
A Software Process Engineering Approach to Improving Software Team

Productivity using Socioeconomic Mechanism Design

Murat Yilmaz
Lero Graduate School in
Software Engineering

Dublin City University, Ireland
e-mail: murat.yilmaz@computing.dcu.ie

Rory V. O’Connor
Lero, the Irish Software

Engineering Research Center
Dublin City University, Ireland

e-mail: roconnor@computing.dcu.ie

May 26, 2011

Abstract

Software development involves teams of interconnected indi-
viduals who are encouraged to work collectively in a knowl-
edge and communication network to produce software arti-
facts. At the social level, the interactions of these partici-
pants and their ability to cooperate are important for im-
proving the productivity of teams and organizations. Soft-
ware development is a knowledge and human intensive ac-
tivity. It is therefore not surprising to discover that recent
contributions in software development have repeatedly as-
serted the critical role of people in software development ef-
forts. However, existing approaches to software development
fail to fully exploit the importance of social and intellectual
capital that has been highlighted in the fields of economics
and sociology. Leveraging the existing approaches from eco-
nomics and sociology and applying to software development
can assist software organizations in maximizing their return
on investment. For example, by applying one such approach,
mechanism design, we can improve and model the organi-
zation’s total productivity based on social aspects affecting
productivity (i.e. social productivity).

Social productivity involves targeting the quality of social
interactions in order to bring about productivity improve-
ments. Furthermore, by optimizing the social structure and
welfare of a software organization, we aim to improve soft-
ware team collaboration, and maximize the team productiv-
ity.

1 Introduction

Software process and productivity improvement encompasses
the activities which promise to increase the quality of a soft-
ware product [5]. Predictably, these activities need to align
process, tools and technologies with human factors and so-
cial considerations [11, 1]. Software development is a form
of social activity [8]. Therefore, it is commonly conducted
by teams consisting of individuals identified by characteris-
tics of “individualism, rationality, and mutual interdepen-
dence” [12]. In this particular viewpoint, one can argue that

several factors affecting the software development process
should arise from the complexity of individuals’ interactions
and social communication costs. Therefore, the investigation
of social factors and corresponding interest in social side of
software development has become a part of software engi-
neering body of research [10].

Emerged in the 1930s, game theory is a field of mathe-
matics, which has been frequently applied to social sciences
(especially in sociology and political sciences) for analyzing
many different situations, e.g. variability of individual be-
haviors, and formation of coalition structures among the in-
dividuals and human networks [14]. Furthermore, the study
of game theory has flourished over the last several decades
and attracted many researchers. As a result, it has been
applied to several diverse fields [15] including biology, lin-
guistics, psychology, philosophy, and later in computer sci-
ence [20]. There are two branches of game theory (cooper-
ative and non-cooperative) both are useful for investigating
social interactions among software teams and individuals.
Non-cooperative game theory deals with situations where a
limited number of players interact and their choices will affect
the overall outcome, essentially participants are inclined to
benefit more from these situations individually. Cooperative
game theory deals with arrangement of participants in dif-
ferent stable combinations [4] for value maximization, which
should be suitable for software business practices. Because,
it explores the cooperative solution concepts, to achieve a
collective outcome, cooperative game theory should be use-
ful for assessment of several software development activities
and products. For example, it can support the collaborative
features of software development where coalitions are formed
for profit and performance.

Software development organizations prefer to have their
participants work collaboratively. Therefore, individuals
need to be socially integrated so as to develop team cohe-
sion. In a game theoretic sense, they need to correlate their
activities to form teams of coalitions for better productivity.
Recently, several studies have advanced our understanding of
the possible use of game theory in software engineering re-
search [2, 21]. The evidence suggests that software develop-

1



ment organizations rely heavily on several strategic nature of
software management activities [7, 9] (e.g. identifying stake-
holders, understanding competitors and market conditions),
and therefore we suggest that software management teams
should benefit from what game theory offers.

2 Background

The ultimate goal of software process engineering is to pro-
vide a roadmap for the production of high quality software
products that meets the needs of its stakeholders within a
balanced schedule and budget [24]. It concentrates on the
creation and maintenance of tasks and activity structures
rather than the output or the end product. A typical soft-
ware process aims to solve the potential and future problems
of software development with respect to planning and bud-
geting constraints. In the context of our approach, a process
is considered as the coordination of structural social activi-
ties (e.g. management, production and maintenance) coupled
and constrained with a set of people roles and skills (i.e. par-
ticipants who perform the activities) for producing software
artifacts in a predefined productivity level (see figure 1).

In order to provide a comprehensive background to our
approach, we first start by defining the concept of mecha-
nism design and its potential impact on software practices.
Secondly, we introduce the concept of software ecosystems to
define a social viewpoint for software development organiza-
tions. Finally, we introduce a model to measure the social as-
pects that are affecting software productivity improvement.

