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Abstract

This paper presents the techniques used for the compilation
of the data-flow, synchronous language SIGNAL. The key
feature of the compiler is that it performs formal calculus on
systems of boolean equations. The originality of the imple-
mentation of the compiler lies in the use of a tree structure to
solve the equations.

1 Introduction

Traditionally, real-time systems have been programmed in
imperative asynchronous languages like ADA, OCCAM or C
together with some operating system facilities. But these
tools are not satisfactory as there is considerable need of
provably correct software and as systems become more and
more complex.
To remedy the insufficiencies of the current tools, the syn-
chronous paradigm has been proposed and developed in[4].
Its main hypothesis is that a) operators react instantaneously
with their inputs (computations have zero duration), b) time
is just a succession of events (no explicit reference to a notion
of physical time). The validity of the synchrony assumption
is thoroughly discussed in [5]. Let us point out briefly, some
advantages a programmer can get from this simplifying hy-
pothesis.
The assumption that an operator (e.g an adder) computes its
outputs simultaneously with the occurrences of its inputs is
a very useful approximation in many fields. As an example
in the field of hardware synthesis, logic gates are supposed
to compute their outputs synchronously in the first approx-
imation. It makes the design of a circuit simple. Then,

propagation time is taken into account and the maximum
clock frequency allowed is calculated. Such a separation
between pure functionality and execution time is now possi-
ble in software with synchronous languages: the programmer
specifies a functionality of the program, and the compiler of a
synchronous language handles execution time on a particular
target processor.

The second assumption of the synchronous paradigm (no
physical time) provides the programmer with a framework
in which he/she can handle uniformly real-time constraints.
As a matter of fact, real-time constraints are not always ex-
pressed in terms of milli- or micro-seconds. The statement
“the train must stop within 30 meters” is a real-time con-
straint just as “the train must stop within 30 seconds”. In a
framework like ADA which possesses a notion of time only
in terms of seconds (and not in terms of meters), those con-
straints will not be handled with similar programs. Hence
the usefulness of the second synchrony hypothesis.

Four languages are built upon this synchronous paradigm:
they differ mostly in the programming style they of-
fer. ESTEREL[7] is an imperative synchronous language.
SIGNAL[6] and LUSTRE[11] are data-flow languages. Finally
in ARGOS[21], systems are specified with parallel and hier-
archical automata. A summary of the synchronous approach
can be found in [14].

This paper presents the techniques used in the compilation
of the SIGNAL language which is a data-flow language. In
this language, systems are specified with equations over syn-
chronized streams. The declarative style of SIGNAL provides
the programmer with the nice high-level constructs needed
to describe a real-time system in terms of operators network,
differential/difference equations. But, the higher the level of
the language, the bigger the challenge to construct a compiler
able to generate efficient executable code by using a “reason-
able” amount of computing resources (memory, cpu-time).

SIGNAL’s compilation is based on an abstract interpretationof
each statement as a system of boolean equations. These equa-
tions express the synchronizations in the program. The com-
piler solves a system of boolean equations for each program
in order to a) check the consistency of the synchronizations,
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and, b) generate efficient code (silicon[3], sequential[20],
parallel[9]).
In this paper, we mainly report the techniques used to an-
alyze the boolean equations. In Section 2 we present the
language SIGNAL: the basic objects, the boolean equations
and the dependency graph associated to each SIGNAL pro-
gram. Section 3 puts the emphasis on the system of boolean
equations and introduces a hierarchichal representation for it.
Finally we conclude with some experimental results which
demonstrate the effectiveness of our approach.

2 The SIGNAL language

In this section, we present the basic objects of the language.
We use sequences to describe the semantics of the statements.
See [6] for more details on formal semantics of SIGNAL.

2.1 Signals and clocks

Signals. A signal X is a sequence (Xt)t2I of values chosen
in a domain D (the type of the signal). Integer, boolean, real
are examples of signal types. The time index I is a totally
ordered set of instants. We are interested in a discrete time
model. So, instants are taken in a denumerable set. At any
given instant t, a signal may be present or absent depending
on whether or not, the instant under consideration belongs toI; a signal carries a value only when it is present.
Clocks. The set of instants at which a signal is present is its
clock. So, the clock of a signal (Xt)t2I is its time index I.
Two signals always present at the same instants are said to
be synchronous: they have the same clock. Thus, the clock
of a signalX is the equivalence class of X for the synchrony
relation; in that sense it is denoted bX.
Notation. Following [8], the set theoretic operators for
clocks, which are sets, are denoted^ (intersection),_ (union)
and n (set difference). We use <op> to denote one of the
three operators.

