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Utility Optimal Scheduling in Energy Harvesting
Networks

Longbo Huang, Michael J. Neely

Abstract—In this paper, we show how to achieve close-to- and the nodes are powered by finite capacity energy storage
optimal utility performance in energy harvesting networks with  devices but are capable of harvesting energy. Every tinte slo
only finite capacity energy storage devices. In these netwks, iha network decides how much new data to admit and how

nodes are capable of harvesting energy from the environment L .
The amount of energy that can be harvested is time varying much power to allocate over each communication link for data

and evolves according to some probabmty law. We deve|op an transmission. The ObjeCtive Of the network iS to maximize
online algorithm, called the Energy-limited Scheduling Algorithm  the aggregate traffic utility subject to the constraint tte

(ESA), which jointly manages the energy and makes power average network backlog is finite, and the “energy-avditgbi
allocation decisions for packet transmissions. ESA only t®ato constraint is met, i.e., at all time, the energy consumed is

keep track of the amount of energy left at the network nodes than th tored. W that the
and does not require any knowledge of the harvestable energy no more than the energy stored. Ve see thal the “energy-

process. We show that ESA achieves a utility that is within availability” constraint greatly complicates the desigham

O(e) of the optimal, for any ¢ > 0, while ensuring that the efficient scheduling algorithm, due to the fact that the entr
network congestion and the required capacity of the energy energy expenditure decision may cause energy outage in the
storage devices areleterministically upper bounded by bounds of - f,4,re and thus affect the future decisions. Such problems

size O(1/€). We then also develop the Modified-ESA algorithm - inciple be f lated d . DP
(MESA) to achieve the sameO(e) close-to-utility performance, can in principle be formulated as dynamic programs (DP)

with the average network congestion and the required capagy and be solved optimally. However, the DP approach typically

of the energy storage devices being onl@([log(1/¢)]?). requires substantial statistical knowledge of the haal#st
Index Terms—Energy Harvesting, Lyapunov Analysis, Stochas- €N€rgy process and the channel state process, and often runs
tic Network, Queueing into the “curse-of-dimensionality” problem when the netlwo
size is large.

There has been many previous works developing algorithms
for such energy harvesting networks| [9] develops algorith

Recent developments in hardware design have enabled mggiya single sensor node for achieving maximum capacity
general wireless networks to support themselves by hamgestand minimizing delay when the rate-power curve is linear.
energy from the environment. For instance, by converting mg0] considers the problem of optimal power management
chanical vibration into energi/[1], by using solar panelsfl® for sensor nodes, under the assumption that the harvested
utilizing thermoeletric generatorls|[3], or by convertinglaient energy satisfies a leaky-bucket type propeftyl [11] lookbat
radio power into energy [4]. Such harvesting methods a algroblem of designing energy-efficient schemes for maxingjzi
referred to as “recycling” energy|[5]. This energy harvesti the decay exponent of the queue lendthl [12] develops sthedu
ability is crucial for many network design problems. It fseeing algorithms to achieve close-to-optimal utility for ege
the network devices from having an “always on” energy sour¢grvesting networks with time varying channels,[13] depsl
and provides a way of operating the network with a potentialhn energy-aware routing scheme that approaches optinta as t
infinite lifetime. These two advantages are particularlgfus network size increases. Outside the energy harvestingxont
for networks that work autonomously, e.g., wireless sensfii4] considers the problem of maximizing the lifetime of a
networks that perform monitoring tasks in dangerous fielgietwork with finite energy capacity and constructs a scheme
[6], tactical networksl[7], or wireless handheld deviceatththat achieves a close-to-maximum lifetimé. |[15] afd] [16]
operate over a longer period [8], etc. develop algorithms for minimizing the time average network

However, to take full advantage of the energy harvestirghergy consumption for stochastic networks with “alway% on
technology, efficient scheduling algorithms must consitier energy source. However, most of the existing results focus
finite capacity for energy storage at each network node. ¢ single-hop networks and often require sufficient siatist
this paper, we consider the problem of constructing utilitynowledge of the harvestable energy, and results for magtih
optimal scheduling algorithms in a discrete stochastie/ogt, networks often do not give explicit queueing bounds and do
where the communication links have time-varying qualitieqiot provide explicitly characterizations of the neededrgpe

. storage capacities.
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used for decision making, so as to “push” the target quedefined,,,, = max, |J\/7$i")|to be the maximum in-degree that
levels towards certain nonzero values to avoid underflow (@my noden € A/ can have.

our case, the target queue levels are the energy levels at the

nodes). Based on this idea, we construct our Energy-limited ) .

Scheduling Algorithm (ESA) for achieving optimal utility i %‘ The Traffic and Utility Model
general multihop energy harvesting networks powered btefini At every time slot, the network decides how many packets
capacity energy storage devices. ESA isaatine algorithm destined for nodec to admit at noden. We call these
which makes greedy decisions every time shdthout re- traffic the commodityc data and useRﬁf)(t) to denote the
quiring any knowledge of the harvestable eneagy without amount of new commodity data admitted. We assume that
requiring any statistical knowledge of the channel quatti 0 < Rﬁf)(tﬁl < Rpae for all n,c with some finite R4,

We show that the ESA algorithm is able to achieve an averageall time.J We assume that each commodity is associated
utility that is within O(e) of the optimal for anye > 0, with a utility function UTSC)(F"C), where 7¢ is the time
and only requires energy storage devices that ar@(df/e) average rate of the commodity traffic admitted into node
sizes. We also explicitly compute the required storagedspa n, defined as¥”® = liminf;_ % Zi‘:loE{RSf) (T)}_ Each
and show that ESA also guarantees that the network backlo®) ;) function is assumed to be increasing, continuously
is deterministically bounded by)(1/c). Furthermore, we gifferentiable, and strictly concave inwith a bounded first
develop the M0d|f|ed-E_SA alg_qnthm (MESA) to a_\chleve thQerivative andU,(f) (0) = 0. We use 3" to denote the
sameO(e) cl_ose-to-optlmal utility performange Wlth eNergy,naximum first derivative of/(" (r), i.e., B = (Uff))’(o)
storage devices that are only @¥([log(1/¢)]*) sizes. We _ g denoted = max,, . 4"

note that the approach of using perturbation in Lyapunov e
algorithms is novel. It not only allows us to resolve the gyer
outage problem easily, but also enables an easy analydie of B. The Transmission Model

algorithm performance. _In order to deliver the data to their destinations, each node

