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ABSTRACT
Many spatial query problems defined on uncertain data are compu-
tationally expensive, in particular, if in addition to spatial attributes,
a time component is added. Although there exists a wide range of
applications dealing with uncertain spatio-temporal data, there is
no solution for efficient management of such data available yet.
This paper is the first work to propose general models for spatio-
temporal uncertain data that have the potential to allow efficient
processing on a wide range of queries. The main challenge here
is to unfold this potential by developing new algorithms based on
these models. In addition, we give examples of interesting spatio-
temporal queries on uncertain data.

1. INTRODUCTION
In the past two decades, the problem of modeling and manag-

ing uncertain data has received a great deal of interest, due to its
manifold applications in spatial, temporal, multimedia and sensor
databases. There exists a wide range of work covering spatial un-
certainty in the static (snapshot) case, where only one point of time
is considered. In contrast the problem of modeling and managing
uncertain data with a temporal component has only received very
little attention by the community.

Consider the problem of monitoring iceberg activity in the North
Atlantic. Ships transiting between Europe and east coast ports of
Canada and the US traverse a great circle route that brings them into
the vicinity of icebergs carried south by the cold Labrador Current
near the Grand Banks. It was here that the R.M.S. Titanic sank in
1912, after it struck an iceberg. This disaster resulted in the loss of
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1517 lives and led directly to the founding of the The International
Ice Patrol (IIP) in 1914. The mission of the IIP is to monitor iceberg
danger near the Grand Banks of Newfoundland and provide the
limits of all known ice to the maritime community. The IIP does
this by sighting icebergs, primarily through airborne Coast Guard
reconnaissance missions. In addition to visual observations from
ships and aircraft, the IIP makes use of information from drifting
buoys, radar, and side-looking airborne radar (SLAR) as well as
model output. The positions and the extent of all currently known
icebergs, as well as the calendar date of its last sighting/resighting
are stored in a database. In addition, the confidence of the reporting
source is stored in the database. For example a visual sighting has
a very high confidence, while a garbled radar signal has a lower
confidence. Thus, the position of an iceberg at a time t underlies
two sources of error:

• the observation measurement error and

• the obsoleteness of the most recent observation

Using a model to describe this uncertainty, we derive at each time
t and each uncertain object o a probabilistic density function de-
scribing the position of o at t.

2. RELATED WORK
The problem of querying spatio-temporal data has been studied

extensively. There exist numerous publications on efficient query
evaluation for the case where the attribute values at each time t are
known for certain (for a comprehensive coverage, see [1]). From
this body of work, our approach is mostly related to spatio-temporal
data indexing for predictive querying, for example indexes like [2,
3] and approaches like [4]. Still, these papers neither consider prob-
abilistic query evaluation nor model the data with stochastic pro-
cesses.

However, in scenarios where data are inherently uncertain, such
as sensor databases, answering traditional queries using expected
values is inadequate, since the results could be incorrect [5]. In
such cases, probabilistic queries that take the full information of
the underlying uncertainty into account and that yield results with
probabilistic guarantees are required.



One of the first works that deal with uncertainty in trajectories is
[6]. This work considers routes that are captured by GPS and as-
sumes that the recorded locations are uncertain. Indexing such data
for range queries is considered; the authors use a simple model that
sums up the probabilities that the trajectory points are included in
the range queries to derive the probabilities of the results. Tra-
jcevski et al. [7], [8] follow a similar approach for the same prob-
lem settings. At each point in time the position of an object is
modeled as an ellipse. Each trajectory is thus represented by a 3D
cylindrical body. Since no assumptions are made about the proba-
bility distribution inside the ellipses only binary answers to queries
are possible. For example the model can answer if an object is
certainly within a query region or could be inside a query region
during a time interval but not give a probability to those events.

The work of [9] is based on the same model as [7, 8]; the authors
assume a database of (historical) uncertain trajectories, each hav-
ing a 3D cylindrical body. The objective is to identify the nearest
neighbors of an uncertain query trajectory, throughout its lifetime;
i.e., to partition the lifetime into intervals, each containing a stable
most probable nearest trajectory from the database. Each interval is
then partitioned recursively according to the second most probable
neighbor, etc. Again, this work falls into the category of papers that
do not consider location dependencies between consecutive times-
tamps and do not rely on stochastic models.