2.2 The kernel of SIGNAL

A statement in SIGNAL is an equation on signals; it is called a
process. We give here the kernel operators; the full language
features other operators which can be rewritten in terms of
these kernel operators.
Functional expressions. The operators (e.g +;�; �; and)
defined on basic data types (e.g booleans, integers) are
canonically extended to sequences and consequently to
signals. Let f be such an operator of arity n and let(X1t)t2I ; : : : ; (Xnt)t2I be n sequences with the same time
index I. The equation8t 2 I; Yt = f(X1t; : : : ; Xnt)
is written in SIGNAL (see Figure 1)

Y := f(X1 ,: : : ,Xn)
The signals involved in that equation are required to have the
same time index I: they must be synchronous. Thus, the
definition of the signal Y implies the following equation on
the clocks: bY = cX1 = : : : = cXn
Reference to past values. We reference past values of a —
discrete — signal with the “$” operator. The SIGNAL process

ZX := X $ 1 init v0

is the representation of the following equation on the se-
quences (Xt)t2I and (ZXt)t2I defined on the same indexI: 8t 2 I; ZXt = Xt�1 and ZX1 = v0

Here again, ZX is by definition synchronous withX: dZX =bX. A timing diagram for this operator is depicted on Figure
2.
Downsampling. Given a signal U and a boolean-valued sig-
nal C (sometimes termed condition), the process

X := U whenC

defines the signal X which carries the same value as U when
both U and C are present, and, C carries the value true.
Before giving a formal definition of X, let us introduce some
notations we will use frequently. We denote:[C] = the set of instants at which C

carries the value true[:C] = the set of instants at which C
carries the value false

When a boolean-valued signal occurs, it carries either the
value true or the value false. So the pair ([C]; [:C])defines
a partition of bC (the clock of C). This can be represented by:� [C]_ [:C] = bC[C]^ [:C] = O (1)
where O denotes the null clock, the empty set of instants.
With this notation, the signal X := U whenC is the se-
quence such that:( bX = bU ^ [C] the time index; the clock8t 2 bX; Xt = Ut(Xt)t2bX can be viewed as a subsequence of (Ut)t2bU . See
Figure 3 for a timing diagram.
Deterministic merge. Given two signalsU andV, the process

X := U defaultV

defines the signal which carries the same value as U when
U is present, or the same value as V when U is absent. It is
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absent when both U and V are absent. It merges the flows U
and V and puts a priority on U. A timing diagram is depicted
on Figure 4. More formally:8><>: bX = bU _ bV8t 2 bU Xt = Ut8t 2 bV n bU Xt = VtXt is well defined for all t 2 bX , since any instant in bX
belongs either to bU or to bV n bU .
Composition of processes. The elementary processes we
have presented till now may be composed with the com-
mutative and associative operator “j”. From an equational
point of view, this operator is the union of two systems of
equations. For example the SIGNAL process of the system:8t 2 I;� ZXt = Xt�1Xt = ZXt + Yt
is

(| ZX := X $ 1
| X := ZX + Y
|)

2.3 Extended language

For convenience, the full language SIGNAL offers many de-
rived operators; they can be expressed in terms of the kernel
operators. Here are some of them:� the operator event : syntactically, the clock bX of a

signal X is written event X; in fact, it is an abbreviation

for the boolean signal defined by event X := (X =
X); it is synchronous with X and carries the value true
each time it occurs; thus it can be identified with bX the
clock of X;� the unary when: for a condition C, the signal whenC
is an abbreviation for C whenC; this signal carries the
value true each time it is present, and is synchronous
with the clock [C] which is the set of instants when the
signal C is present and carries the value true; so the
signal whenC and the clock [C] can be unified;� similarly, the signal when( not C) can be identified
with the clock [:C];� the process synchro fX1 , : : :, Xng in SIGNAL’s
syntax specifies the equality of the clocks of its operands
i.e the equation cX1 = cX2 = : : : = cXn.