Our paper is mostly related to the recent wdrki[12], whicheeqs to allocate power to each link for data transmission
considers a similar probleml._[12] uses a similar Lyapunoy every time slot. To model the effect that the transmission
optimization approach (without perturbation) for algont 5105 typically also depend on the link conditions and that
design, and achieves a simil@(c), O(1/e)] utility-backlog e |ink conditions may be time varying, we I&(t) be
performance using energy storage size©)¢f /) for single- o neqworkchannel statei.e., the N-by-N matrix where
hop networks. Multihop networks are also c_onS|dere(ﬂIn\.[12t]qe (n,m) component ofS(¢) denotes the channel condition
However, the performance bounds for multihop networks age.wveen nodes andm. We assume tha$ () takes values
given in terms of unknown parameters. In our paper, W& some finite sefS = (sy, ..., 7). In the following, we first
compute the explicitO(1/¢) capacity requirements for the 55qme thas|(t) is i.i.d. every time slot and use,, to denote
data buffers and energy storage devices for general mpltihg,. g ;) — ;). We will later extend our results to the case
networks for achieving thé(¢) close-to-optimal utility per- whenS(#) is Markovian. At every time slot, i§(t) = s;, then
formance. We then also develop a scheme to achieve the S3ME power allocation vectaP(t) = (P (1), [n,m] € L)
utility _p_erformance with onlyO([log(1/¢)]?) energy storage whereP,, ,,(t) is the power allocated to linke, ] at timet,
capacities. . . must be chosen from some feasible power allocatiorP$et.

Our paper is organized as follows: In Sectidn Il we state OWe assume thaP(*) is compact for alls;, and that every
network model and the objective. In Sectlad 11l we first derivygver vector inP(s:) satisfies the constraint that for each
an upper bound on the maximum utility. Sectlon IV presenfgyge,. o < Y, o) Py (t) < Ponag fOr SOMEP, 0, < 0.
the ESA algorithm. ThéO(e), O(1/¢)] performance results of AlSO. We a_ssufr%v{bhat sétting_ in a vectorP € pls)

the ESA algorithm are presented in Sectioh V, for both the . e
cases wher?the networlf randomness is i.i.d. and Markovi’lér)n. zero yields another power vector that is still ().

We then construct the Modified-ESA algorithm (MESA) tQ Iven the channel stat8(¢) and the power allocation vector

. . . P(t), the transmission rate over the link,m| is given by

achieve the samé(¢) close-to-optimal utility performance .
with only O([log(1/¢)]?) energy storage sizes in Section yifhe rate-power funCtiom i, m|(t) = Lin.m(S(t), P(1)). For
achs;, we assume that the functign,, ,,,)(s;, P) satisfies

Simulation results are presented in Secfion VII. We comlzluﬁ1 . .
e following properties:

our paper in Section V. .
ur paperi I Property 1: For any vectorsP, P’ € P!, where P’ is
obtained by changing any single componéfy ., in P to

Il. THE NETWORK MODEL zero, we have:

We consider a general interconnected network that operates /
. . . . n,m]\°%, P < n,m]\°9%, P (SPn m]» 1
in slotted time. The network is modeled by a directed graph i) (33 P) < g, m (3 )+ 0Plnm) @)
G = (W, L), whereN = {1,2,..., N} is the set of theN for some finite constant > 0.
nodes in the network, and = {[n,m|, n,m € N'} is the set
of communication links in the network. For each nodewe INote that this setting implicitly assumes that nodes alwlagge packets

(o) . to admit. The case when the number of packets available domarcan also
use/N»” to denote the set of nodéswith [n, b] € £, and use be incorporated into our model and solved by introducingileuy variables,

N,Em) to denote the set of nodeswith [a,n] € L. We then as in [20].



Property 2: If P’ is obtained by setting the entdy,, ;) in ¢t + 1. In the following, it is convenient for us to assume that

P to zero, then: each energy queue has infinite capacity, and that each node
, can decide whether or not to harvest energy on each slot. We
Hla,m (8i, P) < Hfa,m) (83, P'), ¥[a,m] # [n, b]. (@) model this harvesting decision by using(t) € [0,/ (t)]

Property[1 states that the rate obtained over a [inkn] is 1O denote the amount of energy that is actually harvested at
upper bounded by some linear function of the power allocatéifne t. We will show later that our algorithm always harvests
to it, whereas Properfyl 2 states that reducing the power o@lergy when the energy queue is below a finite threshold of
any link does not reduce the rate over any other links. We s@igeO(1/¢) and drops it otherwise, thus can be implemented
that Property 1L anfll2 can usually be satisfied by most ra¥éth finite capacity storage devices.
power functions, e.g., when the rate function is differaipie
and has finite. directionallderivatives. with respect to powegy Queueing Dynamics
[15], and the links do not interfere with each other. ©

We also assume that there exists some finite constant®t @(f) = (Qu”(t),n,c € N), t = 0,1,2, ... t;e the data
fimaz SUCh thatip, ,i(t) < fimas for all time under any queue backlog vect_or in the network, Whe(@éf (t) is the
power allocation vector and any channel statg). [ In the amount of commodity: data queued at node. We assume
following, we also use:°’,,(¢) to denote the rate allocated toth€ following queueing dynamics:

[n,0]
the commodityc data over link[n,b] at timet. It is easy to @41 < © () — © 1+ 5
see that at any time we have: @I+ < [Q" (t) %)“[mbl( )] ®)
bEN’
Zufﬁ?b] (t) < ppp g (t), ¥ [n,0]. (3) + Y HES)H] () + RO (1),
‘ aeNS™
C. The Energy Queue Model with Q{(0) = 0 for all n,c € N, Q(t) = 0 V¢, and

We now specify the energy model. Every node in the]t = max[z,0]. The inequality in[(b) is due to the fact that
network is assumed to be powered bfirdte capacity energy Some nodes may not have enough commodipackets to fill
storage device, e.g., a battery or ultra-capaditor [9]. Weleh the allocated rates. In this paper, we say that the network is
such a device using anergy queueie use the energy queuestableif the following condition is met:
size at noden at time ¢, denoted byFE, (¢), to measure the =
amount of the energy left in the storage device at nocs 0 2 limsup = ELO© (+ o0. 6
time t. We assume that at every time, the nodes are capable @ Hoop t ZZ {Qn ( )} = (©)
of tracking its current energy levdl,, (¢). In any time slott, o
the power allocation vectoP(t) must satisfy the following ~ Similarly, let E(t) = (En(),n € N) be the vector of the

7=0 n,c

“energy-availability” constraint: energy queue sizes. Due to the energy availability comstrai
(@), we see that for each nodg the energy queud,(t)
Z Py (t) < En(t), Y. (4) evolves according to the followin{:
beN L