Cheng et al. [10] consider possible world semantics on static
data with multidimensional or interval PDFs. A wide range of
queries is studied. In [11], the model is extended to support search
in databases with uncertain trajectories. Similar to [7], recorded tra-
jectories (e.g., from GPS data) are spatially extended to capture all
possible locations that the object may have passed through. Then,
indexing is used to prune regions in space and time (together with
the corresponding trajectory data) that do not satisfy the queries and
possible worlds semantics are used to refine the overlapped areas in
order to determine the probabilistic query results. Again, this work
ignores inference based on stochastic models.

Approaches like [12] and [13] consider uncertain time series and
data streams, respectively. Similar to other work, they also disre-
gard correlations between points in time; that is, the position of an
object at time t is assumed to be independent of its previous posi-
tion at time t− 1.

Mokhtar and Su [14] describe a model where the uncertainty re-
gion of each object is described by a time dependent stochastic pro-
cess. Objects are given by MBRs which change their location and
extent over time following the stochastic process. The paper shows
how to answer certain types of window queries based on this model.
However, describing the parameters of the uncertainty regions and
not the trajectories of the objects through a stochastic process yields
wrong results regarding to possible worlds semantics. The reason
is that location dependency between consecutive timestamps is ig-
nored by this model.

The work described in [15] focuses on the prediction of uncer-
tain trajectories in street networks. The authors propose the use of
time-dependent inhomogeneous Markov processes for each cross-
ing. This so called Trajectory Continuous Time Bayesian Network
is constructed by analysing training data. Afterwards, it is used to
predict the next movement of an object when arriving at a crossing.
The proposed algorithm shows very high accuracy rates of around
80% predicting routes of objects. However the system does not
consider data management and efficiency in query evaluation, but
only tries to predict the routes of single objects.

To illustrate the problem of previous approaches disregarding
temporal dependencies, consider Figure 1(a), where an uncertain
object trajectory is modeled. Here, it is assumed that the object
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Figure 1: Modeling spatio-temporal data.

moves with an uncertain speed upwards. The speed of o may change
over time, but will not drop below some minimal speed greater than
zero and will not exceed some maximum speed. Therefore, given
the position of an object o at time t0, the future position of an ob-
ject can be modeled using the expected speed of o (the dashed line
in Figure 1(a)), and lower and upper bounds, or alternatively a vari-
ance, depicted by the intervals at each point of time. Since at each
point of time, the positions of o are modelled as independent ran-
dom variables, a trajectory such as depicted in Figure 1(b) has a
probability greater than zero. However, this trajectory is actually
not possible, since o makes a large leap backwards between times
t5 and t6, which is not possible given knowledge about the move-
ment of o, which this model should incorporate. A possible tra-
jectory is shown in Figure 1(c). Here, the object moves within its
speed limits at each points of time.

The flaw of modeling trajectories which are not actually possible
becomes a problem when processing spatio-temporal queries based
on this model. For example, consider a spatio-temporal window
query, which is to return for an object o, the probability that o in-
tersects the query window q, depicted in Figures 1(b) and 1(c). For
any model that ignores the dependency between locations at sub-
sequent points of time, the probability that o is always outside the
window is the product of many probabilities and gets very small.
Thus, for a large number of points of time inside the query region,
the probability that o intersects the query window converges to one.
However, if the dependency between locations at subsequent points
of time is considered, then the probability that o is outside the win-
dow at time t6 depends on the probability at time t5. If o is not in
the window q at t5, then it cannot be in q at t6 either, since the ob-
ject cannot move backwards. Thus, the probability that o intersects
the query window q at any time, is equal to the probability that o
intersects the query window at time t5. This is intuitive because the
object cannot move back into the window. One of our aims in this
work is to properly model such dependencies, instead of simply
treating time as an additional dimension in space.

To summarize, all works so far on querying uncertain spatio-
temporal data assume that the location probabilities of an object at
two different times are independent. However, time-dependence is
the main characteristic of temporal data, which cannot simply be
ignored and this is the focus of this work.



3. STOCHASTIC PROCESSES FOR
MODELING UNCERTAIN SPATIO-
TEMPORAL DATA

In order to manage uncertain spatio-temporal data we should first
select a suitable mathematical model for the data. To permit the
existence of uncertainty in the data, we suppose that the attributes
of an uncertain object X at time t are realizations of a random
variable Xt. This consideration suggests modeling the data as a
realization of a stochastic process [16] {Xt ∈ S, t ∈ T}, where T
is the temporal domain, and S is the spatial domain. Depending on
the model, T and S can be continuous or discrete. In the following,
we review a few examples of common stochastic processes.