2.4 System of boolean equations

It appears clearly that a system of boolean equations lies
under each SIGNAL process. We hinted that during the pre-
sentation of the kernel of SIGNAL. We recapitulate these
equations in Table 1.
At this stage, the main difference between SIGNAL and the
classical data-flow languages [16] [25] is that in SIGNAL we
manipulate synchronized data-flow by means of clocks. The
main purpose of synchronized data-flow is that all the syn-
chronizations (expressed in terms of equations over clocks)
should be completely handled at compile time. For more
details, see [17].
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signal process clock calculus additional equations

Y:= f(X1,: : :,Xn) bY = cX1 = : : : = cXn
ZX:= X$1 dZX = bX
X:= U defaultV bX = bU _ bV
Y:= X whenC bY = bX ^ [C] [C]_ [:C] = bC[C]^ [:C] = O

Table 1: From SIGNAL operators to boolean equations

2.5 Conditional dependency graph

A data dependency is associated with each process. A pro-
cess is compiled into a graph representing the dependencies

between signals. The edge X k�! Y connecting X andY means that at each instant of the clock k, Y ’s value de-
pends on X’s value. Such a graph is constructed from the
elementary processes as shown in Table 2.

process dependency

X:= f(X1,: : :,Xn) 8i = 1 : : :n; Xi bX�����! X
ZX:= X$1 no dependency

X:= U whenC U bX�����! X
X:= U defaultV U bU�����! X bV nbU ����� V
For each C bC�! [C]

condition C C bC�! [:C]
For each signal X bX bX�����! X

Table 2: From SIGNAL operators to a conditional dependency
graph

2.6 Description of the generated code

Sequential code generation from the conditional dependency
graph follows a very simple scheme thoroughly described
in [19]. Each signal is implemented by a variable. Since a
signal carries a value only when it is present (i.e it’s clock
is present), in the generated code, access (read or write) to
the variable that implements a signal is guarded by a test on
the presence of the signal. Moreover, the assignment of the
value of a variable to another variable is guarded by the clock
that labels the dependency between the two variables.
As an example, consider the process X := U defaultV.
The signal X merges the signals U and V with a priority to U.
The dependency graph of that process isU bU�����! X bV nbU ����� V
and the code generated is:

if present( bX ) then

if present(bU ) thenX := U
endif

if present(bV n bU ) thenX := V
endif

endif

In that piece of code, we write if present(bU ) to test if
the instant under consideration belongs to the clock bU . In
the following paragraphs we will detail how the compiler
implements the test of a clock’s presence.

3 Solving the system of boolean equa-
tions

3.1 Resolution: the needs

The goal of the compiler is to check the consistency of the
synchronizations expressed by the system of equations and
to generate executable code for various architectures [3, 20].
From the conditional dependency graph and the code gener-
ation scheme, we can figure out what the needs are in terms
of resolution.

The dependency, bX bX�����! X requires that, at any given
instant, before the value of a signal X is computed, a test
be made on the presence/absence of X; that is, the pres-
ence/absence of its clock bX . So there is a need for a reso-
lution method that will allow to efficiently check at run-time
the presence of all the clocks which are related by a system
of equations. The choice made in the SIGNAL compiler is
to transform the system of equations into a list of explicit
definitions; that is, the compiler identifies in the system a set
of clock variables (the free variables) in terms of which the
other clocks are expressed. This explicitization is achieved
by means of triangularization; that is, a transformation of
the system of equations into a set of equalities of the formki = ki1<op>ki2 such that the clock-to-clock dependency
graph (the edges ki1 �����! ki  ����� ki2) be an acyclic
graph (a partial order). So, the presence/absence of ki at
run-time, can be quickly deduced from the presence/absence
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of ki1 and ki2 where ki1 and ki2 are subterms which the com-
piler tries to share with other clocks in order to yield efficient
code.
Not only does a triangularization compute the order in which
clocks must be evaluated, but it also exhibits the free vari-
ables of the system. It is important that the free variables be
determined because they are the ones that the environment of
the real-time system must provide as inputs to the program.
So, if they were not statically computed, there would be a
need for tests at run-time to check the consistency of the in-
puts; that overhead would make efficiency more difficult to
achieve.
The problem of transforming a system of boolean equations
into an explicit system is NP-hard [12]. So the algorithm
implemented in the compiler does not seek completeness. It
is rather a heuristic aimed at fast compilation of commonly
encountered systems of equations. Hence some correct SIG-
NAL programs may be rejected because the compiler fails to
produce the explicit form of their clock equations. Currently,
the triangularization is carried out in the compiler through
an arborescent representation of the equations. Before going
into details on the representation, we give the main ideas of
the strategy that lies under it.