That is, the consumed power must be no more than what is
available. Each node in the network is assumed to be capable
of harvesting energy from the environment, using, for inet&g with E,(0) = 0 for all n. B Note again that by using
solar panels[9]. However, the amount of harvestable energythe queueing dynamid](7), we start by assuming that each
a time slot is typically not fixed and varies over time. We usenergy queue has infinite capacity. Later we will show that
hy(t) to denote the amount of harvestable energy by nedeunder our algorithms, all th&), (¢) values aredeterminstically
at timet, and denotéw(t) = (hy(t), ..., hx(t)) the harvestable upper bounded, thus we only need a finite energy capacity in
energy vector at time, called theenergy stateWe assume algorithm implementation.
that h(t) takes values in some finite sét = {h4,...,hx},
and thath(t) is i.i.d. over each slot. However, components i
eachh; vector may be correlated. We will later consider th
case wherh(t) is Markovian. In both cases, we assume that The goal of the network is thus to design a joint flow control,
h(t) is independent o (t). §] routing and scheduling, and energy management algoritatn th
We letmp,, = Pr(h(t) = h;). We assume that there existsaat every time slot, admits the right amount of daty) (1),
hmaz < 0o such thath, (t) < h..q.. for all n,t, and the energy chooses power allocation vectdP(¢) subject to [(#), and

harvested at time is assumed to be available for use in time
4Note that we do not explicitly consider energy leakage duethi®
2Note that in our transmission model, we did not explicitlgetanto account  imperfectness of the energy storage devices. This is a ealfimption if
the reception power. However, this can easily be incorgdraito our model the rate of energy leakage is very small compared to the aimspent in
at the expense of more complicated notations. All the resultthis paper each time slot.
will still hold in this case. SWe can also pre-store energy in the energy queue and iitialj, (0) to
SThis is for the ease of presentation. The results in this pafile hold if  any finite positive value up to its capacity. The results ia faper will not
they are correlated. be affected.

beN

E. Utility Maximization with Energy Management



transmits packets accordingly, so as to maximize the yutilit
function:

Usot (7 ZU (©) 7¢) (8)

subject to the network stablhty constrairit] (6). Here =
(7"°,Vn,c € N) is the vector of the average expected admit-
ted rates. Below, we will refer to this problem as th#lity
Maximization with Energy Management probl¢tiMEM).

F. Discussion of the Model

Our model is quite general and can be used to model many
networks where nodes are powered by finite capacity badterie

2 nc
For instance, a field monitoring sensor netwdrk [6], or marfyerex = N +N+2.B{rpH,

E:Pﬂﬂ (12)

beN
- Y 3 A
PECS'L) 6 P(SI)70 S 19291)’@](:1,)’
K K K

S; h
S =13 =13
k=1 k=1 k=1

0 <1 < Rimaa, ¥V (1, 0),
0< e <hh) ok, b

Z Ts, Z o,

‘P;C ) S 1,\V/Si,k,h1‘,

D= 1,Ys;,h

denotes the set of admission

mobile ad hoc networks [21]. Also, our model allows thélecisions used for each commodity flof}™ } <, denotes
harvestable energy to be correlated among network nodés. Tthe set of power allocation vectors that are used whérn =

is particularly useful, as in practice, nodes that are called si. 1

may have similar harvestable energy conditions.

The main difficulty in designing an optimal schedulin
policy here is imposed by the constraififl (4). Indedd, (
couples the current power allocation action and the future

c)
(b))
link [b, n] unders; and P*" P,Esg) | is the power allocated

link [n, m] under P{**). {enh;'C
arvestlng decisions of node when the energy state s,

(si, ngi)) is the rate allocated to commodityover

n,m

M | is the set of energy

) is the amount of harvestable energy for nedehen

actions, in that a current action may cause the energy qu réed
to be empty and hence block some power allocation actlon

the future. Problems of this kind usually have to be model
as dynamic programs$ [22]. However, this approach typical
requires significant statistical knowledge of the netwaak-r
domness, including the channel state and the energy st
Another way to utilize the harvested energy efficiently is b
developing efficient sleep-wake policies, e.@..1[23]. Aliigh
our model does not consider this aspect, our algorithm casﬂ
also be used together with given sleep-wake policies teeaehi
good utility performance in that context.

Proof The proof argument is similar to the one used in

, hence is omitted for brevity. [ |
Note that Theoreni]l indeed holds under more general
gtrgodms t) and h(t) processes, e.g., whe$i(t) and h(t)
volve according to some finite state irreducible and aperi-
dic Markov chains. Also note that the objective function
not of the same form a#/,.(-). However, it can be
own, using Jensen’s inequality, that the optimal value of
the above optimization problem remains the same if we push
>k Yr inside the function,\”, i.e., change the objective to
VZnCUnC)(Zk 1 Vxr©). Below, we first have the following
mma regarding the dual problem 6f110):
Lemma 1: The dual problem ofl{10) is given by:

IIl. UPPER BOUNDING THE OPTIMAL NETWORK UTILITY

In this section, we first obtain an upper bound on the optlmael
utility. This upper bound will be useful for our later anakys
The result is presented in the following theorem, in which we min: g(v,v),
user* to denote the optimal solution of the UMEM problem, © .
subject to the constraint that the network nodes are power‘@ﬁerev = (vn ",V (n,¢), v = (vn,Yn) and g(v,v) is the
by finite capacity energy storage devices. Tiieparameter dual function defined:

S Lo {VZU(C) ey

st. v>=0,veRY, (13)

in the theorem can be any positive constant that is greater or

equal tol, and is included for our later analysis. glv,v) = sup

rne, P(s ) e( J)

Theorem 1: The optimal network utilityUs,:(r*) satisfies 5
the following: - ZU © [rne + Z u[a (865 PCy  (14)
VUit (r*) < 97, 9) acNa™ (s0)

. . . . . . - “ [z P 5
where ¢* is the optimal value of the following optimization 20) N[”’b](s )
problem: bEN

K — Z I/n Z P ] }
max: ¢ =V Z Z DR US (7€) (10) beNL”
n,c k=1

Moreover, let(v*,v*) be an optimal solution of (13), then
¢ < glv*,v).

Proof: The proof uses a similar argument as the one used
in [19]. Hence is omitted for brevity. [ ]

S 4 (50 PEY)

aGN(m)

Z /L(Z)b] 517

beNL

K
s.t. Zﬁkr + ZTFST Z Qk
k=1 S
< Zﬂ'sl Z 0L (s:)
Si

PV Y (noe),  (12)

6The numberK is due to the use of Caratheodory’s Theorem in the proof
argument used i [19].