2.1 The concept of mechanism design

A subfield of game theory, mechanism design, specifically
deals with social decisions and their effects on outcomes. In
this framework, a designer or a manager investigates how
one designs the social structure of an organization so that
the individual incentives of participants can be transformed
into the organizational wide desired goals. In other words,
mechanism design is an approach for thinking about the so-
cial structure of an organization. An organization can be
modeled by depiction of social patterns (e.g. how interac-
tions depends participants) and available actions for its par-
ticipants. Further, we can make predictions about several or-
ganizational parameters with expected outcomes using game
theoretical concepts.

Based on selectable parameters for desired goals or given
objectives, we define a mechanism as the model of an organi-
zation. It is built on several inputs from individuals in order
to produce several types of outputs. The goal is to dynam-
ically portray an organization by designing the structure of
its teams for its defined objectives and hence to motivate
individuals to act in the service of an organization. We aim
to establish a structural improvement inside an organization
where it is based on the fact that the quality of organizational
production relies on the structure of the organization [6].

In software development practices, collaboration and com-
munication is observed in several stages of the development
life cycle. Consequently, information gathering and its distri-
bution have become somehow decentralized. Although this
decentralizion may facilitate an ability for self organization
and improved evolvability, it could also increase the commu-
nication costs and information based complexity.

The theory of mechanism design and its modeling imple-
mentation on software development organizations can pro-
vide a way to explore the effects of social structures on team
composition, where we can use this information for better
team and organizational structuring. An economic mech-
anism involves designing the rules for the economic activi-
ties that govern the social interactions of the participants.
These rules, for example, can be designed to motivate indi-
viduals by stimulating them to behave in a certain manner,
and to achieve certain economic or social outcomes. Finally,
a mechanism establishes the fabric between the actions of
individuals and social landscapes of software organizations.
We suggest that, a mechanism enables us to maximize the
economic and social outputs of the software development ef-
fort - through modeling the structure of software teams and
further envisioning a software development organization.

2.2 The software ecosystem

In recent years, initial exploration of the importance of the
interactions of an economic community, highlighted the fact
that software development organizations should co-evolve
their capabilities and roles together for maximizing the op-
portunities for project and business success. Therefore, the
traditional viewpoint of software business; selling software
to the mass market, has been replaced by the idea of in-
teracting companies in a form similar to a biological ecosys-
tem [17]. Based on the idea that interacting participants and
organizations of the business world is considered similar to
organisms of a biological ecosystem, Moore [19] from Har-
vard introduced the definition of a software ecosystem as an
economic coating that forms around a software product.

Concurrent to Moore’s definition, Mitleton-Kelly from
the London School of Economics investigates organizational
complexity by applying the theory of complex social sys-
tems to the theory of organizations [18]. She suggests that
complexity arises because of the interactions through the el-
ements of a complex co-evolving social ecosystem, includ-
ing all individuals and organizations based on their business,
technical and organizational relations among suppliers, cus-
tomers or competitors.

Ultimately, we suggest that, a software ecosystem may be
based on various information exchange networks. It could
be considered as a set of several business entities working on
collective outcomes in a shared market where several enti-
ties play distinctive roles (e.g. shapers, contributors). The
relationship is based on the exchange of knowledge in terms
of several forms, e.g. artifacts. Recognition of the software
development organization as a social ecosystem brought the
realization that the investigation of its social structure (e.g.

2



Process Component

Activity DeliverableRole

Task

Software Engineering Process

Iteration (1,2,3) Increment

Software Development Life-cycle

Figure 1: A meta model for software engineering process adapted from [23].

connectivity, cohesion or coupling of its members) may help
to improve the human centric aspects of the business process.

3 A model of productivity improve-
ment

Productivity improvement is one of the main concerns of
a software organization. It starts very early in any develop-
ment life-cycle. For example, previous research has indicated
that size of a project, the development environment and the
technologies (e.g. programming language) has an impact on
software productivity [22].

Although a generally accepted measurement model of pro-
ductivity is lacking [13], it can essentially be considered as
the production rate or capacity of a process - something that
agile software development often terms as the project veloc-
ity. Productivity should be considered as the value creation
activities in a specific time period, and according to Boehm,
the best opportunities for improving productivity in the soft-
ware development effort are to be found in the attributes of
people and their interactions inside the software organiza-
tion [3].

Consequently, in order to improve the productivity of
a software organization, crafted methods and development
strategies for software development should leverage the
knowledge contained in well-established people-centered ap-
proaches. Such efforts can only boost the potential for suc-
cess in software development companies.

For example, a team of software practitioners is not only a
good illustration of team oriented knowledge work but also
a form of social (information exchange) network. A social
structure can be defined in terms of social units, where they
are considered as teams of interacting individuals gathered
together for achieving a defined goal.