3.2 Strategy of resolution

A triangular system of equations is progressively constructed
from the original system (see Table 1). An equation of the
form k = k1<op>k2 is oriented (we note k := k1<op>k2)
in order to consider the clock formula k1<op>k2 as the defi-
nition of the clock variable k. During this process, an orien-
tation of some equations may not be trivially possible. There
are two reasons for that.

1. The equation under consideration is of the form k =k1<op>k2 but there is already a definition of the variablek. In this case, a rewriting can be performed to verify
that the formula k1<op>k2 is equivalent to the previous
definition of k.

2. It is an equation of the form k = k1<op>k2 but an
orientation would induce a cycle in the clock-to-clock
dependency graph. In this case, an attempt can be made
to rewrite the formula k1<op>k2 and break the cycle.

Note that an equation of the form k1<op>k2 = h1<op>h2

can be brought to the two previous cases by the insertion
of a new variable h and by writing h = k1<op>k2 andh = h1<op>h2: first orient the equations and then prove the
equivalence.
At the end of this process the program is said to be tempo-
rally incorrect if there are some equations whose orientation
induces a cycle or if there are some non-proved equalities.
Hence a canonical rewriting system is needed to check the
equivalence of two clock formulas (which are boolean for-
mulas).

Although this strategy cannot triangularize an arbitrary sys-
tem of equations, it is very efficient in compiling common
SIGNAL programs that implement realistic systems.

3.3 Example

We give in this section, an example of SIGNAL program. The
purpose of this example is to illustrate the kind of rewriting
the compiler has to perform. The reader interested in real-
istic programs written in SIGNAL is referred to [2] for the
programming of a production cell controller, and to [18] for
a speech processing system.
Consider a SIGNAL program called PROCESS ALARMwhich
must compute a boolean-valued signal ALARM from 3
boolean-valued signals (say sensors) BRAKE, STOP OK,
LIMIT REACHED. Here is an informal specification of the
behavior:� the sensor BRAKE is true if the brakes of the train are

activated;� STOP OK is true if the train is stopped;� LIMIT REACHED is true if the train goes beyond some
limit it should not normally surpass;� ALARM must be true if the train has not stopped before
the limit.

A possible implementation of PROCESS ALARM is the fol-
lowing SIGNAL equation

ALARM := BRAKE and LIMIT REACHED and
( not STOP OK)

In that equation, all the signals are required to have the same
clock ( dALARM = dBRAKE = dLIMIT REACHED =dSTOP OK). This means that at each instant (a reaction of
the program), all the sensors are sampled and the value of
ALARM is computed.
Let us imagine a more sophisticated version of that program:
a sensor is sampled only when its value is necessary. We
can think of this as an improvement made by a programmer
in order to reduce the communications with the execution
environment of the program. The sensors LIMIT REACHED
and STOP OK need to be sampled only during a braking
action. And the sensor BRAKE needs to be sampled only
when no braking is going on. So, we introduce a state variable
BRAKING STATE as shown of figure 5.
Let us now focus on the clock equations that lies under this
program. If we denote for short BRAKING STATE by C,
BRAKING NEXT STATE by C’, BRAKE by D, STOP OK by
C1, LIMIT REACHED by C2 and ALARM by C3 we have:8>>>>><>>>>>: bC = cC0 (1)cC0 = [D] _ [C1] _ bC (2)[C] = cC1 = cC2 (3)[:C] = bD (4)cC3 = cC1 = cC2 (5)
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(| BRAKING STATE := BRAKING NEXT STATE $ 1 % memorize the next state
| BRAKING NEXT STATE := ( true whenBRAKE) default % enter the braking state