Note that the dual functiop(v, v) does not contain the termsharvesting action that can be implemented at timee have:
D, g,(f?‘),gazi. This not only simplifies the evaluation of the (©) ¢ p(c)

dual function, but also enables us to analyze the performancA(t) B VE{ Z U2 (17 (8)) | Z(t)} (19)
of our algorithm using Theoref 1. In the following, it is also "

useful to define the functioq, 5, (v, v) for each(s;, h;) pair. < B — VE{ S UYRY )| Z(1)}

c)(,.nc - QSIC) t)E M(Z) t
9si,h; (v,v) = sup {VZ U,(l )(T ) (15) ; ; ( ) { Z(o) [ 7b]( )
T"C.P(si).eglhj) n,c beN,
' ' _ (e) _ ple)
SO STl (50, PO Z B () = RO () | Z(1)}
. ’ aeN (i)
n aeN’,(z'wl) n
= 3 (i, PO =D (Bat) = 0)E{ Y Payt) —enlt) | Z(t)}.
beND e beN”
2(,,2 1 2 N 2 2
_ (s4) _ (hj) Here B = N (:umam =+ ERmaz) + T[Pmam + hmam]'
Z vn Z Py — en }} Proof: See Appendix A. [ ]
" bEN? Now denote the left-hand side (LHS) ¢f{19) As (¢), we

_ _ _ can rearrange the terms {n_{19) to get:
That is, gs, n, (v, v) is the dual function of[(10) when there

is a single channel state and a single energy state,. Itis Av(t) < B+ Y (Ea(t) — 0,)E{en(t) | Z(1)} (20)
easy to see fron (14) and_{15) that: neN
—E{Y " [VURY (1) - QPR ()] | Z(1)}
g(v,v) = Z Ts, Z Th; Gs;,h; (U, V). (16) ¢
ne EE|T T s0ero - o)
n ¢ e
IV. ENGINEERING THE QUEUES +(En(t) — 0,) Z p[mb](t)] |Z(t)}.

. . i : bENS
In this section, we present our Energy-limited Scheduling ©

Algorithm (ESA) for the UMEM problem. ESA is designed e now present the ESA algorithm. The idea of the algo-
based on the Lyapunov optimization technique developed M IS to approximately minimize the right-hand side (RHS
[19] and [17]. The idea of ESA is to construct a Lyapuno9f ) subject to the energy-availability constralint (I41).t.he
scheduling algorithm wittperturbedweights for determining 2/90rithm, we use a parameter Rya, + dpaz fimaz, Which -
the energy harvesting, power allocation, routing and sehed'S used in the link weight definition to allow deterministic
ing decisions. We will show that, by carefully perturbing th UPPEr bounds on queue sizes. o

weights, one can ensure that whenever we allocate power tEnergy-limited Scheduling Algorithm (ESA)nitialize 6.

the links, there is always enough energy in the energy queu@bevery slot, observ&)(t), E(t), andS(t), do:

To start, we first choose erturbationvector = (6,,n €  * Energy Harvestinghttime ¢, if £,,(t) -6, <0, perform -
N) (to be specified later). We then defineparturbedLya- energy harvesting and store the harvested energy, i.e.,
punov function as follows: en(t) = hn(t). Else sete,(t) = 0.

» Data AdmissionAt every timet, chooseR\’) (t) to be the

1 1 optimal solution of the following optimization problem:

OEEDS [QE ()] + 5 2 [En(t) ~6,]°. (17

n,cEN neN max : VU,(f)(r) — ng) (t)r, s.t. 0 <7r < Ry (22)

o Power Allocation:At every timet, define the weight of
the commodityc data over link[n, b] as:

Now denote Z(t) = (Q(t),E(t)), and define a one-slot
conditional Lyapunov drift as follows:

W 2 QY1) - Q) —] ™. (22)

Then define the link weightV},, ; (t) = max. W,

A(t) =E{L(t+1) - L(t) | Z(¢)}. (18) ©
[n,b] A7/
Here the expectation is taken over the randomness of the and chooseP(t) € P(*) to maximize:

channel state and the energy state, as well as the randomness N

in choosing the data admission action, the power allocation G(P(t)) = > [ > s (Wi (1) (23)

action, the routing and scheduling action, and the energy n TpeNt?

harvesting action. We have the following lemma regardirgg th

drit HE =00 5 Ronlo)]
Lemma 2: Under any feasible data admission action, power beN”)

allocation action, routing and scheduling action, and gyer subject to the energy availability constraiit (4).



« Routing and Schedulindior every noder, find anyc* € irreducible and aperiodic Markov chain. Second, by taking

argma%W[(nc)b] (t). If W[(yfa (t) > 0, set: e = 1/V, we see from Part (a) that the average data queue
' ’ size isO(1/¢). Combining this with Part (b), we see that that
Nfﬁ,g] (t) = ppny (1), (24) ESA achieves arO(e), O(1/¢)] utility-backlog tradeoff for

. ] the UMEM problem. Third, we see from Part (a) that the
that is, allocate the full rate over the lirfk,b] to any  energy queue size is deterministically upper bounded byesom
commodity that achieves the maximum positive weight (1 /¢) constant. This provides an explicit characterization

over the link. Use idle-fil(lc)if needed. _ of the size of the energy storage device that is needed for
« Queue UpdateUpdateQ,"(t) and E,(t) according to 4chieving the desired utility performance. Such expliotibds
the dynamics[(6) andX7), respectively. are particularly useful for system deployments.

Note that ESA only requires the knowledge of thmstant

channel stateS(t) and the queue size3(t) and E(t). It does B. ESA under Markovian randomness
not even require any knowledge of the energy state process .
h(t). This is very useful in practice when the knowledge We now extend our results to the more general setting where

of the energy source is difficult to obtained. ESA is alsB'€ channel stat§(t) and the energy state(t) both evolve
very different from previous algorithms for energy hariest accprdlng to some f|n|t_e state irreducible and aperiodiddghar
network, e.g., [[9] [I0], where statistical knowledge of th&hains. Note_that in this case, andny, represent the steady
energy source is often required. Also note that if all thédin State probability of the eventgS(t) = s;} and {h(t) = h.},

do not interfere with each other, then ESA can easily §&SPectively. In this case, the performance results of E®A a
implemented in a distributed manner, where each node offymmarized in the following theorem:

has to know about the queue sizes at its neighbor nodes andheorem 3: Suppose thab(¢) and h(t) evolve according
can decide on the power allocation locally. to some finite state irreducible and aperiodic Markov chains

Then under ESA, we have: (a) the bounlds (25) &ndl (26) still
hold. (b) the average utility is withi©O(1/V) of Uyt (r*),

i.e., Ut(T) =3, . UL (7€) 2 Upor(r*) — O(1/V)).

We now present the performance results of the ESA algo- - py,qt. part (a) follows from Theorefd 2, since it is indeed

rithm. In the following, we first present the results undedi. a sample-path result. The proof of the utility performarge i

network randomness and give its proof in the appendix. We .- «0 that in [24], and hence is omitted for brevity. m
later extend the performance results of ESA to the case when

the network randomness is Markovian.

