,000

T:15FPM T:20PM TA45PM

Figure 5: Increasing parallelism in Crisp for Prime Sieve

100 %

| —

5%
0%
6000 seconds 5000 4000 3000 2000 1000 o

Figure 6: Utilizing both CPUs with Prime Sieve in Crisp

Actor model [2] is a suitable ground for multi-core and dis-
tributed programming, as objects (actors) are inherently
concurrent and autonomous entities with a single thread of
execution which makes them a natural fit for distributed
deployment [10]. Two successful examples of actor-based
languages are Erlang and Scala.

Scala is a hybrid object-oriented and functional program-
ming language inspired by Java. The most important con-
cept introduced in [7, 1] is that Scala Actors unify thread-
based and event-based programming model to fill the gap for
concurrency programming. Through the event-based model,
Scala also provides the notion of continutations. Scala pro-
vides quite the same features of scheduling of tasks as in con-
current Java; i.e. it does not provide a direct and customiz-
able platform to manage and schedule priorities on messages
corresponded among actors.

Erlang [4] is a dynamically typed functional language that
was developed at Ericsson Computer Science Laboratory
with telecommunication purposes [5]. Recent developments
in the deployment of Erlang support the assignment of a
scheduler to each processor [11] (instead of one global sched-
uler for the entire application). This is a crucial improve-
ment in Erlang, because the massive number of light-weight
processes in the asynchronous setting of Erlang turns schedul-
ing into a serious bottleneck. However, the scheduling poli-
cies are not yet controllable by the application.

There are well-known efforts in Java to bring in the func-
tionality of asynchronous message passing onto multicore
including Killim [13], Jetlang [12], ActorFoundry [10], and
SALSA [14] among others. In [10], the authors present a
comparative analysis of actor-based frameworks for JVM
platform. However, pertaining to the domain of priority
scheduling of asynchronous messages, all provide a prede-
termined approach or a limited control over how message
priority scheduling may be at the hand of the programmer.

In general, existing high-level languages provide the pro-

mazx Live Peak Total
10000 817 540591
20000 1468 1854067
30000 2204 4054814
50000 3707 11852985

Table 2: Number of live threads and total threads created
for different runs of parallel prime sieve

grammer with little control over scheduling. The state of
the art allows specifying priorities for threads or processes
that are then used by the operating system to order them,
e.g. Real-Time Specification for Java (RTSJ) and Erlang. In
Crisp, we provide a fine-grain mechanism which allows for
assigning priorities to high-level constructs, e.g., messages
and methods.

Finally, we have considered, in previous work [6], local
scheduling policies for Creol objects, with the purpose of
schedulability analysis of real-time models. First of all, this
paper is different as it investigates different levels of priori-
ties that provide a high-level flexible mechanism to control
scheduling. Secondly, we describe at present work how to
compile Creol code to concurrent Java, and by allowing the
use of class libraries in the underlying framework of Java,
we can use Creol as a full-fledged programming language.

6. CONCLUSION

In this paper, we proposed Crisp as an implementation
scheme for application-level scheduling of active objects. Crisp
first introduces asynchronous message passing with fine-grain
priority management and scheduling of messages. Addition-
ally, it introduces a Creol to Java compiler that translates
the active objects in Creol into an equivalent Java applica-
tion. Crisp compiler seamlessly integrates Java class libraries
into Creol including data types that turns Creol from a mod-
eling language to a fully-fledged one in the hands of the pro-
grammer.

The java.util.concurrent package provides useful API for
concurrent programming. Java futures facilitate modeling
asynchronous message passing. However, for processor re-
lease points, we had to preserve threads (using Interruptible-
Process) to allow continuations which leads to their OS-level
context switching that is costly. Moreover, we were tightly
directed to use the out-of-the-box ExecutorService which is
limitedly extensible. We had no control over the scheduling
mechanisms of the internal queue used in the service imple-
mentations. Thus, we needed to re-implement some of the
concepts. Through prototyping Crisp, we learned that there
are two major challenges ahead. Firstly, we need to inte-
grate continuations into Java using a many-messages-to-one-
thread mapping model. Secondly, we need complete control
over scheduling of messages and threads in ExecutorService’s
internal queue. Table 3 summarizes this discussion.