( false whenSTOP OK) default % leave the braking state
BRAKING STATE % stay in the previous state

| synchro fwhenBRAKING STATE,STOP OK, LIMIT REACHEDg % sample in braking state
| synchro fwhen( not BRAKING STATE), BRAKEg % sample when not in braking state
| ALARM := LIMIT REACHED and ( not STOP OK) % the brake need no longer be checked
|)

Figure 5: Source code of process Alarm

Lines (1), (3), (4) and (5) specify equalities of variables. For
such equations, we choose one variable which will replace
the others when they are referenced. By replacing cC0 by bC
in (2) we have:8>>>>>>><>>>>>>>: cC0 = bCcC1 = [C]cC2 = [C]cC3 = [C]bD = [:C]bC = [D]_ [C1] _ bC (6)
All the equations of the system can be trivially oriented from
right to left except for equation (6). Indeed, the variablebC appears in both sides of the equation; so, an orientation
would induce a cycle. To break that cycle, let us use the
extra knowledge (not apparent in the system) we have about
boolean valued signals: the clock [C1] is included incC1; this
is mainly due to the fact that ([C1]; [:C1]) is a partition of
the clock cC1. Similarly [C] � bC. Since cC1 = [C] we have[C1] � bC and consequently [C1] _ bC can be rewritten intobC. A similar argument shows that [D] � bD = [:C] � bC
and [D] _ bC = bC. Then the formula [D] _ [C1] _ bC can be
rewritten into bC. Finally the equation (6) becomes bC = bC
which is trivially true and deleted from the system.
In order to obtain the triangular form of the system of equa-
tions, the compiler must perform rewriting in respect to the
inclusion relation among clocks. That is why a special tree
representation has been introduced in the compiler to repre-
sent efficiently part of this inclusion relation.
Note that in the previous example, the variable bC cannot be
computed by an expression in the program: it is a free variable
exhibited by the compilation. This means that the execution
environment must provide it as an input to the program. This
can be rephrased as: “the specification does not determine
the pace at which the sensors must be sampled”. Should
they be sampled every meter or every milli-second, it is a
choice of the environment; it is not a real feature of the alarm
functionality.

3.4 Hierarchical representation of
the equations

To meet the requirements presented above, an arborescent

organization of the formulas has been defined in [8]. It
speeds up the rewriting and it captures the triangularity of
the system of equations. We present here the main ideas.

Partition tree.
Consider the boolean-valued signal C of the previous exam-
ple and its clock bC. According to the properties described in
the previous sections, the pair ([C]; [:C]) is a partition of bC.
Such a partition is represented by the tree in Figure 6. Since
any clock can be partitioned by a condition, this basic tree
can grow as its nodes are partitioned. Figure 7 represents
the partition tree of the example PROCESS ALARM of the
previous section. In such a tree, an edge between a parent
node and a child node captures the inclusion of the child in its
parent. The root may be an arbitrary formula but the internal
nodes are partitions.

Forest of clocks. As any clock formula can be partitioned,
the formulas originating from a SIGNAL program can be
grouped into partition trees; this set of trees is called a forest
of clocks. Within this forest, some trees may be one-node
trees; these are clocks that have not been partitioned in the
original SIGNAL program.

Fusion of clock trees. In the forest of clocks, let T and T 0
be 2 trees with roots r and k such that a) k be defined by a
formula k1<op>k2, b) k1 and k2 belong to the tree T ; which
means that the operands of the root k are in the tree T . We
carry out a fusion of T 0 into T by inserting k into the tree T
as depicted in Figure 8. In Figure 8 we point out a particular
node h of the tree T . h is the branching of the nodes k1 andk2; it is the first common ancestor of the 2 nodes. T 0 is now a
subtree of the merge tree T 00. The fusion of 2 partition trees
yields a more general tree we call clock tree.
The main idea of the insertion of the formula k1<op>k2

is that it is inserted under the branching of its operands,
at the “right hand side”. This insertion procedure has two
interesting features: a) it preserves the triangularity of the
system of equations, b)it optimizes the code generated by
nesting if-then-else control structures.

Triangularity preservation. During a depth first search
(dfs) of the tree T 00 “from left to right”, the nodes k1 and k2

are visited before the node k = k1<op>k2; it means that the

6



[:C][C] bC
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ordering that makes the system be triangular is embodied in
the tree.

Code optimization. A partition tree can be viewed as the
representation of an inclusion relation. In a partition tree, a
node is included in its parent. And more generally, a node is
included in its ancestors.