V. PERFORMANCEANALYSIS

VI. REDUCING THE BUFFER SIZE

In this section, we show that it is possible to achieve
the sameD(¢) close-to-optimal utility performance guarantee
Here we state the performance of ESA under the case Whefing energy storage devices with orth[log(1/€)]?) sizes,
the channel state and the energy state, ¢€t) andh(t), are hijle guaranteeing a much smaller average data queue size,

A. ESA under I.I.D. randomness

both i.i.d. . . N i.e., O([log(1/¢)]?). Our algorithm is motivated by the fol-
Theorem 2: Under the ESA algorithm with¥,, = 65V +  |owing theorem, which is a modified version of Theorerin
P,.q for all n, we have the fO”OWing: [@] In the theorem, we deno@: (’U, V).
(@) The data queues and the energy queues satisfy th&heorem 4: Suppose that(t) and S(t) both evolve ac-
following for all time: cording some finite state irreducible and aperiodic Markov

() chain, thaty* = (v*, v*) is finite and unique, th& is chosen

0= Qu(t) < BV + Rmaz, ¥ (n,¢), (25) such thatd,, + v} > 0, V n, and that for ally = (v, v) with
0 < En(t) < 0n+ hmaz, V1. (26) v = 0,0 € RV, the dual functiony(y) satisfies:

Moreover, when a node allocates nonzero power to g(y*) > gy) + Lljy* —yll, (28)

any of its outgoing linksE,, (t) > Poaz. _
(b) Letw = (¥"¢,¥ (n,c)) be the time average admitted ratdor some constant > 0 independent of’. Theny* = ©(V),

vector achieved by ESA, then: and that under ESA, there exists constabtsx, ¢* = ©(1),
B i.e., all independent oV, such that for anyn € R,
Uio(F) = 3 UL ") 2 Uior(r) = 37, (27) POD,Km) < c'e™, (29)
. " . . (r) i ined:
wherer* is an optimal solution of the UMEM probIem,WhereP (D, Km) is defined:
and B = B + Nvydpaztimaez = (1), i.e., independent 1t
(r) A
of V. PY(D, Km) = lim sup 7 Z Pr{&(r,m)}, (30)
Proof: See Appendix B. [ ] e =0

We note the following of Theoreml 2: First, we will seewith &(¢,m) being the following deviation event:
that Part (a) is indeed aample pathresult. Hence it holds B (©) (c)+
underarbitrary S(t) andh(t) processes. Thus they also hold Et,m) =1{3(n,), [Qu7 (1) —vn™"| > D*+ Km} (31)
when S(t) and h(t) evolve according to some finite state U{3 n, [(En(t) —0n) —v,| > D+ Km}.



Proof: The proof is similar in spirit to[25] and is omitted Else updateF,, (t) according to:

for brevity. | n

Note that the finiteness and uniquenesgbdfcan usually be En(t+1) = ([Ba(t) - Z Py ()] + en(t)) A M.
satisfied in practice, particularly when a certain “slacisie beN

condition is met. Also note that the conditién{28) can tgfiic — Packet DroppingFor any node: with £, (t) < &, +

be satisfied in practice when the action space is finite (See
[25] for further discussions of these conditions). In thise,
Theoreni# states that the queue backlog vector pair is “expo-
nentially attracted” to the fixed poitv*, v*+6) = O(V), in

that the probability of deviating decreases exponentiaith Aﬁf) (t) = Z M e £, (1)
the deviation distance. Therefore, the probability of déwpg aENL™

by someO (log(V')) distance will bel/V, which will be very
small whenV is large. This suggests that most of the queue

P, 0 OF En(t) > &, + M, drop all the packets that
should have been transmitted, i.e., change the input
into anyQ(c)( )

Here 1, is the indicator function and-,(t) is the

backlogs are kept in the queues to maintain a “proper” queue event that, (t) € [€n+ Praa, €+ M]. Then further
vector value to base the decisions on. If we can somehow learn modify the routing and scheduling action under ESA
the value of this vector, then we can “subtract out” a large as follows: .
amount of backlog from the network and reduce the required + 1F QY (1) < O let AP (1) = [Agf) (t)—[Q%) -
buffer sizes. Below, we present the Modified-ESA (MESA) Aﬁf)(t)]] updateQ(C)( t) according to:
algorithm. © © @4

To start, for a givene, we let V. = 1/¢, and define Qu(t+1) < = D Hy® T+ AP ).
M = 4[log(V)]?. We then associate with each noda virtual beN)

energy queue proceds, (t) and a set olirtual data queues

A - If A$f>t> (), updateQ'”’ ding to:
ng)(t) Vec. We also associate with each nodean actual # 1P Qu7(t) 2 Qn', updateQn (1) according to

energy queue with siz&/. We assume thdt” is chosen to be QUY(t+1) < Z M(z)b] AL @)
such thatll > amar £ max|Prag, hmaz). MESA consists of b

two phases: Phase | runs the system using the virtual queue . . )

processes, to discover the “attraction point” values of the  — UpdateE(t) andQ(t) using [T) and[().

queues (as explained below). Phase Il then uses these valud$ote here we have used the" operator for updating,, ()
to carefully perform the energy harvesting, power allamati in the energy harvesting part. This is due to the fact that the
and routing and scheduling actions so as to ensure enepgyver allocation decisions are now made basedfgt) but
availability and reduce network delay. not E(t). Note that if £, (¢) never gets below,, or above
Modified-ESA (MESA)nitialize 6. Perform the following: &n +M then we always ha(V)E n(t) = En(t) —&,. Similarly,
« Phase I:Choose a sufficiently larg&. From timet = it Qi (¢) is always above;” and £, g) is al\f\@’s m[E,Zj)-
0,...,T, run ESA usingQ(t) and E(t) as the data and Pmaz,En+M], then we always have! (1) = Q1 (1) - Qf

energy queue processes. Obtain the two vec@rs— Our algorithm is designed to ensure th@§” () and £, (t)
(0%, ¥ (n,c)) and € = (&,,¥n) by having: mostly stay in the “right” arrange, as shown |n the following

lemma.
lec) _ [lec)(T) -~ ﬂ]Jr’ £ — [En(T) _ ﬂ]Jr_ (32) Lemma 3: For all timet, we have the following:

2 2 0< QO < [0 (1) — Q9 +4,¥(n,c),  (33)

« Phase Il: Resett = 0. Initialize E(O) = & and min [[En(t) _gn]Jr,M} < E,(t). (34)
Q(0) = Q. Also setQ(0) = 0 and E(0) = 0. In _ B
every time slot, first run the ESA algorithm based on  Proof: See Appendix C. u

Q(t), E(t), andS(t), to obtain the action variables, i.e., We now summarize the performance result of MESA in the
the corresponding.,(t), R (), and u(c) » (1) values. following theerem: N .
Perform Data Admisson, Power AIIocat|0n and Routing 1heorem 5: Suppose that the conditions in Theorém 4

and Scheduling exactly as ESA, plus the following: ~ N°ld, that the system is in steady state at tiffieand that
_ Energy harvestingif En(t) < & let én(t) = a steady state distribution for the queues exists under ESA.