In software development activities the intellectual work-
ers continuously collect and process the collected informa-
tion (e.g. requirements, technologies) into knowledge that
actualizes as software artifacts. Furthermore, the knowledge

assets embedded inside the activities of a software organiza-
tion are used for generating an economic value. This value
should not only be determined by the outcome of the produc-
tion process but (i) as the human part of the capital which
encompasses the value added to the workers during the pro-
cess and, (ii) as the social capital (i.e. embedded resources in
social networks [16]), which is the capital captured by social
interrelations. In order to bridge the gap between formal and
the social world of software practices, any proposed valua-
tion of a software development should not only be realized
by financial form of the capital but also with its intellectual
capital and especially in terms of the social capital.

In summary, software productivity is heavily dependent
on social aspects of productivity which can be achieved by
better social alignment, i.e. setting the roles of people better
regarding to their personality types for maximizing produc-
tivity. In addition, it is the skills of individuals and teams
which transform the acquired knowledge into software arti-
facts (e.g. source code, documentation, etc.) and constantly
increases the competitive advantage.

3.1 Qualitative Simulation Paradigm

The notion of personality types can be considered to be so-
cially constructed entities. Based on behavioral response
patterns, personality is like an individuals’ mask with which
one present herself or himself to others. We suggest that
the outcome of several situations are shaped by individuals
personality types when they interact. These interactions,
however, can be defined in terms of game theoretical forms
in a way to use personality types to promote goal attainment
of participants. These types are created to use on detailing
behaviors of distinctive personality types and their reactions
to several situations. Therefore, we term them as game the-
oretic personality types (GTPTs) which is a taxonomy of
interactors that can be defined as a strategic situation (e.g.
a situation where a decision has been made).

We propose an approach for providing a capability to in-
duce the social environment: (i) to reveal participants per-
sonality types from a game theoretical perspective, (ii) to as-

3



sess how individuals interact on software development land-
scape, (iii) to investigate the cause and effect relationship
of social aspects over productivity, (iv) to sequentially cre-
ate personality profiles of organizations based on our game-
theoretic classification approach, (v) and to simulate and
design team compositions based on several observed and hy-
pothetical situations.

Depending upon the complexity of tasks and human in-
teractions, in our setting, a precise quantitative model is
hard to construct. However, based on a finite set of qual-
itative knowledge and relations, we should be able to ana-
lyze and simulate several team formations and situations by
using several techniques such as sociometric graphs, situa-
tional context cards, qualitative simulations for examining
several aspects such as communication and social structure
of a software organization. Here, we formulate a new ap-
proach to overcome the complexity of understanding social
and economic activities (see figure 2). We have termed this
approach to be a qualitative simulation: a scenario based in-
formation gathering, analyzing, and evaluation method relies
on blending several qualitative research techniques.

Figure 2: The meta-model of qualitative simulation.

This method consists of three process cycles (i.e. a set of
circular sequence of events designed to reinforced the out-
comes): (i) initiation, (ii) generation, (iii) evaluation. The
initiation cycle is used for creation of GTPTs. It starts
with identification of a set of situations. Next, it continues
with the observation of participants’ types and we evaluate
these observations by semi-structured interviews. The sec-

ond process cycle is for enhancing the situational context
cards creation. Several captured situation will be stored in
this context, the cards however aim to help the identification
of individuals and their reactions to situations. Finally, the
revised context cards will be used to create several random
or planned situations and they will be tested on individuals
to determine their social coherence for creating optimal team
compositions.

As a summary, we define qualitative simulation as a
methodology based on situational context cards to define sev-
eral simulation scenarios where we create hypothetical work
flow for reapplying observed events to other participants. It
should also include focus groups and expert reviews and case
study for better construction. For example, it uses semi-
structural interview techniques to validate the collected in-
formation and situational context cards (i.e. cards that store
several situations), and to investigate participants reactions
to several situations. Based on the data about the persons
and the situations, our qualitative simulation model will be
able to simulate scenarios and events that can happen during
the software development life-cycle and ask several partici-
pants about their reactions to several events. Further, we
will use this method to simulate and observe the changes
regarding to social formation and conflicts among the struc-
ture of the software organization and share them with the
participants to collect their responses.

4 Conclusions and Future Work

In this work, the primary outcome will be a modeling ap-
proach for team compositions on software development ac-
tivities in terms of social interrelationships of participants, in
particular by profiling the game theoretic personality types of
participants. The research will extend the body of knowledge
on software engineering based on the complexities several so-
cial issues such as team formations, interpersonal conflicts,
social loafing that affect the group settings and structure
software development teams. In addition to that, we have in-
troduce several concepts as potential impacts and significant
outcomes for software engineering research such as the no-
tion of social productivity, and qualitative simulation which
is a method formed by the combination of several qualita-
tive techniques orchestrated to simulate several observed or
hypothetical events.