In Figure 8 the clock k = k1<op>k2 is included in the clockh. As a matter of fact, h being an ancestor of both k1 andk2, we have k1 � h and k2 � h. Consequently all of the 3
formulas k1 _ k2, k1 ^ k2 and k1 n k2 — denoted k1<op>k2

— are included in h. That is, the clock tree resulting from
a fusion of 2 trees represents an inclusion relation. On the
example PROCESS ALARM, we have shown the usefulness
of the inclusion relation for the rewriting. Now let us show
how it can help in optimizing the code generated.

The nesting of if-then-else structures for code optimization
is based on the remark that, if h and k are 2 clocks such thath � k, then for an instant t, the following implication holds:t =2 k =) t =2 h. In other words, if the test t 2 k fails,
there is no need to test if t 2 h. Thus, code generation can
take advantage of the inclusion relation between clocks. For
example in Figure 9, code a is more efficient than code b. As
reported in [19] this kind of improvement can yield a code
which runs 300% faster for some SIGNAL programs.
Arborescent resolution
We give here in three steps the algorithm of resolution.

1. Take a tree T 0 in the forest and attempt to rewrite its
root k in a way that will make the operands of k belong
to the same tree T . If this succeeds, the root formula
of T 0 can be inserted into T as described in 3.4 without
disturbing the triangularity of T .
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code a.
if present(k) then

do-something-k
if present(h) then

do-something-h
endif

endif

code b.
if present(k) then

do-something-k
endif
if present(h) then

do-something-h
endif

Figure 9: Nesting if-then-else control structures

[C1] [C][:C1] [C2] [:C2]
rr = bC [:C][D] [:D]

Figure 10: A hierarchical partitioning [C1]
[C]

[:C1] [C2] [:C2]
[:C]

[D] [:D]k1 = [C ] _ [D]k2 = [C ] _ [:D]
r k1 k

Figure 11: insertion of formulas

2. Realize the fusion of T and T 0 to yield a tree T 00 as
described above.

After the fusion of T and T 0, a formula which had one
operand in T and the other one in T 0 now has its 2
operands in the tree T 00. So, the fusion of T and T 0 may
lead to more fusions; that is the purpose of step 3.

3. Do step 1 and step 2 till the rewriting rules of step 1 no
longer apply.

Step 1 is implemented using a notion of p-depth resolution
thoroughly presented in [8]. To put it roughly, the user of
the compiler can set an integer parameter p; this parameter
is the maximum depth of the syntactic trees of the formu-
las manipulated during the rewriting. Setting a limit to the
formulas, solves the duration and termination problems com-
monly encountered in rewriting systems. Step 2 is a simple
tree manipulation. It raises though a question of canonicity
that we illustrate on the following example.
Example. Consider again the tree in Figure 7 (redrawn in
Figure 10 without some nodes which are not relevant for
the current context) and consider the formulas k1 and k2

which are roots of some trees (not drawn). k1 and k2 are
defined respectively by [C1] _ [D] and [C2] _ [:D]. Recall
that the main idea of the fusion of a tree T 0 into a tree T
is that root r0 of T 0 is inserted into T under the branching
of its operands. Following that idea, the insertion of k1 andk2 yields the tree depicted in Figure 11. Now consider the
formula k = k1 ^ k2. The same argument would trivially
place k as a child of r (see Figure 12). But k can be rewritten
into another expression. Applying axioms of boolean algebra
and using the inclusion relations embodied in clock trees
allow to rewrite k as [C1] ^ [C2]. The branching of [C1] and[C2] being [C], k can be placed under [C] (see Figure 12).
As the code generation is based on if-then-else nesting, the
insertion of k under [C] yields much more efficient code.

Canonical factorization. The previous example shows that
it is important to insert a formula under the deepest possible
parent. So we developed an insertion algorithm which op-
timizes the depth. Our algorithm has an important feature:
among the potential parents of the formula, it chooses the
one with the greatest depth; and we show in [1] that such
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Figure 12: Best insertion

a parent is unique. That feature makes our tree structure a
canonical form. The algorithm is not detailed here but the
main concepts are given below:� a BDD (Binary Decision Diagram [10]) is associated to

each clock; thus the tree of clocks is transformed into a
tree of BDDs;� the problem of finding a parent for a formula is refor-
mulated as factorizing a boolean function;� factorizations are carried out by taking advantage of the
specific properties of our tree.