- . N Then under MESA with a sufficiently lardé, with probability
[en(t) — (En — En(t))]" and harvesg(t) amount | _ O(<L), we have:

of energy, i.e., updat&,,(¢) as follows:

Q < O(flog(V)]?), (35)
Ey(t+1) = ([Bn(t) = D Pay®)]" +ént)) A M. Ut (F) > Us(r*) — O(1/V). (36)
beNs” Proof: See Appendix D. [ |

Herea A b = min[a, b]. Else ifE’n(t) > &, 4+ M, do Note that the conditions in Theorelmh 4 are indeed the con-
not spend any power and updatg(t) according to: ditions needed for proving the exponential attraction ltdgu
[25]. Thus Theoreril5 implies that if the exponential atfiact

E,(t+1) =min [E,(t) + en(t), M]. result holds, which is mostly the case in practice (Seé [25]
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for more discussions), then one can significantly reduce t
energy capacity needed to achieve th&) close-to-optimal .| LT
utility performance and greatly reduce the network corigast

VII. SIMULATION

In this section we provide simulation results of the ESA
algorithm. We consider a data collection network shown it..|
Fig.[. Such networks typically appear in the sensor networ
scenario where sensors are used to sense data and forw =m0 o E s T meo =
them to the sink. In this network, there a&@odes. The nodes
1,2, 3 sense data and deliver them to ndtiek via the relay Fig- 3. Simulation results of ESA.

of nodes4, 5.
are “attracted” to certain fixed points. However, differéom
Ri—> L1 previous work, e.g.[125], we see that the queue siz€ df)
Ls does not approach this fixed point from below. It instead first
Ro—m Lo has a “burst” in the early time slots. This is due to the fact
La that the systems “waits” fof; (¢) to come close enough to
Le its fixed point. Such an effect can be mitigated by storing an
Rs —» Ls initial energy of sized in the energy queue.
Fig. 1. A data collection network, whetk; denotes linki. :

50

40

The channel state of each communication lihk, rep- | i
resented by a directed edge, can be either “G=Good” ( =} o] |
“B=Bad”, and evolves according to the two-state Markov ohai [ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ — ]
shown in Figl® withpe — pp — 0.3. At any time, we can  * = ™ % w0 ge ww wo e ww w
allocate either zero or one unit of power. One unit of powe,_
can serve two packets over a link when the channel state |
good, but can only serve one when the channel is bad. V.|
assumeR,,... = 3 and the utility functions are given by: .l ]
Uy (r) = Uy(r) = Us(r) = log(14r) andUy(r) = Us(r) = 0. — =]
For simplicity, we also assume that all the links do not if®ey . . . . . . . . . — |
with each other. ime

NPT Y L v AV w

Fig. 4. Sample path queue processes.

1-pe oo We also simulate the MESA algorithm for the same network
with the same@ value. We usel’ = 50V in Phase | for
pe obtaining the vector€ and Q. Fig.[8 plots the performance
results. We observe that extremely few packets were dropped
in the simulations (at mosi out of more thanl0® packets
were dropped under anly values). The utility again quickly
verges to the optimal &g increases. We also see from
{Re second and third plots that the actual queues only grow
poly-logarithmically inV/, i.e., O([log(V)]?), while the virtual
gueues, which are the same as the actual queues under ESA,
grows linearly inV. This shows a good match between the
simulation results and Theordm 5.

Fig. 2. A two-state Markov chain.

We also assume that for each node, the available ene
h,(t) evolves according to the same two-state Markov chain
Fig.[2. When the state is good,, () = 2, otherwiseh,, (t) =
0. It is easy to see that in this case= 1, 6 = 2, tmaz = 2,
Amaz = 2 and P4, = 2. Using the results in Theorel 2, we
setd, = 6BV + Punae = 2V + 2. We also see that in this
case, we can use = dqz fhmaz + Rmaz = 7. The simulation
results are plotted in Fidl] 3. We see in Hig. 3 that the total
network utility converges quickly to very close to the opaim
value, which can be shown to be rougy)3. We also see In this paper, we develop the Energy-limited Scheduling Al-
that the average data queue size and the average energy qgetéhm (ESA) for achieving optimal utility in general eqggr
size both grow linearly in/. harvesting networks equipped with only finite capacity gger

Fig.[4 also shows two sample-path data queue processtmage device. We show that ESA is able to achieve an average
and two energy queue processes under 100. It can be utility that is within O(€) of the optimal for anye > 0 using
verified that all the queue sizes satisfy the queueing bouretsergy storage devices @¥(1/¢) sizes, while guaranteeing
in Theorem 2. Interestingly, we see that all the queue sizéimt the time average network congestiorigl /¢). We then

VIII. CONCLUSION
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Here we prove Theorel 2. The proof idea is as follows: We
first show that by our choice @, the ESA algorithm ensures
the energy-availability constrainil(4) even if we removidm
the algorithm. This enables us to show that ESA approximatel
minimizes the value of the RHS of (20) over all possible
policies. We then analyze the utility performance of ESA by
wor v, = —sewa 1 relating the value of the RHS of (R0) under ESA to the dual

S0 s a0 e0 w0 om0 i o %0 om0 g0 0 w0 function s h; (va)_
Proof: (Part (a)) We first prove[(25) using a similar
Fig. 5. Simulation results of MESA. argument as in[[15]. It is easy to see that it holds for
t = 0, since ng)(()) = 0 for all (n,c). Now assume that

also develop the Modified-ESA algorithm (MESA), and Shovt%nshowihg t‘ﬁtmgf&aﬁofrotrm?; Etnlc)F?rtsttlr;eng d\ge g::st
that MESA can achieve the sant@(e¢) utility performance v

: . o not receive any commodity data from other nodes, then
using energy storage devices of ortl[log(1/¢)]*) sizes. Qﬁf)(t) < st)(t +1) < BV + Rypas. Second, if noden

receives endogenous commoditydata from any other node
b. Then according to the ESA algorithm, we must have:

APPENDIX A — PROOF OFLEMMA [2

Here we prove Lemmi 2 () (c)
Proof: First by squaring both sides dfl(5), and using the @7 (1) < @7 (1) =7 < BV + Ronaz — -

+\2 2 . ) . .
fact that for anyz € R, ([2]")" < z*, we have: However, since any node can receive at mpstommodity

QW(t+1))2 — [ng)(t)]Q (37) ¢ packets, we hav@ﬁf)(t +1) < BV + Rimaz- Finally, if
< Z () Z (C) )+ R(C) 2 noden receives exogenous packets from outside the network,
“[n,b Hla () then according to[{21), we must ha@f)(t) < BV. Hence
beN aGN(m) (C) (t + 1) < BV + Romax.
Q(C) Z u[ Z u(c) (c)( )] Now it is also easy to see from the energy storage part of
beA () ae NG ESA thatE,, (t) < 0, + hmas, Which proves[(26).