Furthermore, we will develop game theoretic personality
types which represents a novel kind of personality (socio)
types or traits, specifically designed for team composition
suitable for using our game theoretic interaction model. Fur-
thermore, by using the personality traits, a team composer
will be designed for software companies not only suitable for
team composition but also for the choosing and integration
process of new personnel.

In developing the concept of social productivity, a survey
artifact is created, which will be used to determine the cor-
relation among several factors of productivity and social as-
pects of productivity. Furthermore, by combining the notion

4



of social network analysis and game theory concurrently, we
will obtain a new viewpoint for software engineering research.

In addition to the contributions identified above, we con-
sider our work will benefit future software engineering re-
searcher by drawing a road map that establishes a body
of knowledge, specifically on the structures and formations
of software development teams and organizations. Further-
more, this project may also useful for researchers in exam-
ining the experience of applying game theoretic concepts to
software development organizations, in particular the prac-
titioners who are seeking to improve the social productivity
of their organizations and to assist in the complications of
social issues related to software development productivity.
For example, uncontrolled fluctuations in team velocity that
could cause considerable complications.

Acknowledgments

This work is supported, in part, by Science Foundation Ire-
land grant number 03/CE2/I303-1 to Lero, the Irish Software
Engineering Research Centre (www.lero.ie).

References

[1] S. T. Acuna, N. Juristo, A. M. Moreno, and A. Mon.
A Software Process Model Handbook for Incorporating
People’s Capabilities. Springer-Verlag New York, Inc.,
2005.

[2] G. Bavota, R. Oliveto, A. De Lucia, G. Antoniol, and
Y. Gueheneuc. Playing with refactoring: Identifying ex-
tract class opportunities through game theory. In Soft-
ware Maintenance (ICSM), 2010 IEEE International
Conference on, pages 1–5. IEEE.

[3] B. Boehm. Software Engineering Economics. Prentice
Hall, Nov. 1981.

[4] R. Branzei, D. Dimitrov, and S. Tijs. Models in cooper-
ative game theory. Springer Verlag, 2008.

[5] R. Conradi and A. Fuggetta. Improving software process
improvement. IEEE Software, 19(4):92–99, 2002.

[6] M. Conway. How do committees invent. Datamation,
14(4):28–31, 1968.

[7] F. Deek, J. McHugh, and O. Eljabiri. Strategic software
engineering: an interdisciplinary approach. CRC Press,
2005.

[8] T. DeMarco and T. Lister. Peopleware: productive
projects and teams. Dorset House Publishing Company,
Incorporated, 1999.

[9] T. Dingsoyr, T. Dyba, and N. Moe. Agile Software
Development: Current Research and Future Directions.
Springer, June 2010.

[10] Y. Dittrich, C. Floyd, and R. Klischewski. Social
thinking-software practice. The MIT Press, 2002.

[11] R. L. Glass. Facts and Fallacies of Software Engineer-
ing. Addison-Wesley Professional, 2002.

[12] M. Grechanik and D. E. Perry. Analyzing software de-
velopment as a noncooperative game. In IEE Seminar
Digests, volume 29, 2004.

[13] C. Jones. Software Engineering Best Practices:
Lessons from Successful Projects in the Top Companies.
McGraw-Hill Osborne Media, 2009.

[14] A. Kuper and J. Kuper. The social science encyclopedia.
Routledge/Thoemms Press, 1985.

[15] K. Leyton-Brown and Y. Shoham. Essentials of game
theory. Morgan & Claypool Publishers.

[16] N. Lin. Social capital: A theory of social structure and
action. Cambridge Univ Pr, 2002.

[17] N. Madhavji, M. Lehman, D. Perry, and J. Ramil. Soft-
ware evolution and feedback. Wiley Online Library,
2006.

[18] E. Mitleton-Kelly. Complex systems and evolutionary
perspectives on organisations. Emerald Group Publish-
ing, Sept. 2003.

[19] J. Moore. The death of competition: leadership and
strategy in the age of business ecosystems. HarperBusi-
ness New York, 1996.

[20] N. Nisan. Algorithmic game theory. Cambridge Univ
Pr, 2007.

[21] V. Sazawal and N. Sudan. Modeling Software Evolution
with Game Theory. Trustworthy Software Development
Processes, pages 354–365.

[22] R. Selby. Software engineering: Barry W. Boehm’s
lifetime contributions to software development, manage-
ment, and research. Wiley-IEEE Computer Society Pr,
2007.

[23] B. Unhelkar. Practical Object Oriented Analysis. Thom-
son Publishing, Mar. 2005.

[24] S. Zahran. Software Process Improvement: Practical
Guidelines for Business Success. Addison Wesley, 1998.

5