4 Related work

The effort to generate code from a data-flow synchronous
language has also been undertaken for the LUSTRE language.
The compilation of LUSTRE produces an automaton; it offers
as an option, a trade-off between response time and size of
generated code.
The automaton may be a one-state and one-transition automa-
ton. The transition is fired at each reaction of the program. It
is labelled with a set of equations to be evaluated in order to
compute the outputs. This style is termed single-loop code
generation scheme. SIGNAL’s compilation produces the same
kind of automaton. The major difference is that in SIGNAL,
the code generated is improved by the nesting of if-then-else
control structures which has been made possible by our clock
inclusion tree. To our knowledge no such hierarchical inclu-
sion information has been used in LUSTRE to improve the
code generated.

As reported in [15] for LUSTRE and in [22] for the ESTEREL

synchronous language, the efficiency of the code generated
can be improved by the production of a partially explored
automaton: that is, the compiler may pick some boolean
variables and simulate statically their evolution. This static
simulation yields a bigger automaton than the one of the
single-loop style. But in this case, the set of equations eval-
uated at each reaction is smaller since the simulated boolean
variables need not be computed any longer. So the code
is bigger and runs faster. The problem with this style of
generation is that, in the worst case, the automaton grows ex-
ponentially with the number of simulated boolean variables.
Hence the need of heuristics to cleverly select the variables
to be simulated.

5 Conclusion

In this paper we have presented the data-flow oriented lan-
guage SIGNAL and we have given an overview of the boolean
techniques used for its compilation. These techniques have
been successfully implemented and we give here some ex-
perimental results.
Figure 13 shows the amount of computing resources required
for the compilation of sample SIGNAL programs. To show the
effectiveness of our arborescent representation, we compare
three representations of boolean systems of equations.� Tree and BDD (T&BDD): a tree structure together with

a BDD canonical form as presented earlier in this paper.� BDD characteristic function: the whole system of equa-
tions is represented by a single BDD; a system of equa-
tions over n boolean variables can be viewed as a subset
of f0; 1gn. Hence it can be given a representation in
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sample number BDD BDD

SIGNAL of T&BDD characteristic charac. func.
programs variables function after T&BDD

nodes time nodes time nodes time
STOPWATCH 1318 61893 27.07s unable-cpu unable-cpu

WATCH 785 34753 14.67s unable-cpu unable-cpu
ALARM 465 3428 2.19s unable-mem unable-cpu

CHRONO 282 1548 0.92s unable-mem 422975 409.09s
SUPERVISOR 202 425 0.45s unable-cpu 226472 146.32s
PACE MAKER 96 50 0.10s 53610 160.50s 582 0.36s

ROBOT 99 36 0.27s unable-cpu 415 0.31s
unable-cpu: computation was unable to terminate within the 40mn time limit.
unable-mem: computation was unable to terminate within the 200MB memory limit.

Figure 13: Comparisons

the form of a characteristic function. This representa-
tion of subsets of f0; 1gn is very common in the field of
hardware verification and silicon compilation [13, 24].
To solve exactly boolean equations, there is a complete
algorithm which runs polynomially in the size of this
BDD (see [12]). In order to justify our non-complete
algorithm, we show that very often in practical cases,
this BDD is too big to be computed.� BDD characteristic function after T&BDD: the original
system of equations is transformed by a T&BDD into a
tree (which is still a system of equations); then a BDD

characteristic function is constructed. The difference
between this system and the original one, is that some
variables may be (and very often are) eliminated due to
their equivalence with other variables. So, the triangu-
larized system has less variables.

The representations are compared in terms of memory (num-
ber of BDD nodes) and time ( Unix user-time). The measures
are conducted on a SUN4/Sparc10 with 64MB main mem-
ory. Manipulations of BDDs use a UC Berkeley BDD package
[23].

For the experimentation we set a 200MB virtual memory
limit and a 40mn cpu time limit.

As it is shown on the table 13, most of the measures that in-
volve a characteristic function were unable to compute within
the resource limits. It appears clearly that characteristic func-
tions are impractical.
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