3.1 Stochastic Differential Equations
A general model describing spatio-temporal uncertainty in a con-

tinuous temporal and spatial domain without any assumption on the
distribution is given by stochastic differential equations, having the
form

dXt = a(t,Xt)dt+ b(t,Xt) · ξ
where a is the drift of Xt, b measures the intensity of the deviation
of Xt and ξ is an error of arbitrary distribution.
For more details on stochastic differential equations the interested
reader is referred to [17]. At this point, we only need to note that
dealing with stochastic differential equations is not computation-
ally viable, since even the evaluation of a path (i.e. a possible
world) of an object requires expensive numeric integration. There-
fore, different models are required that are more practical and still
model most applications well.

3.2 Time-Parameterized Parametric Distribu-
tions

The position X of an iceberg is a random variable that can be
modeled by a Gaussian process with a drift. Therefore, the ex-
pected position μt(X) of an iceberg is a function of t that moves
into a certain direction (which is estimated using the previous trace
of the iceberg, or by using empiric studies of other icebergs in the
same region). In addition, the deviance σt(X) from the expected
position is also a function of t. The initial value of σt(X) depends
of the type of observation. Over time, σt(X) increases until the po-
sition of the iceberg is re-sighted. When the iceberg is re-sighted,
μt(X), σt(X) as well as the expected drift are updated.

In some situations, we can make the assumption that the error
at a time (i.e. the deviation from the expected position) follows a
certain parametric distribution. The parameters may change over
time and are thus modeled by a function over time. For instance, if
a normally distributed error is assumed, then the distribution Xt of
an object X at time t is is given as

Xt ∼ N(μ(t), σ(t)),

where N(·, ·) represents the normal distribution and μ(t) and σ(t)
are unary functions. For example, the position of an iceberg can be
modeled by a normal distribution, with an expected position μ(t)
moving in the direction of the current, and a variance σ(t)2 that
slowly increases, until a new observation of the iceberg is made
and the variance is set to a small value depending on the quality of
the sighting.

3.3 Discrete Markov Chain Model
In the (first-order) Markov chain model, a discrete temporal and

spatial domain is assumed. Therefore, let S = {s1, ..., s|S|} be a
finite set of locations and let T = N0 be the time domain. In addi-
tion, the Markov chain model uses the assumption that the location

of an uncertain object O at time t+1 only depends on the location
of O at time t.

DEFINITION 1. A stochastic process O = {Ot, t ∈ T} is
called a Markov chain if and only if ∀t ∈ N0∀j, i, it−1, ...i0 ∈ S :

P (Ot+1 = j|Ot = i, Ot−1 = it−1, ..., O0 = i0)

= P (Ot+1 = j|Ot = i)

The conditional probability

Pi,j(t) := P (Ot+1 = j|Ot = i)

is the (single-step) transition probability of location i to location j
at time t.

DEFINITION 2. A Markov Chain is homogeneous iff the transi-
tion probabilities are independent of t, i.e. Pi,j(t) = Pi,j .

An advantage of this model is that the transitions between loca-
tions over time can be performed using matrix multiplications, for
which there exist very efficient solutions. The locations of icebergs
for example can be modeled by discretizing the spatial domain (e.g.
using a grid), and defining the transition probabilities depending on
the current of the sea. Generalizations of the Markov chain models
are

• the discrete Markov process, in which time is modeled con-
tinuously and

• the continuous Markov process, in which both time and space
are modeled continuously.

3.4 Continuous Markov Chain Model
In order to reduce the complexity of the model, we can partition

the state space into a finite set. This is not even necessary for many
random variables that are defined on a finite space. For example,
consider a customer database of an insurance company where for
each customer, the number of damage events is stored. Obviously,
the number of damage events is a discrete (∈ N) variable. It may
be interesting to perform a prediction of this database in the fu-
ture. Therefore, for each future point of time t+ δt, the number of
damage events has to be estimated. This estimate depends on the
previous number of damage events of a customer: The higher the
previous frequency of damage events, this higher the probability
that another damage event will occur.

For each object o and each state s, the residence time Ro,s de-
scribes the time that o remains in state s. Clearly, Ro,s is a random
variable. Once Ro,s has passed, o switches into another (or pos-
sibly the same) state, the successor state So,s (note that the above
example describes a special case, where the successor state of state
n is always n+1.). The successor state also follows a probabilistic
distribution function.

The challenge for the community is to develop efficient query
processing algorithms on top of these models. In particular, the
task is to find polynomial algorithms for interesting spatio-temporal
queries, and to enhance these by indexing and pruning techniques.
A small sample of interesting spatio-temporal queries on uncertain
data is given in the following.