Asynchronous Processor Re- Scheduling
Communica- lease Point
tion
Modeling v v X
Performance v X v
Java Futures Interruptible Executor
Process Service

Table 3: Overview of evaluation of challenges

In future, we will focus on thread performance for Crisp
such that thread scalability can be achieved to a certain
limit. Additionally, the development of concurrency fea-
tures on multi-core in Crisp is one of the major future con-
centrations. Moreover, another line of future work involves
profiling and monitoring objects at runtime to be used for
optimization and performance improvement. In addition,

we intend to extend and integrate into our tool set model
checking engines such as Modere [8].

7. REFERENCES

[1] Coordination Models and Languages, volume 4467,
chapter Actors That Unify Threads and Events, pages
171-190. Springer Berlin / Heidelberg, 2007.

[2] Gul Agha. Actors: a model of concurrent computation
in distributed systems. PhD thesis, MIT, 1986.

[3] G.R. Andrews. Foundations of Multithreaded, Parallel,
and Distributed Programming. Addison-Wesley, 2000.

[4] Joe Armstrong. Programming Erlang: Software for a
Concurrent World. Pragmatic Bookshelf, 2007.

[5] Fébio Corréa. Actors in a new “highly parallel” world.
In Proc. Warm Up Workshop for ACM/IEEE ICSE
2010, WUP 09, pages 21-24. ACM, 2009.

[6] Frank S. de Boer, Mohammad Mahdi Jaghoori, and
Einar Broch Johnsen. Dating concurrent objects:
Real-time modeling and schedulability analysis. In
CONCUR 2010, volume 6269, pages 1-18. 2010.

[7] Philipp Haller and Martin Odersky. Scala actors:
Unifying thread-based and event-based programming.
Theoretical Computer Science, 410(2-3):202 — 220,
2009.

[8] Mohammad Mahdi Jaghoori, Ali Movaghar, and
Marjan Sirjani. Modere: the model-checking engine of
Rebeca. In Proc. 21st ACM Symposium on Applied
Computing, pages 1810-1815, 2006.

[9] Einar Broch Johnsen and Olaf Owe. An Asynchronous
Communication Model for Distributed Concurrent
Objects. Software and Systems Modeling, 6(1):39-58,
2007.

[10] Rajesh K. Karmani, Amin Shali, and Gul Agha. Actor
frameworks for the JVM platform: a comparative
analysis. In Proc. 7th International Conference on
Principles and Practice of Programming in Java,
PPPJ ’09, pages 11-20. ACM, 2009.

[11] K Lundin. Inside the Erlang VM, focusing on SMP.
Presented at Erlang User Conference. Available at
http://www.erlang.se/euc/08/euc_smp.pdf,
November 13, 2008.

[12] Mike Rettig. Jetlang Library, 2008.
http://code.google.com/p/jetlang/.

[13] Sriram Srinivasan and Alan Mycroft. Kilim:
Isolation-Typed Actors for Java. In ECOOP 2008 —
Object-Oriented Programming, volume 5142, pages
104-128. Springer Berlin / Heidelberg, 2008.

[14] Carlos Varela and Gul Agha. Programming
dynamically reconfigurable open systems with SALSA.
SIGPLAN Not., 36:20-34, December 2001.

[15] Ingrid Chieh Yu, Einar Broch Johnsen, and Olaf Owe.
Type-safe runtime class upgrades in Creol. In Proc.
FMOODS’06, volume 4037 of LNCS, pages 202-217.
Springer-Verlag, June 2006.

http://www.erlang.se/euc/08/euc_smp.pdf
http://code.google.com/p/jetlang/

	Introduction
	Application-Level Scheduling
	Tool Architecture
	A New Method Invocation
	Scheduling the Next Method Invocation
	Executing a Method Invocation
	Extension Points

	Case Study
	Related Work
	Conclusion
	References