We now show that ifE,,(t) < Praz, then G(P(t)) will

i 3.2 2 2 .
By defining B = 5d;.00Himaz + imae: WE S€€ that: be maximized by choosing, ,;(t) = 0 for all b € A}t at

Lo 9 © N noden. To see this, first note that since all the actual queues
5([62 (t+ D" =@y (®)] ) <B (38)  are upper bounded bV + Ry, we have: Wy, () <
(¢) () (¢ BV = dimaztimaz Tor all [n,b] and for all time.
z‘:o) i) (¢ z(:) H[“ n (0= RBIO): Now let the power allocation vector that maximizes
bEN aENn G(P(t)) at timet be P* and assume that there exists some
Using a similar approach, we get that: Py, thatis positive. We now create a new power allocation
1 ) ) vector P by setting onIyP[* m =0 in P*. We see thatP
5([En(t+ 1) = 0,]" — [En(t) — 0,)] ) (39) s also feasible. Then we have the following, in which we

5 have writteny,, ,,) (S(t), P(t)) only as a function ofP(t) to
< B = [Ea(t) = 0l Z Py (1) = en(t)] simplify notati[on:]

beN,®
whereB’ = 1(Pyaz+himaz)?. Now by summing[(38) over all G(P") —G(P) .
(n, c) and [3})) over alh, and by defining = N2B+NB' = = Z Z (100 (P) = p10n 21 (P) | Wi (2)
N2( d/mamﬂmaw + R?nam) 1N(Pmu,z + hmam) we have: n beNf;’)
+(En(t) = 0n)Fp )
Lt+1 y< B - C) (c) . i )
(t+1) - Z o be%;o) Fi) (t < (B} (P) = i) (P)) Wi o) (8) + (En(£) = 00) Py -

Z M(c) B ()(t)] Here in the last step we have usdd (2) in Propéity 2 of
Hin,m) (5 P), which implies thatu, ,) (P*) = fijn.e(P) < 0

(in)
aENn for all b # m. Now supposeE,,(t) < Ppnq.. We see then
~> [En 1Y Pay®) —en(®].  E,.(t) — 6, < —38V. Using Propery1l and the fact that
n beEN Winp(t) < BV — diazftmaz, the above implies:

Taking expectations on both sides over the random channgl p*) — G(P) < (8V — dmaz tmaz )0 PG ) — 0BV Py
and energy states and the randomness over actions con-
ditioning on Z(t), subtracting from both sides the term

VE{ D me U,(f)( {e) (t)) | Z(t)}, and rearranging the terms,This shows thatP* cannot have been the power vector that
we see that the lemma follows. B maximizesG(P(t)) if E,(t) < Pyae. ThereforeE, (t) >

< 0.



P« Whenever noden allocates any nonzero power ovewsing the definition o’rD(t), @) can be rewritten as:
any of its outgoing links. Hence all the power allocation

decisions are feasible. This shows that the constraintg4) i VE{ ZU )| Z(t )}
indeed redundant in ESA and completes the proof of Part (a). .
(Part (b)) We now prove Part (b). We first show that <B+E{D"(t)| Z(t)}.

ESA approximately minimizes the RHS ¢f {20). To see thi%ﬂsing m) we get:
note from Part (A) that ESA indeed minimizes the following '

function at timet: - VE{ Z Ul N Z(t)} (43)
D(t) = ;/(En(t) - en)en(t) (40) < + E{DALT(t) | Z(t)},
_ Z [VUr(f)(Rf(f) ) — QW ()R t)] where B = B + N*¥dmaztmae- NOW consider the policy
n.ceN that minimizesD(t) subject to onlye,,(t) € [0, h,(t)], 0 <
© @)y © R (t) < Riaw, P € PS®) and [3), and denote the value
- Z {Z Z Fip )@ (1) — Q7 (1) =] of D(t) under this policy byD*(t). It is easy to see then
neN = ¢ pen® D*(t) is obtained by minimizing each term il{41) over the

(B, (t) — Z Py } constraints. Hence by comparidg®(¢) with (I5), we see that

indeed, whenS(t) = s; andh(t) = h;,

bj ly th ints;, (1) € [0, hn(£)], R (1) D0 e (@00 B
subject to only the constraints;,(t) € [0, h,(t)], Rn'(t) € _ _ .
[0, Rynas], P() € P& and [3), ie., without the energy-US'ng this fact in IEB) we have under ESA that:

beN?

availability constraint[(4). Now defin®(t) as follows: ~ VE{ Z Ul )| Z()} (44)
D(t) = En(t) — 0n)en 41
" neZN( el ) < B —E{gs,n,(Q(1),0 — E(1)) | Z(t)}.
_ Z VU (C) () — Q%C)(t)R%C)(t)] Now using [16), i.e.g(v,v) = Zsi T, Zhj Th; Jsi,h; (v,v),
n,ceN the above becomes:
> [Z > Hay®[QY®) - Q) AW = VE{ Y UL R 1) | 2(1)} (45)
neN c bENfzo) n,c i
< B-¢(Q(t),0 — E(t)).
HE =00 5 Raul0)] e
bEN(©) By Theoren{l and Lemnid 1, we see that:

Note thatD(t) is indeed the function inside the expectation VUi (r") < ¢7 < g(v",07) < 9(Q(#), 0 — E()).
on the RHS of the drift bound{19). It is easy to see from thelug this into [45), we get:

above that:
O+2.2. 2 iy (01

€ [nbleNs” Taking expectations oveZ (t) and summing the above over
t=0,..,7—1, we have:

—VE{> U R 1) | Z(t)} < B — VUin(r").

Since ESA minimized(t), we see that:

+ZZ Z [nb E{L(T) - L(0)} — VZE{ZU(C)

n ¢ bGN(O)

~ c ALT < — *Y .
< DALT(4 +ZZ Z (n>b] <TB —TVU0(1*)
e peN? Rearranging the terms, using the facts tligt) > 0 and
where the superscriptl represents the ESA algorithm, andL = 0, dividing both sides by'T', and taking the liminf
ALT represents any other alternate policy. Since asT — oo, we get:
0 S Z Z Z Nf;?b] (t)ﬁ)/ S NQFYdmam,umama hIIi}lOI(l)f — Z E{ Z U(c) c) } > Utot ) - B/V
n c bENfzo) t=0 n,c
we have: Using Jensen’s inequality, we see that:
nE NALT 2 ~
D (t) < D (t) + N ’Ydmaw/ﬁmaw' (42) Z U(C) hmlnf _ Z E{R > Utot('r*) _ B/V

That is, the value ofD(t) under ESA is no greater than its ™
value under any other alternative policy plus a constantv Ndrhis completes the proof of Part (b). [ |



APPENDIX C — PROOF OFLEMMA [3] we have:

in [[E,(k+1) =&, M
Here we prove Lemm@ 3. min [[Ey, (k + 1) ] ]