4. PROBABILISTIC SPATIO-TEMPORAL
QUERIES

Our goal is to efficiently evaluate probabilistic spatio-temporal
queries on uncertain spatio-temporal objects; i.e., queries about



objects that are probably located in a given spatial region during
a given range in time. Within the scope of this paper, we assume
a set of uncertain spatio-temporal objects D, i.e. objects associ-
ated with uncertain object trajectories o(t), and focus on spatio-
temporal queries specified by the following parameters:

• A spatial region S� ⊆ S, i.e. a set of (not necessarily con-
nected) locations in space, and

• a set T� ⊆ T of (not necessarily subsequent) points in time.

In the remainder, we use Q� = S� × T� to denote the query
ranges in the space and time domain. The most intuitive definition
of a probabilistic spatio-temporal (PST) query is given below:

DEFINITION 3 (PST (EXISTS) QUERY). Given a query region
S� in space and a query region T� in time, a probabilistic spatio-
temporal exists query (PST∃Q), retrieves for each object o ∈ D the
probability P (o(t) = s) ∈ [0, 1] that o is located in S� at some
time t ∈ T�.

This query type has been studied before (e.g. in [7, 8]), albeit
over data models that disregard dependencies between locations at
consecutive time stamps, as we have discussed in Section 2.
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Figure 2: Example of a spatio-temporal query.

For our motivating application described in the introduction, an
exemplary query could be to return all icebergs that have been in
visual range of a certain signal tower in December 2010 with a
probability of at least 30%.

The challenge is to return a correct answer that complies with
the possible world semantics. That is, for each object O, return the
fraction of possible worlds for which at any time t ∈ {tstart, ..., tend}
it holds that Ot ∈ Q�. An example is given in Figure 2, where
four possible worlds (trajectories) of an object O are depicted. Any
world for which the corresponding path intersects the spatio-temporal
query window satisfies the query predicate. The challenge is to
compute this probability (i.e. the fraction of worlds) efficiently,
that is without enumeration of all (exponentially many) possible
worlds.

In addition, we study the following two interesting probabilistic
query variants. Note that the second variant has not been consid-
ered in the past:

DEFINITION 4 (PST FOR-ALL QUERY). A probabilistic spatio-
temporal for-all query (PST∀Q) retrieves for each object o ∈ D the
probability P (o(t) = s) ∈ [0, 1] that o remains in S� for all times
t ∈ T�.

DEFINITION 5 (PST k-TIMES QUERY). A probabilistic spatio-
temporal k-times query (PSTkQ) retrieves for each object o ∈ D

and each parameter 1 ≤ k ≤ |T�| the probability that o is located
in S� at exactly k times t ∈ T�.

PST∀Q and PSTkQ are important complements to the PS∃TQ.
For example, these queries can progressively determine candidates
that remain in a certain region for a while. For example, for a given
region somewhere in the north Atlantic we want to retrieve all ice-
bergs that have non-zero probability remaining in this region for a
specified period of time, e.g. to be able to make some measure-
ments over a certain time period. Further examples where such
queries are useful are for location-based-service (LBS) applica-
tions, e.g. a service provider could be interested in customers that
remain at a certain region for a while, such that they can receive
advertisements relevant to the location.

Additionally to the above mentioned query types, many more
queries can be thought of, for example: Given a spatial region
S� ⊆ S of (not necessarily connected) locations in space and a
set T� ⊆ T of (not necessarily subsequent) points in time, return
all uncertain objects O such that:

• kNN Query: With a probability of at least τ , O is a k-nearest
neighbor of a specific location s ∈ S� for at least (exactly)
n points of time t ∈ T�.

• Top-k-Query: O is among the k objects having the highest
probability to be at a location s ∈ S� at any time t ∈ T�.

5. CONCLUSION
In this paper, we studied the problem of probabilistic query eval-

uation over uncertain spatio-temporal data. We consider uncertain
trajectories, for which some points are sampled via observations,
while the remaining points are instantiated by a stochastic process.
To the best our knowledge, this is the first paper that studies such
queries over uncertain moving object data, which are modeled by
stochastic processes, specifically Markov chains. This approach
has two major advantages over previous work:

• It allows answering queries in accordance with the possible
worlds model, and

• dependencies between object locations at consecutive points
in time are taken into account.

We foresee that the combination of newly developed pruning
techniques, stochastic calculations and index structures can lead to
efficient solutions to the mentioned query types. Additionally we
believe that many more applications will arise from this basic idea,
so the above list is on our opinion just “the tip of the iceberg”.
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