Proof: We first prove[(3B). We first deﬁne an intermediate = En(k) — Z Py (k) +en(k) — &n

processQ\ (¢) that evolves exactly a®'? (¢) except that it beNL”
does not discard packets whép (¢ ) < En+Pras OF B, (t) > < min [[[En(k) — E]F — Z Py (B)]F + en(k), M]
&+ M. We see therQSf)(t) < Qn (t). Using Lemma 3 in bemo)
28], we see thatQ!? (1) < [0 () — OlY)F + ~. Hence
> < P (k) M
QY1) < [0 (t) — 9?1 + v and [3B) follows. < min| 20) nt) (R)]" + en(k), M]
We now look at[(34). We see that it holds at tifiesince _ Bkt 1) bEN

0 = E,(0) — & = E,(0). Now suppose that it holds for
t=0,1,...,k. We will show that it holds fot = k£ + 1. Since Here the first inequality uses the property of the operaloy
it B,(k+ 1) < &, then [3#) always holds. Below, we onlyand the second inequality uses the induction thatk) >

consider the case whefi, (k + 1) > &,, i.e., min [[E, (k) — E,]*, M| = [E, (k) — Ea]F.
(-B) If E,(k+1)—&, > M, then we must havé, (k) >
[En(k+1) =& =E (k+1) — &n. (46)  En+M — Qpay, and thatl,, (k) > B, (k) — &, > M — amas
Using the fact thatl > a4z, We have:
Also note that since all the actions are made based on B, (k:+1)
Q(t) and E(t), by TheoremR, we always havg,(t) > B
Zb A P[n,b] (t), thus: - mln Z Pn b] + en(k)vM}
ENn beN )
Bo(t+1) = Z Py () + en(8). (47) > min [E,( Z Py (k) + en(k) — En, M]
e beN®
= min[E,(k+1) — &, M],
We consider the following three cases: which implies E,(k + 1) = M. Thus [3%) holds. This

() Bn(k) < &, Since E,(k + 1) > £,, we must have completes the proof of (34) and proves the lemma. m
&, — En(k) <e,(k). Then according to the harvesting rule,

APPENDIXD — PROOF OFTHEOREM[E

En(k+1) Here we prove Theorefd 5.
= min [[En(k) — Z P[n,b](k)]+ Proof: Since a steady state distribution for the queues
exists under the ESA algorithm, we see ti#at) (D, K'm) is
the steady state probability that evefitt, m) happens. Now
consider a largé” value that satisfieq! = 1[log(V)]? > 2D

beN(?
+en(k) — En + En(k), M]

> min [[En(k) + En(k) = Y Pry(k)]* andlog(V) > 16K. We have:
bENL? sllog(V)]2 =D _ jllog(V))*
ten(k) = En, M] —x > A > dlog(V).
>m Z Py (k) + en(k) — En, M] By using [29) and the above, we see that
[r,8] Llog(V)]?> — D .
= min [E, (k+1) — £, M] Pr(&(T, 2———— % ) < cfetleeV) = O(1/V*).
= min [[E,(k + 1) — &), M]. Using the definition of§’(t,m), we see that whelr is large

enough, with probabilityt — O(1/V*), the vectorsEZ(T') and
Here the first inequality uses the property 6+, and Q(T) satisfy the following for alln, c:

the second inequality use&,(k) > 0 and E,(k) > . M . M
(c) _ (o) - _ * -

My B, (k )> En+ M. In this case, we see by the mductlorUSlng the fact thatQ(C) — [Q%C)(T) — M)+ and g, =
assumption thak, (k) = M. Now by the update rule, we see[En(T) — M)+ @9) and the facts that/ :24[10g(v)]2 and

that: y* = (v*,v*) = (V) imply that, whenV is large enough,
with probability 1 — O(1/V*), we have:
Ey(k+1) = min [E, (k) + eq(k), M] = M. (48) 5w -
= > Qo) — e > —?, Y (n,c) s.t.ol®* £ 0, (50)
Thus [34) S“IJ holds. Q(C) = U,(f)*, Y (n,c) s.t. Uff)* =0, (51)
&, < E,(k) <&, + M. We have two cases: 3M

! L BM
(N-A) If B, (k +1) — &, < M, then using[[d@6) and(#7), ——5 =& — (nt1y) = ——=Vn. (52)



Having established_(50)-(b2), (35) can now be proven using]
(33) in Lemma[B and a same argument as in the proof of
Theorem4 in [25].

Now we consider [(36). By Lemmhl 3, whef, (t) <
[En+Pras, En+M], we haveE,, (t) > [E, () —En)" > Pras.
Thus all the power allocations are valid under MESA. Now
since at every time, MESA performs ESAs data admis- [7]
sion, and routing and scheduling actions, if there was ng
packet dropping, then MESA will achieve the same utiIity[8
performance as ESA. However, since all the utility funcsion [9]
have bounded derivatives, to prove the utility performaoice
MESA, it suffices to show that the average rate of the packﬂgl
dropped isO(e) = O(1/V).

To prove this, we first see that packet dropping happens at
time ¢ only when the following even£'(¢) happens, i.e., L]

Et)={3n,En(t) < En + Pras} (53)
{3 n,En(t) > &+ M}
U{3 (n,0), Q) < Q).

However, assumind_(50)-(52) hold, the following event must
happen for£(t) to happen: (14]

[
(6]

[12]

[13]

3M
{Hn, En(t) < (971 + 1/;;) - ? + Pma;ﬂ}

&(t)

[15]

UiEn, Balt) > (B +v3) + 250} [26)

3M
KR
Thergforeéa(t) C &(t). However, it is easy to see frorﬂ31)[18]
that £(t) C &(t,m) with m = (2 — Pue — D)/K =
(%[1Og(v)]2 - Pma;ﬂ -

U{3(n,c), Q) < v(d* — [17]

D)/K. Therefore&(t) c &(t,m).

Using [29) again, we see that: 9]

t—1 t—1 (20]
1 5 1
liix;ségp n TE:O Pr(&(r)) < 1128;101]9 7 ;:O Pr(&(r,m)) o

2
< C*e_(S[logéV)] —Pmam—D)/K_

(22]
(23]

Using the facts that[log(V)]? > 2D andlog(V) > 16K, we
see that:

3[10g2(V)]2 - D 5[log(V)]?

4 >
K 2 —— 7 2 20log(V). [24]
Thus we conclude that: 25
=1 R c*ePmax/ K 20
lim s Pr(& < —— =0(1/V*").
lﬁﬁp; r(&(r)) < 7720 (1/V=)

Since at every time slot, the total amount of packets dropped
is no more thanVN (tmaz + Rmaz), We see that the average
rate of packets dropped @(1/V). This completes the proof

of Theoren{b. [
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